Feedback Implementation

Fing Sem

LTI System Implemented with a Feedback Connection

The system shown on the right has a feedforward unit $f(t)$ and a feedback unit $g(t)$. What is it's overall transfer function $H(s)$?

The output of the feedback unit is $y(t) \otimes g(t)$.

The error function $e(t)$ is given by

$$
e(t)=x(t)-y(t) \otimes g(t)
$$

The output of the allover system is

$$
\begin{aligned}
& y(t)=[x(t)-y(t) \otimes g(t)] \otimes f(t) \\
& y(t)=x(t) \otimes f(t)-y(t) \otimes g(t) \otimes f(t) \\
& y(t)+y(t) \otimes g(t) \otimes f(t)=x(t) \otimes f(t) \\
& {[\delta(t)+g(t) \otimes f(t)] \otimes y(t)=x(t) \otimes f(t)}
\end{aligned}
$$

Take LT on both sides

$$
[1+G(s) F(s)] Y(s)=X(s) F(s)
$$

The transfer function is given by

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{F(S)}{1+G(s) F(s)}
$$

Example 1: Let $F(s)$ be a low-pass filter and $G(s)$ be a high-pass filter. Thus, the low-pass filter is further enhanced by subtracting the high-pass result from the output. The individual transfer functions are given below. Find the overall transfer function, pole-zero plot, Bode plot, and the filter differential equation.

$$
F(s)=\frac{1}{s+1} ; \quad G(s)=\frac{s}{s+1} .
$$

$$
\begin{aligned}
& H(s)=\frac{F(s)}{1+F(s) G(s)}=\frac{\frac{1}{s+1}}{1+\left(\frac{1}{s+1}\right)\left(\frac{s}{s+1}\right)}= \\
& =\frac{s+1}{(s+1)^{2}+s}=\frac{s+1}{(s+1)^{2}+s}= \\
& \frac{s+1}{s^{2}+3 s+1}=\frac{s+1}{(s+0.382)(s+2.618)} .
\end{aligned}
$$

Note: Solving quadratic equation $s^{2}+3 s+1$, the two roots are $s=\left(-3 \pm \sqrt{3^{2}-4}\right) / 2$.
The pole-zero plots of the original systems and the overall system are shown. The poles and zeros of the systems are: Poles at -0.382 and $-2.618 ;$ Zeros at $-1 ; \infty$.
The Bode plot obtained from http://www.onmyphd.com/?p=bode.plot is shown.
The filter differential equation can be obtained from the transfer function.

$$
\begin{aligned}
& H(s)=\frac{s+1}{s^{2}+3 s+1} \\
& Y(s)\left(s^{2}+3 s+1\right)=X(s)(s+1)
\end{aligned}
$$

Take the ILT, we have

$$
\frac{d y^{2}(t)}{d t}+3 \frac{d y(t)}{d t}+y(t)=\frac{d x(t)}{d t}+x(t) .
$$

$$
H(s) \begin{array}{l|l|}
\text { zeros } & -1 \\
\text { poles }-0.382 & -2.618 \\
\hline
\end{array}
$$

Example 2: Using the same $F(s)$ and $G(s)$, what is the overall transfer function $\mathrm{H}(\mathrm{s})$ if the two are connected in parallel?

$$
F(s)=\frac{1}{s+1} ; \quad G(s)=\frac{s}{s+1} .
$$

$$
\begin{aligned}
& H(s)=F(s)+G(s)=\frac{1}{s+1}+\frac{s}{s+1}= \\
& \frac{1+s}{s+1}=1
\end{aligned}
$$

The resulting system is an identity system. The lowpass filter $F(s)$ and the low-pass filter $G(s)$ exactly complement each other, as demonstrated by the step input shown on the right.

Example 3: Using the same $F(s)$ and $G(s)$, what is the overall transfer function $\mathrm{H}(\mathrm{s})$ if the two are connected in series?

$$
F(s)=\frac{1}{s+1} ; \quad G(s)=\frac{s}{s+1}
$$

$$
\begin{aligned}
& H(s)=F(s) G(s)=\left(\frac{1}{s+1}\right)\left(\frac{s}{s+1}\right)= \\
& \frac{s}{(s+1)^{2}}=\frac{1}{s+1}-\frac{1}{(s+1)^{2}}
\end{aligned}
$$

The resulting $H(s)$ has a zero at 0 and double poles at -1 , with the pole-zero plot shown on the right.

The Bode plot is given on the right.

The impulse response is:
$h(t) .=(1+t) e^{-t} u(t)$
as plotted below.

