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Digital filters

Finite impulse response (FIR) filter:  h[n] has a finite numbers of terms.
Infinite impulse response (IIR) filter:   h[n] has infinite numbers of terms.

Causal filter:  h [n]=0 , for all n < 0.
Noncausal filter: h [n]≠0 , for at least one  n < 0.

Stability

∑
n=−∞

∞

h [n]<∞ ⇒ stable

FIR filters are always stable. IIR filters may or may not be stable. 

Evaluating filter output by convolution

y [n]= ∑
m=−∞

∞

x [n−m ]h [m ] = ∑
m=−∞

∞

x [m]h [n−m ]

Example 1.  The impulse response of a filter 

is h [n]=e−n u [n ] . The input is a square pulse:

x [n]={1, n=0,1,2, 3
0, otherwise

.   Determine y[n].

y [n] = ∑
m=−∞

∞

x [m ]h [m−n ] =

{
0, n<0

∑
m=0

n

e−(n−m) , 0≤n≤3

∑
m=0

3

e−(n−m) , n>3

=

{
0, n<0
1, n=0
1+e−1, n>1
1+e−1+e−2, n=2
1+e−1+e−2+e−3, n=3
e−n+e−(n−1)+e−(n−2)+e−(n−3) , n>3

This is a low-pass filter. For the square pulse input,
the output is a charge-discharge curve that shows
reduction of the high-frequency contents.
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Example 2. We implement a 3-point FIR low-pass filter to smooth the data according to:

y [n]=1
4
( x [n ]+2 x [n−1]+x [n−2 ])

If the sampling rate is 200 Hz, what is the cutoff frequency (3 dB roll-off) of this filter?

                                                                                                                                                             

The impulse response as shown in figure is obtained  by setting x [n]=δ[n] .

h [n]= 1
4
(δ[n ]+2δ[n−1]+δ[n−2])

Take z-transform (ZT) of the filter equation above:

 Y [ z ]=1
4
[ X ( z)+2 z−1 X ( z)+z−2 X ( z)] . 

The transfer function is given by

H [ z ] =
Y ( z)
X ( z )

= 1
4
[1+2 z−1+z−2] = z−1

2
( z+2+z−1

2
) = z−1

2
(1+ z+z−1

2
)

The Fourier transform (FT) is the ZT evaluated on the unit circuit of the z-plane .
By replacing z=e jω , we have

H (e jω) = e− jω

2
(1+ e j ω+e− jω

2
)

Using the Euler's formula cosω= e jω+e− jω

2
, we have

H (e jω) = e− jω

2
(1+cosω) .

The magnitude and phase of H (e jω) are: 

∣H (e j ω)∣ = 1
2
(1+cosω)

∢H (e jω) = −ω

The system has a linear phase response, which represents a group phase delay. The linear phase is
desirable because it does not introduce any phase distortion.

The DC gain of the filter is 1; ∣H (e j0)∣=(1+cos 0)/2=1 . The cutoff frequency f c  is where the
gain drops to 1/√2  of the DC gain. 

1/√2 = 0.70794 ... ;    20 log10 0.70794 = −3 dB.

Let ∣H (e j ωc)∣ = 1
2
(1+cos ωc) = 1

√2
, we have

cosωc = √2−1 = 1.414−1 = 0.414

ωc = cos−1 0.414 = 1.114  radians/s = 65.5o /s.
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The sampling rate is 200 Hz, which corresponds to 2π  or 360o . The cutoff frequency is:

f c = 200×65.5o /360o = 36 Hz. 

Pole-zero plot: H [ z ] = z2+2 z+1

4 z2
=

( z+1)2

4 z2 . There are two

zeros at -1 and two poles at the origin on the z-plane. The red line
shows the vector from e j ω  to the pole. The green line shows the
vector from e j ω  to the pole. The magnitude of H (e jω) is
proportional to the green line squared over the red line squared, as
ω goes from 0 to π. 

Digital filters implemented with a microprocessor

Digital filters can be implemented in real time by using a microprocessor system as shown. In order to
sample the data with a precise sampling interval, a timer is used to generate periodical interrupts. The
interrupts are processed by the microprocessor unit (MPU). A running buffer is set up in the memory to
store the present and previous input sample points. The filter should be implemented in the interrupt
service routine with the following pseudocode:

x2 = x1;

x1 = x0;

x0 = read from A/D;

y0 = (x0 + x1 + x1 + x2) / 4;

write y0 to D/A;

Example 3. In the continuous time, the derivative is defined as 
d x (t )

dt
= lim

Δt →0

x (t )−x (t−Δ t )
Δ t

. In the 

discrete time, it is not possible to make Δ t →0 . The smallest Δ t is the sampling period T. Thus,
the backward difference is a discrete-time approximation of the derivative. Without losing
generality, we let T = 1 and add a scale factor of 1/2.

y [n]= x [n ]− x [n−1 ]
2

Plot ∣H (e j ωc)∣  and show the pole-zero plot.

                                                                                        

The impulse response is:

h [n]=δ[n ]−δ[n−1]
2
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The transfer function is obtained by taking the ZT of h[n].

