ZT: $\quad X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$
IZT: $\quad x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z$
where $\quad z=r e^{j \omega},\left|\sum_{-\infty}^{\infty} x[n] z^{-n}\right|<\infty$

There are three methods for evaluating the IZT: 1) partial fraction expansion, 2) power-series expansion, and 3) Residue theorem. They are demonstrated by use of the following examples.

1. Partial-fraction expansion

$$
X(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}+z^{-2}\right)}, \text { ROC: } 1<|z|<2 . \text { Find } x[n] .
$$

Use the partial-fraction expansion to arrange $\mathrm{X}(\mathrm{z})$ such that the following know ZT's apply:

$$
\begin{array}{ll}
-\alpha^{n} u[-n-1] & \Leftarrow z \Rightarrow \frac{1}{1-\alpha z^{-1}}, \text { for }|z|<|\alpha| \\
r^{n} \cos \left(\omega_{0} n\right) u[n] & \Leftarrow z \Rightarrow \frac{1-\left(r \cos \omega_{0}\right) z^{-1}}{1-\left(2 \mathrm{r} \cos \omega_{0}\right) z^{-1}+r^{2} z^{-2}}, \text { for }|z|>r \\
r^{n} \sin \left(\omega_{0} n\right) u[n] & \Leftarrow z \Rightarrow \frac{\left(r \sin \omega_{0}\right) z^{-1}}{1-\left(2 \mathrm{r} \cos \omega_{0}\right) z^{-1}+r^{2} z^{-2}}, \text { for }|z|>r
\end{array}
$$

$X(z)=\frac{A}{\left(1-2 z^{-1}\right)}+\frac{B-C z^{-1}}{1-z^{-1}+z^{-2}}$
$A=\left\{X(z)\left(1-2 \mathrm{z}^{-1}\right)\right\}_{z=2}=\left\{\frac{1}{1-z^{-1}+2 \mathrm{z}^{-2}}\right\}_{z=2}=\frac{1}{1-\frac{1}{2}+\frac{1}{4}}=\frac{4}{3}$
$X(z)=\frac{\frac{4}{3}-\frac{4}{3} z^{-1}+\frac{4}{3} z^{-2}+B-2 B z^{-1}-C z^{-1}+2 C z^{-2}}{\left(1-2 z^{-1}\right)\left(1-z^{-1}+z^{-2}\right)} \Rightarrow$
For the coefficient of $z^{0}: \frac{4}{3}+B=1 \Rightarrow B=-\frac{1}{3}$
For the coefficient of $z^{-2}: \frac{4}{3}+2 \mathrm{C}=0 \Rightarrow C=-\frac{2}{3}$

For the coefficient of $z^{-1}: \quad-\frac{4}{3}-2 B-C=-\frac{4}{3}+\frac{2}{3}+\frac{2}{3}=0 \quad \Rightarrow$ Checked.
$X(z)=\frac{4}{3} \frac{1}{\left(1-2 z^{-1}\right)}+\frac{-\frac{1}{3}-\left(-\frac{2}{3}\right) z^{-1}}{1-z^{-1}+z^{-2}}=\frac{4}{3} \frac{1}{\left(1-2 z^{-1}\right)}+\left(-\frac{1}{3}\right) \frac{1-2 z^{-1}}{1-z^{-1}+z^{-2}}=$
$\frac{4}{3} \frac{1}{\left(1-2 z^{-1}\right)}+\left(-\frac{1}{3}\right)\left[\frac{1-\frac{1}{2} z^{-1}}{1-z^{-1}+z^{-2}}-\sqrt{3} \frac{\frac{\sqrt{3}}{2} z^{-1}}{1-z^{-1}+z^{-2}}\right]$,
Compare to the known ZT's on the previous page, we have:
$x[n]=-\frac{4}{3} 2^{n} u[-n-1]-\frac{1}{3}\left[\cos \left(\frac{\pi}{3} n\right)-\sqrt{3} \sin \left(\frac{\pi}{3} n\right)\right] u[n]$
note: $r=1, \omega_{0}=\frac{\pi}{3}, \cos \omega_{0}=\frac{1}{2}, \sin \omega_{0}=\frac{\sqrt{3}}{2}$
$x[n]=-\frac{4}{3} 2^{n} u[-n-1]-\frac{2}{3}\left[\frac{1}{2} \cos \left(\frac{\pi}{3} n\right)-\frac{\sqrt{3}}{2} \sin \left(\frac{\pi}{3} n\right)\right] u[n]$
Applying the trigonometric identity:

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

We have:
$x[n]=-\frac{4}{3} 2^{n} u[-n-1]-\frac{2}{3} \cos \left(\frac{\pi}{3} n+\frac{\pi}{3}\right) u[n]$

