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Preface

The design of electrical circuits, devices and systems is an integral part of the
field of Electrical Engineering. A student gradating with a degree in Electrical
Engineering should therefore be a good designer. There are 3 requirements in
order for a student to to become a good designer: 1) understanding of the basic
theory, 2) analysis techniques and 3) the measurement of electrical circuits. The
purpose of this book is to provide the necessary material to perform basic mea-
surements. This is accomplished by offering a course which will cover laboratory
exercises in linear circuit theory. There are 9 chapters which cover techniques
and procedures in the measurement and characterization of active and passive
circuits.

Each chapter provides the student with sufficient background to efficiently
and intelligently apply linear circuit theory to the laboratory exercise topic. The
format of each chapter is designed to address:

i) Understanding the Objective: The theory behind the laboratory exercise
topic is covered at the most basic level. In chapters which cover reactive
components, capacitors and inductors, a brief review of the relevant equa-
tions from Electricity and Magnetism are used to derive the fundamental
relations.

ii) Issues with Measurements: In the formal course coverage of linear circuit
theory the descriptions used in basic derivations cannot be directly car-
ried out for the measurement due to the nature of the measurement tools,
differences between ideal and non-ideal components and additional linear
effects which are ignored in most fundamental derivations. Thus, problems
are pointed out and they are avoided through disciplined laboratory proce-
dures.

iii) Closing the Semantic Gap Between Mathematics and Electrical Measure-
ments: The formal descriptions of electrical circuits can be manipulated
into a form which better suits the laboratory measurement. The student
needs to connect the mathematical description to what is observed. Stu-
dents tend to appear to get this quickly and adapt; however, they often fail
to recognize how the basic theory affects a particular measurement. This
leads to elementary mistakes and misconceptions which are far too common
in both academics and practice. A lack of skill in complex arithmetic is by
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far the biggest stumbling block. The classic problem is in the interpreta-
tion of complex quantities viewed in measurements vs. what the student
has seen in a text book description. The laboratory exercises are designed
to provide the student with a hands on understanding of how to translate
between what is observed and how to characterize the observation properly.
With a well thought out procedure and redundant practice over a period of
time, the student should be able to understand how the result is impacted
by direct observation of the measurement device.

iv) Communication and Interpretation of Results: It is important for the stu-
dent to understand that there are common analogies between linear circuits,
linear systems and even mechanical systems. It is useful for students to
identify generalities by understanding the language used to characterize a
particular effect. The should be able to observe similarities between topics
here and their junior courses in electronics and signals and systems.

It is important for students to realize that the course described in this book
is separate and distinct from other courses taken during the semester it is of-
fered. Typically the course covered in this book is taken concurrently with a
formal circuit theory course. It is not necessary for the topics covered in the
laboratory exercises to be sequenced after, e.g.wait, until they are covered in the
formal circuit theory course. Otherwise, the objectives of this course, which are
absolutely necessary, would be compromised. Sufficient background material
is covered in order to provide a basic understanding of each laboratory exer-
cise. The topics in this book are designed for the student who has completed a
freshman/sophomore level Physics course in Electricity and Magnetism with a
passing grade. Students are also expected to have taken the courses in math-
ematics (e.g. elementary calculus, simple differential equations) required of all
freshman and sophomore Electrical Engineering students.

A. Davis, December 2005



Chapter 1

Electrical Measurements: The Basics

Lab Objectives:

§1. To learn how to make simple measurements.

§2. To understand the operation of the lab equipment.

§3. To employ circuit theory in measurements.

Pre Lab:

1. Read this lab.

2. Read up on Oscilloscopes and meters.

1.1 Introduction

Engineers do their jobs by applying principals of circuit theory to devices which
are fabricated and placed in service either as a manufactured product or as a
prototype (1 or 2 versions). Few electrical circuits are built without requiring
measurements. Typical measurements can be a DC or AC voltage or current.
The resistance of a system is also of interest. Sometimes we need to examine
the actual waveform over a period of time.

The instruments at your lab bench will enable you to perform all of the tasks
mentioned. Let’s review the equipment:

1) A digital multi-meter used to measure resistance, AC/DC voltage and cur-
rent.

2) An analog Oscilloscope which allows us to examine periodic wave forms over
selected time intervals.

3) A DC power supply.

4) The Tektronics FG 503 function generator. The function generator provides
us with the following AC waveforms:

1
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a) Square Wave.

b) Saw-tooth Waveform.

c) Triangle Waveform.

d) Sine Wave.

e) Possibly others.

Notice that any AC waveform can also have a DC offset voltage added to it.

5) A frequency counter.

6) Miscellaneous tools and cables.

While some of the techniques to measure various electrical quantities are
obvious, some measurements require a simple understanding of the instrument
used in the measurement and the application of basic electrical concepts in order
to obtain a reliable result.

1.2 Concepts & Information

In your circuit theory course you are learning or have learned (if it was not
taken concurrently) some basic laws and relations. Some relationships are used
so often, that it is well worth the time to review them. Every simple relationship
is derived from one or more basic laws. Some of these concepts are stated here
to remind you that they still apply in this course and any other course you
will be taking. In fact, these laws apply even when you leave the state or the
country.

Information has been provided on resistor codes in order for you to under-
stand how to read the resistor values from the color bands.

a) Ohm’s Law

Ohm’s law is a linear relationship between voltage, current and resistance.
It is expressed as

V = IR (1.1)

where V is the voltage, I is the current and R is the resistance.

b) Kirchhoff’s Voltage Law (KVL) & Kirchhoff’s Current Law (KCL)

i) KVL states: The sum of the voltages around a loop is zero.
In general, if we have n elements connected in a loop as shown in fig-
ure 1.1,

then, the sum of ALL voltage drops is expressed as

Σn
k=1Vk = 0 (1.2)
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V1 Vk

Vn

. . .

. . .

Figure 1.1: Loop of n elements.

where k is the index, n is the total number of elements and Vk is the
voltage drop across the kth element.

ii) KCL states: The sum of currents at a node must be zero.

In general, if we have a node with n connections, as shown in figure 1.2,
then, the sum of ALL currents coming into or out of the node is ex-

I 1

I k

nI

. .
 .

Figure 1.2: Node containing n connections.

pressed as
Σn

k=1Ik = 0 (1.3)

where n is the total number of nodes, k is the index and Ik is the current
in the kth node.

c) Series and Parallel Resistors

Of course, the equivalent resistance of n resistors connected in series is the
sum or

Req = R1 +R2 + ...+Rn (1.4)

Alternatively, the equivalent resistance of n resistors connected in parallel is
expressed as
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1

Req

=
1

R1
+

1

R2
+ ...+

1

Rn

(1.5)

Both expressions are derived from applying KVL/KCL.

d) Voltage Divider

By placing two or more resistors in series the the total voltage can be di-
vided. The example in figure 1.3 illustrates this using two series resistors.
The voltage across R2 can be found by applying Kirchhoff’s Voltage Law.

R1

R2

1V

2V

Figure 1.3: Voltage Divider.

The relationship between V2 and V1 is given by

V2 =
R2

R1 +R2
V1 (1.6)

where V2 is the voltage across R2 and V1 is the voltage across R1 and R2.

e) Current Divider

Current division occurs for two or more parallel resistors. Kirchhoff’s current
law can be used to solve for individual currents. An example of this is shown
for two parallel resistors in figure 1.4.

1I 2I

R2R1

I

Figure 1.4: Current Divider.

The relationship between I2 and I is given by
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I2 =
G2

G1 +G2
I (1.7)

whereGi is the conductance (e.g. 1
Ri

) for resistor i. An alternative expression
is given by

I2 =
R1

R1 +R2
I (1.8)

which replaces the conductance with resistance.

f) AC Measures

i) Root-Mean-Square Voltage (Vrms)

The average value of a sine wave over a complete period is zero. This
can be done by inspection of the graph over a single period. It is positive
for 1

2 -period and it is negative for 1
2 -period which effectively makes the

average zero.

The Root-Mean-Square Voltage for an arbitrary periodic waveform is
given by[1]

Vrms =

√

1

T

∫ T

0

v2(t)dt (1.9)

where T is the period and v(t) is the AC voltage as a function of time.

The rms voltage of a sine wave can be found by setting v(t) = Vpeaksinωt,
which yields

Vrms =

√

ω

2π

∫ 2π

ω

0

V 2
peaksin

2(ωt)dt (1.10)

This results in the following expression for a sine wave

Vrms =
Vpeak√

2
= 0.707Vpeak (1.11)

or, Vrms is approximately 71% of the peak value for a sine wave.

ii) 1
2 -Period Average Value[1]

The average voltage for a sine wave is sometimes computed by taking
the mean over a 1

2 -period interval, or
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Vavg =
ω

π

∫ π

ω

0

Vpeaksin(ωt)dt (1.12)

which results in

Vrms =
2Vpeak

π
= 0.637Vpeak (1.13)

or, approximately 64% of the peak value.

g) Resistor Color Codes

Resistors are marked with 4 bands as shown in figure 1.5. The value of
the resistor can be read from the first 3 bands. The first two bands indicate
the numerical value while the 3rd band indicates the multiplier power.

Exponent

2   digit

1   digit
st

nd
Tolerance +/− % error

Figure 1.5: Illustration of resistor bands.

Table 1.1 provides a complete list of codes used to enumerate all resistor
values.

Table 1.1: Resistor Color Codes.
Color Number Color Number
Black 0 Green 5
Brown 1 Blue 6
Red 2 Violet 7

Orange 3 Gray 8
Yellow 4 White 9

The 4th band is the tolerance band. The tolerance is a figure of merit which
indicates how close the resistance should be to the value encoded. Gold
indicates 10 % tolerance and silver represents 1 % tolerance. Thus, the ac-
tual resistance of a resistor will deviate from the designed value by a small
amount.
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1.3 Digital Multi-Meter

The measurement of voltage, current and resistance can be performed by a coil
with an attached needle. The needle movement is calibrated to the current
flowing through the coil. Using Ohm’s Law, voltage can also be measured by
scaling the meter reading to a resistive network. Voltage, current and resistance
are measured using a device with a digital readout, the digital multi-meter
(DMM). Although the behavior appears to be somewhat different many features
can be understood using the same simple models.

1.3.1 The Ammeter

The ammeter, shown in figure 1.6, consists of a current measuring device and
a resistor, Rm, which represents the internal resistance of the measuring device
(an ideal ammeter would have an Rm equal to 0).

Rm

A

Figure 1.6: Simplified schematic description of an Ammeter.

This means that there is an error, albeit small, due to the internal resistance
of the ammeter.

1.3.2 The Volt Meter

The voltmeter, shown in figure 1.7, can be modeled as a meter and a resistor,
Rm, in parallel which represents the internal resistance. The ideal voltmeter
would have an Rm equal to ∞.
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mRV

Figure 1.7: Simplified schematic description of an voltmeter.

You should also realize that voltage and current meters have a number of
scales used for measurements. These scales are set by resistor networks.

1.3.3 The Ohm Meter

Resistance is measured by supplying a small current to the circuit under test.
The voltage and current are measured and the resistance is found by using
Ohm’s Law.

The ohm meter can also be used to detect “shorts” or “open” circuits since
the “short” will show zero resistance and the “open” will show infinite resistance.

Since the DMM in the resistance mode will supply current, some care must be
taken when making resistance measurements. In general, resistance is measured
with an ohmmeter for only two cases: (1) measuring resistor vales and (2)
detecting “shorts” or “open” circuits when it is safe to perform this task with
an ohmmeter. Care must also be taken, even when there is no power applied
to the device under test, because the current supplied by the ohm meter could
damage some semiconductor devices.

1.4 The Oscilloscope & function generator

Measurements performed on AC waveforms often require the waveform to be
viewed as a function of time. This is the purpose of the Oscilloscope. The Oscil-
loscope is a CRT with horizontal and vertical deflection plates. The horizontal
plates are connected to the internal time base. The vertical plates are connected
to the source or circuit under test.

Oscilloscopes have 2-4 channel inputs. These inputs are scaled (Volts/div)
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and the following selections are provided: (1) Ground, (2) AC and (3) DC.
The Ground setting is used to reference ground on the screen. The AC setting
eliminates DC offset. AC waveforms can have DC components and sometimes
viewing the complete signal is difficult. For example, a very small AC signal
with a very large DC offset. The DC selection provides DC offset. Thus, if you
are trying to measure offset, the AC setting will not be a good choice.

The function generator is an instrument which provides test waveforms. A
circuit being analyzed often requires test input signals. Since the design should
be aware of how his/her circuit functions, the output signal is viewed and com-
pared to the expected result.

You will be expected to know how to read the period of a signal using the
time base setting and counting the approximate number of vertical blocks and
tic marks on the screen. You will also be expected to know how to measure the
voltage of a waveform using the scaled voltage setting and counting the vertical
blocks and tic marks.

1.5 Lab Instructions

1) Resistance Measurements

Select R1 in the range of 220 Ω, R2 in the range 10KΩ to 22KΩ, and R3

in the range 1MΩ to 2.2MΩ. Assemble them in the configurations shown in
figure 2.4 and measure the equivalent resistance R. Make sure that you are
selecting actual resistors for this exercise.

R2R1

R3

R1

R3R2 R1 R3R2

Figure 1.8: Resistor configurations for part 1.

Once you have selected the values for R1, R2 and R3, measure each resistor
with the DMM and compute the effective resistance.

2) Ammeter Internal Resistance

Set up the circuit in figure 1.9 with R1 = 100kΩ and R2 = ∞
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Vs
R

I 1

R2

+
−

I I

m

A

m 2

R1

Figure 1.9: A circuit to measure the ammeter resistance.

Adjust the DC voltage, Vs, until the ammeter reads 100 µA on the 200 µA
scale. Reduce R2 until the current becomes 50 µA (e.g. Rm = R2).

3) Voltmeter Internal Resistance

A circuit to measure the internal resistance of a voltmeter is illustrated in
figure 1.10.

Vs

R1

R2 mR
+
− V 2

Figure 1.10: A circuit to measure the voltmeter resistance.

The value of Rm is given by

Rm =
R1R2

R2Vs − (R1 +R2)V2
V2 (1.14)

where R1, R2, Vs and V2 are given in figure 1.10.
Derive this expression.
Set up the circuit in figure 1.9 with R1 = 3.3 MΩ and R2 = 1.2 MΩ. Find
Rm.
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Repeat this measurement using R2 = 3.3 MΩ.

4) AC Measurements

Set up the function generator and the oscilloscope with a sine wave; measure
the sine wave across a 1 MΩ resistor. Set the frequency to 1 kHz and the
peak amplitude to 4 volts. Verify that the offset is set to zero volts.

Now, attach the output of the function generator to a 50 Ω resistor. What
happens ?

Find the rms value of the sine wave.

1.6 Problems

1) Show the rms value of a sine wave (peak amplitude=Vx) over one period
(T = 2π) is given by equation (1.11). Hint: use equation (1.10) and substi-
tute a suitable trigonometric identity for sin2(ωt).

2) Find the rms value of a square wave (peak amplitude=Vx) using equa-
tion (1.9).

3) Assume that you have 3 1k resistors; two parallel resistors are placed in series
with the third resistor as shown in figure 1.8 (middle). The voltage at the
left node of R1 is given by V1. If V1 = 10V , find V2.

4) Derrive equation (1.14). Traansform figure 1.10 into a schematic and and
then solve for Rm.
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Chapter 2

Resistor Networks

Lab Objectives:

§1. Continue with DC circuit analysis.

§2. Apply Ohm’s Law, KVL & KCL to measurements.

§3. Find power dissipation in a resistive circuit.

Pre Lab:

1. Read this lab.

2. Derrive the solutions to the expressions for current and voltage.

2.1 Introduction

In this lab you will be applying Kirchhoff’s voltage and current Laws, (KVL)
and (KCL), to resistive networks. You will also continue with exercises designed
to help you understand the influence of the measuring equipment. Finally, you
will make some simple measurements to determine the power dissipation in a
resistive network.

2.2 Concepts & Information

KVL and KCL can be applied to complex networks in order to find the node
voltages and current through each branch. A representative circuit appears in
figure 2.1.

2.2.1 Labeling & Polarity Conventions

The nodes in figure 2.1 are labeled A through D while the branch currents
can be labeled Ik where k represents resistor Rk. Thus, the current I1 would
represent the current passing through the resistor R1.

13
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R1VA VB VC VD

+
− R

R

R

R

2

3 5

4V R6

VE

Figure 2.1: Sample network.

Voltages and currents must have signs as well as labels. By convention,
voltages are referenced to a potential. The voltage at node B, V (B) or VB is
the voltage measured at node B with respect to node D. The sign is “+” at the
node with the higher voltage and “−” at the terminal with the lower voltage.

For example, if we were to measure the node voltage at node B with respect
to node D in figure 2.1, then the red (or positive) lead of the DVM is placed at
node B and the black (or negative) lead is placed at node E. Mathematically,
this is equivalent to finding VBD, or

VBD = VB(red) − VE(black) (2.1)

If we are interested in the voltage drop across R3, then we want to find the
voltage difference between nodes B and C. The voltages at node B with respect
to node D and at node C with respect to node D can be measured and their
difference can be taken to be

VBC = VBE − VCE = VB − VC (2.2)

Since node E was common to both voltages, the node E is dropped from
the final result VBC . If voltage nodes are measured with respect to a common
reference, e.g. node E, then the voltages at nodes B and C can be referred to
as VB and VC . In fact, if we want the voltage between nodes B and C, we could
alternatively put the red (positive) lead on node B and the black (negative)
lead on node C and directly measure the voltage difference. If we reverse the
direction of the leads, then we have

VCB = −VBC = VC(red)− VB(black) (2.3)

KVL should be satisfied by summing the voltages around any loop in the
network. For example, measuring the voltages between nodes A & B, B & C,
C & D and D & A would be equivalent to

VAB + VBC + VCD + VDE + VEA = 0 (2.4)

Notice that VAD = VA = Vs, where Vs is the voltage of the voltage source in
figure 2.1. Thus, VDA = −Vs. A non-rigorous proof of KVL can be performed
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by substituting the definitions of each voltage difference in equation (2.4). This
becomes

(VA − VB) + (VB − VC) + (VC − VD) + (VD − VE) + (VE − VA) = 0 (2.5)

It can be seen by inspection that equation (2.5) must be equal to 0; equa-
tion (2.5) is also equivalent to equation (2.4). By VAE = VA = Vs, equation (2.4)
can also be re-written as

Vs = VAE = −VEA = VAB + VBC + VCD + VDE (2.6)

The current sign conventions follow directly from the conventions adopted
with nodal voltages. By convention, a positive current flows from a positive
node to a node with a less positive value. Thus, the current in R3 can be found
by

I3 =
VB − VC

R3
=
VBC

R3
(2.7)

2.2.2 Network Analysis Techniques

There are 3 options to analyze a network: (1) Network Reduction, (2) Nodal
Analysis and (3) Loop/Mesh Analysis. One could also apply nodal or loop
analysis to a network which has been simplified.

a) Network Reduction

One method of solving for all of the branch voltages and currents for the
network in figure 2.1 is to simplify it through redundant application of series
and parallel resistors. By repeated conversions for equivalent series and
parallel resistors one could sufficiently reduce the network in order to obtain
a solution. For example, R4, R5, and R6 can be combined as shown in
figure 2.2. This approach increases quickly in complexity.

R1

R5 R6

VB VC

+
− R

R

R2

3

4V +( )

Figure 2.2: Simplified network from figure 2.1.

Notice that the voltages VB and VC remain unchanged (notice that VA is the
supply voltage, V ). We could carry this again; instead, we will use this to
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demonstrate nodal and loop analysis

b) Nodal Analysis

We will apply nodal analysis to the network in figure 2.2. By summing the
currents at the nodes in figure 2.2 we can solve for the unknown voltages,VB

& VC . Thus, nodal analysis relies on KCL.

This yields the following set of equations

0 = V −VB

R1

− VB

R2

+ VC−VB

R3

0 = VB−VC

R3
− VC

R46

(2.8)

where R46 = R4||(R5 +R6).
Equation (2.8) must be solved for VB & VC . This is done using techniques
for solving simultaneous equations. The remaining nodal voltage, VD from
figure 2.1 by using a voltage divider between R5 & R6. The solution allows
one to find every voltage drop and every current.

c) Loop/Mesh Analysis

By summing voltage drops around each loop in the network one can solve
for the currents in the network. Thus, loop/mesh analysis relies on KVL.
Figure 2.2 is redrawn in figure 2.3 with the currents Ia and Ib labeled.

R1

R5 R6
I a

VB VC

+
− R

R

R2

3

4V +( )
I b

Figure 2.3: Network from figure 2.2 with loop currents labeled.

We intend to solve for the currents Ia and Ib. First, we must obtain the loop
equations. This results in

V = IaR1 + (Ia − Ib)R2

0 = Ib(R3 +R46 + (Ib − Ia)R2
(2.9)
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where Ia & Ib are the loop currents, V is the voltage source and R46 =
R4||(R5 +R6).

The resulting equations can be simplified as follows:

V = (R1 +R2)Ia −R2Ib
0 = −R2Ia + (R2 +R3 +R46)Ib

(2.10)

In matrix algebra, this takes the form:

[

V
0

]

=

[

(R1 +R2) −R2

−R2 (R2 +R3 +R46)

] [

Ia
Ib

]

(2.11)

The solution of simultaneous equations comes up often in circuit analysis.
The system of 2 equations and 2 unknowns can easily be solved. We will use
a generic example where our system of equations are,

b1 = a11x1 + a12x2

b2 = a21x1 + a22x2
(2.12)

where x1 & x2 are the unknowns, aij are the coefficients and b1 & b2 represent
known values. This, in matrix form becomes,

[

b1
b2

]

=

[

a11 a12

a21 a22

] [

x1

x2

]

(2.13)

In order to solve this system of equations we must employ Cramer’s Rule,
inverting the matrix A, thereby canceling the matrix in multiplied by the
unknowns and leaving us with,

[

x1

x2

]

=

[

a11 a12

a21 a22

]−1 [

b1
b2

]

(2.14)

In other words,

A−1A = I =

[

1 0
0 1

]

(2.15)

where A is the 2x2 matrix and I is the identity matrix. It is named the
identity matrix because it is the identity operator in matrix algebra. In a
larger matrix this translates to all zeros with ones on the diagonal.

