Introduction to Fast Fourier Transform (FFT) Algorithms

R.C. Maher

EELE 577 Advanced DSP
Spring 2013

Discrete Fourier Transform (DFT)

- The DFT provides uniformly spaced samples of the Discrete-Time Fourier Transform (DTFT)
- DFT definition:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 m k}{N}} \quad x[n]=\frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j \frac{2 m k}{N}}
$$

- Requires N^{2} complex multiplies and $N(N-1)$ complex additions

Faster DFT computation?

- Take advantage of the symmetry and periodicity of the complex exponential:
- symmetry: $\quad e^{-j 2 \pi k[N-n] / N}=e^{+j 2 \pi k n / N}=\left(e^{-j 2 \pi k n / N}\right)^{*}$
- periodicity: $e^{-j 2 m k / N}=e^{-j 2 \pi[n+N] k / N}=e^{-j 2 m[k+N] / N}$
- Note that two length $N / 2$ DFTs take less computation than one length N DFT: $2(N / 2)^{2}<N^{2}$
- Algorithms that exploit computational savings are collectively called Fast Fourier Transforms

Decimation-in-Time Algorithm

- Consider expressing DFT with even and odd input samples:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi n k / N} \\
& =\sum_{n \text { even }} x[n] e^{-j 2 \pi n k / N}+\sum_{n \text { odd }} x[n] e^{-j 2 \pi n k / N} \\
& =\sum_{r=0}^{\frac{N}{2}-1} x[2 r]\left(e^{-j 4 \pi / N}\right)^{r k}+e^{-j 2 \pi k / N} \sum_{r=0}^{\frac{N}{2}-1} x[2 r+1]\left(e^{-j 4 \pi / N}\right)^{r k} \\
& =\sum_{r=0}^{\frac{N}{2}-1} x[2 r] e^{-j 2 \pi r k /(N / 2)}+e^{-j 2 \pi k / N} \sum_{r=0}^{\frac{N}{2}-1} x[2 r+1] e^{-j 2 \pi k /(N / 2)}
\end{aligned}
$$

DIT Algorithm (cont.)

- Result is the sum of two $\mathrm{N} / 2$ length DFTs

$$
X[k]=\underbrace{G[k]}_{\begin{array}{c}
\text { NNDFT } \\
\text { of even samples }
\end{array}}+e^{-j 2 \text { 2k/N }} \cdot \underbrace{H[k]}_{\begin{array}{c}
\mathrm{N} 2 \mathrm{PFT} \\
\text { of odd samples }
\end{array}}
$$

- Then repeat decomposition of $\mathrm{N} / 2$ to $\mathrm{N} / 4 \mathrm{DFTs}$, etc.

Detail of "Butterfly"

- Cross feed of $\mathrm{G}[\mathrm{k}]$ and $\mathrm{H}[\mathrm{k}]$ in flow diagram is called a "butterfly", due to shape

or simplify:

8-point DFT Diagram

Computation on DSP

- Input and Output data
- Real data in X memory
- Imaginary data in Y memory
- Coefficients ("twiddle" factors)
- cos(real) values in X memory
- sin(imag) values in Y memory
- Inverse computed with exponent sign change and $1 / \mathrm{N}$ scaling