2. Power-series expansion

$$
X(z)=e^{a} z^{-1}, \text { ROC: all } z \text { except } z=0 \text {. Find } x[n] .
$$

From the power-series expansion:

$$
\begin{aligned}
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& e^{a z^{-1}}=\sum_{n=0}^{\infty} \frac{\left(a z^{-1}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{a^{n}}{n!} z^{-n}=\sum_{n=-\infty}^{\infty}\left(\frac{a^{n}}{n!} u[n]\right) z^{-n}
\end{aligned}
$$

From the definition of ZT, we see

$$
x[n]=\frac{a^{n}}{n!} u[n]
$$

Here is an numerical example with $a=3$:

3. Residue Theorem

The closed-loop integration of a function on a complex plane equals to $2 \pi j$ times the sum of the residues for all poles inside the loop.

$$
\oint_{C} f(z) d z=2 \pi j \sum_{\text {enclosed poles }} \text { Residues }
$$

where, for an n th-order pole z_{i},

$$
\text { Residue }_{i}=\left[\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{i}\right)^{n} f(z)\right]_{z=z_{i}}
$$

Example: Show $x[n]=a^{n} u[n] \quad \Leftarrow z \Rightarrow \quad \frac{1}{1-a z^{-1}}$, for $|z|>|\alpha|$

$$
x[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z=\frac{1}{2 \pi j}\left[2 \pi j\left(\text { Residue }_{z=a}+\text { Residue }_{z=0}, \text { if } n \leq 0\right)\right]
$$

For $\mathrm{n}>0, \quad\left[(z-a) \frac{z^{n-1}}{1-a z^{-1}}\right]_{z=a}=\left[(z-a) \frac{z^{n}}{z-a}\right]_{z=a}=a^{n}$

For $\mathrm{n}=0, \quad$ Residue $_{z=a}=a^{n}$

$$
\text { Residue }_{z=0} \quad \Rightarrow
$$

$$
\left[z \times \frac{z^{-1}}{1-a z^{-1}}\right]_{z=0}=\left[z \times \frac{1}{z-a}\right]_{z=0}=0
$$

For $\mathrm{n}<0$, we do a time reversal: $\quad x[-n] \Leftarrow z \Rightarrow X\left(z^{-1}\right) \quad$ ROC: R_{X}^{-1}
Let $\rho=z^{-1}$

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi j} \oint_{r} X(z) z^{n-1} d z= \\
& \frac{1}{2 \pi j} \oint_{1 / r} X\left(\frac{1}{\rho}\right) \rho^{-n-1} d \rho= \\
& \frac{1}{2 \pi j} \oint_{1 / r} \frac{\rho^{-n-1}}{1-a \rho} d \rho=0,
\end{aligned}
$$

because there is no pole inside the loop.

In summary, $x[n]=a^{n} u[n]$.

Sketch proof of the Residue Theorem

The closed-loop integration of a function on a complex plane equals to $2 \pi j$ times the sum of the residues for all poles inside the loop.

$$
\oint_{C} f(z) d z=2 \pi j \sum_{\text {enclosed poles }} \text { Residues }
$$

where, for an n th-order pole z_{i},

$$
\text { Residue }_{i}=\left[\frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{i}\right)^{n} f(z)\right]_{z=z_{i}}
$$

Without losing generality, we will show how it works for a system with only one single pole inside the loop.
We create a new integration path \oint_{0} that circle around the pole. \oint_{0} Should be 0 because it does not enclose any pole.

$$
\oint_{0}=\oint+\oint_{1}+\oint_{2}+\oint_{3}=0
$$

\oint_{1} and \oint_{3} cancel out with each other because their
 paths are opposite and very close. Thus,

$$
\oint+\oint_{2}=0, \text { or } \oint=-\oint_{2}
$$

Let $f(z)=\frac{g(z)}{z-z_{0}}$, where z_{0} is the pole.
Let z_{0}. Take derivative, we have $d z=j \rho e^{j \theta} d \theta$.
$\oint_{2}=\int_{2 \pi}^{0} f(z) d z=\int_{2 \pi}^{0} \frac{g(z)}{z-z_{0}} d z=g(z) \int_{2 \pi}^{0} \frac{d z}{z-z_{0}}$, assuming the integration loop is small and $g(z)$ is constant around the pole.

$$
\oint_{2}=g(z) \int_{2 \pi}^{0} \frac{d z}{z-z_{0}}=g(z) \int_{2 \pi}^{0} \frac{j \rho e^{j \theta}}{\rho e^{j \theta}} d \theta=g(z) \int_{2 \pi}^{0} j d \theta=-2 \pi j g(z)
$$

Thus,

$$
\oint=-\oint_{2}=2 \pi j\left[\left(z-z_{0}\right) f(z)\right]_{z=z_{0}}
$$

