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1 Large Signal Model: The Shockley Diode Equation

In this section we are considering large signal diode models. When we study
the large signal behavior of the diode, we replace the schematic symbol with
a non-linear model of the diode. The large signal diode model is a controlled
current source. This is shown in figure 1. The diamond shape for the current
source is my notation for a controlled current source (vs. an independent source
for which I use a circle).
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Figure 1. Non-linear diode model.

The current, ID, is given by the Shockley Diode Equation:

ID = IS

[

e

(

VD
VT

)

− 1

]

(1)

where IS is the saturation current, VD is the voltage across the diode terminals
and VT = kBT

qe
, is the thermal voltage, kB is Boltzman’s Constant, T is the

temperature in Kelvin and qe is the charge of an electron. At room temperature
(e.g. T = 300k), VT = 26mV .

Equation (1) crosses the zero axis (e.g. ID = 0 for VD = 0). Notice, that when
VD < 0, that ID ≈ −Is. The current, IS, is leakage current; in Silicon, this
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current is on the order of 0.1 to 100fA at room temperature. If VD > 0, then
ID increases exponentially with VD. Equation (1) can be solved for VD giving:

VD = VT ln

(

ID − IS

IS

)

(2)

This form of the equation is also useful since it allows one to compute a
terminal voltage of the diode for a given diode current.

When the diode is forward biased and e

(

VD
VT

)

≫ 1 the second term in equa-
tion (1) is often negligible (even for relatively small positive values of VD). If
this assumption holds, then equations (1) and (2) can be approximated to:

ID ≈ ISe

(

VD
VT

)

; when e

(

VD
VT

)

≫ 1 (3)

and

VD ≈ VT ln

(

ID

IS

)

; when ID ≫ IS (4)

If, however, e

(

VD
VT

)

becomes close to 1 in value then these approximations are
no longer valid.

In this course, we are interested in analyzing and designing circuits which
contain non-linear elements starting with the diode. The circuit in figure 2,
for example, has a resistor, R1, connected in series with the diode D1. The
voltage source is Vx.
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Figure 2. Schematic diagram of a voltage source in series with a resistor and a diode.

Notice that the current through the resistor is equal to that of the current
flowing through the diode (Ix = ID). Although the diode is a non-linear el-
ement, KVL and KCL will work the same as they would if D1 were a linear
circuit element. By applying KCL, we get:

f(VD) = Ix − ID =
Vx − VD

R1

− Is

[

e

(

VD
VT

)

− 1

]

(5)
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where f(VD) is the sum of ALL currents at the output node. This means that
f(VD) must be equal to zero according to KCL; however, this will only be true
for a single, specific value of VD (which is unique).

The objective is to find a value for VD (and ID), (V ∗

D, I∗

D), which will force
equation (5) to be exactly zero. Since VD is the independent variable, this can
be solved by finding V ∗

D. The difficult part is finding the exact value of VD which
solves KCL. If the diode were a linear device we could use linear equations
to solve it; however, equation (5) does not have a direct analytical solution
for which simple algebra can be used. In the case where Vx <= VON for the
circuit in figure 2 (and VON is known exactly), then the initial guess,VD = Vx,
will be very close to a reasonable, exact solution. If this is not true then a
different guess for VD will need to be plugged into equation (5). An evaluation
will need to be made for a new choice of VD based upon how close f(VD) is
to zero and the resulting sign (e.g. was f(VD) greater than zero or less than
zero for the initial estimate of VD). Since the ID can change by a large amount
for a very small change in VD (due to the large derivative), this can be quite
tedious.

