Root Locus Analysis *Ying Sun*

A gain parameter (*K*) is added to the feedback loop as shown. We have negative feedback for K > 0, positive feedback for K < 0. In order to explore the stability of the feedback system, *K* is adjusted over a wide range. For a given *K*, the roots of the system are plotted. As *K* is varied, the roots follow certain trajectories called root locus. The overall transfer function is:

$$H(s) = \frac{F(s)}{1 + KG(s)F(s)}$$

For those K's where the root locus gets on the $j\omega$ axis or into the right side of the s-plane, the system becomes unstable. The roots of the system are given by:

$$1 + KG(s)F(s) = 0$$
, or $G(s)F(s) = -\frac{1}{K}$ (G(s)F(s) is called the loop gain.)

Example

Plot the root locus for $G(s)F(s) = \frac{s-1}{(s+1)(s+2)}$.

$$G(s)F(s) = \frac{s-1}{(s+1)(s+2)} = -\frac{1}{K} \quad \Rightarrow \quad -Ks+K = s^2+3s+2 \quad \Rightarrow$$

$$s^{2} + (3+K)s + (2-K) = 0$$

The roots are at: $s = \frac{-K - 3 \pm \sqrt{(K+3)^{2} + 4K - 8}}{2} = \frac{-K - 3 \pm \sqrt{K^{2} + 10K + 1}}{2}$

For K = 0 (no feedback):

roots at
$$s = \frac{-3 \pm 1}{2} = -1, -2;$$
 zeros at $1, \infty$.

For *K* > 0 (negative feedback):

Now we find the root locus for positive *K* starting from 0. Because the zeros are at 1 and ∞ , the root locus must enter either 1 or ∞ , as $K \rightarrow \infty$.

For *K* < 0 (positive feedback):

- Solve for $K^2 + 10K + 1 = 0$, we have K = -0.1, -9.9, corresponding to s = -1.45, 3.45, where the root locus breaks away or re-enters the real axis.
- $K = -0.1 \implies s = -1.45$. This is where the two roots move together and then break away from the real axis in the opposite directions.
- $K = -3 \implies s = 2.24j, -2.24j$. These locations are where the two roots cross the $j\omega$ axis and enter the right side plane.
- $K = -9.9 \implies s = 3.45$. This is where the two roots move together on the real axis and then move away in the opposite directions on the real axis.
- $K \rightarrow -\infty \implies s \rightarrow 1.0, \infty.$ $G(s)F(s) \rightarrow +0$ (approaching 0 from the positive side).

The root locus plot is shown on the right.

Because
$$s = \frac{-K - 3 \pm \sqrt{K^2 + 10K + 1}}{2}$$
, the root locus touches the $j\omega$ axis when $K = -3$,
where $s = \frac{3 - 3 \pm \sqrt{3^2 + 10(-3) + 1}}{2} = \pm \sqrt{-5} = \pm 2.24 j$.

A freeware called RootLocs can be downloaded from <http://www.coppice.myzen.co.uk/ RootLocs_Site/RootLocs.html>. The results of using RootLocs for this problem are shown below.

<u>Negative Feedback:</u> Enter the two roots (-1 and -2) and the zero (+1). Select negative feedback and click START.

<u>Positive Feedback:</u> Enter the two roots (-1 and -2) and the zero (+1). Select positive feedback and click START.

Applications

For designing amplifier circuits, we almost always use negative feedback. When designing oscillator circuits, we put poles right on the $j\omega$ axis to create oscillations. Poles on the right side of the *s*-plane are not desirable in general, because they represent unbounded (exponentially-growing) responses. From the above example, notice that there is a range of *K* for the positive feedback (0>K>-3) where the poles are still on the left side of the *s*-plane. In very rare situations, this positive feedback can be exploited in the design of special-purpose amplifiers. An example can be found in the design of a "negative capacitance" amplifier for neuroscience instrumentation, as detailed on next page.

Negative Capacitance: Compensation for Microelectrode Capacitance

The standard technique for recording action potentials from a neuron is to insert a microelectrode, which is made from a glass pipette by using an electrode puller. The microelectrode tapers and becomes very small at the tip (~1 μ m). The microelectrode has a large resistance R_e as well as a large stray capacitance C_e with respect to the surrounding bath solution.

The equivalent circuit is shown on the right, where R_m = membrane resistance, C_m = membrane capacitance, v_s = voltage signal to be measured, and v_i = input voltage to the amplifier. The equivalent circuit can be further reduced, where the source impedance Z_s includes R_e , R_m and C_m . If v_s is a square pulse, v_i would show a low-pass filtered waveform because of the presence of C_e . To recover the lost higher frequency components, an amplifier is designed such that the output voltage v_o resembles v_s , as illustrated.

A technique typically used for this situation is based on a positive feedback circuit that creates a "negative capacitance" to cancel out C_e . As shown in the equivalent circuit, the gain of the amplifier is A_v , where $v_o = A_v \times v_i$. A positive feedback is created by connecting C_f from the output to the positive input terminal of the amplifier.

Let *i* be the current through C_f , we have

$$v_i = v_o + \frac{1}{C_f} \int i \, di = A_v v_i + \frac{1}{C_f} \int i \, di$$
$$(1 - A_v) v_i = \frac{1}{C_f} \int i \, di \implies v_i = \frac{1}{(1 - A_v)C_f} \int i \, di$$

Choose $A_v = 1 + \frac{C_e}{C_f} \implies \frac{1}{(1 - A_v)C_f} = \frac{1}{-C_e}$.

The final equivalent circuit is shown on the right, where the negative capacitance $-C_e$ cancels out the electrode capacitance C_e , if the gain of the positive feedback A_v is properly set.

The gain should be set at $A_v = 1 + C_e/C_f$ in order to reproduce the square wave. Too low or too high a gain would affect the wave shape as shown on the right.