Inverting a 2x2 matrix is quite simple and well worth memorizing. This
results in

[

a11 a12

a21 a22

]−1

=
1

|A|

[

a22 −a12

−a21 a11

]

(2.16)

where |A| = a11a22 − a21a12, or the determinant of the matrix A.
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If we apply this to equation (2.11), we obtain

[

Ia
Ib

]

=
1

D

[

(R2 +R3 +R46) −R2

−R2 (R1 +R2)

] [

V
0

]

(2.17)

where D = (R1 +R2)(R2 +R3 + R46)−R2
2.

The two remaining currents through R4 and R5 & R6 can be found using
current division.

2.2.3 Energy & Power

Energy & Power
The relationship between energy and voltage is

V = dW
dq

W =
∫

V dq
(2.18)

where W , represents energy, in Joules, q represents charge in Coulombs, and V
represents the voltage in volts (1 Volt = 1 Joule

Coulomb
).

Current is defined as the rate of charge flow; this can be stated mathemati-
cally as

I =
dq

dt
(2.19)

where q is the charge in Coulombs, t is the time in seconds, and I is the current
in Amperes. Thus, 1 Ampere = 1 Coulomb

Second
.

Power is defined as the rate of energy, or,

P = dW
dt

= (dW
dq

)(dq
dt

)

P = V I = I2R = V 2

R

(2.20)

where P is expressed in Watts, where 1 Watt = Joules
second

.
The average power is given by

P = 1
T

∫ T

0
v2(t)

R
dt

or

P = 1
T

∫ T

0
i2(t)Rdt

(2.21)

which can be done either for voltage or current in a resistor.
The average DC power is constant and thus results in equation (2.20). The

average power for a sine wave is computed by Vrms and/or Irms in place of the
DC voltage and currents.

If this is a DC circuit, then both i(t) and v(t) are constant over time, which
thus simplifies to the familiar relationship

P = V 2

R

or
P = I2R

(2.22)
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Where V and I are the DC voltage and current, respectively.

2.3 Lab Instructions

1) Construct the circuit shown in figure 2.4. Measure branch voltages and cur-
rents.

R1

1I
3I

4I

5I

2I+
− R

R

R

R

2

3 5

4

A B C

V

Figure 2.4: Resistor Network.

i) Measure the following quantities:

a) VAB ,VBC ,VCD & VDA.

b) I1, I2, I3, I4 & I5.

ii) Use two sets of resistor values for R1−5:

a) R1 = 1.2kΩ, R2 = 2.7kΩ, R3 = 1.5kΩ, R4 = 1.2kΩ & R5 = 6.8kΩ.

b) R1 = 3.3kΩ, R2 = 6.8kΩ, R3 = 2.2kΩ, R4 = 1.2kΩ & R5 = 1.2kΩ.

iii) For each set of measurements find:

a)
VAB + VBC + VCD + VDA (2.23)
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b)

VAB + VBD (2.24)

c)

VAB + VBC + VCD (2.25)

d)

I1 + I2 + I3 (2.26)

e)

I4 + I5 (2.27)

2) Construct the circuit shown in figure 2.5. Measure the current and voltage
using both methods.

A

V

Vs
+
−

R

A

Vs V

R
+
−

Figure 2.5: Resistor Network.

i) If R = 10 kΩ, the ammeter reads 200 µA, and the DMM reading is V,
which configuration will provide a more accurate value of R if you divide
V by 200 µA ? (hint: use the models of the voltmeter and the ammeter).

ii) Suppose R = 1.2 MΩ and the ammeter reads 4 µA ?

3) Measure the I-V characteristic of a resistor.

i) a) Measure the resistance of a 1 Watt, 100 Ω resistor.

b) Calculate the maximum voltage and current rating for the resistor.

c) Determine the best way to set up the circuit.
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ii) a) Use the ammeter in the 200 µA range. Set the current at equidistant
points of 0, 40, 80, 120, 160 & 200 µA. Measure the voltage in each
case. Record the data in a table. Plot the points on a graph while
you are taking the data.

b) Repeat these measurements on two other current scales. Remem-
ber not to exceed the maximum ratings for voltage and current. By
shifting the origin of the vertical axis all of the points can be plotted
on the same sheet of graph paper.

c) For each current scale draw the best straight line through the points.
Compare the value of R from the slope of the graph to the actual
measurement.

iii) a) Measure the resistance of an 8.2 kΩ resistor. Find R from measure-
ments of the V-I characteristic; use the 2 mA scale.

b) Measure the resistance of a 680 kΩ resistor. Find R from measure-
ments of the V-I characteristic; use the 200 µA scale.

4) Find the power with a 10 volt DC input. Find the power for a 14.4 volt, 1
kHz sine wave. Use a 1 Watt, 10 kΩ resistor.

2.4 Problems

1) Assume that you have 3 resistors; two parallel resistors are placed in series
with the third resistor as shown in figure 1.8 (middle). The voltage at the
left node of R1 is given by V1. Find an expression for the voltage, V2, at the
right node of R1 (e.g. the node which has R1, R2 & R3). Hint: this will be
expressed in terms of V1 as V2 = CV1, where C is a constant. You will need
to find C.

2) Find C in terms of R1, R2 & R3. Assume that R1 = R2 but R3 >> R2; Can
find an approximate expression for C and use it to find V2 in terms of V1 ?
(Hint: find

lim
R3→∞

C

(2.28)

in terms of R1 & R2.
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3) Reuse the original expression (not the approximation) for C in terms of R1,
R2 & R3. Assume that R2 = R3 but now R1 >> R2; Find an approximation
for C and V2 in terms of V1.

4) Repeat the problem again, this time assume that both R2 & R3 are >> R1.
Find an approximation for C and V2 in terms of V1.
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Superposition Principle and Thevenin

Equivalent Circuits

Lab Objectives:

§1. Apply the Superposition Theorem to DC circuits.

§2. Analyze circuits using Thevenin Equivalents.

§3. Apply Thevenin’s Theorem to DC and AC circuits.

§4. Demonstrate Maximum Power Transfer.

Pre Lab:

1. Read this lab.

2. Derrive the solutions prior to lab.

3.1 Introduction

The Superposition, Thevenin and Norton theorems are represent concepts which
are of great fundamental importance in applied in circuit analysis and measure-
ments. The Superposition principle allows one to examine separate contribu-
tions from independent sources; this is most helpful in the analysis of transistor
and amplifier circuits. Thevenin’s and Norton’s Theorems allow one to sim-
plify the analysis of circuits. They provide a general approach to determine
the resistance, voltage and current “seen” at an arbitrary point within a linear
circuit. These theorems can each be applied to simple measurements in order
to understand their utility.

3.2 Concepts & Information

a) Independent and Dependent Sources[1]

23
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An independent voltage source provides a specified voltage between its ter-
minals. The current through the device will not change the output voltage.
An independent current source will provide a specified current between its
terminals; the voltage across the terminals will not change the current. This
is illustrated in figure 3.1.

VAB ICD
+
−

A

V

V

I

I

I

V

(a) (b)
B D

C

Figure 3.1: Independent voltage and current source.

A dependent source will generate a voltage or current which is a function of
a voltage or current elsewhere in the circuit. There are 4 types of controlled
sources: (a) the voltage-controlled voltage source, (b) the voltage-controlled
current source, (c) the current-controlled voltage source and (d) the current-
controlled current source. This is illustrated in figure 3.2.

V in

+

−

V ina 1−
+

inI

inI−
+ V= r

inI

a 2 inI

V in

+

−

g
mV inI=

A

(a) (b)

(c) (d)

Figure 3.2: Dependent sources.

b) Superposition Theorem[1]

The Superposition Principle states: In any linear circuit containing multiple,
independent sources, the current and voltage at any point in the circuit can
be found from the algebraic sum of the individual contributions from each
source acting alone.
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To illustrate the superposition principle we will use the circuit in figure 3.3.
Notice, it has both an independent voltage source and an independent current
source. If we want to find the voltage, VAB across RL by applying the

R1

R2

R3

−8V

B

A

RL

2 mA

V AB+

+

−

Figure 3.3: Circuit to illustrate superposition principle.

superposition principle, we need to find two voltages, V
(1)
AB & V

(2)
AB . The first

voltage, V
(1)
AB , is found by removing the independent voltage source. This

is accomplished by replacing the independent voltage source with a short

circuit. The second voltage, V
(2)
AB , is found by replacing the independent

current source with an open circuit. This is illustrated in figure 3.4.

R1

R2

R3

B

A

RL

2 mA

+

−

V (1)
AB

R1

R2

R3

+
−8V

B

A

RL

+

V
AB
(2)

−

Figure 3.4: Circuits for V
(1)
AB & V

(2)
AB .

The original voltage across RL, VAB , is found by

VAB = V
(1)
AB + V

(2)
AB (3.1)

or the sum of the voltages found from the sub circuits formed when the in-
dependent sources were removed. This can be carried out for circuits with
many independent voltage and/or independent current sources.

c) Thevenin’s Theorem[1]
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If we have a network subdivided into two parts: A and B as shown in fig-
ure 3.5, where network A contains only linear elements, Thevenin’s Theorem
states that network A can be replaced by an independent voltage source and
a series resistor. The voltage, Vth is the voltage, VAB or Voc, if network B is
replaced by an open circuit.
The circuit replacing network A leaves the resulting voltage across the ter-
minals VAB unchanged. Thus, any linear circuit can be replaced by an
independent voltage source and a series resistor.

−

+

LV

A

B

Network Network

A B

−

+

LV

A

B

R th

V th
+
− B

Network

Figure 3.5: Circuits to illustrate Thevenin’s Theorem.

Finding the Vth and Rth can be accomplished by one of several methods. If
the circuit is unknown as shown in figure 3.6 the open circuit voltage, Voc,
that is the voltage when terminals A and B are open, and the short circuit
current Isc, when terminals A and B are shorted, can be measured in order
to find Rth.

Rth

Network

A

A

B

Figure 3.6: Finding Rth.

The expression,

Rth =
Voc

Isc

(3.2)

can be used to find Rth from measuring the open circuit voltage and the
short circuit current. Thus, Voc = Vth. If the circuit in network A is known,
Rth can be found directly by: (a) replacing ALL independent voltage sources
with short circuits, (b) replacing ALL independent current sources with open
circuits and (c) finding the equivalent resistance.

d) Norton’s Theorem[1]



3.3. LAB INSTRUCTIONS 27

The Norton Equivalent circuit is found by replacing the the Thevenin Equiv-
alent circuit with a current source and a parallel resistor, RN , as shown in
figure 3.7.

B

A

NI
RN

Figure 3.7: The Norton Equivalent Circuit.

Thus, The current source, IN , is equal to Vth

Rth
and RN is Rth.

e) Maximum Power Transfer[2, 1]

The Maximum Power Transfer Theorem can be found by using Thevenin’s
Theorem. This is illustrated in figure 3.8. The problem is to find the value
of RL will result provide the most efficient power transfer into RL. The load
resistor can represent the input resistance of another network. The maxi-

RL

R th

V th
+
−

B

A

Figure 3.8: Thevenin Equivalent Circuit.

mum power is transfered from a linear, DC, circuit if the loads are matched,

(e.g. RL = Rth. The power transfered is equal to
(

Vth

2
)2

Rth
or

V 2

th

4R
.

3.3 Lab Instructions

1) Construct the circuit shown in figure 3.9.

Measure VL as a function of RL. Select the following values for RL: 10Ω,
20Ω, 40Ω, 80Ω, 100Ω, 200Ω, 400Ω, 800Ω, 1kΩ, 2kΩ, 4kΩ, 8kΩ, 10kΩ, 20kΩ,
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+
−

+ −

V LRL
6V

5V

1.2k

3.3k

2.2k

3.3k

1k

−

+

Figure 3.9: Network for Superposition Measurements.

40kΩ, 80kΩ, & 100kΩ.

i) Perform the measurement on the circuit shown in figure 3.10 with VL1

as function of RL1 using the values listed above for RL.

+
− RL

6V

1.2k

3.3k

2.2k

3.3k

1k

−

+
V L1

Figure 3.10: Network for Superposition Measurements.

ii) Perform the measurement on the circuit shown in figure 3.11 with VL2

as function of RL2 using the values listed above for RL.

+ −

RL5V

1.2k

3.3k

2.2k

3.3k

1k

−

+
V L2

Figure 3.11: Network for Superposition Measurements.

iii) Perform the measurement on the circuit shown in figure 3.9 with VL as
function of RL using the values listed above for RL.
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iv) Predict VL as a function of the 6 volt source. Change the voltage of the
6 volt source to: 12 Volts, 14 Volts, 16 Volts 18 Volts & 20 Volts.

v) Summarize the results from parts (a), (b) & (c) in a table. Plot the data
from parts (a), (b) & (c) on a log-log scale.

vi) Summarize the results from part (d) in a table with columns for: RL,
VL1, VL2 & VL; where is VL1 the voltage across RL the with the 5 Volt
source removed and VL2 is the voltage across RL the with the 6 Volt
source removed.

2) Thevenin Equivalent Circuit: Problem 1.

i) Construct the circuit shown in figure 3.12.

RL
+
−8V

10k

8.2k

4.7k

B

A

Figure 3.12: First Network to Estimate Rth.

ii) Measure each resistor value.

iii) Compute Voc, Isc & Rth using the circuit in figure 3.12 with the MEA-
SURED resistor values. Compare Voc

Isc
with Rth.

iv) Measure Voc & Isc. Compute Rth.

v) Measure Vab as a function of RL. Vary RL as follows: 500Ω, 1kΩ, 2kΩ,
4kΩ, 8kΩ, 10kΩ, 20kΩ, 40kΩ, 80kΩ, 100kΩ, 200kΩ & 500kΩ.

vi) Make a table with 4 columns: RL, VL(measured),VL(calculated), & PL.

vii) Plot VL and PL as a function of RL.
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3) Thevenin Equivalent Circuit: Problem 2.

i) Construct the circuit shown in figure 3.13.

RL

+
−

8.2k10k

4.7k 2.2k

BA

6V

Figure 3.13: Second Network to Estimate Rth.

ii) Measure each resistor value.

iii) Measure Voc & Isc. Compute Rth.

iv) Measure Vab as a function of RL. Vary RL as follows: 100Ω, 200Ω,
400Ω, 800Ω, 1kΩ, 2kΩ, 4kΩ, 8kΩ, 10kΩ, 20kΩ, 40kΩ, 80kΩ & 100kΩ.

v) Make a table with 4 columns: RL, VL(measured),VL(calculated), & PL.

vi) Plot VL and PL as a function of RL.

4) Thevenin Equivalent Circuit: Problem 3.

Estimate Rth for the function generator. Use a 10 kHz, 10 V oltpeak sine
wave with 0 V olt offset.

1) Vary RL as follows: 50Ω, 100Ω, 200Ω, 500Ω, 1kΩ, 2kΩ, 5kΩ, 10kΩ, 20kΩ,
50kΩ, 100kΩ, 200kΩ, 500kΩ & 1 MΩ.

2) Make a table with 4 columns: RL, VL(measured), & PL.

3) Plot VL and PL as a function of RL.
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3.4 Problems

1) The circuit in figure 3.14 is known as the Wheatstone Bridge. It is quite
similar to one of the circuits measured in the lab exercises. This Wheastone
bridge can be used to measure the value of a resistor by:

i) Placing the unknown resistor, Rx, into the bridge.

ii) Adjusting R3 until the current flowing through the meter is zero.

iii) Find Rx by:

Rx =
R2R3

R1
(3.3)

Show that this expression can be found by algebraically by assuming
that VA = VB .

R1

R3

R2

Rx

+
−

BA

V

Figure 3.14: Wheatstone Bridge.
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Chapter 4

RC Circuits

Lab Objectives:

§1. Understand properties of capacitors in DC & AC Circuits.

§2. Measure RC time constants.

§3. Learn about Bode Plots.

§4. Understand amplitude and phase relationships.

§5. Analyze and measure the frequency and phase response of Low Pass and
High Pass Filters.

Pre Lab:

1. Read this lab.

2. Find the time constants prior to the lab (part a).

3. Find filter cutoffs prior to the lab (part b).

4.1 Introduction

There are many applications for capacitors in DC circuits and AC circuits. Some
examples applications are: power supply smoothing, bypassing AC components
on DC voltage supplies, low pass filters, high pass filters, band pass filters, band
stop filters and notch filters. Capacitance is also found in the analysis of circuit
boards, transmission lines, antennas, digital circuits and integrated circuits.

This lab will be broken into two parts: part (a), DC measurements, namely
the time constant measurement and part (b), Low Pass and High Pass filters.
Students will use the oscilloscope and function generator to measure the RC
circuits built for the lab exercises.

33
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4.2 Background

Capacitors store energy from the electric field using geometric placement of
charged conductors. Capacitance is found whenever an electric field is formed
between two conductors of opposite charge are separated by a short distance.
The fundamental relationship defining capacitance is given as[1]

Q = CV (4.1)

where Q, is the charge in Coulombs, V is the voltage in Volts and C is the
Capacitance in Farads. Current is defined by the following expression[1]

I =
dQ

dt
(4.2)

where I is the Current in Amps, Q is again the charge in Coulomb and t is time.
The current in a capacitor can be found by combining equations (4.1) and (4.2)

yielding[1],

I =
d[CV ]

dt
(4.3)

For a constant capacitance (with respect to time), equation (6.9) becomes

I = C
dV

dt
(4.4)

Equation (4.33) relates the current and voltage in a capacitor (where the
capacitance is constant with respect to time). In this case we find that no current
flows if the voltage, V , is constant with respect to time. Thus, a capacitor with
a constant capacitance blocks a DC voltage. For example, if we combine a time
varying signal, V (t), with a DC component, Vdc, then the resulting voltage is
given by

Vin = Vdc + V (t) (4.5)

If this voltage is applied to the capacitor in the circuit shown in figure 4.1,
current flow is due only to the time varying voltage component.

V
in

V
out

C

Figure 4.1: Blocking Capacitor.

Using superposition we can separate the independent DC and AC voltage
sources. We then find that
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I = C
dVin

dt
= C

dVdcր
0

dt
+ C

dV (t)

dt
= C

dV (t)

dt
(4.6)

and the DC component is removed.
Capacitance is found using by combining the relations above with the ge-

ometry of the conductors. One could say that capacitance is a function of
geometry. Gauss’ Law and the Electric Field are used in most cases. Recall
that the Electric field is related to force by

E = QF (4.7)

where F is the force (in Newtons), E is the Electric Field (with units of New-
tons/Coulomb or Volts/meter) and Q is the charge.

You should also recall Gauss’ Law[1] which states the the electric field con-
tained within a particular area is equal to the charge enclosed divided by ǫo,

φnet =

∮

S

E · n̂dA =
Qinside

ǫo
(4.8)

where φnet is the net electrostatic flux and ǫo is the permittivity of free space,
equal to 8.85× 10−14F/cm.

There are two items worth noting which result from Gauss’ Law: (1) if there
is no charge within a metal enclosure, then the inside of the metal enclosure is
shielded from the electric field, and (2) the flux lines are normal to the surface.
Results are quite easy to find for basic geometries.

The energy stored in a capacitor can be expressed as[1]:

U =
1

2
CV 2 (4.9)

where U is the potential energy (in Joules), C is the capacitance and V is the
voltage.

4.2.1 Parallel Plate Capacitor

The parallel plate capacitor, shown in figure 4.2, serves as one of the simplest
examples of a capacitor. It consists of 2 conductive plates, each with an area, A,
separated by a distance, d. Charging the plates with a battery places positive
charge on one plate and negative charge on the other plate.

The schematic in figure 4.3 illustrates the electric field in the capacitor in
figure 4.2. Although there is some fringing near the ends this can be ignored.

The relationship between voltage and the electric field for the parallel plate
capacitor in figure 4.2 is given by[1]

V = Ed (4.10)

where V is the voltage and d is the separation between the conductors.
From Gauss’ Law, we find that[1]
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Figure 4.2: Illustration of a parallel plate capacitor.

+++++++

−−−−−−−

Figure 4.3: Electric Field in a parallel plate capacitor.

E =
Q

ǫoA
(4.11)

where ǫo is the permittivity of free space, equal to 8.85× 10−14F/cm2.
The capacitance of a parallel plate capacitor can readily be found by combin-

ing equations (4.1), (4.10) and (4.11), leaving us with the following expression[1]:

C =
ǫDiǫoA

d
(4.12)

where ǫDi is the dielectric constant for an insulator other than air.

4.2.2 Cylindrical Capacitor

The cylindrical capacitor is constructed from two concentric cylinders as shown
in figure 4.4 (where the inner cylinder is a solid wire). The cylinders are charged
to different potentials. This leaves one cylinder with positive charge and one
with negative charge.

The electric field from a single cylinder is a function of the distance normal
to the surface of the cylinder. The electric field for the capacitor in figure 4.4
is restricted to the region between the cylinders. Thus, the total capacitance
(ignoring the fringing near the ends) is[1]

C =
2πǫDiǫoL

ln( b
a
)

(4.13)
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Figure 4.4: Illustration of a parallel plate capacitor.

where L is the length, b is the outer radius and a is the interior radius.

4.2.3 Parallel & Series Combinations

The equivalent capacitance from a parallel combination of n capacitors is the
sum of the capacitors and is expressed as,

Ceff = C1 + C2 + ...+ Cn (4.14)

The series combination of capacitors yields an effective capacitance given by,

1

Ceff

=
1

C1
+

1

C2
+ ...+

1

Cn

(4.15)

The capacitive voltage divider is shown in figure 4.5. Again, we wish to find
the relationship between V2 & V1 (assuming that V1 is the input voltage & V2

is the output voltage).

1V

2V

1

2

C

C

Figure 4.5: Charging cap.

