Signal Flow Graphs of Digital Filters       Ying Sun

Realization of Digital Filters
The LTI systems in the discrete time can be generalized according to the following:
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Without loosing generality, we can let N = M and assigning 0 to the extra coefficients 
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or 
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. Taking ZT of the filter equation, we have
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. The transfer function is given by.
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Direct Form 1
An realization of this system is represented by the following signal flow diagram called Direct Form 1. The validity of Direct Form 1 is obvious by comparing the filter equation and the signal flow graph.
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Direct Form 2
Another realization of this system, called  Direct Form 2, is more efficient by using the minimum number of delays (
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). 
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The validity of Direct Form 2 is not immediately obvious. Thus, we will prove that the Direct Form 2 does result in the same transfer function. Let v[n] be the intermediate signal as shown above.
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By taking the ZT of the above, we have
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Substituting 
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into 
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, we have  
[image: image15.emf]Y ( z ) = X ( z )

∑

k =0

N

b

k

z

− k

1−

∑

k =1

N

a

k

z

−k

. Thus, 
[image: image16.emf]H ( z ) =

∑

k = 0

N

b

k

z

−k

1−

∑

k = 1

N

a

k

z

−k

.
Variations of Direct Form 2
The Direct Form 2 realization shown above is based on the rational form of H(z). There are two variations of Direction Form 2 based on the factored form and the partial-fraction form of H(z). 
Cascade Direct Form 2
The transfer function can be arranged into the factored form, resulting in Cascade Direct Form 2 realization as shown:
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Parallel Direct Form 2
The transfer function can be arranged into the partial-fraction form, resulting in Parallel Direct Form 2 realization as shown:
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