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The schematic on the right shows a 3-element RC
circuit. A constant voltage (V) is applied to the input
of the circuit by closing the switch at t = 0. The
output is the voltage across the capacitor (C). The
circuit can be represented as a linear time-invariant
(LTI) system. We first normalize the input voltage: V
= 1. Thus, the input is the unit step function u(t), and
the output is the step response s(t). The LTI system
can be completely characterized by its impulse
response h(t). The step response is the convolution
between the input step function and the impulse
response: s(t) = u(t)     h(t).

In the frequency domain, the transfer function H(s) is
the Laplace transform (LT) of the impulse response 
h(t). The LT of the unit step function is simply s. As
convolution in time domain becomes multiplication
in frequency domain, the Laplace transform of the
step response is the product of s and H(s). 

Circuit analysis using differential equations

This is a first-order circuit with only one node, i.e.
where the three elements join together. For t ≥ 0, by
evaluating Kirchhoff's current law at the node we
have:

V −vc

Ra

=
vc

Rc

+ C
dv c

dt
 ------------------- (1)

By rearranging terms, we have:

 
dvc

dt
= V

Ra C
−

Ra+Rc

Ra Rc C
vc  -------------- (2)

Assuming the capacitor is fully discharged at t = 0, the initial
condition and the boundary condition, respectively, are:

vc=0, t=0    and   vc=(Rc V )/(Ra+Rc) , t=∞   

The solution of the 1st-order differential equation is:

vc =
Rc V

Ra+Rc

(1− e
−

Ra+Rc

Ra R c C
t

) =
Rc V

Ra+Rc

(1− e−t / τ)  

------------------------------------------------ (3)

where τ=Ra Rc C /(Ra+Rc) is the time constant of the circuit.
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Circuit analysis using Laplace transform

The transform function is simply the voltage divider in the Laplace domain, where the impedance of 
the capacitor is  1/ sC :

H (s) =
Rc/(1+s Rc C )

Ra+Rc/(1+s Rc C )
=

Rc

Ra+Rc+s Ra Rc C
 --------------------------------------- (4)

The LT of the step response is:

S (s) = H (s)/ s =
Rc/(Ra+Rc)

s (1+s Ra Rc C /(Ra+Rc))
 ---------------------------------------------- (5)

Applying the partial fraction technique and let Rac=Ra Rc /(Ra+Rc) :

S (s) = A
s

+ B
1+s RacC

=
A(1+s Rac C )+sB

s(1+s Rac C)
=

A+s( A Rac C+B)
s(1+s Rac C )

 ---------------- (6)

Equating the numerators of eq (5) and (6), we have:

Rc

Ra+Rc

= A + s(A Rac C+B)  ---------------------------------------------------------------- (7)

A =
Rc

Ra+Rc

, and B = −A RacC  ------------------------------------------------------------ (8)

Solving for B, we have:

B = −(
Rc

Ra+Rc

) RacC ---------------------------------------------------------------------------- (9)

Substituting (8) and (9) into (6), the LT of the step response S(t) is given by:

S (s) = (
Rc

Ra+Rc

)(1
s

−
Rac C

1+s RacC
) = (

Rc

Ra+Rc

)(1
s

− 1
s−(−1/ τ)

)  ------------------  (10)

where τ=(Ra Rc)C /(Ra+Rc)=Rac C . 

From the Table of Laplace Transforms:  
1
s

→ u (t )   and  
1

s−a
→ eat  ---------------------- (11)

The step response is the inverse LT of (10):

s( t) =
Rc

Ra+Rc

(1 − e−t / τ)  ------------------------------------------------------------------- (12)

which is the same as (3) with the input voltage V normalized to 1.
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Transfer function and impulse response

From (4), the transfer function is:

 H (s)=(
Rc

Ra+Rc

) 1
1+s Ra Rc C /(Ra+Rc)

=(
Rc

τ (Ra+Rc)
) 1

s−(−1/ τ)
=( 1

Ra C
) 1

s−(−1/ τ)
 ---- (13)

Taking the inverse LT results in the impulse response:

h( t) = 1
Ra C

e−t / τ  -------------------------------- (14)

which completely characterizes the dynamics of the linear
time-invariant system. The time constant τ, given by
Ra Rc C /(Ra+Rc) , is when the output drops to 37% (1/e) of

the initial value. Notice that the initial value 1/ Ra C   is
independent of Rc .

Fourier transform 

Zeros are points on the s-place where the transfer function 
H(s) is 0. Poles are points on the s-place where H(s)
approaches to ∞. From (13), we see that this first-order system
has one zero at s = ∞ and one pole at s = –1/τ. As shown in the
figure, the pole is marked by “X”. Because the Fourier
transform (FT) is evaluated along the jω axis of the s-plane, the
denominator of H(s), s−(−1/ τ) , is represented by the dashed
line. As the frequency (ω) increases from 0 (DC) to infinity, the
magnitude of the line increases and the magnitude of H(jω) 
decreases. Thus, the system is a low-pass filter.

The FT is obtained by substituting s= jω  in (13), we have:

H ( j ω) = ( 1
Ra C

) 1
j ω+1/ τ

= ( 1
Ra C

) 1/ τ− j ω
1/ τ2+ω2 ---- (15)

Taking the magnitude of (15), we have:

∣ H ( j ω) ∣ = ( 1
Ra C

) 1

√1/ τ2+ω2
 ----------------------- (16)

The angle is given by:

∢H ( j ω) = − tan−1 τ ω  --------------------------------- (17)
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Frequency response

Let's assign values to the circuit components so that we can plot the frequency response as an example. 
Let's assume:

Ra = Rc = 10 K Ω ;   C = 0.1μ F  ---------------------------------------------- (18)

Based on these values, we have:

Rc

Ra+Rc

= 0.5 ;  and  τ =
Ra Rc C

Ra+Rc

= 0.0005  ----------------------------------- (19)

Inserting these values into (16), we have:

∣ H ( j ω) ∣ = ( 1
Ra C

) 1

√1/ τ2+ω2
= 1000

√4000000+ω2
 --------------------------- (20)

∢H ( j ω) = − tan−1 0.0005ω  ------------------------------------------------------ (21)

Using an online graphing calculator at <www.desmos.com/calculator>, the magnitude of the FT can be 
plotted as shown in the figure. The low-pass filter has a gain (magnitude) of 0.5 at DC, which decreases 
as frequency increases. The cutoff frequency fc is at ωc=1/ τ=1/0.0005 = 2000 radians/s, where the 
gain decreases to 71% ( 1/√2 ) of the DC gain. This is called the 3 dB point, because
20 log10(1/√2)=−3 dB. The angular frequency is related to the regular frequency by ω=2π f . Thus, 

the cutoff frequency is f c=ωc/2π=318 Hz. The phase of H(s) given by (21) is also plotted.
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Bode plot

Bode plot is a graph of the frequency response of a system on the log-log scales. The transfer function 
H(s) in (13) shows one zero at s = ∞ and one pole at s = –1/τ = -2000. Using an online Bode plot 
generator at <http://http://www.onmyphd.com/?p=bode.plot>. We obtain the following:

Please note that the above Bode plot assumes that the DC gain is 1 or 0 dB, which should be 0.5 or -6 
dB. So the actual magnitude Bode plot should be shifted down by 6 dB. For a first-order low-pass filter, 
the slope of the declining portion of the Bode plot is -20 dB per decade. For example, the magnitude 
drops from 0 dB to -20 dB for frequency from 2000 radians/s to 20000 radians/s.
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