Realization of Digital Filters

The LTI systems in the discrete time can be generalized according to the following:

$$
y[n]=\sum_{k=1}^{N} a_{k} y[n-k]+\sum_{k=0}^{M} b_{k} x[n-k] .
$$

Without loosing generality, we can let $N=\mathrm{M}$ and assigning 0 to the extra coefficients a_{k} or b_{k}. Taking ZT of the filter equation, we have

$$
\begin{aligned}
& Y(z)=Y(z) \sum_{k=1}^{N} a_{k} z^{-k}+X(z) \sum_{k=0}^{N} b_{k} z^{-k} . \text { The transfer function is given by. } \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}} .
\end{aligned}
$$

Direct Form 1

An realization of this system is represented by the following signal flow diagram called Direct Form 1. The validity of Direct Form 1 is obvious by comparing the filter equation and the signal flow graph.

Direct Form 1

Direct Form 2

Another realization of this system, called Direct Form 2, is more efficient by using the minimum number of delays $\left(z^{-1}\right)$.

Direct Form 2

The validity of Direct Form 2 is not immediately obvious. Thus, we will prove that the Direct Form 2 does result in the same transfer function. Let $v[n]$ be the intermediate signal as shown above.

$$
v_{n}=x[n]+\sum_{k=1}^{N} a_{k} v[n-k], \quad \text { and } \quad y_{n}=b_{0} v[n]+\sum_{k=1}^{N} b_{k} v[n-k] .
$$

By taking the ZT of the above, we have

$$
\begin{aligned}
& V(z)=X(z)+V(z) \sum_{k=1}^{N} a_{k} z^{-k}, \text { and } Y(z)=b_{0} V(z)+V(z) \sum_{k=1}^{N} b_{k} z^{-k} \\
& V(z)=\frac{X(z)}{1-\sum_{k=1}^{N} a_{k} z^{-k}}, \text { and } Y(z)=V(z) \sum_{k=0}^{N} b_{k} z^{-k} .
\end{aligned}
$$

Substituting $V(z)$ into $Y(z)$, we have $Y(z)=X(z) \frac{\sum_{k=0}^{N} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}$. Thus, $H(z)=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}$.

Variations of Direct Form 2

The Direct Form 2 realization shown above is based on the rational form of $H(z)$. There are two variations of Direction Form 2 based on the factored form and the partial-fraction form of $H(z)$.

Cascade Direct Form 2

The transfer function can be arranged into the factored form, resulting in Cascade Direct Form 2 realization as shown:
$H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}=b_{0} \prod_{k=1}^{\left\lceil\frac{N+1}{2}\right\rceil} \frac{1+\beta_{1 \mathrm{k}} z^{-1}+\beta_{2 \mathrm{k}} z^{-2}}{1-\alpha_{1 \mathrm{k}} z^{-1}-\alpha_{2 \mathrm{k}} z^{-2}}$.

Cascade Direct Form 2

Parallel Direct Form 2

The transfer function can be arranged into the partial-fraction form, resulting in Parallel Direct Form 2 realization as shown:
$H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}=\sum_{j} \gamma_{j} z^{-j}+\sum_{k} \frac{\delta_{0 \mathrm{k}}+\delta_{1 \mathrm{k}} z^{-1}}{1-\epsilon_{1 \mathrm{k}} z^{-1}-\epsilon_{2 \mathrm{~K}} z^{-2}}$.

Parallel Direct Form 2