There are two methods which can be used to find V ∗

D: a graphical method or
a numerical method. The graphical method requires that we plot equation (1)
and then the equation of the resistor, (the I − V curve for R1). The plots of
the diode and resistor I − V curves are shown in figure 3. In order to plot the
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Figure 3. IV plot of R1 and D1.

diode I − V curve we will need IS; then we will select an appropriate range
of values for VD. The equation for the resistor can be found by examining the
Thevenin equivalent circuit at the diode terminals. If we remove the diode,
Voc = Vx and Isc = Vx

R1

. Since Ix = ID = 0 then the value Voc is the voltage
source and it is placed on the horizontal axis. Isc is plotted on the vertical
axis since VD = 0 when ID = Isc; then we draw a straight line between these
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two points. For our example, the circuit in figure 2, we will assume R1 = 2kΩ,
IS = 0.1fA and Vx = 1V .

Notice that the value of (VD, ID) for equation (5) which satisfies KCL, e.g.
f(V ∗

D) = 0, solves this problem can be found at the intersection of the two
curves.

The graphical method will work; however, it is cumbersome to use. If there
are more than one non-linear device this method can be rendered impractical.
Obtaining very good accuracy, down to the micro-Amp range for f(VD) re-
quires a great deal of effort. It is also not easily implemented on a computer.
The second approach is a numerical method known as the Newton-Raphson

root-finding algorithm (it is also referred to as Newton’s Method).

Newton’s method is a numerical algorithm which allows one to find the roots
(e.g. zero crossings) of a nonlinear equation. Newton’s method works by taking
an initial estimate of the independent variable, and then iteratively improving
upon the estimate. This can be shown graphically. We can then extract the
basic algorithm from the graphical picture. For example, let’s assume the
same values as we did for the previous example. Our goal is identical, that is
to find the value of VD in equation (5) for which f(VD) = 0. In this case, since
VON ≈ 0.6V −0.8V , let’s take VD,0 = 0.8V as our initial estimate. Next, we find
f(VD,0) = 2, 650.4µA. We then draw a line tangent to the point VD,0, f(VD,0);
the point VD,1 is found from the intersection of the tangent line and the f(VD,0)
zero axis. This is shown in figure 4.
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Figure 4. Graphical description of the Newton-Raphson Method.

f(VD) is plotted in red; note that I have actually plotted −f(VD) vs VD. The
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reason is that it becomes easier for me to illustrate this technique. The points
VD,0 and VD,1 are indicated with vertical green dashed lines which intersect
f(VD) = 0 and f(VD,0) and f(VD,1), respectively ; the tangent line is indicated
with a green solid line. The value of f(VD,1) = 941.62µA and VD,1 = 0.7752V .
Notice that |f [VD,1]| < |f [VD,0]|. The slope of this line is given by:

Slope =
f (VD) − f [VD (0)]

VD (1) − VD (0)
(6)

where VD,0, f [VD,0] is the first point and VD,1, f(VD) = 0 is the second point.

Since the slope of this line is the derivative with respect to VD and the tangent
line intersects f(VD) = 0 (by definition), then the equation (6) can be rewritten
as

Slope = −
f [VD,0]

VD,1 − VD,0

=
df [(VD)]

dVD

∣

∣

∣

∣

∣

VD=VD,0

(7)

where df [(VD)]
dVD

∣

∣

∣

VD=VD,0

is the derivative of f(VD) evaluated at VD,0.

This means that once an estimate for VD,0 is found, it can be used to graph-
ically be used to find a better estimate of VD, VD,1. In fact, we have re-
peated this for a second iteration, where we use the same method to find
f(VD,2) = 312.27µA and VD,2 = .7524V . In general, we can improve our solu-
tion with each iterative estimate.

In iterative methods values are selected for the independent variable; in this
case VD. These values are indexed. In our case we will use k as the index;
k = 0, 1, 2, .... The idea is that as k is incremented, that the (k + 1)th value
for VD can be found from the kth value, or VD(k) → VD(k + 1) → VD(k + 2),
etc.; as k is incremented, our estimate of V ∗

D, the value that leads to the root,
e.g. f(V ∗

D) = 0 will be a better estimate of V ∗

D. Another way of saying this is
by examining the error:

|VD,(k+1) − V ∗

D| < |VD,k − V ∗

D| (8)

or

f [(V ∗

d )] = 0 < |f [(VD,(k+1)]| < |f [(VD,k]| . . . (9)