H [ z ] = 1−z−1

2
= z−1

2( z−0)
= z

−1
2 ( z

1
2−z

−1
2

2
)

The first-order system has one zero at 1 and one pole at the origin, as
shown. To obtain the FT, let z=e jω . We have

H (e jω) = e
− j ω

2 ( e
j ω
2 −e

− jω
2

2
) = j e

− jω
2 ( e

j ω
2 −e

− jω
2

2 j
)

Using the Euler's formula sin ω= e j ω−e− j ω

2 j
, we have

H (e jω) = j e
− jω

2 (sin ω
2

) = e
− jω

2 e
jπ
2 (sin ω

2
) = e

− j(ω−π)
2 (sin ω

2
) .

The magnitude and phase of H (e jω) are: 

∣H (e j ω)∣ = ∣sin ω
2∣

∢H (e jω) = −ω−π
2

Notice that for the continuous time, the LT of the derivative
is s and the magnitude of the FT is ∣H (ω)∣ = ω , as shown
by the orange line. ω and sin(ω/2) are close for low
frequencies,, but deviate more for higher frequencies. 

Example 4.  A low-pass filter can be implemented by averaging the present input with the previous
output. The result is an IIR filter. Show the filter equation, impulse response, transfer function,
pole-zero plot, an magnitude of the FT. If the sampling rate is 200 Hz, what is the 3-dB cutoff
frequency.
                                                                                                                                                             

The filter equation is y [n]= x [n ]+ y [n−1 ]
2

. This equation is a recursion and can be expanded as

follows: y [n] = 1
2
(x [n ]+ y [n−1]) = 1

2
(x [n ]+1

2
(x [n−1]+ y [n−2 ])) =

1
2
( x [n]+1

2
(x [n−1]+ y [n−2])) = .

1
2

x [n ]+1
4

x [n−1]+1
4
(x [n−2]+ y [n−3])

The impulse response has infinite number of terms:  

h [n] = 1
2
δ[n]+1

4
δ[n−1]+1

8
δ[n−2 ]+...
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Take ZT of the filter equation: Y ( z)=
X ( z)+z−1Y ( z)

2
. We have

H ( z) =
Y ( z)
X (z )

= 1

2−z−1 = z−0

2(z−1
2
)

. The first-oder system

has ones zero at the origin and one pole at 1/2, as shown.

The FT is obtained by replacing z=e jω :

H (e jω) = 1
(2−cosω)+ j sin ω

.

The magnitude of the FT is:

∣H (e j ω)∣ = 1

√(2−cos ω)2+sin2ω
. 

To find the 3-dB cutoff frequency, let

 
1

√(2−cosω)2+sin2ω
= 1

√2
.

4−4cosω+cos2ω+sin2ω = 2     ⇒  

 3−4cosω= 0     ⇒ 

ωc = cos−1 3
4

= 0.7227 radians/s =

41.4o  /s.

For a sampling rate of 200 Hz, this corresponds to f c=23 Hz.

Compared to the 2nd-order FIR low-pass filter that has a cutoff frequency of 36 Hz, this filter has
a lower cutoff frequency and a fast roll-off. However, unlike the FIR filters that have linear phase,
this FIR filter has a nonlinear phase and may introduce phase distortion.

Example 5.  The above filter has a gain on 1/3 at the Nyquist frequency, which is half the sampling rate
or  at ω=π .  Redesign the filter such that the gain is 0 at ω=π   .
                                                                                                                                                             

The filter design can be done with the pole-zero plot. If the zero
from the previous example is moved to -1, the gain should be
brought down to 0 at ω=π  without any significant changes on
other properties of the filter.

The new pole-zero plot is shown on the right.

The transfer function is 

H ( z) =
Y ( z)
X (z )

= 1
4
( z+1

z−1
2

) = z+1
4 z−2

= 1
4
( 1+z−1

1−1
2

z−1
)
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Y ( z)(4−2 z−1) = X (z )(1+z−1)     ⇒   Y ( z) = 1
4
( X ( z)+z−1 X ( z)+2 z−1Y ( z)) .

The filter equation in the time domain is:

y [n] = 1
4
(x [n ]+ x [n−1 ]+2 y [n−1]) .

The FT is:

H (e jω) = 1
2
(1+e− jω

2−e− jω ) .

The magnitude (as shown) is:

∣H (e j ω)∣ = 1
2

√(1+cos ω)2+sin2 ω

√(2−cosω)2+sin2ω
.

To find the 3-dB cutoff frequency, let

 
1
2

√(1+cos ω)2+sin2ω

√(2−cosω)2+sin2ω
= 1

√2
    ⇒   (1+cos ω)2+sin2ω = 2((2−cos ω)2+sin2ω)   ⇒   

1+2cosω+cos2ω+sin2 ω = 8−8cosω+2cos2ω+2sin2ω     ⇒   

10cos ω = 8     ⇒   ωc = cos−1 4
5

= 0.6435  radians/s =  36.9o /s.

For a sampling rate of 200 Hz, this corresponds to f c=20.5 Hz.

