
Root Locus Analysis       Ying Sun

A gain parameter (K) is added to the feedback loop as shown. We
have negative feedback for K > 0, positive feedback for K < 0. In
order to explore the stability of the feedback system, K is adjusted
over a wide range. For a given K, the roots of the system are
plotted. As K is varied, the roots follow certain trajectories called
root locus.  The overall transfer function is:

H (s) =
F (s)

1+K G (s)F (s)

For those K's where the root locus gets on the jω axis or into the right side of the s-plane, the system
becomes unstable. The roots of the system are given by:

1+K G (s)F (s) = 0 ,  or G( s) F (s) = − 1
K

   (G(s)F(s) is called the loop gain.)

                                                                                                                                                                     

Example

Plot the root locus for G( s) F (s) = s−1
(s+1)(s+2)

.

G( s) F (s) = s−1
(s+1)(s+2)

= − 1
K

    ⇒    −K s+K = s2+3s+2    ⇒    

s2+(3+K )s+(2−K ) = 0

The roots are at:   s =
−K−3±√(K+3)2+4K−8

2
= −K−3±√K 2+10K+1

2
.

For K = 0 (no feedback):

roots at  s = −3±1
2

= -1,  -2;    zeros at  1, ∞.

For K > 0 (negative feedback):

Now we find the root locus for positive K starting from 0. Because the zeros are at 1 and ∞, 
the root locus must enter either 1 or ∞, as K → ∞.

K  = 2 ⇒   s = 0, -5. This is where one of the roots
moves cross to the right side.

K  = 5    ⇒   s = 0.4, -8.4. 

K → ∞  ⇒   s → 1.0, -∞. G(s)F(s) →  - 0 (approaching
0 from the negative side).

The root locus plot is shown on the right.
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For K < 0 (positive feedback):

Solve for K 2+10K+1=0 , we have K = -0.1, -9.9, corresponding to s = -1.45, 3.45, where
the root locus breaks away or re-enters the real axis.

K = -0.1 ⇒   s = -1.45. This is where the two roots move together and then break away
from the real axis in the opposite directions.

K = -3 ⇒   s = 2.24j, -2.24j. These locations are where the two roots cross the jω axis and
enter the right side plane.

K = -9.9 ⇒   s = 3.45. This is where the two roots
move together on the real axis and then move
away in the opposite directions on the real
axis.

K → -∞  ⇒   s → 1.0, ∞.  G(s)F(s) →  +0
(approaching 0 from the positive side).

The root locus plot is shown on the right.

Because s = −K−3±√K 2+10K+1
2

, the root locus touches the jω axis when K = -3,

where s =
3−3±√32+10 (−3)+1

2
= ±√−5 = ±2.24 j .

A freeware called RootLocs can be downloaded from <http://www.coppice.myzen.co.uk/
RootLocs_Site/RootLocs.html>. The results of using RootLocs for this problem are shown below.

Negative Feedback: Enter the two roots (-1 and -2) and the zero (+1). Select negative feedback and
click START.
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Positive Feedback: Enter the two roots (-1 and -2) and the zero (+1). Select positive feedback and
click START.

Applications

For designing amplifier circuits, we almost always use negative feedback. When designing oscillator
circuits, we put poles right on the jω axis to create oscillations. Poles on the right side of the s-plane are
not desirable in general, because they represent unbounded (exponentially-growing) responses. From
the above example, notice that there is a range of K for the positive feedback (0>K>-3) where the poles
are still on the left side of the s-plane. In very rare situations, this positive feedback can be exploited in
the design of special-purpose amplifiers. An example can be found in the design of a “negative
capacitance” amplifier for neuroscience instrumentation, as detailed on next page.
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Negative Capacitance: Compensation for Microelectrode Capacitance

The standard technique for recording action potentials from a
neuron is to insert a microelectrode, which is made from a
glass pipette by using an electrode puller. The micro-
electrode tapers and becomes very small at the tip (~1 μm).
The microelectrode has a large resistance Re as well as a
large stray capacitance C e  with respect to the surrounding
bath solution. 

The equivalent circuit is shown on the right, where Rm = membrane
resistance, C m = membrane capacitance, v s = voltage signal to be
measured, and v i = input voltage to the amplifier. The equivalent circuit
can be further reduced, where the source impedance Z s includes
Re , Rm and C m . If v s is a square pulse, v i would show a low-pass

filtered waveform because of the presence of C e . To recover the lost
higher frequency components, an amplifier is designed such that the
output voltage vo resembles v s , as illustrated.

A technique typically used for this situation is based on a positive
feedback circuit that creates a “negative capacitance” to cancel out C e .
As shown in the equivalent circuit, the gain of the amplifier is Av  ,
where vo=Av×v i . A positive feedback is created by connecting C f

from the output to the positive input terminal of the amplifier. 

Let i be the current through C f , we have

v i = vo+
1

C f
∫ i di = Av v i+

1
C f

∫ i di

(1−Av)v i = 1
C f

∫ i di   ⇒    v i = 1
(1−Av)C f

∫ i di

Choose Av = 1+
C e

C f

  ⇒    
1

(1−Av)C f

= 1
−C e

.

The final equivalent circuit is shown on the right, where the
negative capacitance −C e cancels out the electrode capacitance
C e , if the gain of the positive feedback Av  is properly set.

The gain should be set at Av = 1+C e/C f in order to reproduce
the square wave. Too low or too high a gain would affect the wave
shape as shown on the right. 
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