For the kth estimate, we can re-write equation (7) as

Slope = −
f [VD,k]

VD,(k+1) − VD,k

=
df [(VD)]

dVD

∣

∣

∣

∣

∣

VD=VD,k

(10)

where df [(VD)]
dVD

∣

∣

∣

VD=VD,k

is the derivative of f(VD) evaluated at VD,k.
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This can be carried out graphically; however, it is much more convenient to
solve equation (10) for VD,(k+1). This gives the following expression:

VD,(k+1) = VD,k −
f (VD)

[

df [(VD)]
dVD

]

∣

∣

∣

∣

∣

∣

VD=VD,k

(11)

which is the Newton-Raphson algorithm.

The absolute value of equation (5), |f(VD)|, approaches zero for each successive
approximation. It is possible that we never quite find V ∗

D precisely. This means
that we will also need an exit condition. When the error is less than a value,
say ǫ, then we will decide that we are close enough to the zero crossing.

There are additional details. First, equation (11) needs a starting point. Thus,
the first point, VD,0 (k = 0) must be found in order to start the algorithm.
The initial estimate for VD will be VD,0; the guidelines for selecting the initial
estimate will be discussed at the end of this section.

Second, we must find an expression for the derivative. In this example, we
must differentiate equation (5), which leads to the following expression:

df [(VD)]

dVD

= −
1

R1

−
(

Is

VT

)

e

(

VD
VT

)

(12)

Notice that the units of equation (12) is Ω−1. The reciprocal of resistance
is conductance (Ω−1); the units are mhos, which uses the symbol, 0, or the
SI-unit, Siemens, which uses the symbol S (upper case S).

Finally, we must decide on the maximum error tolerable; in other words, how
close must |f [VD,k]| be to zero. We will decide that |f [VD,k]| < ǫ, ǫ = 10−6A,
or ǫ = 1µA. Obtaining this level of accuracy via a graphical solution will be
quite challenging; however, with a good selection of VD,0, finding |f [VD,k]| to
within this error will typically take 3 − 6 iterations (assuming a good choice
for VD,0) using Newton’s Method. Newton’s method has been carried out for
this example and the results are given in Table 1 2 for an initial estimate of
VD = 0.8V . The first three estimates (e.g. k = 0, 1&2) were also plotted in
figure 4. The value for ID,k is computed using the current estimate, VD,k and
plugging it into equation (1). The current voltage drop across R1 is given by
VR1,k = ID,kR1, and the current estimate of the supply voltage, V̂x,k, is given
by the sum of the current estimates for the voltage drop across R1, VR1,k, and
the voltage drop across the diode, VD,k. Notice that KVL and KCL cannot
be correctly solved unless the estimates for ID,k, VD,K are reasonably close to
I∗

D, V ∗

D. My definition of reasonably close is four significant digits for ID,k, VD,K

2 VT = 25.85mV
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and V̂x,k. Since Vx is known, and both KVL and KCL must hold, |Vx − V̂x,k|
is easily found and can be used as a check to insure that the correct results
have been obtained.

k VD,(k+1) VD,k f [VD,k] f
′

[VD,k] ID,k VR,k V̂x,k

[V olts] [V olts] [µAmps] [mΩ−1] [µAmps] [V olts] [V olts]

0 0.7752 0.8000 −2, 650.4 −106.9 2, 750.4 5.5008 6.3008

1 0.7524 0.7752 −941.62 −41.2712 1, 054.0 2.1080 2.8832

2 0.7344 0.7524 −312.27 −17.3683 436.1 0.8722 1.6245

3 0.7249 0.7344 −84.737 −8.9145 217.5 0.4351 1.1695

4 0.7228 0.7249 −13.057 −6.3256 150.6 0.3012 1.0261

5 0.7228 0.7228 −0.4675 −5.8786 139.0 0.2781 1.0009

6 0.7228 0.7228 −657.2 × 10−6 −5.8621 138.6205 0.2772 1.0000

7 0.7228 0.7228 −1.3 × 10−9 −5.8621 138.6199 0.2772 1.0000

8 0.7228 0.7228 135.5 × 10−15 −5.8621 138.6199 0.2772 1.0000

Table 1
Results from Newton’s Method for Vx = 1V , R1 = 2kΩ & IS = 0.1fA.

