Circuit Analysis Using Laplace Transform and Fourier Transform: RLC Low-Pass Filter quing Sem

The schematic on the right shows a 2 nd-order RLC circuit. A constant voltage (V) is applied to the input of the circuit by closing the switch at $t=0$. The output is the voltage across the capacitor (C). The circuit can be represented as a linear time-invariant (LTI) system. The input is v_{i}. If a constant voltage is applied at $t=0$, it is a step input. We further normalize the input voltage $V=1$ such that it's unit step function. Thus, the input is the unit step function $u(t)$,
 and the output is the step response $s(t)$. The LTI system can be completely characterized by its impulse response $h(t)$. The step response is the convolution between the input step function and the impulse response: $s(t)=u(t) \otimes h(t)$.

Circuit analysis using Laplace transform

The circuit analysis can be done by use of the Kirchhoff's voltage law and the properties of capacitor and inductor:

$$
\begin{align*}
& i=C \frac{d v_{c}}{d t}, \text { and } v_{L}=L \frac{d i}{d t} \tag{1}\\
& v_{i}=R i+v_{L}+v_{c}=R i+L \frac{d i}{d t}+v_{c} \tag{2}
\end{align*}
$$

By substituting (1) into (2), we have:

$$
\begin{equation*}
v_{i}=L C \frac{d^{2} v_{c}}{d t^{2}}+R C \frac{d v_{c}}{d t}+v_{c} \tag{3}
\end{equation*}
$$

Although a closed form solution can be obtained by solving the above 2 nd-order differential equation, we will take the frequency-domain approach. Taking LT on both side, we have:

$$
\begin{equation*}
V_{i}(s)=L C s^{2} V_{c}(s)+R C s V_{c}(s)+V_{c}(s) \tag{4}
\end{equation*}
$$

The transfer function is given by:

$$
\begin{equation*}
H(s)=\frac{V_{c}(s)}{V_{i}(s)}=\frac{1}{L C s^{2}+R C s+1} \tag{5}
\end{equation*}
$$

We now use a different set of parameters:

$$
\begin{equation*}
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \alpha s+\omega_{n}^{2}} \tag{6}
\end{equation*}
$$

where $\quad \omega_{n}=\frac{1}{\sqrt{L C}}$, natural frequency
$\alpha=\frac{R}{2 L}$, damping factor

We further define damped frequency ω_{d} :

$$
\omega_{d}=\sqrt{\omega_{n}^{2}-\alpha^{2}} ; \quad \text { or } \quad \omega_{n}^{2}=\omega_{d}^{2}+\alpha^{2} ; \quad \text { or } \omega_{n}=\sqrt{\omega_{d}^{2}+\alpha^{2}}
$$

To obtain the impulse response, the transfer function is further extended to:

$$
\begin{align*}
& H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \alpha s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{\left(s+\alpha+\sqrt{\alpha^{2}-\omega_{n}^{2}}\right)\left(s+\alpha-\sqrt{\alpha^{2}-\omega_{n}^{2}}\right)}=\frac{\omega_{n}^{2}}{\left(s+\alpha+j \omega_{d}\right)\left(s+\alpha-j \omega_{d}\right)}= \\
& \frac{\omega_{d}^{2}+\alpha^{2}}{s^{2}+2 \alpha s+\alpha^{2}+\omega_{d}^{2}}=\left(\omega_{d}+\frac{\alpha^{2}}{\omega_{d}}\right)\left(\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}\right) \tag{7}
\end{align*}
$$

The system has two poles at: $-\alpha+j \omega_{d}$ and $-\alpha-j \omega_{d}$.
Taking the ILT, the impulse response is:

$$
\begin{equation*}
h(t)=\left(\omega_{d}+\frac{\alpha^{2}}{\omega_{d}}\right) e^{-\alpha t} \sin \omega_{d} t \tag{8}
\end{equation*}
$$

Next, we want to get a closed form solution for the step response. This will be accomplished by extending $H(s)$ to $H(s) / s$, or $S(s)$, which is the LT of the step response.

