ID: \qquad Name \qquad
Part I (20 minutes, 10 points)

1) Each statement is either true (T) or false (F):
a) A resistor can used as a source of EM radiation

b) A diode can be used as a source of EM radiation

c) BJTs are linear devices

d) OpAmps are linear devices

e) Drain and source of a MOSFET are interchangeable
2) The current across a forward-biased pn junction is controlled by what process?
\square
3) The de model of the input port of a MOSFET (gate to source) is modeled as what?
\square
4) If the voltage across a pn junction diode increases by $\mathbf{1 0} \mathbf{~ m V}$, the current changes by $\%$ (assume $\mathbf{n V}_{\mathbf{T}}=\mathbf{3 0} \mathbf{~ m V}$)
5) Which of the following statements apply to a common-drain MOSFET amplifier?
A) High voltage gain

B) No voltage gain

C) High output resistance

D) Low input resistance

6) If $\left(\mathbf{V}_{\mathbf{G s}}-\mathbf{V}_{\mathfrak{t}}\right)$ of a MOSFET in saturation doubles, the current increases by
\square

ID: \qquad Name \qquad
Part II (150 minutes, 40 points)

1) Diode Circuit

$V i=5 V \sin (\omega t)$ and $V_{B}=1 V d c$
a) What is the minimum value of Vo under the given operating conditions?
b) Find the maximum value of $\mathbf{V o}$ for the given operating conditions.
c) Derive a value for the load current I_{L} if the input $\mathbf{V i}=\mathbf{0}$.

Answers
a) $\mathbf{V o}_{\text {min }}=$ \qquad
b) $\mathbf{V o}_{\text {max }}=$ \qquad
c) $\mathbf{I}_{\mathbf{L}}=$ \qquad
2) BJT Amplifier

$$
\begin{aligned}
& \text { Transistor Parameters } \\
& \beta_{1}=\beta_{2}=100 \\
& \mathrm{~V}_{\mathrm{Al}}=\mathrm{V}_{\mathrm{Al}}=\infty \\
& \mathrm{V}_{\mathrm{BEQ} 1}=0.6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{BEQ} 2}=-0.7 \mathrm{~V} \\
& \mathrm{n} \mathrm{~V}_{\mathrm{T}}=30 \mathrm{mV} \\
& \hline
\end{aligned}
$$

a) Find the values of the two transistor bias currents $\mathbf{I}_{\mathbf{C} 1}$ and $\mathbf{I}_{\mathbf{C} 2}$, respectfully, if you know that Vi is an ideal ac source with a zero dc component.
b) Sketch the small signal equivalent circuit and determine the values of the two equivalent base-emitter resistors, $\mathbf{r}_{\text {bel }}$ and $\mathbf{r}_{\text {be2 }}$, respectfully.
c) Find expressions and a numerical values for the input resistance $\mathbf{r}_{i n}$ and the small signal voltage gain $A_{v}=v o / v i$.

Answers
a) $\mathbf{I}_{\mathbf{C} 1}=$ \qquad
$\mathbf{I}_{\mathbf{C} 2}=$ \qquad
b) $\mathbf{r}_{\text {be1 }}=$ \qquad
$\mathbf{r}_{\text {be2 }}=$ \qquad
Draw small signal equivalent circuit here
c) $\mathbf{r}_{\text {in }}=$ \qquad
$\mathbf{A}_{\mathbf{v}}=$ \qquad

3) MOSFET Current Source

Transistor Parameters
$\mathrm{V}_{\mathrm{t} 1}=\mathrm{V}_{\mathrm{t} 2}=0.5 \mathrm{~V}$
$\lambda_{1}=\lambda_{2}=0.04 \mathrm{~V}^{-1}$
$\mu \mathrm{C}_{\mathrm{ox}} \mathrm{W} / \mathrm{L}_{1}=400 \mu \mathrm{~A} / \mathrm{V}^{2}$
$u C_{n v} W / L s=400 u A / V^{2}$
a) Find a value for $\mathbf{R}_{\mathbf{1}}$ such that $\mathbf{I}_{\mathbf{1}}=\mathbf{5 0} \boldsymbol{\mu A}$.
b) Sketch the small signal equivalent circuit of this current source and indicate the value of the output resistance $\mathbf{r}_{\mathbf{0} 2}$ of M_{2} if I_{1} remains at $\mathbf{5 0} \mu \mathrm{A}$.
c) Derive an expression and find a value for the current source output resistance $\mathbf{r}_{\text {out }}$.

Answers
a) $\mathrm{R}_{1}=$ \qquad
b) $\mathbf{r}_{02}=$ \qquad
Draw small signal equivalent circuit here
c) $\mathbf{r}_{\text {out }}=$
4) Differential Amplifier with OpAmp

For questions a) - c) you can assume that the OpAmp is ideal
a) Find a value for the voltage gain $\mathbf{A}_{\mathbf{v} \mathbf{1}}=\mathbf{V}_{\mathbf{0}} / \mathbf{V}_{\mathbf{1}}$ under the condition $\mathbf{V}_{\mathbf{2}}=\mathbf{0}$.
b) Derive a value for the voltage gain $\mathbf{A}_{\mathbf{V} 2}=\mathbf{V}_{\mathbf{0}} / \mathbf{V}_{\mathbf{2}}$ if $\mathbf{V}_{\mathbf{1}}=\mathbf{0}$.
c) Find the peak output voltage $\mathbf{V o}$ peak if $\mathbf{V}_{\mathbf{1}}=\mathbf{2} \mathbf{V}$ dc while $\mathbf{V}_{\mathbf{2}}$ is a sinusoidal voltage with an amplitude of $\mathbf{1} \mathbf{V}$.

Bonus Question (3 extra points)

If the Opamp features an open-loop gain of $\mathbf{2 0 0 , 0 0 0}$ and a constant $\mathbf{2 0} \mathbf{~ d B} /$ decade rolloff starting at $\mathbf{5 0} \mathbf{~ H z}$, find the $\mathbf{3} \mathbf{~ d B}$ corner of the voltage gain function $\mathbf{A}_{\mathbf{V 2}}(\mathbf{f})$.

Answers

d) $\mathbf{A}_{\mathrm{V} 1}=$ \qquad
e) $\quad \mathbf{A}_{\mathrm{V} 2}=$ \qquad
f) $V o_{\text {peak }}=$ \qquad
Bonus: $\mathbf{f}_{3 \mathrm{~dB}}=$ \qquad