The relationship between V2 & V1 is given by

V2

V1
=

C1

C1 + C2
(4.16)

where C1, C2, V1 & V2 are all identified in figure 4.5.
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Thus, the effective capacitance is just the opposite of what is seen with
resistors. Can you show that these relationships are in fact true ?? hint: start
with 2 capacitors and use equation (4.1).

4.3 Time Constants

4.3.1 Charging the Capacitor

If an uncharged capacitor is charged from a battery as shown in figure 4.6 there
is an exponential relationship which governs the the voltage across the capacitor
as a function of time.

Vs

R

C Vc

t=0

+

−
I

−

+

Figure 4.6: Charging cap.

Using Kirchhoff’s current law at the output node, the current in the resistor
and the capacitor must add to zero as shown in equation (4.17).

Ires − Icap = 0 (4.17)

The actual differential equation can be found by merely substituting the
expressions for current in the resistor and the capacitor into equation (4.17).
This results in,

Vs − Vc

R
− C dVc

dt
= 0 (4.18)

where Vs is the voltage source and Vc is the voltage across the capacitor. Solving
the differential equation yields[1]:

Vc = Vs[1− e
−t

τ ] (4.19)

where τ = RC. The RC product is given as the time constant. Note that when
t = τ , Vc is 63.2% of Vs.

This result is shown graphically in figure 4.7. The voltage response is given
relative to Vs and the horizontal axis is scaled to represent the number of time
constants[1, 2].

The relative voltage level for a single time constant is also shown.
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Figure 4.7: Relative voltage as a function of time constants during charge up.

4.3.2 Dis-charging the Capacitor

Assuming that the capacitor is charged to Vs, discharging a capacitor as shown
in figure 4.8 can be found from a similar differential equation.

Vc

R

C
+

−
t=0 I

Figure 4.8: Cap Discharge.

This time, the current for the capacitor and the resistor add at the node as
follows[1, 2]:

Vs

R
+ C

dVc

dt
= 0 (4.20)

This yields the final expression for discharging a capacitor[1, 2]:

Vc = Vse
−t

τ (4.21)

Again, the time constant is given by τ = RC. When the capacitor dis-
charges, the value of Vc after one time constant is 36.8% of Vs.
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This is shown graphically in figure 4.9. The voltage response is given relative
to Vs and the horizontal axis is scaled to represent the number of time constants.
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Discharge: Relative Output Voltage vs. Time Constants

.382 

RC Time Constant 

Figure 4.9: Relative voltage as a function of time constants for the discharging
of the capacitor.

The relative voltage level for a single time constant is also shown.

4.4 Measurement Setup for RC Time Constants

Equations were derived in the previous section to help us understand the charg-
ing and discharging of the capacitor. Unfortunately, we cannot directly imple-
ment the circuits shown in figures 4.6 and 4.8.

In our laboratory, we have analog oscilloscopes. Thus, observing a single
event in time will not work well because analog oscilloscopes have NO MEM-
ORY !!! This means that the switches which appear in the schematics must be
replaced with a suitable periodic waveform in order to simulate the opening and
closing of a switch. The square wave is the obvious choice. If someone were to
repeat the opening and closing of a switch between a DC voltage and ground
and this was observed on an oscilloscope, this would result in a square wave.
Let’s assume that the peak-to-peak amplitude of the square wave is 10 volts.

Notice that the square wave will charge up to 10 volts and down to zero
volts. Thus, the capacitor can be charged and dis-charged using a square wave.
If the switch does not remain closed for a period of time sufficient to fully charge
the capacitor, then equation (4.18) will not hold. The initial conditions assume
that the capacitor is fully discharged prior to charging it. Conversely, the same
is true for discharging the capacitor. If one does not leave the switch closed for
a sufficient amount of time then the capacitor will not fully discharge. This is
equivalent to opening and closing the switch too fast for a given time constant
which means that the selection of the square wave frequency is also important.
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In order to guarantee a reliable measurement of the time constant, we must
be able to observe the quality of the input square wave. Thus it is very important
to know that the square wave is accurately shaped.

4.4.1 Pre-Lab

Compute the rising falling time constants for EVERY RC combination IN
ADVANCE. Just have them on a sheet readily accessible. Then you can focus
on your measurement set up the circuit.

4.4.2 Obtaining Good Measurements

i) The Oscilloscope:

a) Hookups: Connect channel 1 to the square wave input. You will need to
set the trigger on channel 1. Connect channel 2 for the to the capacitor
output. This allows you to observe both the Vs and Vc simultaneously.
The measurement set up is shown illustrated in figure 4.10.

Vs Vc
+

−

R

C

Channel 1 Channel 2
Variable Resistor Box

Figure 4.10: Measurement set up for time constant.

b) Input Coupling: You should also realize the difference between the AC
and DC input coupling. If you select AC, a blocking capacitor is placed
in the direct path prior to the circuitry inside the oscilloscope. Thus,
DC components of the signal are removed. In this case, you need to
make a voltage measurement. DC coupling is a good choice for this lab.

c) Probes: Use the scope probes for the oscilloscope. Otherwise, the con-
nection to the oscilloscope will become part of the circuit under test.
This will skew the resulting measurement.

d) Input Coupling: Use the time base and count the boxes and tic-marks
to estimate the time constant prior to using the cursors. Remember, the
time base displays the time/div (e.g. the BOX, not the tic marks).
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ii) The Signal Generator:

Use a frequency (e.g. a period) that allows at least 5 time constants. Since
you know the time constants in advance ... you will need to switch the
signal. generator to the appropriate square wave.

4.4.3 Test Your Set Up PRIOR to Recording Data

For the measurement, overlay channel 1 on top of channel 2. Channel 1 is the
triggering event, thus you will measure the time from the point where channel
1 changes to the point where Vc = 6.32 V (or Vc = 3.68 V; for the falling time).
Use the cursors on the scope.

Once it is set up ”play” with the set up a bit. For a given time constant,
make the signal. generator frequency too high ... you should see something that
resembles “shark fins” or a “saw tooth” pattern. This means that there is not
enough time provided for the cap to fully charge discharge. Thus, the values of
63.2% and 36.8% from equations (4.19) and (4.21) no longer predict correct time
constants because the assumptions were based on the capacitor being allowed
to fully charge and discharge. Lower the square wave frequency ... adjust the
time base in order to get the portion of the wave form you wish to measure into
the center of the screen ... expand it. Get comfortable understanding what the
resulting display means.

Check the frequency and period of channel 1 with the scope ... does it
accurately represent the selected frequency ??? if not, figure out why and fix it.

Also, be sure that you have a nice, clean square wave. If the input looks like
the waveform is ”bending” or very different from the square wave then stop fix
it before moving on.

4.5 Integration & Differentiation

The differential relation between voltage and current in the capacitor leads to
circuits which can perform waveform integration and waveform differentiation.
Thus, the waveform from a signal generator can be integrated or differentiated
under certain conditions. This is quite useful for a practicing engineer and it is
related to RC filters described in the sections which follow.

4.5.1 Integration

The voltage across the capacitor can be thought of as the integral of the current.
This can be seen by re-writing equation (4.33) as (assuming C is constant with
respect to time)

Vc =
1

C

∫

Idt (4.22)
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This means that the capacitor acts as a pure integrator. Pure integrators are
not physically realizable because the gain will grow unbounded as the frequency
approaches DC. The voltage across the capacitor, Vc, in figure 4.11 will act as
an integrator on Vin when the period of the input signal is much smaller than
the RC time constant. Notice that in order to observe this Vin is measured via
channel 1 of the oscilloscope and Vc is measured by channel 2 of the oscilloscope.
This allows us to view Vc and Vin simultaneously in order to verify that the
voltage across the capacitor is indeed the integral of the signal from the signal
generator.

V in

VR

Vc

Channel 1 Channel 2

C
R

Figure 4.11: RC circuit with voltage measured across the capacitor.

The time series response of the circuit in figure 4.11 can be expressed using
KVL as

vin(t) = vR + vc = iR+
1

C

∫

idt (4.23)

where vR is the voltage drop across the resistor and vc is the voltage drop across
the capacitor (vo = vc).

If we assume that the period of the input voltage, vin(t), is much greater
than the RC product, the amplitude of the output voltage, vc will be rise to
its maximum value. This can easily be seen for a square wave input and this
will also work for other input waveforms without a loss of generality. This
happens because we can assume the initial conditions are fully discharged prior
to charging up the capacitor and fully charged prior to discharging the capacitor.

If the period of the input signal is made to be much smaller than the RC time
constant, e.g. 1

Ti
≫ 1

2πRC
, the voltage drop across the resistor in equation (6.29)

will be much larger than that of the capacitor. The voltage drop across the
resistor will be approximately equal to the voltage drop across the capacitor,
or,

vi(t) ≈ vR (4.24)

and

i ≈ vin(t)

R
(4.25)

Thus, when 2πRC ≫ Ti the output voltage can be found as a function of
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vi(t) leading to the following expression[3],

vo = vc =
1

C

∫

idt ≈ 1

C

∫

vin(t)

R
dt =

1

RC

∫

vin(t)dt (4.26)

which tells us that the output voltage is the integral of the input voltage when
the input frequency is much greater than the RC time constant. Notice that
under these conditions (e.g. 1

Ti
≫ 1

2πRC
) the amplitude of Vc is much smaller

than that of Vin. Thus, the voltage taken across the capacitor is attenuated for
high frequency inputs.

4.5.2 Differentiation

The capacitor current is the derivative of the voltage across its terminals from
equation (4.22). In this respect the capacitor can be made to be a pure dif-
ferentiator. Pure differentiators are impractical due to infinite gain at high
frequencies; however, we can realize a low frequency differentiator with an RC
circuit. If we re-arrange the circuit in figure 4.11, swapping the capacitor and
the resistor, the voltage across the resistor will actually be the time derivative
of the input signal. This circuit is shown in figure 4.5.2 with the appropriate
channels selected for an oscilloscope measurement.

beginfigure[h]

V in VR

Vc

Channel 1 Channel 2

R
C

RC circuit with voltage measured across the resistor.
The operation of this circuit is somewhat intuitive. A DC signal will be

blocked by the capacitor. A square, which has a very high derivative when it
switches (theoretically infinite), will pass when its value changes and then be
blocked when it remains constant. Let us analyze more carefully:

The time series response of the circuit in figure 4.5.2 can be expressed using
KVL as

vin(t) = vc + vR =
1

C

∫

idt+ iR (4.27)

where vc is the voltage drop across the capacitor and vR is the voltage drop
across the resistor(vR = vc).

If we assume that the period of the input voltage, vi(t), is much greater
than the RC product, the amplitude of the output voltage, vR will rise to its
maximum value. In other words, for input frequencies significantly higher than

1
2πRC

the amplitude of the output voltage is not attenuated. If the period
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of the input signal is made to be much less than the RC time constant, e.g.
1
Ti
≪ 1

2πRC
, the voltage drop across the capacitor in equation (4.27) will be

much larger than that of the resistor. The voltage drop across the capacitor will
be approximately equal to the voltage drop across the capacitor, or,

vin(t) ≈ vc (4.28)

and

i ≈ C d

dt
[vin(t)] (4.29)

When 2πRC ≪ Ti the output voltage can be found as a function of vi(t)
leading to the following expression[3],

vo = vR = iR ≈ RC d

dt
[vi(t)] = RC

dvin(t)

dt
(4.30)

Thus, the output voltage is the derivative of the input voltage when the
input frequency is much greater than the RC time constant.

4.6 Lab Instructions: Part A

Please record the resistor values for each of the lab exercises below and use the
recorded resistor values in your computations.

1) Time Constant: For each measurement, display the voltages on the oscil-
loscope. Initially set the time scale so you can observe input and output
waveforms. Use the trigger and appropriate time and voltage scales on the
scope to measure as accurately as possible. Find the time constant, and
compare with the calculated value.

Please be certain that you are NOT using electrolytic capacitors (any capac-
itor with polarity markings, e.g. +/-) due to safety issues.

For each time constant measurement; compute the time constant first. Then
make a table with the following columns: t, V Measured and V Calculated.
Use the following times: 0 - 200 µsec, in increments of 20 µsec, e.g. 0, 20,
40, ... etc.. Then plot the data points: ln (V o) vs. t, for the discharging
capacitor, ln (V o− Vin) vs. t for the charging capacitor.

a) Measure the time constant for C = 0.1µF and the following resistor val-
ues:

i) R = 5 kΩ.

ii) R = 1 kΩ,
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iii) R = 500 Ω.

b) Measure the time constant for two 0.1 µF capacitors connected in series
with R = 5 kΩ.

c) Measure the time constant for two 0.1 µF capacitors in parallel with R
= 1kΩ.

2) Integration: Set up the circuit and oscilloscope probes as shown in figure 4.11.
Use R=1kΩ and C=.01µF . Compute the RC time constant.

Sketch the input and output waveforms observed on the oscilloscope for the
following values RC

T
= .001, .05, .2, .75, 1 and 2. Make the sketches accurate

with respect to relative time and amplitude. Compute expected results and
overlay your measurements with sketches of the expected integrals. Do this
for the following input waveforms:

i) 10 Volt Square wave.

ii) 10 Volt Sawtooth waveform.

3) Differentiation: Set up the circuit and oscilloscope probes as shown in fig-
ure 4.5.2. Use R = 8.2 kΩ and C = .001 µF . Compute the RC time constant.

Demonstrate the integral of a 10 volt sawtooth wave input. Use the set up
in figure 4.5.2. Compute the RC time constant.

Sketch the input and output waveforms observed on the oscilloscope for the
following values RC

T
= 10, 1, 0.33, and 0.1. Make the sketches accurate

with respect to relative time and amplitude. Compute expected results and
overlay your measurements with sketches of the expected integrals. Do this
for the following input waveforms:

i) 10 Volt Square wave.

ii) 10 Volt Sawtooth waveform.

4.7 Data to Include in Write Up

1) Pre-lab Time Constant Calculations.

2) For each time constant measurement:

i) Measure the resistor with an ohm meter; record the value.
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ii) Record the measurements at each time interval following the state change
of the input square wave.

iii) Compute the value at each time interval using the measured resistor
value and the assumed capacitance value.

iv) Summarize the measurements and calculated values using the table be-
low:

time Vout ln
(

Vout

Vs

)

ln
(

Vout

Vs

)

time Vout ln
(

Vout−Vs

Vs

)

ln
(

Vout−Vs

Vs

)

[secorµsec] [V olts] [Measured] [Calculated]

Table 4.1: Data Recorded for Time Constant Plot.

v) Plot ln|measured| and ln|computed| values vs. time.

vi) Estimate the time constant.

3) Integrator & differentiator circuits; for each waveform:

i) Provide a detailed plot on graph paper of the input and output waveform
measurements for a single period recording the amplitude at appropriate
time intervals (e.g. 0, π/4, π/2, 3π/4, π, etc.

ii) Calculate the integral or derivative and overlay the plot of the calculated
curve on top of the measured points.

When you overlay measurement values with calculated points please care-
fully annotate the data so that the reader can easily differentiate between a
measured value and a calculated curve.

4.8 Problems

1) Assume that you have two capacitors in series forming a capacitive voltage
divider as illustrated in figure 4.5. Find the relationship between V2 & V1

using equation (4.16) for the following cases:

a) C1 >> C2

b) C2 >> C1

2) Refer to figure 4.6. The rise time is defined as the time it takes for Vc to
charge up from 10% of Vs to 90% of Vs (e.g. time measured from Vc = .1Vs

until Vc = .9Vs). Show that the rise time for the circuit in figure 4.6 is given
by:

Trise ≈ 2.2RC (4.31)
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a) Start by applying KCL (hint: equations (4.17) & (4.18); then adjust
the limits in the integral accordingly).

b) Start by applying KVL

3) Refer to figure 4.8. The fall time is defined as the time it takes for Vc to
change when discharging from 90% of Vs to 10% of Vs (e.g. time measured
from Vc = .9Vs until Vc = .1Vs). Show that the rise time for the circuit in
figure 4.8 is also given by:

Tfall ≈ 2.2RC (4.32)

a) Start by applying KCL (hint: equations (4.20); then adjust the limits
in the integral accordingly).

b) Start by applying KVL
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4.9 Phase and Frequency Relations Simple RC

Circuits

The voltage and current will be in phase in AC circuits constructed only from
resistors. If we have a sine wave input, the voltage and current will have reach
their peak and zero-crossing values at the same time. Capacitors cause a 90◦

phase difference between voltage and current. This means that for a sine wave
voltage across a capacitor the resulting current will be shifted by +90◦. This
can be illustrated using equation (6.9). If we assume that the voltage across the
capacitor is Vpsin(ωt) then, from equation (6.9) the current can be expressed
as[1, 3]

I =
d[CV ]

dt
= C

d

dt
[Vpsin(ωt)] = ωCVpcos(ωt) = ωCVpsin(ωt+ 90◦) (4.33)

where ω is the radian frequency (e.g. 2πf), Vp is the peak voltage and t repre-
sents time in seconds.

For a capacitor the phase of the current leads the voltage or the voltage lags
the current. Dividing the voltage by the current to find the resistance, as Ohm’s
Law suggests, leads to the definition of reactance, Xc, or[3]

Xc(ω) =
−1

ωC
(4.34)

where Xc is measured in Ohm’s and ω is again the radian frequency (e.g. 2πf).
The impedance is defined as the generalized resistance which includes both

resistance and reactance. The impedance of a series connected resistor and
capacitor is given by

Z(ω) = R + jXc(ω) (4.35)

where Z is the impedance in Ohm’s and j =
√
−1; the variable, (ω), is often

omitted leaving Z or Xc.
Thus, impedance is a complex quantity and the reactance is the imaginary

part of the impedance. Both quantities change with frequency. The symbol j
(sometimes i is used) and the “−” sign in equation (4.34) represents the −90◦

phase shift.
Equation (4.34) suggests an inverse frequency dependence. At DC, Xc is

infinite, at low frequencies Xc is high (depending upon the values of C and ω)
while at high frequencies, Xc becomes small. If the frequency is very high, Xc

approaches 0 and the capacitor becomes an AC short.

4.10 The Low-Pass Filter

The RC circuit in figure 6.11 is a low pass filter. The low pass filter is a
series RC section where the output voltage is the voltage across the capacitor.
The capacitor provides a path to ground for AC signals while DC signals are
blocked. Lower frequencies tend to be attenuated by the capacitor while higher
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frequencies are shorted to ground. The lower the frequency, the less its voltage,
Vc, is attenuated.

Vo
+

−
C

R

+

−
V i

Figure 4.12: Low Pass Filter.

The output voltage (across the capacitor), Vout = Vc, has a maximum value
equal to Vin = Vi. Attenuation is equivalent to a gain which is less than 1. Thus,
the terms are interchangeable; here we will use attenuation. We can express the
attenuation of Vout with respect to Vin as

Av =
Vout

Vin

=
Vo

Vi

(4.36)

where Av(ω) is the attenuation of the circuit as a function of frequency.

4.10.1 Frequency & Phase Response

When attenuation or gain is a function of frequency it is referred to as the fre-
quency response. We can find the frequency response by computing the atten-
uation directly from the circuit impedance if we treat reactance and resistance
as we would treat ordinary resistors forming a voltage divider. This yields[3]

Av(ω) =
jXc

R+ jXc

(4.37)

where Xc is the reactance of the capacitor and R is the resistance of the resistor.
If we substitute equation (4.34) into equation (6.33) the relation between Vout

and Vin can be found as a function of R, C and ω. Equation (6.33) is reduced
to[3]

Av(ω) =
1

1 + jωRC
=

1

1 + j
(

f
fo

) =
1− j

(

f
fo

)

1 +
(

f
fo

)2 (4.38)

where fo = 1
2πRC

is known as the “cutoff” frequency.
The power is expressed as the squared magnitude of Av(ω) or

PLPF (f) = |Av(ω)|2 = Av(ω)A∗
v(ω) =

1

1 +
(

f
fo

)2 (4.39)

where A∗
v(ω) is the complex conjugate of Av(ω) and PLPF (f) is the power as a

function of frequency.
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The phase response is expressed as the inverse tangent of the imaginary part
divided by the real part of Av(ω). This becomes[3],

φ(w) = −tan−1(ωRC) = tan−1

(

1

ωRC

)

− 90 = −tan−1

(

f

fo

)

(4.40)

Notice that when f = fo

2π
, that PLPF (f = fo/2π) = PLPF (f = 0). The

attenuation in power is cut by a factor of exactly 2. The bandwidth of the filter
is measured by fo.

4.10.2 Bode Plots

The frequency response can be plotted using either the amplitude or the power
(e.g. magnitude squared amplitude). It is common to use the decibel scale,
where the output voltage is referenced to the input voltage as a function of
frequency. The attenuation or gain, Av, can be converted to decibels, or

Av[dB] = 20log10(|Av(f)|) = 10log10(|Av(f)|2) (4.41)

where Av(f) is the attenuation or gain.
The Bode Plot is a plot of the magnitude in decibels as a function of the

log frequency[3], (e.g. Av[dB](f) vs. log10(f)), which is shown in the top of
figure 6.12. The phase response is typically plotted along with the Bode Plot
using the same independent variable (log frequency)[3]. This appears in the
lower half of figure 6.12.
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Figure 4.13: Low Pass Filter amplitude and phase response.

These plots provide a complete characterization of the RC low pass filter.
The point where f = fo

2π
has special significance. At this point Av = 3dB and
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the phase is −45◦. This is known as the 3dB point. The effective bandwidth
(or bandwidth) of the low pass filter is measured from DC to fo. The roll off
is defined as the slope of the frequency response of the Bode Plot in the linear
part of the region where f > fo. The phase response is negative; at DC, the
phase is 0◦ and it approaches −90◦ as f →∞.

4.11 The High-Pass Filter

The RC circuit in figure 6.13 is a high pass filter. The high pass filter is a
series RC section where the output voltage is the voltage across the resistor.
The capacitor is connected in the direct path between the input and output.
The resistor is connected between the output and ground. This means that DC
signals will be blocked from the output while AC signals will pass to the output.
In general, the higher the frequency, the lower the attenuation across VR.