This table was implemented in the spreadsheet application gnumeric. The
same solution can be readily be found in any other spreadsheet application,
or in Matlab by writing the algorithm as an m-file or with a calculator by
hand. It typically takes no more than 5 − 6 iterations to find a very accurate
solution. I have carried out many more iterations to illustrate how quickly the
absolute error in estimating I∗

D, V ∗

D approaches zero, e.g. |f [VD,k]| → 0.

The convergence to the correct answer is not necessarily guaranteed; this is
the reason behind the famous non-convergence errors in SPICE simulators.
Newton’s Method can fail to converge for several reasons: 1) the function,
f(x), might be more complicated than anticipated; this could happen with 2-
3 different nonlinear devices; 2) a poor initial estimate for x0 (most common);
or 3) something else that is ill conditioned with respect to the evaluation of
f(x) or f

′

(x). In most cases, Newton’s method is quite useful.

Obtaining the initial estimate for VD is important. In cases where the power
supply voltage in figure 2 is much less than VON , then VD = VX is both the
initial guess and will also be very close to the final answer. Examples of initial
estimates vs. the number of iterations required for a reliable estimate are given
in Table 2. 3

It is important to recognize that the expressions obtained in equations (5)

3 VT = 25.85mV
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.

Vx VD,0 ID,0 f [VD,0] VD,k ID,k f [VD,k] k

[V olts] [V olts] [µAmps] [µAmps] [V olts] [µAmps] [µAmps]

0.5 0.5 25.1 × 10−3 0.4999 25.1 × 10−3 47.1 × 10−9 1

0.6 0.6 1.2010 −1.2010 0.5978 1.1031 4.22 × 10−3 1

0.8 0.8 2, 750 −2, 750 0.6971 51.4350 56.3 × 10−6 7

1.0 0.8 2, 750 −2, 650 0.7228 138.6205 657 × 10−6 6

1.2 0.8 2, 750 −2, 550 0.7361 232.0142 52.1 × 10−3 5

5.0 0.8 2, 750 −650.39 0.7931 2, 103.5 294 × 10−6 3

Table 2
Results obtained over multiple supply voltages, for R1 = 2kΩ & IS = 0.1fA.

and (12) will be entirely dependent upon the circuit topology and the specific
non-linear elements involved. A second example has been given as a practice
problem. The schematic is shown in figure 5.

R1

I D
R2 1D

I 2Vx

I x

VD−
+

Figure 5. Schematic of practice problem.

Find expressions f(VD) and f
′

(VD). Find the nodal equation at the diode
terminal; this can be found using KCL at this node, Ix − I2 − ID = 0. Sub-
stitute expressions for Ix, I2 and ID and re-write this equation; then take the
derivative with respect to VD, the voltage at the diode terminals.

I will summarize (assuming a single non-linear element; a diode).

1) Find expressions f(VD) and f
′

(VD).

2) Check the Thevenin equivalent circuit at the diode terminals. What is the
relative difference between Voc and VD,ON ?

i) If Voc < VD,ON , then VD,0 = VD = Voc is the starting point. This
approximation should be sufficient, but it can obviously be checked
using KCL or KVL and plugging in the estimate of ID, or by merely
observing the value: |f(VD)|.

ii) If Voc > VD,ON , then VD,0 = VD,ON is a good starting point. This will
probably require at least several iterations to achieve reasonable accu-
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racy.

iii) If Voc ≈ VD,ON , for example, VD,ON = 0.7V and Voc ≈ 0.65V − 0.75V ,
then the starting point VD,0 = VD,ON . 1 − 4 iterations are needed de-
pending upon the degree of accuracy required.