Example 6.  A 60-Hz notch filter is commonly used for removing the 60-Hz line noise from the signal.
Design a FIR 60-Hz notch filter.
                                                                                                                                                             

The filter design can be done with the help of the pole-zero plot. If the
sampling rate is set at 240 Hz, π corresponds to 120 Hz and π/2
corresponds to 60 Hz. Thus, a zero placed at π/2 will sink the 60 Hz
noise. Another zero needs to be placed at  -π/2 in order to ensure that
the coefficients of the filter equation are real number. Thus, we have a
second-order system. The two poles are placed at the origin such that
the filter is a FIR filter.

The transfer function is: H ( z) = 1
2
(
(z− j)( z+ j )

( z−0)2 ) = 1
2
(1+z−2) .

2 Y ( z) = X ( z)+z−2 X ( z)    ⇒  Y ( z) = 1
2
[ X ( z)+z−2 X ( z )]

Filter equation: y [n] = 1
2
(x [n ]+x [n−2]) ;  Impulse response: h [n] = 1

2
(δ [n ]+δ[n−2 ]) .

For a sampling rate of 240Hz, there are 4 sample points on a 60 Hz sinusoidal wave. Every other
point has the opposite sign as shown. Thus, the averaging removes the 60 Hz wave . 
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The FT is: H (e jω) = 1+e−2 j ω

2
= e− j ω( e j ω+e− j ω

2
) = e− j ω cosω

The magnitude is: ∣H (e j ω)∣ = ∣cosω∣ , as shown.

Example 7.  Combine the 60-Hz notch filter (example 6) with the 3-pint low-pass filter (example 2)
with a cascade configuration.
                                                                                                                                                             

When two LTI systems are connected in cascade. The overall impulse response if the convolution
of the two individual impulse responses.

As shown in the figure, y1[n]=x1[n ] h1[n ]  and

y2[n ]= y1[n] h2[n ] . 

Combining the two, we have
 y2 [n ]=(x1 [n] h1 [n ]) h2 [n] . Because the
 convolution satisfies the associative property, we have
y2[n ]=x1[n] (h1[n ] h2[n])=x1[n ] h [n ] .

Thus, h [n]=h1[n ] h2[n ] .

Low-pass filter:   h1 [n] = 1
4
(δ[n ]+2δ[n−1]+δ[n−2 ])

60 Hz notch filter:  h2 [n ] = 1
2
(δ [n]+δ[n−2])

Combined: h1 [n] = 1
8
(δ[n ]+2δ[n−1]+δ[n−2]+δ[n−2 ]+2δ[n−3]+δ[4 ]) =

1
8
(δ[n ]+2δ[n−1]+2δ[n−2 ]+2δ[n−3]+δ[n−4 ])

Figure on the right shows how this can be
done graphically.
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Because convolution in the time domain is equivalent to multiplication in the frequency domain,
the  overall transfer function is the product of the individual transfer functions.

H [ z ] = 1
4
[1+2 z−1+z−2] 1

2
[1+z−2] = 1

8
[1+2 z−1+2 z−2+2 z−3+z−4] .

The filter equation is: y [n] = 1
8
(x [n ]+2 x [n−1]+2 x [n−2 ]+2 x [n−3]+x [n−4 ]) .

The FT is: H (e jω) = (e− jω cosω)( e− jω

2
(1+cosω)) = e−2jω (cosω)(1+cosω)

2
.

The magnitude of H (e jω)  is given by:

∣H (e j ω)∣ = ∣(cos ω)(1+cos ω)
2 ∣ .

Example 8.  Analyze the following filter: y [n] = x [n ]−x [n−1]+ 1
4

y [n−2] .

                                                                                                                                                             

Transfer function:  Take ZT, we have

Y ( z) = X ( z)−z−1 X (z )+ 1
4

z−2 Y ( z) ⇒

H ( z)=
Y ( z)
X ( z)

= 1−z−1

1−1
4

z−2
= 1−z−1

(1−1
2

z−1)(1+1
2

z−1)
.

Impulse response: Impulse response can be obtained
by solving the recursion or by doing a long division as
shown. From the long division, we have

h [n] = {( 1
4
)

n
2 n :even

−( 1
4
)

n−1
2 n :odd
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Frequency response:  Obtain the FT by substituting z=e jω . We have

H (e jω) = 1−e− jω

1−1
4

e−2 j ω
=

2 j e
− jω

2 ( e jω−e− jω

2 j
)

3
4
+1

2
j e− jω(e jω−e− jω

2 j
)

=
j e− j ωsin (ω

2
)

3
2
+ j e− j ωsin ω

∣H (e j ω)∣ =
∣sin ( ω

2
)∣

√(3
2
)
2

+sin2 ω

, which is plotted on

the right using the online graphing calculator at
<www.desmos.com/calculator>. 

Pole-zero plot:  The transfer function can be
written as:

H ( z) = 1−z−1

(1−1
2

z−1)(1+1
2

z−1)
=

( z−0)( z−1)

( z−1
2
)( z+1

2
)

The system has two poles and two zeros at: 

Poles: 
1
2

, −1
2

Zeros:  0,  1

The pole-zero plot is shown on the right.
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