Vo
+

−

+

−
V i

C

R

Figure 4.14: High Pass Filter.

The attenuation is identical to the expression in equation (6.28). There are
differences due to the swapping of the capacitor and the resistor.

4.11.1 Frequency & Phase Response

When attenuation or gain is a function of frequency it is referred to as the fre-
quency response. We can find the frequency response by computing the atten-
uation directly from the circuit impedance if we treat reactance and resistance
as we would treat ordinary resistors forming a voltage divider. This yields[3]

Av(ω) =
R

R+ jXc

(4.42)

where Xc is the reactance of the capacitor and R is the resistance of the resistor.
If we substitute equation (4.34) into equation (6.41) the relation between Vo and
Vi can be found as a function of R, C and ω. Equation (6.41) is reduced to

Av(ω) =
jωRC

1 + jωRC
=

j
(

f
fo

)

1 + j
(

f
fo

) =
1 + j

(

fo

f

)

1 +
(

fo

f

)2 (4.43)

where fo = 1
2πRC

is known as the “cutoff” frequency.
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The power is expressed as the squared magnitude of Av(ω) or

PHPF (f) = |Av(ω)|2 = Av(ω)A∗
v(ω) =

1

1 +
(

fo

f

)2 (4.44)

where A∗
v(ω) is the complex conjugate of Av(ω) and PHPF (f) is the power as a

function of frequency.
The phase response is expressed as the inverse tangent of the imaginary part

divided by the real part of Av(ω). This becomes[3],

φ(w) = tan−1

(

1

ωRC

)

= 90− tan−1(ωRC) = tan−1

(

fo

f

)

(4.45)

Once again notice that when f = fo

2π
, that PHPF (f = fo/2π) = PHPF (f =

0). The attenuation in power is cut by a factor of exactly 2.

4.11.2 Bode Plots

The Bode plot with a phase response is the standard method for characterizing
any filter response. Equation( 6.28) is used to convert Av to dB’s.

The Bode Plot for the high pass filter is shown in the upper portion of
figure 6.14. The phase response is shown in the lower portion of figure 6.14.
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Figure 4.15: High Pass Filter amplitude and phase response.

The high pass filter frequency and phase response is analogous to that of the
low pass filter. The point where f = fo

2π
is referred to as the 3dB point. The

roll off is defined as the slope of the frequency response of the Bode Plot in the
linear part of the region where f > fo. The phase response is negative; at DC,
the phase approaches 90◦ and it approaches 0◦ as f →∞.
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4.12 Amplitude and Phase Measurements

Obviously, in order for you to successfully complete this lab you will need to
measure the amplitude of the filter input and output signals. This is something
you have already done in the early lab. The difficulty is making the measurement
of relative phase. Signals on the oscilloscope are most conveniently represented
in polar form: amplitude and relative phase. The relative phase can be found
by measuring the time delay between the output signal and the input signal,
±∆t, taking the ratio of ±

(

∆t
T

)

, where T is the measured period of the input
sine wave. This fraction must then be converted to either degrees (multiplying
by 360) or radians (multiplying by 2π) in order to compare it to the calculated
phase. The ± sign of the phase delay is determined by finding out if the output
signal lags, (−∆t), as in the low pass filter, or leads (+∆t), as in the high pass
filter.

The following example is provided in order to illustrate what the low pass
response and the high pass response will look like on the oscilloscope. Let’s
use a 12 kΩ resistor and a .08 µF capacitor; this means that R = 12000Ω and
C = 8x10−8F . This leads to fo = 166Hz; however, the actual value of fo can
vary by as much as ±10% since the relative error of the resistor and capaictor
will be combined due to the RC product.

A direct measurement of fo can be performed from the amplitude and phase
measurement when Av = 0.71, but you will find that each time the measure-
ment is repeated the result will be slightly different because there is also some
difficulty in determining peaks and zero crossings of the relative sine waves. A
reliable means of of finding the actual vale of fo is to characterizing the filter
by making repeated measurements of the output amplitude and time delay over
a number of input frequencies while holding the amplitude of the input sine
wave constant. In our example the peak-to-peak input voltage amplitude is set
to be approximately 10V olts. One frequency measurement is illustrated for the
low pass filter in the first example and the high pass filter in the second example:

i) Low Pass Filter: The low pass filter set it up as shown in figure 4.16; notice
that both oscilloscope channels are used. Channel 1 is applied to the input
waveform and channel 2 is applied to the output signal. This enables you to
simultaneously monitor the input signal and the output signal. Triggering
on channel 1 is practical (when expanding the screen in order to improve
accuracy) since the peak amplitude of this sine wave will be held constant.

Vs Vc
+

−

R

C

Channel 1 Channel 2

Figure 4.16: Low Pass Filter (LPF) measurement set up.
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I have taken a single measurement where I have set the input frequency to
574 Hz. The output signal (channel 2) will lag the input signal (channel 1).
This is illustrated in figure 4.17.

Figure 4.17: Channel 2 (bottom) Lags Channel 1 (top).

At each input frequency there are 3 important measurements to be taken
with the oscilloscope: 1) input frequency period, T , 2) output frequency
amplitude, Vop−p, and 3) the time delay of the lag, −∆t. This assumes
that a measurement of the input signal was also made (but not repeated
each time assuming the set up is not disturbed during the measurement
intervals). For the example in figure 4.17, these are T = 1.74msec, Vop−p =
2.75V (minus sign due to the lag) and ∆t = −370µsec. The measure-
ment of Vinp−p = 10.12V . Thus for the frequency of 574Hz, Av = 0.2556,
AdB = −5.9dB and φ = −76.45 deg.

ii) The High Pass Filter: The high pass filter set it up as shown in figure 4.18;
notice that channel 1 and channel 2 are arranged so that we can again
simultaneously monitor both the input signal and the output signal.

Vs
+

−

Channel 1 Channel 2

C

R

VR

Figure 4.18: High Pass Filter (HPF) measurement set up.

I have taken a single measurement where I have set the input frequency to
101 Hz. The output signal (channel 2) will lead the input signal (channel
1). This is illustrated in figure 4.19.
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Figure 4.19: Channel 2 (bottom) Leads Channel 1 (top).

The procedure for the high pass filter is identical to the one just discussed for
the low pass filter. Since I have used the same resistor and capacitor, the calcu-
lated value, fo, will be identical to that of the low pass filter. For the example
in figure 4.19, these are T = 9.9msec, Vop−p = 5.312V (minus sign due to the
lag) and ∆t = +1.6msec. The measurement of Vinp−p = 10.12V . Thus for the
frequency of 101Hz, Av = 0.5249, AdB = −2.80dB and φ = 58.18 deg.

It is also possible to see both the output signal (channel 2) and the input signal
(channel 1) when they are in phase (e.g. there is zero phase difference between
the two signals). This can happen with the low pass filter when fin ≪ fo or
for the high pass filter when fin ≫ fo. In both of these cases the attenuation,
although present, is negligible. In this case the input and output signals will
have identical (or close to identical) amplitudes and the relative phase should
also be identical. This is shown in figure 4.20: Notice that the signal displayed

Figure 4.20: Channel 2 (bottom) & Channel 1 are in phase (top).
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on channel 2 could overlay the signal on channel 1 and the resulting display
would make it difficult to distinguish between the two signals.

4.13 Lab Instructions: Part B

1) Low Pass Filter: Construct the low pass filter and set it up as shown in
figure 4.16. Use R = 1 kΩ and C = .01 µF .

i) Make a table with the following columns: f , Vin, Vout Measured, Vout

Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured, Av[dB]
Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: 10 Hz, 100 Hz, 1
kHz, 3 kHz, 10 kHz, 30 kHz and 100 kHz. Also measure at f = fo. Set
the peak amplitude of the input sine wave to 10 volts.

iii) Complete the entries in the table.

iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f). Overlay
each graph with a plot of Av[dB] Calculated vs. log10(f) and φ Calcu-
lated vs. log10(f).

v) Compute the cutoff frequency. Identify the 3dB point extrapolated from
the measurements and overlay this with the computed value.

2) High Pass Filter: Construct the high pass filter and set it up as shown in
figure 4.18. Use R = 8.2 kΩ and C = .001 µF .

i) Make a table with the following columns: f , Vin, Vout Measured, Vout

Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured, Av[dB]
Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: 100 Hz, 1 kHz,
10 kHz, 100 kHz and 300 kHz. Also measure at f = fo. Set the peak
amplitude of the input sine wave to 10 volts.

iii) Complete the entries in the table.
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iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f). Overlay
each graph with a plot of Av[dB] Calculated vs. log10(f) and φ Calcu-
lated vs. log10(f).

v) Compute the cutoff frequency. Identify the 3dB point extrapolated from
the measurements and overlay this with the computed value.

4.14 Report Format

Whenever you are characterizing a filter you will need to first plot the Bode
magnitude and phase plots presented in the write up using the R and C values
given for the particular lab exercise. Then you will overlay your plots with the
actual measurements. There will be some variation between computed results
and the actual measurements because the resistors, capacitors and inductors
(later on) will be somewhat different than the value stamped on the component.
This changes RC products and thus will have some impact on fo.

Although the report format is given using Lab 4b as an example, this same
approach should be applied to labs 5, 6, 7a, 7b, the lab on simple op amps and
your final project. In other words, this outlines how you will report results for
each filter you will characterize in this course.

4.14.1 Calculated Curves

The log-frequency axis in the write-up is scaled as log10(f/fo); however, for
your report I will want your log-frequency axis to be scaled as log10(f). Since
you are preparing your plots on the frequency axis you will need to substitute
ω = 2π(f) in each of the expressions used to compute the magnitude squared
and the phase response.

You can use equation (4.39) to compute the magnitude of the attenuation
squared for the low pass filter. You will need to substitute, which yields

|Av(f)|2 =
1

1 + (2πfRC)2
=

1

1 + ( f
fo

)2
(4.46)

Please remember that |Av(f)|2[dB] = 10log10
[

|Av(f)|2
]

You will use equa-
tion (4.40) to compute the phase response, φ(f), substituting ω = 2π(f), or

φ(f) = −tan−1

(

f

fo

)

= tan−1

(

fo

f

)

− 90 (4.47)

You will use equation (4.44) to compute the magnitude of the attenuation
squared for the high pass filter, as

|Av(f)|2 =
1

1 + ( 1
2πfRC

)2
=

1

1 + (fo

f
)2

(4.48)



4.14. REPORT FORMAT 59

and you will use equation (4.45) to compute the phase response.

φ(f) = tan−1

(

fo

f

)

= 90− tan−1

(

f

fo

)

(4.49)

This information needs to be summarized in an orderly fashion. This means
that you will need to compute ALL of the entries listed in Table 4.14.1.

f1 Vin |Vout| log10(f) |Av|2 Av φ
[kHz] [V olts] [V olts] [] [] [dB] [o]

Table 4.2: Filter Characterization: Calculated Values for Curve Sketch.

You should have ALL values in Table 4.14.1 computed for each filter to be
characterized prior to your scheduled lab date. You should also have a sketch
of the Bode magnitude and phase plots for each filter to be characterized.

4.14.2 Measurements

The measurements will require some additional equations. The sine-wave am-
plitudes are each positive real numbers. The magnitude of these ratios (e.g.
Av) and the square of this quantity (e.g. |Av|2 = |Vout

Vin
|2) are found by division

and squaring, respectively. You will need to translate this into decibels for the
magnitude plot using Av[dB] = 10log10|Vout

Vin
|2. The phase from an oscilloscope

measurement is obtained by:

1) Measure the period of the input sine wave (e.g. T ).

2) Measure the time difference, (e.g. ∆t) between the input and output sine-
waves. note that

3) Compute the phase by ∆t can be positive or negative if the output sine-wave
leads or lags the input signal phase. The phase is given by:

φ = ±2π
∆t

T
(radians) (4.50)

or

φ = ±360
∆t

T
(degrees) (4.51)

The sign is dependent upon the output leading or lagging the input.
You should become familiar with the relationship between ∆t

T
and actual

phase shifts. A phase shift of ±90o implies that ∆t
T

= ± 1
4 and a phase shift of

±180o implies that ∆t
T

= ± 1
2 .

You will need to supply ALL of the entries listed in Table 4.14.2. Notice,
f1 is the function generator setting that I have asked you to use. When you
are measuring a filter response you must NEVER use f1 for the measurements.
Instead, you will always measure the period of the input sine-wave (e.g. T ) on
the oscilloscope and record the appropriate frequency in your table.
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f1 Vin T ∆T |Vout| f = 1
T

log10(f) |Av|2 Av φ
[kHz] [V olts] [µs] [µs] [V olts] [kHz] [] [] [dB] [o]

Table 4.3: Filter Characterization: Measured Values.

4.14.3 Bode Plots

For the Bode magnitude plot, you will sketch the function for each filter using
the calculated Av[dB] = 10log10(|Av|2) vs. log10(f1). Then you will take the
measured values of Av[dB] & log10(f) and plot them on top of the calculated
curve. This means that the value, log10(f), for each measured data point, must
be overlayed on the axis log10(f1).

For the Bode phase plot, you will sketch φ vs. log10(f1) for each filter. Then
you will overlay the calculated curve with the measured values of φ and plot
them on top of the calculated curve. This means that the value, log10(f), for
each measured data point, must be overlayed on the axis log10(f1).

4.14.4 Results

The results of the measurement of a filter should include an estimate of fo,
which can be found from the measurements. The measured value of fo should
be compared to the calculated value based on the values of the selected R and
C. The roll-off, that is the slope of the magnitude response in the transition
region should also be estimated. To measure the roll-off, find the linear portion
of the transition band (f > fo for the LPF & f < fo for the HPF). Select a
frequency, call it f1, in this region and find the corresponding measured value
of the attenuation. Select a second frequency (f2 = 2f1), find its corresponding
attenuation value. Take the difference between each of the attenuation values
and this will provide an estimate of the slope in dB/Octave. For a 1st-order
LPF or a 1st-order HPF, the roll-off should be close to 6 dB/Octave.

4.15 Appendix

ejφ = cos(φ) + jsin(φ) e−jφ = cos(φ) − jsin(φ)
rectangular: z = a+ jb polar: z = rejφ

Real {z} = a Imag {z} = b
z∗ = conj {z} = a− jb ω = 2πf
cos(−x) = cos(x) sin(−x) = −sin(x)
Xc = − 1

ωC
XL = ωL

Rectangular to Polar Conversion:

r =
√

a2 + b2;φ = tan−1

(

b

a

)

Polar to Rectangular Conversion:

a = rcos(φ); b = rsin(φ)
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4.16 Problems

1) Convert the following complex numbers to polar form:

a) 3 + j4

b) −22 + j30

c) −j

d) 6.4 + j6.4

2) Convert the following complex numbers to rectangular form:

a) 10ej22o

b) 6.2e−j30o

c) 20ej90o

3) Compute the following:

a) Solve using rectangular co-ordinates only

3 + j5

−20 + j35

b) Repeat the problem; this time convert numerator and denominator to
polar co-ordinates, perform division and then convert back to rectangular
co-ordinates.

c)

12ej20o

+ 5ej30o

Express the answer in polar and rectangular co-ordinates

4) Reactance and resistance have identical units, Ω’s; series and parallel re-
actances sum just like series and parallel resistors. If you are given two
capacitors, (C1 & C2), connected in parallel show that the equivalent ca-
pacitance is given by

Ceq = C1 + C2

Do this proof by first computing the reactance of C1 & C2; then find the
equivalent reactance of the parallel connected capacitors.

Use the same approach to show that if the two capacitors are connected in
series the equivalent capacitance is given by

1

Ceq

=
1

C1
+

1

C2
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5) Given: C = 10µF , f = 10kHz

a) Find: the reactance, Xc, and the impedance,Zc, (jXc)

b) Find: the impedance, Z, if the capacitor is connected in series with a 300
Ω resistor

c) Plot the impedance, Z, on the complex plane
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Chapter 5

The Twin T Filter

Lab Objectives:

(a) Understand properties of higher-order, simple filters.

(b) Learn about null-placement and its value in filter design.

(c) Understand how to intuitively analyze the Twin T filter.

(d) Analyze and measure the frequency and phase response of the Twin Tee
filter.

(e) Understand how component matching will affect the null frequency and
the depth of the null.

Pre Lab:

(a) Read this lab.

(b) Find the time constants prior to the lab.

(c) Find filter null frequency and predicted frequency response prior to the
lab.

5.1 Introduction

In the previous lab on RC circuits we found the frequency response of the
low pass filter and the high pass filter. These filters were similar in that there
was a cutoff frequency which identified the upper band edge of the low pass
filter and the lower band edge of the high pass filter. The cutoff frequency
was defined as the frequency where the power is 1

2 of its maximum value and
the voltage is 1√

2
of its maximum value; this is also known as the 3dB point.

The roll off of the filter was defined as the rate at which the attenuation
increases as a function of the log-frequency. For the simple first order low

64
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pass and first order high pass filter, the roll off will be 6 dB/octave; in the
transition band the attenuation will increase by 6 dB for each doubling of
the frequency (e.g. log2). This is equivalent to 20 dB/decade; meaning that
the attenuation increases by 20 dB for each order of magnitude increase in
the frequency (e.g. log10). These are standard roll-offs.

In this section simple combinations of first order low pass sections and high
pass sections will be used to construct more selective filtering. Relations
between filter order, filter type and roll off will be discussed. Finally, we
will examine how to increase the attenuation beyond what is possible using
filters which obtain standard 1st-order roll offs. This is done by placing nulls
or notches in the frequency band. We will examine a particular application
of this approach where the null is used to attenuate a specific frequency.
Finally, we will examine the accuracy of the null placement and attenuation
when components do not precisely match. The topic for this lab is the
Twin T filter. Prior to discussing this filter a short section will explain
more complex filters with standard roll offs and simple ideas regarding null
placement.

5.2 Background

The work done with simple RC circuits in the previous lab can be expanded
to gain a general understanding of more complex passive filters. The 1st-
order RC low pass filter (LPF) might not attenuate enough at higher fre-
quencies.

5.2.1 Higher Order Low Pass and High Pass Filters

The roll off of the first order filter will decrease by 6dB/octave. This means
that for each doubling of the frequency after the cutoff that the attenuation
will increase by an additional 6 dB beyond what it was originally. Suppose
we have a cutoff at 15 kHz and we need to attenuate the filter output by at
least 30 dB at a frequency of 120 kHz ? The 1st-order LPF will attenuate
the output by only 18 dB at 120 kHz since this represents no more than 3
octaves above the cutoff frequency. The roll-off, or the rate of increase in
attenuation would need to be increased.

The most common solution to increase the roll-off of the LPF is to cascade
it with an identical filter as shown in figure 5.1. Both the magnitude and
phase responses change when compared with the first order filter.

The roll-off of the magnitude response increases from 6 dB/octave to 12
dB/octave (e.g. 40 dB/decade). The roll-off of the simple filters we have
described is summarized in figure 5.2.

The order of a simple filter is equivalent to the number of reactive compo-
nents in the circuit. Thus, a first-order RC filter has a single capacitor, a
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outV
inV LPFLPF

Figure 5.1: 2nd-order pass filter.
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Figure 5.2: Magnitude response versus LPF filter order.

2nd-order RC filter has two capacitors, etc. There are other, more complex
types of low pass filters. These generalizations are valid only for extensions
of the simple RC filters described in the previous section.

5.2.2 Band Pass and Band Stop Filters

Suppose that we need to pass ALL signals between 15 kHz and 40 kHz only
? This means we must simultaneously attenuate signals above 40 kHz and
below 15 kHz. The most common solution is to cascade a 1st-order LPF
with a 1st-order HPF filter. This is illustrated in figure 5.3.

outV
inV LPFHPF

Figure 5.3: Band stop filter.

There is an alternative function to the filter structure in figure 5.3. Suppose
that we need to attenuate ALL signals between 15 kHz and 40 kHz only ?
Either selective passing or selective attenuation can be accomplished with
this filter structure.

The filter in figure 5.3 can be used to pass a particular band of frequencies or
it can be used to attenuate a particular band of frequencies. This depends
upon the HPF and LPF cutoff frequencies. If the LPF cut-off frequency is
higher than the HPF cut-off frequency, then the filter will pass a band of
frequencies, hence the band-pass filter (BPF). If the opposite is true, then
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LffH

outV

inV

inV

outV

inV

inV

fHLf

Figure 5.4: Comparison of band and pass filter and band stop filters.

the filter will attenuate a band of frequencies; this is referred to as a band-
stop filter BSF. The frequency responses for a first-order BPF and BSF are
illustrated in figure 5.4.

The first-order BPF or BSF will require at least 2 reactive components.
This means it is equivalent in complexity to a 2nd-order LPF or HPF. An
examination of the frequency response in earlier equations indicates that
the magnitude of the frequency response varies based upon the either the
value of the denominator term alone or the value of the denominator with
an imaginary component in the numerator. In the LPF, for example, as the
frequency variable increases the denominator term increases which causes
the magnitude of the frequency response to decrease in value with a limit of
zero as the frequency approaches infinity. In the case of the HPF, the numer-
ator which is purely imaginary increases in size while the denominator value
also increases. The result is that the magnitude of the frequency response
is zero at DC and the numerator and denominator cancel as the frequency
approaches infinity. Thus, in the simple LPF and HPF the magnitude is
zero at =∞ or = 0 respectively.

5.3 Twin T Filter

The Twin T filter is the simplest example of a circuit which places a null
(or a single frequency where the filter attenuation is very high) at a specific
frequency (other than f = 0 or f =∞ in the frequency response; the Twin
T filter is an example of a notch filter. The roll-off of in the region of the
frequency response null can be significantly higher than that of the filters
described earlier. The placement of several or more nulls in the frequency
response is often done in the design of more complex LPF, HPF and BPF
circuits. While complex filters are beyond the scope of this book, the reason
for opting for a complex filter structure over the simple filter structures
discussed earlier is to improve the filter selectivity by increasing the roll off
beyond the 6 dB/octave/order of the simple filter structures. The Twin T
filter is shown in figure 5.5.

