

- 5) Which of the following statements apply to a common-drain MOSFET amplifier?
 - A) High voltage gain **B)** No voltage gain C) High output resistance D) Low input resistance
- 6) If $(V_{GS}-V_t)$ of a **MOSFET** in saturation **doubles**, the current increases by

%

ELE338	Electronics I	Final Exam	F2013
ID:	Name		
	Part II (150 minutes, 40 points)		

1) Diode Circuit

 $Vi = 5V sin(\omega t)$ and $V_B = 1 V dc$

- a) What is the **minimum** value of **Vo** under the given operating conditions?
- b) Find the **maximum** value of **Vo** for the given operating conditions.
- c) Derive a value for the load current I_L if the input Vi=0.

2) BJT Amplifier

- a) Find the values of the two transistor **bias currents** I_{C1} and I_{C2} , respectfully, if you know that **Vi** is an **ideal ac source** with a zero dc component.
- b) Sketch the small signal equivalent circuit and determine the values of the two equivalent base-emitter resistors, r_{be1} and r_{be2} , respectfully.
- c) Find expressions and a numerical values for the input resistance r_{in} and the small signal voltage gain A_V =vo/vi.

3) MOSFET Current Source

- a) Find a value for \mathbf{R}_1 such that $\mathbf{I}_1=50 \ \mu \mathbf{A}$.
- b) Sketch the small signal equivalent circuit of this current source and indicate the value of the output resistance r_{o2} of M_2 if I_1 remains at 50 μ A.
- c) Derive an expression and find a value for the current source output resistance r_{out}.

Answers a) R₁ = b) r_{o2} = Draw small signal equivalent circuit here

c) $r_{out} =$

4) Differential Amplifier with OpAmp

For questions a) - c)you can assume that the **OpAm**p is **ideal**

- a) Find a value for the voltage gain $A_{V1}=V_0/V_1$ under the condition $V_2=0$.
- b) Derive a value for the voltage gain $A_{V2}=V_0/V_2$ if $V_1=0$.
- c) Find the **peak output voltage** Vo_{peak} if $V_1=2 V dc$ while V_2 is a sinusoidal voltage with an **amplitude of 1 V**.

Bonus Question (3 extra points)

If the Opamp features an **open-loop gain** of **200,000** and a constant **20 dB/decade** rolloff starting at **50 Hz**, find the **3 dB corner** of the voltage gain function $A_{V2}(f)$.

