A gain parameter (K) is added to the feedback loop as shown. We have negative feedback for $K>0$, positive feedback for $K<0$. In order to explore the stability of the feedback system, K is adjusted over a wide range. For a given K, the roots of the system are plotted. As K is varied, the roots follow certain trajectories called root locus. The overall transfer function is:

$$
H(s)=\frac{F(s)}{1+K G(s) F(s)}
$$

For those K 's where the root locus gets on the $j \omega$ axis or into the right side of the s-plane, the system becomes unstable. The roots of the system are given by:

$$
1+K G(s) F(s)=0, \text { or } G(s) F(s)=-\frac{1}{K} \quad(G(s) F(s) \text { is called the loop gain.) }
$$

Example

Plot the root locus for $G(s) F(s)=\frac{s-1}{(s+1)(s+2)}$.
$G(s) F(s)=\frac{s-1}{(s+1)(s+2)}=-\frac{1}{K} \quad \Rightarrow \quad-K s+K=s^{2}+3 \mathrm{~s}+2 \quad \Rightarrow$
$s^{2}+(3+K) s+(2-K)=0$
The roots are at: $\quad s=\frac{-K-3 \pm \sqrt{(K+3)^{2}+4 \mathrm{~K}-8}}{2}=\frac{-K-3 \pm \sqrt{K^{2}+10 \mathrm{~K}+1}}{2}$.
For $K=0$ (no feedback):
roots at $s=\frac{-3 \pm 1}{2}=-1,-2 ; \quad$ zeros at $1, \infty$.
For $K>0$ (negative feedback):
Now we find the root locus for positive K starting from 0 . Because the zeros are at 1 and ∞, the root locus must enter either 1 or ∞, as $K \rightarrow \infty$.
$K=2 \Rightarrow \mathrm{~s}=0,-5$. This is where one of the roots moves cross to the right side.
$K=5 \Rightarrow \mathrm{~s}=0.4,-8.4$.
$K \rightarrow \infty \Rightarrow s \rightarrow 1.0,-\infty . G(s) F(s) \rightarrow-0$ (approaching 0 from the negative side).

For $K<0$ (positive feedback):
Solve for $K^{2}+10 \mathrm{~K}+1=0$, we have $\mathrm{K}=-0.1,-9.9$, corresponding to $\mathrm{s}=-1.45,3.45$, where the root locus breaks away or re-enters the real axis.
$K=-0.1 \Rightarrow \mathrm{~s}=-1.45$. This is where the two roots move together and then break away from the real axis in the opposite directions.
$K=-3 \Rightarrow \mathrm{~s}=2.24 j,-2.24 j$. These locations are where the two roots cross the $j \omega$ axis and enter the right side plane.
$K=-9.9 \Rightarrow \mathrm{~s}=3.45$. This is where the two roots move together on the real axis and then move away in the opposite directions on the real axis.
$K \rightarrow-\infty \Rightarrow s \rightarrow 1.0, \infty . G(s) F(s) \rightarrow+0$ (approaching 0 from the positive side).

The root locus plot is shown on the right.

Because $s=\frac{-K-3 \pm \sqrt{K^{2}+10 \mathrm{~K}+1}}{2}$, the root locus touches the $j \omega$ axis when $K=-3$, where $s=\frac{3-3 \pm \sqrt{3^{2}+10(-3)+1}}{2}= \pm \sqrt{-5}= \pm 2.24 j$.
A freeware called RootLocs can be downloaded from <http://www.coppice.myzen.co.uk/ RootLocs_Site/RootLocs.html>. The results of using RootLocs for this problem are shown below.

Negative Feedback: Enter the two roots (-1 and -2) and the zero $(+1)$. Select negative feedback and click START.

Positive Feedback: Enter the two roots (-1 and -2) and the zero $(+1)$. Select positive feedback and click START.

Applications

For designing amplifier circuits, we almost always use negative feedback. When designing oscillator circuits, we put poles right on the $j \omega$ axis to create oscillations. Poles on the right side of the s-plane are not desirable in general, because they represent unbounded (exponentially-growing) responses. From the above example, notice that there is a range of K for the positive feedback ($0>K>-3$) where the poles are still on the left side of the s-plane. In very rare situations, this positive feedback can be exploited in the design of special-purpose amplifiers. An example can be found in the design of a "negative capacitance" amplifier for neuroscience instrumentation, as detailed on next page.

Negative Capacitance: Compensation for Microelectrode Capacitance

The standard technique for recording action potentials from a neuron is to insert a microelectrode, which is made from a glass pipette by using an electrode puller. The microelectrode tapers and becomes very small at the tip ($\sim 1 \mu \mathrm{~m}$). The microelectrode has a large resistance R_{e} as well as a
 large stray capacitance C_{e} with respect to the surrounding bath solution.
The equivalent circuit is shown on the right, where $R_{m}=$ membrane resistance, $C_{m}=$ membrane capacitance, $v_{s}=$ voltage signal to be measured, and $v_{i}=$ input voltage to the amplifier. The equivalent circuit can be further reduced, where the source impedance Z_{s} includes R_{e}, R_{m} and C_{m}. If v_{s} is a square pulse, v_{i} would show a low-pass filtered waveform because of the presence of C_{e}. To recover the lost higher frequency components, an amplifier is designed such that the output voltage v_{o} resembles v_{s}, as illustrated.
A technique typically used for this situation is based on a positive
 feedback circuit that creates a "negative capacitance" to cancel out C_{e}. As shown in the equivalent circuit, the gain of the amplifier is A_{v}, where $v_{o}=A_{v} \times v_{i}$. A positive feedback is created by connecting C_{f} from the output to the positive input terminal of the amplifier.
Let i be the current through C_{f}, we have

$$
\begin{aligned}
& v_{i}=v_{o}+\frac{1}{C_{f}} \int i d i=A_{v} v_{i}+\frac{1}{C_{f}} \int i d i \\
& \left(1-A_{v}\right) v_{i}=\frac{1}{C_{f}} \int i d i \Rightarrow \quad v_{i}=\frac{1}{\left(1-A_{v}\right) C_{f}} \int i d i
\end{aligned}
$$

Choose $A_{v}=1+\frac{C_{e}}{C_{f}} \Rightarrow \frac{1}{\left(1-A_{v}\right) C_{f}}=\frac{1}{-C_{e}}$.
The final equivalent circuit is shown on the right, where the negative capacitance $-C_{e}$ cancels out the electrode capacitance
 C_{e}, if the gain of the positive feedback A_{v} is properly set.

The gain should be set at $A_{v}=1+C_{e} / C_{f}$ in order to reproduce the square wave. Too low or too high a gain would affect the wave shape as shown on the right.