The frequency response of the Twin T filter can be seen intuitively by divid-



68 CHAPTER 5. THE TWIN T FILTER

VoV i

R2R2

C1 C1

R1
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22C

+
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Figure 5.5: Twin T filter.

ing the schematic from figure 5.5 into two parallel filter sections, one HPF
and one LPF. This is shown in figure 5.6 and it requires some explanation
since we see 4 schematics. The top two figures on the left and right hand
side are the low pass and high pass section taken directly from figure 5.5.
The two figures below are equivalent circuits for the low pass and high pass
sections.

VoV i

R2 R2

2C2

+

− −

+

VoV i

C1 C1
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2
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− −
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VoV i C  2
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+
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+

VoV i R1

C1C1

R1

+

− −

+

Figure 5.6: Twin T high pass and low pass sections.

The low pass and high pass sections are each similar to two cascaded LPFs
and HPFs. Let’s examine the low pass section first. We see that the value of
the capacitor, 2C2, has two capacitors of value C2 in parallel. When viewed
this way we can see that this closely resembles two high-pass filters cascaded
except that the location of the second HPF has the resistor preceded by the
capacitor. If we examine the high pass section, we notice that the resistor
R1

2 can be redrawn with two resistors of value R1 in parallel.

Typically, the resistor and capacitor values are selected so that R2 = R1 = R
and C2 = C1 = C. The output, Vout(ω) with respect to Vin(ω) can be
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expressed as

Av(ω) =
1− (ωRC)2

(1 + jωRC)2
(5.1)

where Av(ω) is the attenuation of the circuit as a function of frequency.

The notch frequency (location of the null) is given by

fo =
1

2πRC
(5.2)

The power spectrum is given by the product of Av with its complex conju-
gate or

Av
2(f) =

[

1− ( f
fo

)2

1 + ( f
fo

)2

]2

(5.3)

where fo is the notch frequency.

The phase response will be given by

φv(f) = tan−1

[

2( f
fo

)

1− ( f
fo

)2

]

(5.4)

In the theory of linear systems equation (5.1) is referred to as the transfer
function. The numerator of the transfer function has a magnitude of 0 at
f = fo. The null at fo is also referred to as a zero or a transmission-zero
for this reason. This means that the magnitude of equation (5.1) is equal
to 0. This more apparent from equation (5.3).

The Bode plot (magnitude and phase) is shown in figure 5.7. Notice that the
filter does not attenuate at all very far above or below the notch frequency.
It is also worth pointing out that the notch depth appears to be limited
in figure 5.7; however, this is a result of the graph and is not related to a
limit in the notch depth. A more detailed scan and re-plot of the magnitude
around the notch frequency is given in figure 5.8. Notice that the a signal
at the null can be attenuated by -60 dB to -100 dB.

The actual depth of the null in fabricated Twin T filters can be made to
be -60dB to -70dB. Increasing the notch depth beyond this is possible but
greater care must be taken in the component accuracy and the implemen-
tation. The notch depth depends upon several factors[?]: (1) Component
matching between the resistors and capacitors, (2) impedance matching at
the input and output of the filter and (3) parasitic capacitors and resistors
formed by the circuit board. One can theoretically obtain -100 dB atten-
uation or more; however, this presumes that the value of the resistors are
very closely matched. The same is true for the values of the capacitors.
An attenuation of -60dB is equivalent to a relative error of 1 part in 1,000.
or .1% while an attenuation of -100dB is equivalent to an overall relative
error of 1 part in 100,000, or .001 %. It’s difficult to obtain resistors or
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Figure 5.7: Twin T magnitude & phase plots.

capacitors which are matched to 0.1 %. There are also impedance losses
and related problems which can add up quickly. The circuit board itself
can change the effective values of capacitors and resistors. For example, a
conductive line drawn on a circuit board will have a capacitance per unit
length for a particular line width. These parasitics must also be taken into
account if attenuation at the null is to be greater than -70 dB. Variations
in design parameters due to the effects mentioned above will also shift the
notch frequency. This creates a problem because the attenuation might not
be maximized at the desired frequency.

5.4 Applications

One common application where the Twin T filter is often used is in the
measurement of distortion in a high quality sine-wave generator[?, ?]. The
measurement setup is shown in figure 5.9. Distortion can be loosely defined
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Figure 5.8: Detailed view of the Twin T magnitude response.
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Twin Tee 
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fo => Carrier

Spectrum Analyzer

Figure 5.9: Example application of the Twin T Filter.

as ’sinusoidal-like’ signals which exist at frequencies other than the selected
sine wave frequency. Typically, these signals are similar (in the frequency
spectrum) to the sine wave but they can be more than 120 dB (1 part in 1
million) below the selected sine-wave. This measurement is most efficiently
performed with a spectrum analyzer. Unfortunately, most spectrum analyz-
ers will not have a distortion floor or dynamic range large enough to allow
one to view the signal+distortion on the same scale. Thus, the input signal
must be attenuated prior to the spectrum analyzer as shown in

Another application of the Twin T filter is to attenuate line-noise from the
60Hz, 120 Volt, wall socket.

5.5 Measuring the Twin T Filter

In this lab you will measure several Twin T filters. It is important to
realize from the discussion above (regarding the accuracy of the filter) that
in the proto-board with the components available in our labs that it will be
difficult to obtain even -40 dB attenuation. The proto-board introduces large
parasitic capacitances and often introduces other undesirable problems.

You can expect that the depth will be difficult to measure near the null and
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also that the notch frequency will not be precisely at the design frequency.
This means that it is of paramount importance to sweep the signal generator
over a wide enough range for you to be able to see the output sine wave being
attenuated. It is also important that you carefully sweep over a reduced
frequency range when attempting to locate the notch frequency. Although
the measurements around this filter are widely spaced, you will need to pick
many points near the notch in order to estimate the notch frequency.

5.6 Lab Instructions

1) Construct the Twin T filter setting the resistor, R = 1 kΩ and C= .093
µF . Compute the frequency of the null.

i) Perform a wide sweep and a narrow sweep in order to insure proper
operation and also to accurately verify the location of the notch fre-
quency. Record the measured estimate of fo.

ii) Measurement of the frequency response.

a) Make a table with the following columns: f , Vin, Vout Measured,
Vout Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Mea-
sured, Av[dB] Calculated, ∆t, T Measured, φ Measured and φ Cal-
culated.

b) Measure the attenuation for the following frequencies: 10 Hz, 30 Hz,
100Hz, 300 Hz, 800 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz and 100 kHz.
Select 5 frequencies above and below f = fo within ±10 % of f = fo.
Set the peak amplitude of the input sine wave to 10 volts.

c) Complete the entries in the table.

d) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f).
Overlay each graph with a plot of Av[dB] Calculated vs. log10(f)
and φ Calculated vs. log10(f).

2) Construct the Twin T filter setting the resistor, R = 2 kΩ and C= .0093
µF . Compute the frequency of the null.
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i) Perform a wide sweep and a narrow sweep in order to insure proper
operation and also to accurately verify the location of the notch fre-
quency. Record the measured estimate of fo.

ii) Measurement of the frequency response.

a) Make a table with the following columns: f , Vin, Vout Measured,
Vout Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Mea-
sured, Av[dB] Calculated, ∆t, T Measured, φ Measured and φ Cal-
culated.

b) Measure the attenuation for the following frequencies: 100Hz, 300
Hz, 800 Hz, 1 kHz, 3 kHz, 5kHz, 10 kHz, 20kHz, 30 kHz, and 100
kHz. Select 5 frequencies above and below f = fo within ±10 % of
f = fo. Set the peak amplitude of the input sine wave to 10 volts.

c) Complete the entries in the table.

d) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f).
Overlay each graph with a plot of Av[dB] Calculated vs. log10(f)
and φ Calculated vs. log10(f).

3) Construct the Twin T filter setting the resistor, R = 1 kΩ and C= .0093
µF . Compute the frequency of the null.

i) Perform a wide sweep and a narrow sweep in order to insure proper
operation and also to accurately verify the location of the notch fre-
quency. Record the measured estimate of fo.

ii) Measurement of the frequency response.

a) Make a table with the following columns: f , Vin, Vout Measured,
Vout Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Mea-
sured, Av[dB] Calculated, ∆t, T Measured, φ Measured and φ Cal-
culated.

b) Measure the attenuation for the following frequencies: 100Hz, 300
Hz, 800 Hz, 1 kHz, 3 kHz, 10 kHz, 20kHz, 30 kHz, 100 kHz and
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130kHz. Select 5 frequencies above and below f = fo within ±10 %
of f = fo. Set the peak amplitude of the input sine wave to 10 volts.

c) Complete the entries in the table.

d) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f).
Overlay each graph with a plot of Av[dB] Calculated vs. log10(f)
and φ Calculated vs. log10(f).

5.7 Problems

1) What are the measured values of the notch frequencies ?

2) What is the relative error between the design-value of fo and the actual
value of fo for each of your filters ?

3) What is the maximum notch-depth (in dB) at the notch frequencies ?



Chapter 6

RL Circuits

Lab Objectives:

(a) Understand properties of inductors in DC & AC Circuits.

(b) Measure the step response of an RL circuit.

(c) Understand amplitude and phase relationships of ideal inductors.

(d) Analyze and measure the frequency and phase response of Low Pass and
High Pass Filters with ideal inductors.

(e) Understand duality relations between capacitors and inductors.

(f) Understand non-ideal effects with inductors.

Pre Lab:

(a) Read this lab.

(b) Find the time constants prior to the lab.

(c) Find filter cutoffs prior to the lab.

6.1 Introduction

In the previous 2 labs we have examined transient and steady state behav-
ior of RC circuits. The definition of capacitance was defined using relations
between the electric field, voltage and charge. This lead to the relation be-
tween voltage, current and capacitance. We used this relation to understand
the transient response of an RC circuit. Reactance was defined specifically
for the capacitor. This was used to analyze first-order low pass and high
pass filters constructed from simple RC sections. Finally, this was extended
to band-pass, band-stop and notch filters.
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Inductance will be derived from the magnetic field and magnetic flux. We
will see that although inductance is new to our study of electronics, the
analysis is quite similar. The transient response of an RL filter produces a
result quite similar to that of the RC circuit. Reactance will be defined for
the inductor and this will be compared to the reactance of the capacitor.
First order low-pass and high-pass filters can be realized by simple RL sec-
tions. Band-pass, band-stop and notch filters can also be constructed using
RL circuits.

Inductors are used in many of the same applications as capacitors: power
supply smoothing and analog filters. Inductance plays a role in the analysis
of circuit boards, transmission lines, and antennas. Transformers represent
applications which are unique to inductors.

6.2 Background

Inductors store energy from the magnetic filed. The simplest example of an
inductor is a wire which is wound around a rod. In order to understand how
inductance works we will review selected parts of magnetic field theory. A
time-varying charge produces a force which is given by

F = qvXB
dF = IdlXB

(6.1)

where q is the charge, v is the velocity of the charge, I is the current, dl is
a differential length and B is the magnetic field in Teslas.

Alternatively a current passing through a wire segment of differential length
dl (l is measured in same direction as the charge velocity) provides differ-
ential force[1]. This is given by the second expression in equation (6.1).

i

B

Figure 6.1: Magnetic field due to a straight wire using the right hand rule.

Figure 6.1 illustrates the location of the magnetic field for a current moving
along a straight wire. The direction of the magnetic field is obtained using
the right-hand rule.
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If we form a line integral around the closed path, parallel to B, encircling
the current then the following relationship always holds:

∮

C

B·dl = µoI (6.2)

where µo is defined as the permeability of free space and is equal to approx-
imately .4π µH/m.

This result is known as Ampére’s Law. Since the electric field is conservative
the work done on a charge moved in a closed path is given by

∮

C

E·dl = 0 (6.3)

where E is the electric field and the integral is always zero around a closed
path.

This line integral around a closed path is zero for the electric field and not
always zero for the magnetic field[1]. This should not be confused with
Gauss’s Law where the integral over an enclosure is not zero for the electric
field, but is in fact zero for the magnetic field. This is given in equation (6.4)
and these two equations together with equation (6.2) are three of (the four)
Maxwell’s Equations. Recall that ǫo is the permittivity of free space and is
equal to approximately 8.85X10−12F/m.

φnet =
∮

S
E · n̂dA = Qinside

ǫo

φnet =
∮

S
B · n̂dA = 0

(6.4)

If current is moving in a circular wire of radius R, then a magnetic field is
induced on the axis at the center of the circle as shown in figure 6.2[1]. The
field is zero in the direction perpendicular to the axis.

θ

dBdB
R

θ

i dl

dBz

Figure 6.2: Computing the magnetic field on the axis of a current loop.

The flux generated by the wire loop illustrated in figure 6.2 is defined as

φMag =

∫

B · n̂dA = BAcosθ (6.5)

where A is the cross-sectional area of the current loop.
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If we were to wind multiple current loops around the same fixed radius, R,
the flux would increase linearly with the number of loops or windings[1].
The flux linkage is defined as the sum of the total flux for multiple current
loops formed by many windings[1, 2]. This is given by

ψ = −NφMag = Li (6.6)

where ψ is the flux-linkage, φMag is the magnetic flux, i is the current and
L is the inductance.

Inductance is defined in equation (6.6). Inductance can be found for arbi-
trary geometries; however, we will restrict our derivations to one or more
current loops where multiple current loops are realized by winding a wire
around a cylinder.

The relationship between flux, flux-linkage and the electro-motive-force (emf)
generated from a magnetic field is given by the following expression[1, 2]

V =
dψ

dt
= −N dφMag

dt
(6.7)

where V is the emf.

This is the known as Faraday’s Law and it is the remaining law summarized
in Maxwell’s equations. Faraday’s Law states that a time varying magnetic
field will induce a voltage[1, 2]. The differential relationship between in-
ductance, voltage and current can be found by combining equations (6.6)
and (6.7) yielding

V =
d[LI]

dt
= Lconst

dI

dt
(6.8)

where V is again the emf and L is the inductance.

If we assume that L is constant with respect to time we can remove L from
the differential. This is the implication of Lconst in equation (6.8). The
voltage in an inductor can be compared to the current in a capacitor given
in equation (6.9)

I =
d[CV ]

dt
= Cconst

dV

dt
(6.9)

where Q, is the charge in Coulombs, V is the voltage in Volts and C is the
Capacitance in Farads.

Equation (6.8) relates the current and voltage in an inductor (where the
inductance is constant with respect to time). From this expression we see
that inductance is a DC short (e.g. I does not change with respect to time
thus there is no back emf). Comparing this to equation (6.9) we see that
the capacitor is a DC open circuit.

There is a duality between inductance and capacitance. This is summarized
below[2]:
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Inductor Capacitor
L ←→ C
ψ ←→ Q
I ←→ V

(6.10)

The energy stored in the inductor can be expressed as[1]:

U =
1

2
LI2 (6.11)

where U is the potential energy (in Joules), L is the inductance and I is the
current.

6.2.1 Construction of Inductor Coil

Inductors are not difficult to construct. A simple inductor can be realized
by winding a wire for N turns around a cylindrical object, such as a test
tube. This is illustrated in figure 6.3.

���
���
���
���

���
���
���
���

l

A

Figure 6.3: Inductor with N turns over a length l with cross sectional area, A.

The resulting magnetic flux is shown in figure 6.4. Notice that the flux lines
encircle the windings.

Figure 6.4: Magnetic field of a coil.

The flux-linkage is given by
ψ = NBA (6.12)
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and the magnetic field in the coil is given by

B = N
µoi

l
(6.13)

The inductance can readily be found by combining equations (6.6), (6.12)
and (6.13)to obtain[1]

L = N2µA

l
(6.14)

where µ=µoµr; µ is defined as the permeability and µr is defined as the
relative permeability.

The relative permeability is 1 in vacuum and close to 1 for an air-filled core.
For an iron-filled core µr is typically 4,000 to 6,000. Thus, replacing the
test tube with an iron cylinder will significantly increase the inductance.

Care should be taken with equation (6.14) since it assumes a very long coil;
effects near the ends are not included. There are tables and handbooks
which provide the information necessary to construct very accurate coils[3].

6.2.2 Parallel & Series Combinations

The equivalent inductance from a series combination of n inductors is the
sum of each individual inductance; this is expressed as,

Leff = L1 + L2 + ...+ Ln (6.15)

The parallel combination of inductors yields an effective inductance given
by,

1

Leff

=
1

L1
+

1

L2
+ ...+

1

Ln

(6.16)

Thus, the effective inductances just the opposite of what is seen with capac-
itance . Show that these relationships are in fact true.

6.2.3 Mutual Inductance & Transformers

The magnetic field of a circuit can induce a current in a nearby circuit. This
is illustrated in figure 6.5. Thus, the relationship between flux-linkage, flux,
inductance and current can be generalized further. There is no analogous
property with capacitors.

This generalization for the two adjacent circuits shown in figure 6.5 is given
by equation (6.17)[1, 2].

ψ1 = −NφMag1 = L1i1 +Mi2
ψ2 = −NφMag2 = L2i2 +Mi1

(6.17)
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i1

i2

Figure 6.5: Adjacent circuits.

where ψ1, φMag1 and ψ2, φMag2 are the flux-linkage and flux of the first and
second circuits respectively.

We see that the flux-linkage in the first circuit is related to the current in the
first circuit by the self-inductance1 of the first circuit and is also related to
the current in the second circuit by a second constant defined as the mutual
inductance, M . This is also true for the flux-linkage of the second circuit.

Mutual inductance can be further generalized to include more than two
circuits. This makes the analysis somewhat more complicated. One can
see that shielding from the magnetic field is typically more difficult than
shielding from the electric field.

Mutual inductance represents the principle behind the operation of a trans-
former. Transformers are used in to change voltages and to isolate power
supplies. An iron core transformer can be constructed by wrapping two coils
around adjacent sides of a square iron rectangle as shown in figure 6.6. The
coil with the voltage, V1, is referred to as the primary and the coil with the
voltage V2 is referred to as the secondary. V1 and V2 are assumed to be AC
voltages.

V1 V 2
+
−

Figure 6.6: Iron core transformer.

1The term inductance is automatically assumed to be identical to self-inductance.
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The voltage, V1 is fed into the primary and a second voltage, V2 is then
induced in the secondary. The relationship between V1 and V2 is given
by[1, 2]

V1 = −N1
dφ
dt

V2 = −N2
dφ
dt

(6.18)

where N1 is the number of windings in the primary and N2 is the number
of windings in the secondary.

Combining terms we obtain[1, 2]:

V2 = N2

N1

V1

i2 = N1

N2

i1
(6.19)

Thus, we see that the induced voltage is related to the primary voltage by
the ratio of the number of turns in the secondary and primary. If N2 is
greater than N1, the secondary voltage, V2 is increased. This is known as a
step-up transformer. If the opposite is true (e.g. N1 > N2), then it is known
as a step-down transformer.

The currents change with the reciprocal ratio of the windings. This guaran-
tees that the rms output power can be no greater than the rms input power.
However, the rms output power can be less due to losses. The efficiency is
defined as ratio of output power to input power. This is one of the reasons
for choosing an iron-core over an air core.

6.3 Step Response of an RL Circuit

6.3.1 Positive Step Response

If we assume that VR is initially zero. Current is fed from the battery by
closing the switch at time t = 0. This is shown in figure 6.7. There is an
exponential relationship which governs the the voltage across the resistor as
a function of time.

Using Kirchhoff’s voltage law start by summing the voltages around the
loop will yield equation (6.20).

Vs = VL + Vres = L
dI

dt
+ IR (6.20)

where Vs is the voltage source and VL is the voltage across the inductor.

The actual differential equation can be found by merely substituting the
expressions for voltage in the resistor and the inductor into equation (6.20).
Dividing through by R gives a differential equation for the currents which
will be identical to that done for the capacitor. This results in
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Vs

t=0

+

−
I VR

L

R−

+

Figure 6.7: Circuit for the positive step response.

Is =
Vs

R
= I +

L

R

dI

dt
(6.21)

Solving the differential equation and converting the currents to voltages
yields:

VR = Vs[1− e
−t

τ ] (6.22)

where τ = L
R

, which is the time constant. Note that when t = τ , VR is
63.2% of Vs.

This is shown graphically in figure 6.8. The voltage response is given relative
to Vs and the horizontal axis is scaled to represent the number of time
constants.
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Figure 6.8: Relative voltage as a function of time constants for the positive step.

The relative voltage level for a single time constant is also shown.
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6.3.2 Negative Step Response

Assuming that the voltage, VR, is initially set to some voltage, Vo, the circuit
for the negative step response is given in figure 6.9. The voltage across the
resistor can be found from a similar differential equation.

t=0

+

−
I VR

L

R

Figure 6.9: Circuit for the negative step response.

Using KVL the voltages around the loop are found to be

Vres + VL = IR+ L
dI

dt
= 0 (6.23)

Solving equation (1) yields the following expression:

VR = Vse
−t

τ (6.24)

Again, the time constant is given by τ = L
R

. The value of VR after one time
constant is 36.8% of Vo.

This is shown graphically in figure 6.10. The voltage response is given
relative to Vo = Vs and the horizontal axis is scaled to represent the number
of time constants.

The relative voltage level for a single time constant is also shown.

6.4 Phase and Frequency Relations of RL Cir-

cuits

There are analogies which can be drawn between phase shifts in inductors
and capacitors. Inductors also cause a 90◦ phase difference between voltage
and current. For a sine wave input the voltage across the inductor will lead
the current in the inductor by +90◦; this is analogous to the current leading
the voltage in the capacitor by +90◦. Thus, for a sine-wave input current,
the voltage across the inductor is expressed as[4, 2]

V =
d[LI]

dt
= L

d

dt
[Ipsin(ωt)] = ωLIpcos(ωt) = ωLIpsin(ωt+ 90◦) (6.25)
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Figure 6.10: Relative voltage as a function of time constants for the discharging
of the capacitor.

where ω is the radian frequency (e.g. 2πf), Ip is the peak voltage and t
represents time in seconds.

For the inductor the phase of the voltage leads the phase of the current or
the current lags the voltage. Dividing the voltage by the current to find the
resistance, as Ohm’s Law suggests, leads to the definition of reactance, XL,
or

XL(ω) = ωL (6.26)

where XL is measured in Ohm’s and ω is the radian frequency (2πf).

