
Methods for Evaluating the Inverse z-Transform       Ying Sun

ZT:         X ( z )= ∑
n=−∞

∞

x [n ] z−n       

IZT:    x [n]= 1
2π j∮ X (z ) zn−1dz where  z=r e jω , ∣∑

−∞

∞

x [n] z−n∣<∞

There are three methods for evaluating the IZT: 1) partial fraction expansion, 2) power-series
expansion, and 3) Residue theorem. They are demonstrated by use of the following examples.

                                                                                                                                                                      

1.    Partial-fraction expansion

X ( z )= 1

(1−2 z−1)(1−z−1+z−2)
 , ROC: 1<∣z∣<2 .  Find x [n] .

                                                                            

Use the partial-fraction expansion to arrange X(z) such that the following know ZT's apply:

X ( z ) = A

(1−2 z−1)
+ B−C z−1

1−z−1+z−2

A = {X ( z)(1−2z−1)}z=2 = { 1

1−z−1+2z−2 }
z=2

= 1

1−1
2
+1

4

= 4
3

X ( z ) =

4
3
−4

3
z−1+4

3
z−2+B−2 B z−1−C z−1+2C z−2

(1−2 z−1)(1−z−1+z−2)
  ⇒ 

For the coefficient of z0  :    
4
3
+B=1  ⇒ B=−1

3

For the coefficient of z−2  :   
4
3
+2C=0   ⇒  C=−2

3

1

−αnu [−n−1]       ⇐ z⇒    
1

1−α z−1 ,   for ∣z∣<∣α∣

rncos(ω0 n)u [n]    ⇐ z⇒    
1−(r cosω0) z

−1

1−(2r cosω0) z
−1+r2 z−2 ,   for ∣z∣>r

rn sin (ω0n)u [n]    ⇐ z⇒    
(r sin ω0) z

−1

1−(2r cosω0) z
−1+r2 z−2 ,   for ∣z∣>r



For the coefficient of z−1  :   −4
3
−2B−C=− 4

3
+ 2

3
+ 2

3
=0   ⇒  Checked.

X ( z ) = 4
3

1

(1−2 z−1)
+

−1
3
−(−2

3
) z−1

1−z−1+z−2 = 4
3

1

(1−2 z−1)
+ (−1

3
) 1−2 z−1

1−z−1+z−2 =  

4
3

1

(1−2 z−1)
+ (−1

3
)[ 1−1

2
z−1

1−z−1+z−2
− √3

√3
2
z−1

1−z−1+z−2 ] ,

Compare to the known ZT's on the previous page, we have:

x [n] = − 4
3

2nu [−n−1] − 1
3 [cos (π

3
n)−√3sin (π

3
n)]u [n ]

 note: r=1 , ω0=
π
3

, cosω0=
1
2

, sin ω0=
√3
2

x [n] = − 4
3

2nu [−n−1] − 2
3 [ 1

2
cos(π

3
n)−√3

2
sin ( π

3
n)]u [n]

Applying the trigonometric identity:

 cos(α+β) = cosα cosβ − sin α sinβ

We have:

x [n] = − 4
3

2nu [−n−1] − 2
3

cos( π
3
n+π

3
)u [n ]

2



2.    Power-series expansion

X ( z )=ea z−1  , ROC: all z except z = 0.  Find x [n] .

                                                                            

From the power-series expansion:

ex = 1+ x
1!

+ x2

2 !
+... = ∑

n=0

∞ xn

n!

eaz
−1

= ∑
n=0

∞ (az−1)n

n !
= ∑

n=0

∞ an

n!
z−n = ∑

n=−∞

∞ ( ann! u [n]) z−n
From the definition of ZT, we see

x [n] = an

n !
u [n]

Here is an numerical example with a = 3:
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3.    Residue Theorem

The closed-loop integration of a function on a complex plane equals to 2πj times the sum of the
residues for all poles inside the loop.

∮
C

f ( z)dz = 2π j ∑
enclosed poles

Residues

where, for an nth-order pole z i ,

Residue i = [ 1
(n−1)!

d n−1

dz n−1 ( z−zi)
n f ( z)]

z=z i

                                                                            

Example:  Show  x [n]=anu [n ]       ⇐ z⇒       
1

1−a z−1 ,   for ∣z∣>∣α∣

x [n] = 1
2π j∮ X ( z) zn−1dz = 1

2π j [2π j(Residue z=a + Residue z=0 , if n≤0)]

For n > 0,   [( z−a) zn−1

1−az−1 ]
z=a

= [( z−a) zn

z−a ]
z=a

= an

For n = 0,   Residue z=a = an

 Residue z=0    ⇒ 

[ z× z−1

1−az−1 ]
z=0

= [ z× 1
z−a ]

z=0

= 0

For n < 0,   we do a time reversal:    x [−n]   ⇐ z⇒   X ( z−1)     ROC: RX
−1

Let ρ = z−1

x [n] = 1
2π j∮r

X ( z) zn−1dz =

1
2π j∮1/r

X ( 1
ρ )ρ−n−1d ρ =

1
2π j∮1/r

ρ−n−1

1−aρ
d ρ = 0 , 

because there is no pole inside the loop.

In summary, x [n]=anu [n ] .

4



Sketch proof of the Residue Theorem

The closed-loop integration of a function on a complex plane equals to 2πj times the sum of the
residues for all poles inside the loop.

∮
C

f ( z)dz = 2π j ∑
enclosed poles

Residues

where, for an nth-order pole z i ,

Residue i = [ 1
(n−1)!

d n−1

dz n−1 ( z−zi)
n f ( z)]

z=z i

Without losing generality, we will show how it works for a system with only one single pole inside
the loop.

We create a new integration path ∮0
that circle

around the pole. ∮0
Should be 0 because it does not

enclose any pole.

∮0
 = ∮ + ∮1

+ ∮2
+ ∮3

 = 0

∮1
 and ∮3

 cancel out with each other because their

paths are opposite and very close. Thus,

 ∮ + ∮2
 = 0,  or  ∮ = - ∮2

Let f (z )=
g ( z)
z−z0

, where z0  is the pole. 

Let z0 . Take derivative, we have d z= jρ e jθ d θ .

∮2
= ∫

2π

0

f ( z)dz = ∫
2π

0
g ( z)
z−z0

dz = g ( z)∫
2π

0
dz
z−z0

, assuming the integration loop is small and g(z)

is constant around the pole.

∮2
= g ( z)∫

2π

0
dz
z−z0

= g (z )∫
2π

0
jρe jθ

ρe jθ
d θ = g ( z )∫

2π

0

j d θ = −2π j g ( z)

Thus,

∮ = - ∮2
= 2π j [( z−z0) f ( z)]z=z 0
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