3) If iterations are required, then equation (11) will be employed to find the
next estimate, VD,(k+1). Obviously, the value of |f(VD)| and a KVL and/or
KCL check will determine if the approximate operating point is sufficient.

2 DC Models

DC Models of Diodes are implemented with piecewise linear solutions to equa-
tion (1). This means that a series of lines are fitted to the diode’s I − V

characteristic. The equations of the lines are found by inserting linear circuit
elements. The three common models are shown in figure 6. One can use: (a)
a an ideal diode in series with a single resistor, or (b) an ideal diode in se-
ries with an independent voltage source, or (c) a series connection of an ideal
diode, an independent voltage source and a resistor.

Anode

Cathode

Repl.                      with ...

(ideal) (ideal) (ideal)

Vf Vf

R Ro

  (a)                 (b)                     (c)
−

+

−

+

Figure 6. Piece-wise, linear DC diode Models.

If the diode is known to be forward biased then the ideal diode can be re-
placed by a short circuit. If the diode is reverse biased, then the ideal diode is
replaced with an open circuit and each of the 3 models will be replaced with
open circuits. The I − V plots for each of the 3 piecewise linear models are
overlayed on top of a diode I − V characteristic (plotted in red). The model
from figure 6 (a) is plotted with a black solid line; the model from figure 6 (b)
is plotted with a green dashed line; and the model from figure 6 (c) is plotted
with a light blue solid line.

Piecewise linear approximations to the diode I − V characteristic are used to
find DC current biasing solutions; hence, the name DC model. The advantage
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Figure 7. Graphical illustration of each piecewise linear diode model.

to using one of the DC models is that the circuit analysis is reduced to that of
solving a set (or a single) of linear equations. The disadvantage is that these
solutions are only accurate at a single point on the diode I − V curve; thus,
KVL and KCL will not hold if the bias point changes significantly from the
assumed value for (ID, VD).

Typically, the most common DC models are either the ideal diode in series
with an independent voltage source or the series connection of an ideal diode,
a resistor and an independent voltage source. In either case, the operating
point, (ID, VD), set by either of these two DC models is only valid for a single
point on the actual diode I − V curve. For example, if we are using the series
connection of an ideal diode and an independent voltage source as our DC
model, then the value, Vf = VD specifies a unique value for ID. There will be
a unique value of ID in equation (1) for the diode terminal voltage, VD,ON ,
ID,ON . If the value of Vf is set to VD,ON and used for ID values other than
ID,ON , for example, then both KVL and KCL might not be satisfied the actual
value of ID found by equation (1) is substituted. One could employ Newton’s
Method to refine the estimate of Vf ; alternatively, this could be refined in a
SPICE DC simulation.

3 AC Small-Signal Models

The diode also has a linear ac model. In this case, vD(t) = VD + vd(t), where
vD(t) is an ac voltage, vd(t), with a DC offset VD. The DC offset, VD, sets
the DC operating point, (ID, VD). The ac voltage superimposed upon VD will
be linear as long as vd(t) ≪ VD; hence the name, Small-Signal model. If this

10



relation holds then the diode can be replaced by its ac model with the vd(t)
as the voltage source. In order to find the ac model of the diode we must find
the derivative of ID with respect to vD(t). This is given by

d

dvD

ID =
(

IS

VT

)

e

(

vD
VT

)

=
(ID − IS)

VT

≈
ID

VT

(13)

The dynamic resistance, rd, can be found from equation (13); it is the recip-
rocal of the derivative and is given by

rd =
1

dID

dVD

=
VT

ID

(14)

This is the simplest example of the small signal diode model; it is a resistor
with the value, rd. Notice that the dynamic resistance, rd, required by the
small signal model, is set by the DC operating point of the diode. It depends
upon ID; thus, ID, the DC operating point, is expected to be maintained
within a very small deviation. As long as this holds, the linear circuit used in
the small signal model will provide reliable results.
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