The impedance is defined as the generalized resistance which includes both
resistance and reactance. The impedance of a series connected resistor and
inductor is given by

Z(ω) = R+ jXL(ω) (6.27)

where Z is the impedance in Ohm’s and j =
√
−1; the variable, (ω), is often

omitted leaving Z or XL.

Equation (6.26) suggests that the inductor is a short at DC while the
impedance increases linearly with increasing frequency.

6.5 The RL Low-Pass Filter with an Ideal In-

ductor

The RL circuit in the upper half of figure 6.11 is an RL low pass filter[4, 5].
It is composed of a series RL section where the output voltage is taken
across the resistor. The inductor is placed in the direct path. The RC low
pass filter is shown in the lower half of figure 6.11 to illustrate the duality
between the RC and RL low pass filter[4, 2].



86 CHAPTER 6. RL CIRCUITS

Vo
+

−R

L

−
V i

+

Vo
+

−
C

R

+

−
V i

Figure 6.11: Low pass filters realized from RL and RC sections.

The output voltage (across the resistor), Vout = VL, has a maximum value
equal to Vin = Vi. We can express the attenuation of Vout with respect to
Vin as

Av =
Vout

Vin

=
Vo

Vi

(6.28)

where Av(ω) is the attenuation of the circuit as a function of frequency.

6.5.1 Integration

The time series response of the circuit in figure 6.11 can be expressed using
KVL as

vi(t) = vR + vL = iR+ L
dI

dt
(6.29)

where vR is the voltage drop across the resistor and vL is the voltage drop
across the inductor (vo = vR).

If we assume that the period of the input voltage, vi(t), is much greater than
the L

R
time constant, the amplitude of the output voltage, vR will rise to
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its maximum value. In other words, for input frequencies significantly lower
than R

2πL
the amplitude of the output voltage is not attenuated. If the period

of the input signal is made to be much smaller than the L
R

time constant,

e.g. 1
Ti
≫ R

2πL
, the voltage drop across the inductor in equation (6.29)

will be much larger than that of the resistor. The voltage drop across the
inductor will be approximately equal to the input voltage[4], or,

vi(t) ≈ vL (6.30)

and

i =
1

L

∫

VLdt ≈
1

L

∫

vi(t)dt (6.31)

Thus, when R
2πL
≫ Ti the output voltage can be found as a function of vi(t)

leading to the following expression,

vo = vR ≈
R

L

∫

vi(t)dt (6.32)

which tells us that the output voltage is the integral of the input voltage
when the input frequency is much greater than R

2πL
.

6.5.2 Frequency & Phase Response

The method used to compute the frequency response will be identical to
that used for the frequency response of the capacitor; the only difference is
that we will substitute the reactance, −1

ωc
, with wL. We start by forming a

voltage divider. This yields

Av(ω) =
R

R+ jXL

=
1

1 + jw L
R

(6.33)

where XL is the reactance of the inductor and R is the resistance. If we
substitute equation (6.26) into equation (6.33) the relation between Vout

and Vin can be found as a function of R, L and ω. Equation (6.33) can be
reduced to

Av(ω) =
1

1 + j
(

f
fo

) =
1− j

(

f
fo

)

1 +
(

f
fo

)2 (6.34)

where fo = R
2πL

is the “cutoff” frequency. Does equation (6.34) look familiar
?

The power is expressed as the squared magnitude of Av(ω) or

PLPF (f) = |Av(ω)|2 = Av(ω)A∗
v(ω) =

1

1 +
(

f
fo

)2 (6.35)
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where A∗
v(ω) is the complex conjugate of Av(ω) and PLPF (f) is the power

as a function of frequency.

The phase response is expressed as the inverse tangent of the imaginary part
divided by the real part of Av(ω)[4, 5]. This becomes,

φ(w) = −tan−1(ω
L

R
) = 90− tan−1

(

R

ωL

)

= −tan−1

(

f

fo

)

(6.36)

When we express the frequency response as a function of fo the result is
identical to that of the RC lowpass filter; when f = fo, PLPF (f = fo) =
PLPF (f = 0) and the attenuation in power is cut by a factor of exactly 2.
The bandwidth of the filter is always measured by fo (e.g. the 3dB point).

Figure 6.12 provides a plot of the frequency and phase response of the RL
low pass filter. Notice that the Bode Plot for the RL low pass filter is
identical to that of the RC low pass filter (which should be expected).
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Figure 6.12: Low pass filter frequency and phase response.

These plots provide a complete characterization of the RL low pass filter.
To review, 3dB point occurs when f = fo. At this point Av = −3dB and
the phase is −45◦. The effective bandwidth (or bandwidth) of the low pass
filter is measured from DC to fo. The roll off is defined as the slope of the
frequency response of the Bode Plot in the linear part of the region where
f > fo. The roll off of an ideal low pass filter is always 6 dB per octave or
20 dB per decade. The phase response is negative; at DC, the phase is 0◦

and it approaches −90◦ as f →∞.
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6.6 The RL High-Pass Filter with an Ideal

Inductor

The circuit in the top half of figure 6.13 is an RL high pass filter[4, 5].
The high pass filter is a series RL section where the output voltage is taken
across the inductor. The resistor is connected in the direct path between
the input and output. The inductor is connected between the output and
ground. The RC high pass filter is shown in the bottom half of figure 6.13
to illustrate the duality between RL and RC high pass filters.

Vo

++

R

−−
V i

Vo
+

−

+

−
V i

C

R

Figure 6.13: High pass filters realized from RL and RC sections.

In both filters DC signals will be blocked from the output while AC signals
will pass to the output. In the RL filter, the inductor is a DC short while
the capacitor in the RC filter is a DC open circuit.

6.6.1 Differentiation

The time series response of the circuit in figure 6.11 can be expressed using
KVL as

vi(t) = vR + vL = iR+ L
dI

dt
(6.37)

where vR is the voltage drop across the resistor and vL is the voltage drop
across the inductor(vo = vL).
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If we assume that the period of the input voltage, vi(t), is much smaller
than the L

R
product, the amplitude of the output voltage, vL will rise to its

maximum value. In other words, for input frequencies significantly higher
than R

2πL
the amplitude of the output voltage is not attenuated. If the period

of the input signal is made to be much greater than the L
R

time constant,

e.g. 1
Ti
≪ R

2πL
, the voltage drop across the resistor in equation (6.37) will be

much larger than that of the inductor. The voltage drop across the resistor
will be approximately equal to the input voltage[4], or,

vi(t) ≈ vR (6.38)

and

i =
vR

R
≈ vi(t)

R
(6.39)

When 2πL
R
≪ Ti the output voltage can be found as a function of vi(t)

leading to the following expression,

vo = vL = L
di

dt
≈ L d

dt

[

vi(t)

R

]

=
L

R

dvi(t)

dt
(6.40)

Thus, the output voltage is the derivative of the input voltage when the
input frequency is much less than the R

2πL
.

6.6.2 Frequency & Phase Response

We will again find the frequency response by computing the attenuation
directly from the circuit impedance by forming a voltage divider. This
yields

Av(ω) =
jXL

R+ jXL

(6.41)

If we substitute equation (6.26) into equation (6.41) the relation between
Vo and Vi can be found as a function of R, L and ω. Equation (6.41) is
reduced to

Av(ω, f) =
jω L

R

1 + jω L
R

=
j
(

f
fo

)

1 + j
(

f
fo

) =
1 + j

(

fo

f

)

1 +
(

fo

f

)2 (6.42)

where fo = R
2πL

is the “cutoff” frequency.

The power is expressed as the squared magnitude of Av(ω) or

PHPF (f) = |Av(ω)|2 = Av(ω)A∗
v(ω) =

1

1 +
(

fo

f

)2 (6.43)
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where A∗
v(ω) is the complex conjugate of Av(ω) and PHPF (f) is the power

as a function of frequency.

The phase response is expressed as the inverse tangent of the imaginary part
divided by the real part of Av(ω). This becomes,

φ(w) = −tan−1

(

R

ωL

)

= 90− tan−1(ωL) = tan−1

(

fo

f

)

(6.44)

Once again notice that when f = fo, that PHPF (f = fo) = PHPF (f = 0).
The attenuation in power is cut by a factor of exactly 2.

6.6.3 Bode Plots

The Bode Plot for the high pass filter is shown in the upper portion of
figure 6.14. The phase response is shown in the lower portion of figure 6.14.
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Figure 6.14: High pass filter frequency and phase response.

The high pass filter frequency and phase response is analogous to that of
the low pass filter. The point where f = fo

2π
is referred to as the 3dB point.

The roll off is defined as the slope of the frequency response of the Bode
Plot in the linear part of the region where f > fo. The phase response is
negative; at DC, the phase approaches 90◦ and it approaches 0◦ as f →∞.

6.7 Non-Ideal Inductors

The inductors characterized in the previous sections are assumed to be ideal.
Unfortunately, the inductors you will use in the lab are far from ideal. Non-
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ideal effects occur in ALL electronic assemblies. These unwanted effects
include additional resistance, capacitance and inductance; they manifest
themselves in components, circuit boards and wiring. These effects are often
negligible in practice (especially in our labs). When using the inductor you
will find that some non-ideal effects will change the behavior of the RL filters
described earlier. The measurements will deviate what is expected based
upon the predictions of previous sections. How do we deal with non-ideal
effects in a component ? The answer is to construct the non-ideal component
from a network of ideal components to quantify each of the undesired effects.
This approach is identical to what is done in modeling circuit boards and
integrated circuits. A composite model of the non-ideal inductor is described
in figure 6.15.

C IntWire

RWire

RLeak

L Ideal

Figure 6.15: Composite non-ideal inductor.

The model inside the dashed box contains the components (all assumed to
be ideal) which represent non-ideal effects. The major effects modeled are
the wire resistance for the coil, the inter-wire capacitance and the resistance
due to dielectric leakage (we can ignore this one)[4, 3]. Each of these effects
are frequency dependent. For example, a long length of wire has a finite
but small resistance. This is often the only non-ideal effect noticed at low
frequencies. In this case the low frequency model of the inductor might
include only the wire resistance, RWire, which is a series resistance. The
wire resistance is only noticeable when XL(ω) is small relative to RWire;
obviously this occurs only when ω is low (hence low frequencies). Thus, the
low frequency model of the inductor replaces the reactance from the ideal
model, XL, with the following expression:

ZL = RWire + jωL (6.45)

The frequency response derived from equation (6.33) changes to
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Av(ω) =
R

R+RWire + jXL(ω)
(6.46)

Compute the DC gain (when ω = 0) of the low pass filter using equa-
tion (6.46). Notice that the gain will not be 1. Since RWire is quite small
the gain slightly less than unity. This is observable with our inductors.

At high frequencies XL tends to be much larger than RWire so the wire
resistance can be ignored. However, there is an inter-wire capacitance which
is formed by the parallel layers of wire conductors used in the windings of
the coil. This capacitance has an influence at high frequencies and must be
included. Can you think of how you could analyze the low pass filter with
a non-ideal inductor ?

6.8 Lab Instructions

1) Construct the low pass filter and set it up as shown in figure 6.16.
Measure the time constant for L = 50mH and the resistor value of R =
3.3 kΩ.

Vs
+

−

Channel 1 Channel 2

R

VR

L

Figure 6.16: Low Pass Filter.

i) Measure the positive step response at the following times: .1 τ , .5τ ,
τ , 1.5τ , and 2τ .

ii) Measure the negative step response at the following times: .1 τ , .5τ ,
τ , 1.5τ , and 2τ .

iii) Measure the wire resistance of the 50 mH inductor.



94 CHAPTER 6. RL CIRCUITS

Vs
Vc

+

R

Channel 1 Channel 2

L
−

Figure 6.17: High Pass Filter.

2) Low Pass Filter: Continue with the low pass filter in figure 6.16 using
R = 3.3 kΩ and L = 50mH .

i) Make a table with the following columns: f , Vin, Vout Measured,
Vout Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured,
Av[dB] Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: 10 Hz, 100 Hz,
1 kHz, 3 kHz, 10 kHz, 30 kHz and 100 kHz. Also measure at f = fo.
Set the peak amplitude of the input sine wave to 10 volts.

iii) Complete the entries in the table.

iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f).
Overlay each graph with a plot of Av[dB] Calculated vs. log10(f) and
φ Calculated vs. log10(f).

v) Compute the cutoff frequency. Identify the 3dB point extrapolated
from the measurements and overlay this with the computed value.

3) Integration: Demonstrate the integral of a 10 volt square wave input.
Use the set up in figure 6.16.

i) Use the time constant found earlier to precompute the times listed
below.
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ii) Sketch the input and output waveforms observed on the oscilloscope
for the following values τ

T
= .001, .05, .2, .75, 1 and 2.

4) High Pass Filter: Construct the high pass filter and set it up as shown
in figure 6.17. Use R = 33 kΩ and L = 50mH .

i) Make a table with the following columns: f , Vin, Vout Measured,
Vout Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured,
Av[dB] Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: 100 Hz, 1 kHz,
10 kHz, 100 kHz and 300 kHz. Also measure at f = fo. Set the peak
amplitude of the input sine wave to 10 volts.

iii) Complete the entries in the table.

iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f).
Overlay each graph with a plot of Av[dB] Calculated vs. log10(f) and
φ Calculated vs. log10(f).

v) Compute the cutoff frequency. Identify the 3dB point extrapolated
from the measurements and overlay this with the computed value.

5) Differentiation: Demonstrate the integral of a 10 volt sawtooth wave
input. Use the set up in figure 6.16. Compute the RC time constant.

i) Compute the L
R

time constant.

ii) Sketch the input and output waveforms observed on the oscilloscope
for the following values τ

T
= 10, 1, 0.33, and 0.1.

6.9 Problems

1) Explain the differences between the ideal and non-ideal LPF at low
frequencies using the low frequency model of the inductor and the mea-
surements taken in the lab.
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2) Estimate the inter-wire capacitance described in figure 6.15 from the
measurements taken on the high pass filter.

i) What would you use for a high frequency model of the inductor ?

ii) Estimate the inter-wire capacitance using this model and the HPF
measurements.

3) Given: L = 50mH , f = 15kHz

a) Find: the reactance, XL and the impedance,ZL, (jXL)

b) Find: Z if the inductor is connected in series with a 300 Ω resistor

c) Plot the impedance, Z, on the complex plane
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Chapter 7

Series RLC Circuit

Lab Objectives:

(a) Basic characterization of simple series RLC circuit.

(b) KVL, phase relations & phasors.

(c) Understand the transient response of the series RLC circuit.

(d) Completely characterize and measure second-order systems.

Pre Lab:

(a) Read this lab.

(b) Compute parameters prior to the laboratory session.

7.1 Introduction

The previous labs have provided us with a good introduction to transient and
AC analysis of RC and RL circuits. The capacitor and inductor, although
different, satisfy the same first order differential equations for the transient
and steady state response. The analysis can be generalized.

The series RLC circuit combines both capacitive and inductive reactance.
This circuit can be characterized by a second order differential equation.
The capacitive and inductive reactance tend to offset each other; however,
they can combine coherently. When this occurs the total impedance of the
series RLC circuit is purely resistive. This occurs at the resonant frequency.

KVL and total impedance can be expressed graphically using phasor dia-
grams for particular frequencies. We will compute the values for the phasors
based on measurements of the series RLC. We will also plot the phasor rep-
resentation of the circuit for particular frequencies.

98
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This lab will be subdivided into two parts; part (a) will focus on phasor
analysis and solving KVL for several frequencies while part (b) will focus
on special cases of the solution to the second order differential equation and
how these solutions affect the transient and steady state behavior.

7.2 Response of Simple RLC

The series RLC circuit in shown in figure 7.1. It is composed of a capacitor,
an inductor and a resistor connected in series. The voltage drop across each
element must sum to the input voltage to satisfy KVL. This will work as
long as the phase angles are included in the computation.

VR Vo
VC VLV

+

L

−

C

R

+

−
in

Figure 7.1: Series RLC circuit.

The frequency response of the circuit in figure 7.1 can be found by means
of a simple voltage divider, or

Vo

Vin

=
VR

Vin

=
R

R+ j(XL +XC)
=

R

R+ j(ωL− 1
ωC

)
(7.1)

where XL is the inductive reactance, XC is the capacitive reactance and ω
is the angular frequency.

This leads to the expressions for the amplitude and phase response

|Av|2 = R2

R2+(XL+XC)2

φ(ω) = tan−1
[

( 1

ωC
−ωL)

R

] (7.2)

where Av is the attenuation.

Since the signs for XL and XC are opposite that there is value of ω where
XL = XC . At this frequency the reactive terms will cancel each other
and the impedance becomes purely resistive. This means that Vo in equa-
tion (7.1) will be at its maximum value (Vin) and there will be a phase angle
of zero relative to Vin. This is known as the resonant frequency at it can
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be found by solving for the value of ω forcing XL = XC . The resonant
frequency can be expressed in radians/sec or in Hz and is given by

ωR =
1√
LC

; fR =
1

2π
√
LC

(7.3)

where ωR is in angular frequency and fR is in Hz.

The frequency and phase response for a series RLC circuit has been plotted
relative to the resonant frequency in figure 7.2. The filter has a bandpass
response. Thus, there are two frequencies on each side of the peak which
represent 3dB points, fL and fH . The difference, fH − fL is defined as the
filter bandwidth.
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−3 

90 

−90 

Figure 7.2: Frequency Response and Phase Response of Series RLC circuit.

Notice that the roll-off on either side of the filter is greater than 20 dB/decade.
This is somewhat better than one would expect by constructing a bandpass
filter from a high-pass filter and a low pass filter using RC or RL sections.
There is a quantitative measure of the sharpness or selectivity in the fre-
quency response. This is known as the Q of a circuit. The definition of the
Q of a circuit is

Q =
2π(MaximumStoredEnergy)

(EnergyDissipatedpercycle)
(7.4)
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The Q of the series RLC circuit is[1, 2]

Q =
1

R

√

L

C
=
ωRL

R
(7.5)

where R, L & C are the resistor, inductor and capacitor values and ωR is
the resonant frequency.

To illustrate the impact of the Q of a circuit figure 7.3 shows a simple
example of a high Q and low Q circuit.

High Q

Low Q

f

Av

Figure 7.3: Impact of Q value on the frequency response..

The 3dB points and the bandwidth can also be found in terms of the Q
value as

ωLO = ωR

[

− 1
2Q

+

√

(

1
2Q

)2

+ 1

]

ωHI = ωR

[

1
2Q

+

√

(

1
2Q

)2

+ 1

]

ωBW = ωHI − ωLO = ωR

Q

(7.6)

where ωHI , ωLO and ωBW are the high, low 3dB points and the bandwidth,
respectively.

We will prepare an example using R = 5.6 kΩ, L = 50 mH and C = .001
µF. The resonant frequency is easily found using equation (7.5); it is ap-
proximately 22.5 kHz.

7.2.1 KVL

Solving for KVL yields

Vin = VC + VL + VR (7.7)
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where Vin is the input voltage, VC , is the voltage drop across the capacitor,
VL is the voltage drop across the inductor and VR is the voltage drop across
the resistor.

The impedance can be found by summing the resistance and the reactance
for each element. This will be identical to the denominator in equation (7.1)
and it is given by

ZD = R+ j(XL +XC) = R+ j(ωL− 1

ωC
) (7.8)

where ZD denotes the denominator impedance.

The impedance, ZD, will be at its minimum at resonance (e.g. ω = ωR)
when the capacitive and inductive reactances negate each other leaving
ZD = R.

The values of XL(2π103 and XC(2π103 can easily be found and are given
by

XL = ωL = 2π103 1
sec

50x10−3H = j3.14kΩ
XC = − 1

ωC
= − 1

2π103 1

sec
.001x10−6F

= −j16kΩ (7.9)

Notice that the results are purely imaginary. This means that the inductor
and capacitor are assumed to be ideal. ZD can easily be found by substi-
tuting the values found in equation (7.9) into equation (7.8). This is given
both in rectangular and polar form below

ZD = (5.6− j12.86)kΩ = 14.0kΩe−j66.5o

(7.10)

Notice that the phase angle is negative. This make sense since below the
resonant frequency the capacitive reactance will dominate the imaginary
terms. Above resonance the inductive reactance will dominate the imaginary
terms.

The values of VR, VL and VC can be found using simple voltage division, or,

VR = R
ZD
Vin = 5.6

14 Vine
j66.5o

= 0.4Vine
j66.5o

VL = XL

ZD
Vin = 3.14

14 Vine
j156.5o

= 0.22Vine
j156.5o

VC = XC

ZD
Vin = 16

14Vine
−j23.5o

= 1.14Vine
−j23.5o

Vine
−j0o

= VR + VL + VC

(7.11)

If we convert to rectangular form it is seen that KVL is indeed satisfied.

VR = (0.159 + j0.367)Vin

VL = (−0.202 + j0.088)Vin

VC = (1.04− j4.55)Vin

Σ = (1 + j0)Vin = Vin

(7.12)
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One should be careful when using rms values; KVL will not hold if rms
values are used. Let’s examine the rms sum. It is found by averaging the
voltages in equation (7.15) resulting in

[VR]rms = 0.283Vin

[VL]rms = 0.155Vin

[VC ]rms = 0.807Vin

Σ = 1.24Vin 6= Vin

(7.13)

Thus, directly measuring each element with a volt meter will not satisfy
KVL unless the phase angles are incorporated. That’s the reason that the
rms values do not satisfy KVL; phase angles are not included in rms com-
putations.

7.2.2 Phasors

The voltages in a circuit with reactive elements are complex numbers. Com-
plex voltages are represented graphically in the complex plane. The complex
plane is similar to the infamous XY plane. Real quantities are plotted on
abscissa and purely imaginary quantities are plotted on the ordinate. Real
quantities have a phase angle of 0o while imaginary quantities have a phase
angle of ±90o. Phasors are vectors which represent complex voltages and are
plotted on the complex plane; a phasor, as in any vector, is represented by
a magnitude and a direction. Phasors are represented in polar co-ordinates
with positive phase in quadrant I and negative phase in quadrant IV. Thus,
positive angles are defined in the counter-clockwise direction. Voltages can
be referenced to the current in a the series RLC; this results in voltages
which are proportional to the impedance of each circuit element. Vin can
be expressed as

Vin = IR+ j(IωL− I
1

ωC
) (7.14)

where I is the current in the series RLC circuit.