$$
\begin{aligned}
& S(s)=\frac{H(s)}{s}=\left(\omega_{d}+\frac{\alpha^{2}}{\omega_{d}}\right)\left(\frac{1}{s}\right)\left(\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}\right)=\frac{a}{s}+\frac{b s+c}{(s+\alpha)^{2}+\omega_{d}^{2}} \\
& \omega_{d}^{2}+\alpha^{2}=a(s+\alpha)^{2}+a \omega_{d}^{2}+b s^{2}+c s=(a+b) s^{2}+(2 a \alpha+c) s+a\left(\omega_{d}^{2}+\alpha^{2}\right)
\end{aligned}
$$

We have $a+b=0,2 a \alpha+c=0$, and $\omega_{d}^{2}+\alpha^{2}=a\left(\omega_{d}^{2}+\alpha^{2}\right) \Rightarrow a=1, b=-1$, and $c=-2 \alpha$.

$$
\begin{equation*}
S(s)=\frac{1}{s}-\frac{s+2 \alpha}{(s+\alpha)^{2}+\omega_{d}^{2}}=\frac{1}{s}-\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{d}^{2}}-\left(\frac{\alpha}{\omega}\right) \frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}} \tag{9}
\end{equation*}
$$

Using the LT Table, we obtain the step response $s(t)$:

$$
\begin{equation*}
s(t)=1-e^{-\alpha t}\left[\cos \omega_{d} t+\left(\frac{\alpha}{\omega_{d}}\right) \sin \omega_{d} t\right] \tag{10}
\end{equation*}
$$

Next, we want to combine cosine and sine into one term with a phase angle. We further define the damping ratio $\eta, \eta=\frac{\alpha}{\omega_{n}}$.

$$
\begin{align*}
& \frac{\alpha}{\omega_{d}}=\frac{\alpha}{\sqrt{\omega_{n}^{2}-\alpha^{2}}}=\frac{1}{\sqrt{\omega_{n}^{2} / \alpha^{2}-1}}=\frac{1}{\sqrt{1 / \eta^{2}-1}}=\frac{\eta}{\sqrt{1-\eta^{2}}} \tag{11}\\
& s(t)=1-e^{-\alpha t}\left[\cos \omega_{d} t+\left(\frac{\eta}{\sqrt{1-\eta^{2}}}\right) \sin \omega_{d} t\right]=1-\frac{e^{-\alpha t}}{\sqrt{1-\eta^{2}}}\left[\sqrt{1-\eta^{2}} \cos \omega_{d} t+\eta \sin \omega_{d} t\right]= \\
& 1-\frac{e^{-\alpha t}}{\sqrt{1-\eta^{2}}}\left[\sin \phi \cos \omega_{d} t+\cos \phi \sin \omega_{d} t\right]=1-\frac{e^{-\alpha t}}{\sqrt{1-\eta^{2}}} \sin \left(\omega_{d} t+\phi\right) \tag{12}
\end{align*}
$$

where $\tan \phi=\frac{\sin \phi}{\cos \phi}=\frac{\sqrt{1-\eta^{2}}}{\eta}, \phi=\tan ^{-1} \frac{\sqrt{1-\eta^{2}}}{\eta}$.
From the previous circuit course, such as ELE 212, you might have learned what the damping ratio means: a) underdamping $(\eta<1) ;$ b) critical damping $(\eta=1)$; and c) overdamping ($\eta>1$).

Assume the underdamping situation, $s(t)$ is shown on the right. The 2 nd-order system requires two parameters to define, such as the damped frequency ω_{d} and the damping factor α. These two parameters can be obtained from the $s(t)$ curve by making two measurements. A prominent feature point is the first peak after the onset. We measure the time to peak T_{p} and the amount of overshoot (OS). This point occurs when the derivative of the curve is 0 .

$$
\begin{align*}
& \frac{d s(t)}{d t}=0 \\
& \frac{d s(t)}{d t}=h(t)=\left(\omega_{d}+\frac{\alpha^{2}}{\omega_{d}}\right) e^{-\alpha t} \sin \omega_{d} t=0 . \tag{13}
\end{align*}
$$

The peaks and valleys occur when $\omega_{d} t=0, \pi, 2 \pi, 3 \pi, 4 \pi, \ldots$. The first peak occurs when $\omega_{d} t=\pi$.