It is common for voltage drops due to inductance to be plotted on the pos-
itive imaginary axis and for voltage drops due to capacitance to be plotted
on the negative imaginary axis. Resistance is plotted on the positive, real
axis.

It is useful to see this applied to an example and we will continue with the
RLC analyzed in the previous section. We originally referenced all signals
to the input voltage, Vin, leading to a phase of 0o. It is more convenient to
make VR 0o. This can be done by subtracting 66.5o from each voltage phase
term in equation (7.15), including Vin. The shifted version of equation (7.15)
then becomes
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VR = = 0.4Vine
j0o

VL = = 0.22Vine
j90o

VC = = 1.14Vine
−j90o

Vine
−j66.5o

= VR + VL + VC

(7.15)

where the voltage drop across the resistor is real while the inductor and the
capacitor are purely imaginary.

The phasor plots for both the shifted and measured values are displayed in
figure 7.4 below.

X cI

V in

X L

Im

IR

−156.5
oI

66.5o

−23.5o Real

−66o

X L

X c
X c X LI(       −        )

Real

Im

Vin

I

I

IR

Figure 7.4: Phasor diagrams for fin = 10 kHz.

Notice that the magnitude of the voltage drop across the capacitor is actually
larger than the magnitude of the input signal.

7.3 Measurements

Obtaining measurements for VL, VC and VR must be done with an oscillo-
scope. Channel 1 is connected to the input to display Vin and phase angles
are all measured relative to Vin. Assuming the arrangement displayed in
figure 7.1 the measurement of VR can be done directly; however, the mea-
surement of VL and VC cannot be done directly.

Measuring a direct voltage can only be accomplished when the circuit ele-
ment measured is tied to ground. There are two solutions to find VL and
VC . The first is to re-arrange the circuit twice placing the inductor and
the capacitor where the resistor is thereby taking the output from VL and
VC . The second is to keep the arrangement identical to that of figure 7.1,
measure several points in the circuit and then match the values of those
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measurements to what they should be via KVL (e.g. if KVL works ... it
must be this value ...). Figure 7.5 describes what is needed for this approach.

VR Vo
VC VLV

+

L

−

C

R

+

−

A B

Ch 1
Ch 2

G

in

Figure 7.5: Measurement on series RLC circuit.

Notice the points, A, B and G in the circuit diagram in figure 7.5. Channel
1 of the oscilloscope always stays on the input signal. Two separate mea-
surements are made with channel 2 at points B and A. The measurement
at point B is the voltage drop across the resistor while the measurement at
point A is the sum of the voltage drops across the resistor and the inductor.
This can be written as

VBG = Vo = VR

VAG = VL + VR
(7.16)

where VBG is the voltage drop across the resistor and VAG is the combined
voltage drop across the resistor and the inductor.

The values for the voltage drops can be found via subtraction between the
3 measurements (e.g. Vin on channel 1, VBG and VAG on channel 2). This
is given by

VR = VBG

VL = VAG − VBG

VC = Vin − VAG

(7.17)

These can be compared to values computed from KVL. Thus, pre-computing
the values for VR, VL and VC provides the necessary measurements.

It is worthwhile to make some general comments about phasors for the series
RLC plotted in figure 7.4:

i) the impedance of the capacitor and inductor are 180o out of phase;

ii) the phase angle due to the capacitor is always negative while the phase
angle due to the inductor is always positive;

iii) the phase difference between the resistor and either the inductor or the
resistor and capacitor will always be 90o.
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The phasors plotted in figure 7.4 have been found by direct calculation. We
should expect to get close the 90o phase difference between the resistor and
reactive elements and/or the 180o phase difference between the capacitor
and inductor. Another way to say this is1:

∆tC + ∆tI = 1
2T

∆tR + ∆tI = 1
4T

∆tR + ∆tC = 1
4T

(7.18)

where T is the period of the input signal, ∆tC , ∆tI , & ∆tR are the relative
time delays for the capacitor, inductor and the resistor.

You must also be aware that these relations assume ideal components. The
most likely deviation will arise from the inductor at low frequencies. Thus,
there will most likely be a slight deviation from +90o with the inductor due
to the small real part. There are 4 measured values; thus errors made during
the measurement of the period of the input signal and the time-differences
converted into phase angles can skew the result beyond the slight deviation
caused by the wire resistance of the inductor. Make an effort to be more
precise when making these measurements.

7.4 Lab Instructions: Part A

1) Frequency Response: Measure the frequency response of the circuit in
figure 7.1 using R=5.6 kΩ, L = 50 mH and C = 0.001 µF . Set the
amplitude of Vin equal to 10 Vpeak. Note that Vout = VR.

i) Make a table with the following columns: f , Vin, Vout Measured,
Vout Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured,
Av[dB] Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: .5 kHz, 1 kHz,
5 kHz, 10 kHz, 15 kHz, (3 points between 20-24 kHz), 25 kHz and 30
kHz. Also measure at f = fR. Set the peak amplitude of the input
sine wave to 10 volts.

iii) Complete the entries in the table.

iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f).
Overlay each graph with a plot of Av[dB] Calculated vs. log10(f) and
φ Calculated vs. log10(f).

1Assuming an ideal inductor !!!
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v) Identify the 3dB points on either side of fR and estimate the band-
width.

2) KVL/Phasor Plots: Using a 10 Vpeak input sinusoid, verify KVL for
frequencies of 10 kHz, 15 kHz and 25 kHz.

i) Compute the values for VR, VC and VL from XL and XC as was done
in equations (7.9) through (7.15). Find both the rectangular and po-
lar forms. Also compute the rectangular and polar forms for VBG and
VAG identified in figure 7.5.

ii) Measure the period and amplitude of the input signal using the oscil-
loscope.

iii) Measure the amplitude and phase of VBG and VAG.

iv) Find VR, VL and VC from the measurements of VBG and VAG.

v) Verify that KVL is satisfied.

vi) Plot the phasors based on the measurements.

7.5 Problems

1) Describe how a voltmeter which measures a true rms AC voltage could
be used to demonstrate KVL.

2) Assume that the inductor has a wire resistance, (e.g. RWire). Rewrite
equation (7.1) to include RWire. Find the values for |Av|2 in dB and φ
for f = fR.

3) Assuming that you have the amplitude and time differences (e.g. phase
differences) measured for the resistor, capacitor and inductor is there an
easier way to prove that the circuit satisfies KVL without the need for
computations using phasor diagrams ?
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4) In the section of the lab write up which provided measurement instruc-
tions it was mentioned that the impedance of the inductor might not be
precisely +90o due to the wire resistance at low frequencies. Assuming
this effect is noticeable will the phase become greater than or less than
+90o ?

5) Given: R = 5kΩ, C = 10µF , L = 50mH & RLC connected in series

a) Find: the impedance, Z, of the series RLC at f = 15kHz; plot Z on
the complex plane.

b) Find: the impedance, Z, of the series RLC at f = 30kHz; plot Z on
the complex plane.

c) Find: the resonant frequency, fR and ωR.
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7.6 Detailed Analysis of Series RLC Circuit

The series RLC circuit is a 2nd-order, linear system which can be completely
characterized by a 2nd-order, ordinary differential equation with constant
coefficients.

A differential equation is any equation which contains one or more differen-
tials. The solution of a differential equation is an equation which contains
no differential terms and is a function of the independent variable(s). A
differential equation can be linear or non-linear (the former is of interest to
us) and it can be ordinary, indicating one independent variable or partial,
indicating more than one independent variable. The coefficients can also be
functions of the independent variable or they can be constant. In our case,
the latter is of interest.

The second order linear system provides a means of analyzing complex elec-
trical and/or mechanical systems. Information about stability, damping and
the efficiency can be related to the parameters of the system. These results
provide fundamental results which predict the operation of any second or-
der system. Moreover, the response of higher-order systems can often be
characterized by multiple second-order systems.

The behavior of the series RLC circuit can be analyzed quantitatively by
applying techniques in solving differential equations. Using KVL and sub-
stituting the voltage drops across each element as a function of the current
we obtain,

Vin = VC + VL + VR =
1

C

∫

idt+ L
di

dt
+ iR (7.19)

Equation (7.19) contains both differential and integral terms, making it dif-
ficult to solve for directly. This can be simplified by differentiating through
and re-arranging the terms resulting in

d

dt
[Vin] = L

d2i

dt2
+R

di

dt
+

1

C
i (7.20)

This relates the general differential equation to a specific input signal. We
will show next how this circuit and earlier ones (namely the RC and RL
circuits) can be described and generalized by first and second-order differ-
ential equations with constant coefficients. These differential equations are
assumed to be both linear and ordinary.

7.7 1st and 2nd Order Differential Equations

The solutions to both 1st and 2nd Order Differential Equations can be ex-
pressed as exponentials. The solutions are subdivided into two classes. One
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set of solutions provides the response of the system to an input of very short
duration (or an input which changes over a very short duration). This is
known as the transient response. The second solution provides the response
of the system to a specific time-varying input signal. This is known as the
steady-state response. The general solution of a differential equation is the
sum of the transient and steady-state response. The transient response is
due to changing conditions; the ’start-up’, for example. The duration of the
transient response is expected to die out quickly over time. The steady-state
response is expected to last as long as the system input is present. To see
this in a physical example, consider the shock absorber on a motorcycle. If
you put enough weight on the fork to compress the shock absorber, it will
bounce back up once you release it. It is possible it might bounce up, then
slightly down and then stop. That is also fine. You would probably not
feel safe if the fork bounced up and down for a very long time without an
external force. You would expect it to stop quickly. This is analogous to
the transient response. However, if you are riding the motorcycle over a
continuous pattern of bumps, the shock absorber then would be expected to
compress and expand in order to minimize discomfort to the rider. Once the
motorcycle was on a smooth surface, the shock absorber would be expected
to remain rigid. This is analogous to the steady-state response.

In general, stability of any system is found from the transient response. The
response to a sudden, large input could be characterized as the transient
response as well. How long the duration of the transient response depends
upon the system itself. For example, a skyscraper might rock slightly in
hurricane force winds; in fact, this might be incorporated in the actual
design. However, you would not feel very safe if a high-rise tower continued
to rock for long periods of time after a brief summer breeze. On the other
hand, you do want the pendulum in a ’grandfather’ clock to swing back and
forth for long periods of time.

Although there is some math involved, you have been finding both the tran-
sient and steady-state responses of linear systems throughout the semester.
During your investigation of RC and RL circuits in previous labs, you were
really providing results for the transient and steady state responses of first-
order systems. The exponential decay for the step response in the time
domain was the transient response (the step was a repeating square wave).
The frequency response and phase response later plotted in Bode diagrams.
This was the steady-state response of those first-order systems. For the
steady-state response, you measured the output amplitude and phase dif-
ferences (with respect to the input waveform) for a selected range of fre-
quencies for a specific input signal. In fact, in part (a) of this lab and in
the lab where you measured the response of notch-filters (e.g. the twin-T
filter), you were also plotting the steady-state response.

The general first-order differential equation is described by the following
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expression
dx

dt
+ αx = f(t) (7.21)

where x is the dependent variable, t is the dependent variable, α is the
coefficient and f(t) is the forcing function.

There are two solutions: (1) the homogeneous solution and the (2) specific
solution. The homogeneous solution is found by setting f(t) = 0. Although
this can be solved in a very straightforward manner, we will introduce the
S-operator,

Sk =
dk

dt
(7.22)

where the Sk is substituted for the kth differential.

If apply the S-operator to equation (7.21) the following result is obtained

(S + α)x = 0 (7.23)

assuming that f(t) is zero.

The solution to equation (7.23), (e.g. S = −α) is the exponent of the base-e,
or

x(t) = Ce−αt (7.24)

where C is a constant.

The constant C is found through initial conditions (e.g. x(t = 0) = C). The
homogeneous solution of this first-order differential equation can be applied
to the earlier output voltage and current responses obtained for the RC and
RL circuits. If we substitute τ for α the same responses are easily found
(τ = RC for the RC circuit and τ = R

L
for the RL circuit).

The homogeneous differential equation for the series RLC circuit can be
found from equation (7.20) by setting Vin = 0 which results in

d2i

dt2
+
R

L

di

dt
+

1

LC
i = 0 (7.25)

In order to provide a more general analysis we would like to make some
substitutions for the constant coefficients. Equation (7.25) can be re-written
as

d2i

dt2
+ 2α1

di

dt
+ α2i = 0 (7.26)

where α1 = R
2L

& α2 = 1
LC

.

Applying the S-operator to equation (7.26) results in the following expres-
sion

[S2 + 2α1S + α2]i = 0 (7.27)
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This leaves us with a quadratic equation for S. The solution can be found
by applying the quadratic formula, or,

S = −α1 ±
√

α2
1 − α2 (7.28)

where the roots, S, are the natural frequencies[3].

There are five possible solutions2[3]:

i) Under-damped α2
1 < α2 The roots of equation (7.28) are complex

conjugates. This results in a damped sinusoid.

v(t) = e−α1t[C1cos (ωdt)± jC2sin (ωdt)]
v(t) = Ce−α1tcos [(ωd) t± φ]

(7.29)

where ωd =
√

α2 − α2
1.

ii) Critically Damped α2
1 = α2 The roots of equation (7.28) are real and

repeated. This represents a change in behavior; the sinusoidal compo-
nent is no longer part of the solution. This is a pure exponential decay.

v(t) = C1e
−α1t + C2te

−α1t (7.30)

iii) Over-damped α2
1 > α2 The roots of equation (7.28) are real and dis-

tinct. This results in a pure exponential decay.

v(t) = C1e
−α1t + C2e

(√
α2

1
−α2

)

t
(7.31)

iv) Undamped α1 = 0 The roots of equation (7.28) are purely imaginary
and conjugates. There is no damping. This corresponds to replacing R
with a short-circuit in the series RLC circuit.

v(t) = C1cos

(

√

α2 − α2
1

)

t± C2sin

(

√

α2 − α2
1

)

t (7.32)

v) Unstable α1 < 0

If the real part of equation (7.28) is positive then the amplitude of
the solution rises exponentially. The response to an impulse or step
rises uncontrollably; this is not physically realizable with the series RLC
circuit but it is possible with other second-order systems.

2The differential equation is solved for i(t); the output is taken at the resistor, hence
v(t) = Ri(t).
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The cases of greatest interest are the under-damped, critically damped and
over-damped transient responses. When the system is under-damped, the
transient response is a damped sinusoid. This is a sine wave with the max-
imum amplitude decreasing as time increases. In fact, v(t) → 0 as t → ∞.
The critically damped and over-damped transient responses are exponential
decays and are very similar. The critical damping marks the change from a
damped sinusoid to a pure exponential decay.

The remaining cases, undamped and unstable, are presented in order to have
a complete set of transient responses. In the undamped case, α1 = 0, the
transient response is an undamped sine wave. This is a system which will
oscillate. When α1 6= 0 there will always be a damping term. When α1 < 0,
e.g. alpha1 is negative, the exponential will have a positive exponent which
will quickly lead to infinite values as t→∞.

7.7.1 Steady-State Response

The steady-state response is found by solving equation (7.20) for a specific
function, Vin this is referred to as the specific solution. This is something we
will not cover quantitatively. You should know qualitatively that the specific
solution is related to the steady-state response by solving equation (7.20)
for a specific input function. You should also know that the general solution
of equation (7.20) is the sum of the solution of the homogeneous solution
and the specific solution. Finally, you should know that the homogeneous
solution leads to the transient response and the specific solution leads to the
steady-state response.

7.7.2 General Transient Response

The homogeneous differential equation can be generalized. This is done in
order to allow one to apply it to other types of second-order systems and also
to simplify the interpretation of the resulting differential equation solutions.
Equation (7.34) can be re-written as

d2i

dt2
+ 2ζωR

di

dt
+ ω2

Ri = 0 (7.33)

where ζ = R
2

√

C
L

& ωR = 1√
LC

. Applying the S-operator to equation (7.26)

results in the following expression using the S-operator, or,

[S2 + 2ζωRS + ω2
R]i = 0 (7.34)

Once again, the solution can be found by applying the quadratic formula,
or,

S = ωR

[

−ζ ±
√

ζ2 − 1
]

(7.35)
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The term ωR is referred to as the undamped natural frequency, the term S
is referred to as the natural frequencies and ζ is referred to as the damping
constant. The transient response can be determined based upon the value
of the damping constant. This leads to the following cases:

i) Under-damped ζ < 1; The roots of equation (7.35) are complex con-
jugates.

v(t) = Ce−ζωRtcos
[(

√

1− ζ2
)

ωRt+ φ
]

= Ce−ζωRtcos (ωdt+ φ)

(7.36)

Note that ωd =
(

√

1− ζ2
)

ωR.

ii) Critically Damped ζ = 1; The roots of equation (7.35) are real and
repeated.

v(t) = C1e
−ζωRt + C2te

−ζωRt (7.37)

iii) Over-damped ζ > 1; The roots of equation (7.35) are real and distinct.

v(t) = C1e
ωR

(

−ζ−
√

ζ2−1
)

t
+ C2e

ωR

(

−ζ+
√

ζ2−1
)

t
(7.38)

iv) Undamped ζ = 0; The roots of equation (7.35) are purely imaginary
conjugates.

v(t) = C1cos (ωR) t± C2sin (ωR) t (7.39)

v) Unstable ζ < 0; The exponential term becomes infinite as t→∞.

This is identical to what was found in the preceding section. Figure 7.6 pro-
vides sample responses for two under-damped cases, a system near critical
damping and a system which is over-damped. These responses will pro-
vide you with some insight into what the oscilloscope measurements should
resemble.

7.8 Mechanical Systems

Mechanical systems can also be characterized by equation (7.33). To briefly
describe how this is done we will pick the mass on a spring in figure 7.7 as
an example[2].

Newton’s second law and Hooke’s Law can be used to describe the motion
of the mass on a frictionless surface. This is expressed as

m
d2x

dt2
= −kx (7.40)
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Figure 7.6: Examples of transient responses.

where m is the mass of the object connected to the spring and k is the spring
constant.

Notice that in this case the spring will oscillate forever since the surface is
frictionless; this is a simple harmonic oscillator. If we include a damping
constant, b and a forced input, the resulting differential equation can be
written as

F = md2x
dt2

+ b dx
dt

+ kx

V = L d2Q
dt2

+R dQ
dt

+ 1
C
Q

(7.41)

where x is the displacement and Q is the charge.

The analogous differential equation for the series RLC circuit is given in
the same equation to illustrate the relationship. In order to express this in
terms of equation (7.33) the natural frequency and the damping constant
are expressed in terms of b, k and m. This is given by

ζ = b
2

1√
km

ωR =
√

k
m

(7.42)
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m

k

x=0

Figure 7.7: Mass on a spring.

Thus, the relationship between the mechanical system and the series RLC
circuit can be found. The relationship between parameters of the series is
given by[2]

V ←→ F
Q ←→ x
i ←→ dx

dt

L ←→ m
1
C
←→ k

R ←→ b

(7.43)

One might ask why is it necessary to know anything about the analogy
between mechanical and electrical systems. Surely, it is a topic which me-
chanical engineers and physicists know but the relationship to electrical
engineering topics seems to be a bit misplaced.

The relationship between the second order mechanical system and the series
RLC often occurs in the analysis and design of electro-mechanical sensors,
such as transducers.

7.9 Measuring the Transient Response

The transient response can be measured by observing the response to a step
function. This was analyzed in detail for the RC and RL circuits measured
in labs 4 and 6. Since the response to a step input is required a square wave
is selected because the oscilloscope is memoryless. The frequency of the
square wave needs to be low enough to observe the full exponential decay.

The transient response for a 2nd order system such as the series RLC circuit
can be measured using an identical approach. The first step is to determine
compute ωR and ζ. This allows one to approximate the relative attenuation
(fin vs. fR) and the type of decay (from the value of ζ).
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7.10 Lab Instructions: Part B

1) Transient and Steady State Response: Construct the series RLC circuit
displayed in figure 7.1 using L = 50 mH and C = 0.001 µF . Measure
the transient response using the following values for R:

i) R = 1 kΩ.

ii) R = 5.6 kΩ.

iii) R = 13.36 kΩ (5.6 kΩ+12kΩ||22kΩ).

iv) R = 25 kΩ.

For each R value:

i) Compute ζ, Q, ωH , ωL and the bandwidth, BW ; predict transient
response (e.g. under-damped, over-damped or critically damped).

ii) Measure the transient response; record the amplitude of the output
voltage across the resistor (on channel 2 of the oscilloscope) in a table
with 2 columns: ∆t and Vpeak. Measure enough points to plot the
transient response.

iii) Plot the transient response for each resistor value from the table. La-
bel the value of ζ on each plot.

2) Find the frequency response of the series RLC circuit for each resistor
value (except R = 5.6 kΩ).

i) Make a table with the following columns: f , Vin, Vout Measured,
Vout Calculated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured,
Av[dB] Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: .5 kHz, 1 kHz,
5 kHz, 10 kHz, 15 kHz, (3 points between 20-24 kHz), 25 kHz and 30
kHz. Also measure at f = fR. Set the peak amplitude of the input
sine wave to 10 volts.

iii) Complete the entries in the table.
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iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f).
Overlay each graph with a plot of Av[dB] Calculated vs. log10(f) and
φ Calculated vs. log10(f).

v) Identify the 3dB points on either side of fR and estimate the band-
width.

7.11 Problems

1) Rewrite equations (7.33) through (7.38) in terms of R, L and C.

2) Find the conditions for under-damped, critically damped and over-damped
solutions in terms of R, L and C.

3) What is the general relationship between ζ in the transient response and
the Q of the frequency response ?
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Chapter 8

Simple Op Amp Circuits

Lab Objectives:

§1. Gain a practical understanding of basic op amp configurations.