$$
\begin{equation*}
\text { Thus, } T_{p}=\frac{\pi}{\omega_{d}} \text {, or } \quad \omega_{d}=\frac{\pi}{T_{p}} \tag{14}
\end{equation*}
$$

At the first peak T_{p},

$$
\begin{align*}
& s\left(T_{p}\right)=1-\frac{e^{-\alpha T_{p}}}{\sqrt{1-\eta^{2}}} \sin \left(\omega_{d} T_{p}+\tan ^{-1} \frac{\sqrt{1-\eta^{2}}}{\eta}\right)=1-\frac{e^{-\alpha T_{p}}}{\sqrt{1-\eta^{2}}} \sin \left(\pi+\tan ^{-1} \frac{\sqrt{1-\eta^{2}}}{\eta}\right)= \\
& 1+\frac{e^{-\alpha T_{p}}}{\sqrt{1-\eta^{2}}} \sin \left(\tan ^{-1} \frac{\sqrt{1-\eta^{2}}}{\eta}\right)=1+\frac{e^{-\alpha T_{p}}}{\sqrt{1-\eta^{2}}} \sqrt{1-\eta^{2}}=1+e^{-\alpha T_{p}}=1+O S . \cdots-\cdots-\cdots-\cdots \tag{15}
\end{align*}
$$

Thus, $e^{-\alpha T_{p}}=O S$, or $\alpha=-\frac{\ln O S}{T_{p}}$.

Frequency response

Let's assign values to the circuit components so that we can plot the frequency response as an example. Let's assume:

$$
\begin{equation*}
R=40 \Omega ; L=1 \mathrm{mH} ; \quad C=0.1 \mu F \tag{17}
\end{equation*}
$$

Based on these values, we have:

$$
\begin{aligned}
& \omega_{n}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{1 m H \times 0.1 \mu F}}=100000 \text { radians } / \mathrm{s} ; \text { and } \\
& \alpha=\frac{R}{2 \mathrm{~L}}=\frac{40 \Omega}{2 \times 1 m H}=20000 \\
& \omega_{d}=\sqrt{\omega_{n}^{2}-\alpha^{2}}=\sqrt{100000^{2}-20000^{2}}=97980 \mathrm{radians} / \mathrm{s} \\
& \eta=\frac{\alpha}{\omega_{n}}=\frac{20000}{100000}=0.2 ; \quad \phi=\tan ^{-1} \frac{\sqrt{1-\eta^{2}}}{\eta}=\tan ^{-1} \frac{\sqrt{1-0.2}}{0.2}=1.35 \text { radians. }
\end{aligned}
$$

The transfer function is $H(s)=\left(\omega_{d}+\frac{\alpha^{2}}{\omega_{d}}\right)\left(\frac{\omega_{d}}{(s+\alpha)^{2}+\omega_{d}^{2}}\right)$. The system has the poles at $-\alpha \pm j \omega_{d}$, or $-20000 \pm 97980 j$. The zeros are at infinity.

Bode plot

Enter the poles of $-20000 \pm 97980 j$ at the online Bode plot generator <http://http://www.onmyphd.com/? $\mathrm{p}=$ bode.plot $>$. We obtain the following:

Step response

$s(t)=1-\frac{e^{-\alpha t}}{\sqrt{1-\eta^{2}}} \sin \left(\omega_{d} t+\phi\right)=$

$$
1-\frac{e^{-20000 t}}{0.9798} \sin (97980 t+1.35)=
$$

Due to a range issue with the graphing calculator, we change the time unit from s to ms :

$$
s(t)=1-\frac{e^{-20 t}}{0.9798} \sin (97.98 t+1.35)
$$

From the graph, we see that the peak occurs roughly at: $T_{p}=0.0323 \mathrm{~ms}$, and $\mathrm{OS}=0.52$.

Using the formula derived previously:

$$
\omega_{d}=\frac{\pi}{T_{p}}=\frac{3.14159}{0.0000323}=97263,
$$

as compare to $\omega_{d}=97980$.

$$
\alpha=-\frac{\ln O S}{T_{p}}=-\frac{\ln 0.52}{0.0000323}=20245
$$

as compare to $\alpha=20000$.