§2. Understand non-ideal effects and how to compensate for them.

§3. Draw analogies between active and passive circuits.

Pre Lab:

1. Read this lab.

2. Read the data sheet on the LM741/747 op amp.

3. Review DC op amp theory from ELE212.

8.1 Introduction

This lab provides an introduction to simple op amp circuits. It is assumed at
this point that you have covered the basics of DC operational amplifiers in your
circuit theory course. The practical implementation of the simple circuits dis-
cussed will require additional passive devices and modifications to the intended
circuits.

These differences occur because the op amp is truly a non-linear circuit
which is configured to approximate the behavior of a linear amplifier. There
are limitations which will often prevent one from directly realizing a particular
circuit.

A good designer will make himself/herself familiar with the data sheet for
the op amp selected. The data sheet provides the pin configuration, power
supply requirements and parameters which describe the non-ideal effects of a
given op amp. Thus, the data sheet will allow one to find the limitations of a
given amplifier. Some of these non-ideal effects will be discussed in the following
section.
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8.2 The Non-Ideal Op Amp

The op amps used in practice are non-ideal; the non-ideal effects are measured
and parameterized. Their values are supplied by the vendor in a data sheet.
Some of these parameters are:

i) Finite Open Loop Gain The amplifier open loop gain is actually finite.
Moreover, its value will fall as freq →∞. A simple description of the open
loop gain as a function of frequency is provided in figure 8.1.

Gdc
Gdc(0.707)

fDC fo
1

Ao

UnGBw

Figure 8.1: Typical open loop frequency response of an op amp.

The frequency response of the open loop amplifier in figure 8.1 approximates
the actual behavior using a first order RC low pass filter with a large gain.
Thus, at DC, the gain will be greater than unity; the gain is Gdc and this
is the maximum value. At the cut-off frequency, fo, the gain value becomes
Gdc√

2
on a linear plot. This is equivalent to the 3dB point. The gain then

falls at 20dB per decade or 6dB per octave which is also equivalent to the
roll off of a simple RC low-pass filter. The open loop gain also drops to a
value of 1 on the linear scale; this is also shown in figure 8.1. The frequency
for which the amplifier gain is 1 on a linear scale (or 0 dB on a Bode plot)
is known as the Unity-Gain Band Width. This is also known as the gain-
bandwidth product since it is defined as Gdcfo. As the amplifier gain falls,
the input impedance falls and the DC analysis techniques fail since they are
only valid for G,Rin =∞.
The 741 op amp has a DC gain of 200,000. At a frequency of 1 kHz, the gain
drops to approximately 1,000. The unity-gain bandwidth is approximately
1 MHz.

ii) DC Offset Voltage The simple DC model of the op amp is based on an
ideal gain stage. One property of an ideal gain stage is that when the DC
input voltage is zero then the DC output voltage is also assumed to be
zero. The DC gain of a typical operation amplifier is on the approximately
105 while the power supply is approximately 10 volts. Thus, the minimum
input voltage which can saturate the amplifier is 100 µV .
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The 741 op amp has a typical DC offset voltage of 1-2 mV and a maxi-
mum DC offset voltage of 5mV ; more than enough to saturate the open
loop amplifier. This is similar to most operation amplifiers. Thus, oper-
ation without feedback leads to saturation and instability. This makes it
especially difficult to construct reliable DC circuits such as temperature sen-
sors; it also makes it difficult for one to measure the open loop gain directly.

iii) Noise Op amps have broad-band noise, that is, noise which is uncorrelated
with frequency which extends across the usable bandwidth. The units of
this noise is given in µV√

Hz
because its power scales proportionally with the

bandwidth. This noise-figure is typically named input-referred noise. This
means that the noise at the output is amplified along with input signals.

iv) Distortion A non-linear effect present in every amplifier is distortion. For
a sine-wave input, the output of an ideal linear amplifier would result in a
sine wave scaled by the gain. In actual amplifiers sine-wave like waveforms
occur at frequencies which are integer multiples of the input sine-wave fre-
quency.

v) Common Mode Rejection Ratio (CMRR) The gain of the common
mode signal. The difference between the voltages at the inverting and non-
inverting inputs is amplified by the open loop gain. The sum of these volt-
ages, Vcm, which is the common-mode input would be non-zero if correlated
noise were present. Thus, Vcm must be attenuated. CMRR→ 0 as f →∞.

vi) Rise Time The rise time is defined as the time it takes for the output
voltage to rise from 10% of its maximum value up to 90% of its maximum
value. Rise time is measured for an op amp with feedback (e.g. a close loop
configuration). This is shown graphically in figure 8.2.
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1

inAv(V    )
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Input Step (Vin )

t

t

Figure 8.2: Rise time measurement of the response to a step input.



8.3. THE INVERTING AMPLIFIER 123

vii) Slew Rate The slew rate is the rate in V
µsec

of the output voltage response
to a step input. If ∆tR is the rise time, then the slew rate can be expressed
as

SlewRate =
∆VR

∆tR
(8.1)

where ∆VR and ∆tR are shown graphically in figure 8.2.

8.3 The Inverting Amplifier

The inverting amplifier is shown in figure 8.3. Since it has feedback, its operation
is stable.

Vin
R1

2R

Vo+

−

Figure 8.3: Inverting amplifier.

The amplifier gain is given by

A =
Vo

Vin

≈ −R2

R1
(8.2)

where R2 and R1 are the feedback and input resistors. Note that the ≈ can
be replaced by an = when Rin and Ao are assumed to be large values; however
the accuracy of this approximation is best at DC and it will deteriorate at
higher frequencies. The usable operating frequency range is determined by
the bandwidth and settling of the particular operational amplifier selected. In
every case as the frequency is increased, the open loop gain will be reduced
and the input resistance between the inverting and non-inverting input will also
be reduced. This means that the assumption of equality between the inverting
and non-inverting inputs is only acceptable at lower frequencies. As the input
resistance of the operational amplifier is reduced the virtual ground is no longer
a good assumption.

Even if we only operate at DC, there are still limitations. The input voltage
must be kept low enough to maintain the following result

|Vo| < |Vsupply | (8.3)
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which implies that
R2

R1
|Vin| < |Vsupply | (8.4)

otherwise, the circuit will saturate at voltage close to or equal to the positive or
negative supply voltage (sometimes referred to as the supply rail or the rails).
Thus, unlike passive circuits, the input voltage of a circuit realized with an
operational amplifier is restricted in amplitude in order to maintain linearity
(e.g. equivalence to the linear circuit describing the operation). There is a
restricted linear operating voltage range.

In order to maintain the DC operating assumptions, the operating frequency
is also restricted; however, operation in a region where the bandwidth and
settling effects are noticed does not necessarily mean that the operation will be
non-linear, despite violating the DC assumptions.

8.4 The Integrator

The expression in equation (8.2) can be further generalized to include reactances
or even impedances. There can be entire circuits lumped into a feedback term
(e.g. R2) and the feed-forward term (e.g. R1). For example, the inverting
amplifier frequency response can be altered by replacingR2 andR1 with complex
impedances, Z2 and Z1,

Av =
Vo

Vin

= −Z2

Z1
(8.5)

where Z2 and Z1 replace the resistors in figure 8.3.
The utility of the operational amplifier can be illustrated by realizing that Z2

and Z1 can each represent a series circuit, a parallel circuit or even a combination
of series and parallel circuits. The expression for the transfer function given by
equation (8.5) will hold as long as the Rin and Ao are large values. Thus,
operation at frequencies where these assumptions do not hold must be avoided.

A simplified example comes from making the feedback purely reactive, e.g.
Z2 = jX2 by replacing R2 with a capacitor. This circuit is shown in figure 8.4.

VoVin

C

R

R

+

−

Figure 8.4: Pure integrator.
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It is easy to show that

Vin

R
≈ −C dVo

dt
(≈ duetofinitegain) (8.6)

which leads to

Vo = − 1

RC

∫

Vindt (8.7)

This circuit is known as a pure integrator since the output voltage will AL-
WAYS be integral of the input voltage. The transfer function of the pure inte-
grator is given by

Av(ω) =
j

ωRC
(8.8)

Notice that the pure integrator differs from the RC low pass filter in two
major areas. First, the gain of the RC low pass filter approaches unity for
f << fo and is exactly equal to 1 for a DC input. The pure integrator gain is
∞ at DC, based upon equation (8.8), which means that it is ALWAYS unstable
at DC. Second, the phase response of the RC low pass filter is zero at DC
and becomes −90 degrees for f >> fo while the phase response of the pure
integrator is ALWAYS 90 degrees from equation (8.8). Since the RC low pass
filter is only an integrator for f >> fo, problems with DC stability are avoided.
Thus, even with very little knowledge of linear systems theory, one can see that
a the DC stability problem must be addressed in the practical implementation
of a pure integrator.

The DC stability problem will manifest itself into the circuit in figure 8.4 even
if the designer decides to eliminate DC inputs by adding a blocking capacitor.
Suppose that a blocking capacitor is placed in the input path ? This will
definitely prevent a DC offset from the signal generator. The problem is that
any operational amplifier has an internal DC source; a non-zero offset voltage[1].
This effective of the offset voltage can be by separating the DC components
from AC components. If we assume that the input voltage is composed of a DC
voltage and AC voltages, then by superposition we can duplicate the circuit in
figure 8.4 (one for DC inputs and one for non-DC inputs). If we then add the
outputs we will (by superposition) obtain an output equivalent to that obtained
from the single circuit composed of DC and non-DC inputs. Superposition is
of course violated if it can be shown that the output of either circuit (DC or
AC) becomes saturated (because it then becomes non-linear and superposition
only holds for linear circuits). Non-linearity is undesirable because the output
voltage will no longer be an amplitude-scaled, phase-shifted version of the input
signal. The output signal will become quite distorted. Stated less formally,
the game’s over if the amplifier output saturates (e.g. flattens due to reaching
the supply rails). Also note that when the mathemtatical expression for the
output voltage becomes ∞, this is equivalent to the output voltage of the real
circuit saturating at or near the supply rails. Since we do not have infinite
voltage supplies available, the output voltage reaches a value limited by the
power supply. It is important to see that this is not a desired result.
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VoVin
R

R

+

−

Figure 8.5: DC model of the pure integrator.

The DC model of the pure integrator shown in figure 8.5.
Notice that at DC, the feedback capacitor no longer provides feedback. At

DC, the input sees the full open loop gain of the operational amplifier; this is a
problem even if Vin is tied to the analog ground.

To see this, let’s examine common operational amplifier specifications. Typ-
ically, the DC gain is on the order of 105. The power supply voltages are on
the order of 10V . Offset voltages are approximately 1 − 10mV . Thus, even in
the best case, 10−3xAo < VSupply the offset voltage alone will likely saturate
the amplifier even for a gain of 104 and an offset voltage of 1mV . The output
voltage will be at 10V which means the supply voltage must be larger. In a
protoboard implementation with a direct connection to a signal generator the
offset of the signal generator will often add to the DC offset of the amplifier.
In addition, low frequency noise components can also cause problems since the
gain at low frequencies is still very high. Thus, there is a high sensitivity to
noise in the low frequency range. The most common source of low frequency
noise will be the power supply. While the low frequency noise pickup can be
cleaned up with a better implementation of the board and improved bypassing
of the supply voltages, the DC instability and the low frequency sensitivity will
make it very difficult to obtain an undistorted sine wave from the pure integrator
under the best possible conditions.

These problems can be overcome by modifying the circuit to create a flat-
tened response at low frequencies. This can be accomplished by adding a resis-
tor, R2, in the feedback path in parallel with the capacitor. Thus, a stable DC
operating point is obtained. This is shown in figure 8.6.

The frequency response and phase response of the circuit in figure 8.6 are

Av(ω) = −
(

R2

R1

)

1
1+jωR2C

φ(ω) = 180− tan−1(ωR2C)
(8.9)

which is similar to the RC low pass filter with a programmable gain (e.g. the gain
at DC is set by R2

R1

); the 3dB cutoff frequency is set by R2 and C. Note however,
that due to the inverting amplifier configuration that the transfer function is
multiplied by a −1; this means that the phase response is shifted by 180 degrees.
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Vin
R1

2R

Vo

R1 2R

C

+

−

Figure 8.6: Active, first-order low pass filter.

At DC, the circuit in figure 8.6 is equivalent to an inverting amplifier. Since the
circuit is derived from the inverting amplifier thus the negative sign causes the
180 degree phase shift.

8.5 The Differentiator

The circuit in figure 8.7 is known as the pure differentiator. This circuit can be
derived from the pure integrator by swapping the position of the resistor and
the capacitor, placing the resistor in the feedback loop.

The circuit in figure 8.7 will always yield

vo = −RC dVin

dt
(8.10)

hence, the name pure differentiator.
The transfer function of the pure differentiator is given by

Av(ω) = −jωRC (8.11)

It does not take much insight to realize that a circuit with this transfer
function should always be avoided. Even without formal system theory one can
intuitively assume that the stability of ANY linear system (which includes linear
circuits) depends upon the gain remaining finite as the frequency approaches∞.
Simply stated, in order to achieve stability the gain of a system must be bounded
over ALL frequencies since instability is a very bad thing. Equation (8.11)
demonstrates that the gain is infinite when ω approaches infinity.
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Figure 8.7: Pure differentiator.

There are practical problems with the pure differentiator. It will be ex-
tremely sensitive to high frequency noise pickup. Noise is always present in op
amps. Input referred noise is amplified proportional to the rate of change at the
input. Sudden changes in the input noise are amplified[1]. Since the gain is not
bounded, the amplifier can easily saturate for noise at frequencies high enough
to provide sufficient gain to reach the supply rails (e.g. the supply voltages).
High frequency noise sources are difficult to compensate for unless the entire
circuit is placed inside a conductive enclosure and properly grounded. Even
with external noise sources eliminated, the internal noise of the amplifier, which
is present at even high frequencies, will make reliable operation impossible.

In order to provide a more practical approach to the implementation of a
differentiator, let’s have a look at the RC high pass filter. The transfer function
of the RC high pass filter is given by

Av(ω) =
jωRC

1 + jωRC
(8.12)

Notice what happens as ω approaches infinity; the magnitude of the transfer
function approaches 1 ! Thus, the gain is definitely bounded. What is the
difference between this transfer function and equation (8.11) ? The answer:
the addition of a denominator term which is equal to the numerator at high
frequencies. The trade off is that the RC high pass filter is ONLY a differentiator
at low frequencies because the gain is bounded.

Now, we need only work backward to find an implementation in an active
circuit which will provide a transfer function with a denominator term. This
results in the circuit shown in figure 8.8.

The frequency response and phase response are given by

Av(ω) = −
(

R2

R1

)

jωR1C
1+jωR1C

φ(ω) = −90− tan−1(ωR2C)
(8.13)
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Vo
Vin
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R2

R2

C

+

−

Figure 8.8: Active, first-order high-pass filter.

Equation (8.13) is equivalent to the RC high-pass filter with a programmable
gain R2

R1
; the 3dB cutoff frequency is given by R1 and C. At high frequencies

the response is flat.
It is worthwhile to compare the active HPF in figure 8.8 the passive RC HPF

(from chapter 4). Notice that the simple RC high-pass filter phase response
is 90 degrees at DC and approaches 0 degrees when f >> fo. The phase
response of the RC HPF is equal to that of the phase response of the RC LPF
shifted by 90 degrees (due to the j in the numerator). The HPF in figure 8.8
is merely the RC HPF with a shift of 180 degrees due to the negative sign
picked up from the inverting amplifier configuration. The additional 180 degree
shift leaves us with a phase response which ranges from -90 degrees at DC
and approaches -180 degrees when f >> fo. The -90 is actually 270 degrees;
however, it is renamed to -90 degrees because our phase co-ordinate system
ranges from 0to180degrees and 0to−180 degrees. This is known as wrap-around.
Also note that 180degrees=−180degrees since they are at the same point on the
real axis.

8.6 Lab Instructions

For each part of the lab use the LM741 or LM747 op amp. The power sup-
plies should be set to ±15V . You are expected to know how to configure the
oscilloscope for the measurements of the low-pass and high-pass filters.

1) Inverting Amplifier: Construct the inverting amplifier shown in figure 8.3.
Measure the Vo vs. Vin for the following DC input voltages: .01V , .03V ,
.1V , .3V , 1V , 3V , 5V , 10 V and 12 V .
Perform these measurements for each of the values for R1 and R2:

i) R1=10kΩ, R2=10kΩ.
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ii) R1=5kΩ, R2=10kΩ.

iii) R1=1kΩ, R2=10kΩ.

Make a table with two columns: Vin and Vo. Plot Vo vs. Vin for each pair
of R1,R2 values.

2) Low Pass Filter: Construct the low pass filter and set it up as shown in
figure 8.6. Use R1=1kΩ, R2=10kΩ and C = .1 µF .

i) Make a table with the following columns: f , Vin, Vo Measured, Vo Cal-
culated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured, Av[dB]
Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: 10 Hz, 100 Hz,
1 kHz, 3 kHz, 10 kHz, 30 kHz and 100 kHz. Also measure at f = fo.
Set the peak amplitude of the input sine wave to 1 volt.

iii) Complete the entries in the table.

iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f). Over-
lay each graph with a plot of Av[dB] Calculated vs. log10(f) and φ
Calculated vs. log10(f).

v) Compute the cutoff frequency. Identify the 3dB point extrapolated
from the measurements and overlay this with the computed value.

3) High Pass Filter: Construct the high pass filter and set it up as shown in
figure 8.8. Use R1=8.2kΩ, R2=82kΩand C = .001 µF .

i) Make a table with the following columns: f , Vin, Vo Measured, Vo Cal-
culated, |Av|2 Measured, |Av|2 Calculated, Av[dB] Measured, Av[dB]
Calculated, ∆t, T Measured, φ Measured and φ Calculated.

ii) Measure the attenuation for the following frequencies: 100 Hz, 1 kHz,
10 kHz, 100 kHz and 300 kHz. Also measure at f = fo. Set the peak
amplitude of the input sine wave to 1 volt.

iii) Complete the entries in the table.

iv) Plot Av[dB] Measured vs. log10(f) and φ Measured vs. log10(f). Over-
lay each graph with a plot of Av[dB] Calculated vs. log10(f) and φ
Calculated vs. log10(f).

v) Compute the cutoff frequency. Identify the 3dB point extrapolated
from the measurements and overlay this with the computed value.
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8.7 Problems

1) Find expressions for the phase response of the pure integrator in figure 8.4
and the pure differentiator in figure 8.7. (Assume ideal op amps).

2) What happens to the high-pass filter at the high frequencies ? Explain it.
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Chapter 9

Laboratory Problem: S-E Filter

Lab Objectives:

§1. Characterize a 2nd-order active filter by applying concepts of the general
2nd-order system.

§2. Assemble a 2nd-order active filter.

§3. Characterize the resonant frequency and Q-point as a function of critical
components.

Pre Lab:

1. Read this carefully.

2. Read the data sheet on the LF353 op amp.

3. Review applicable lab write ups in ELE215.

4. Review material 2nd-order systems in ELE212 & ELE215.

9.1 Introduction

Your project assignment is to construct and analyze the 2nd-order active fil-
ter described in this write up[1, 2, 3]. You are to apply the lessons you have
learned in ELE215 and ELE212. These lessons include the proper techniques
for the construction and characterization of active and passive filters, the tab-
ular description of the frequency and phase response and the Bode plot for the
frequency and phase response.

We have found the attenuation and/or gain for numerous circuits, Av. This is
often referred to as the transfer function. The transfer function can be expressed
in the time domain where time is the independent variable or it can be expressed
in the frequency domain where ω is the independent variable. We know that the
transfer function of a linear system can be found from the differential equation
which describes it. We have worked out this problem in great detail many times
for the 1st-order RC, RL and active RC filters (all 1st-order linear systems). We
have also worked on this problem for the 2nd order RLC filter.

We know from our earlier work that the transfer function derived from the
differential equation is the linear sum of the transient and steady state response
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of the system. The transient response is measured in the time domain using a
step input. The steady state response is measured in the time domain using a
sine-wave input. The frequency response can be found from the steady state
response by plotting the amplitude and phase vs. the frequency. We have always
done this using the Bode plot.

Passive RLC filters are always linear and thus, characterizing them as a
linear system is always correct. As long as a system is linear superposition
holds. Active filters approximate linear behavior when they are working within
the linear operating range of the amplifier. The most critical condition to retain
linear operation is bounding the input signal amplitude. Care must be taken
to keep it within the limits of the power supply rails (e.g. ±15 volts for our
purposes). The frequency response of the op amp does not affect the linearity1,
because it can be characterized as a linear system (e.g. there is only a filtering
effect) but the approximate linear characterization of the op amp could change
dramatically at high frequencies. At high frequencies it becomes a different
linear system2.

9.2 Filter Description

The filter proposed by Sedra & Espanoza is shown in figure 9.1. This filter
realizes a high-Q, resonant bandpass filter.

2R

R3

Vin

R4
R5

R1 Vo+

+
−

C

C

−

Figure 9.1: S-E filter[2].

Notice that there are no inductors in this circuit. The only passive compo-
nents are resistors and capacitors. This is possible with operational amplifiers.
The reactive response of the inductor is often replaced by operational ampli-
fiers, resistors and capacitors because inductors are quite large and bulky. Also,
inductors display many undesirable non-ideal effects at low frequencies.

The magnitude and phase response of this filter are given by

and

1this assumes that the amplifier does not slew; e.g. the setting is linear
2same reasons as 2



9.3. PART PLACEMENT ASSEMBLY 135

9.3 Part Placement Assembly

The circuit for this project will use an 8 pin dual op amp. The schematic
diagram in figure 9.2 is annotated with the pin numbers. There are two power
supply connections not shown in the figure. The +15 and −15 Volt supplies are
connected to pins 8 and 4, respectively.

R3

Vin

R4
R5

Vo

+
−

+
R1

C1

C2

2R − A

B

2 1

7

3

6

5

Figure 9.2: S-E filter[2].

Prior to wire-wrapping or the fabrication of a printed circuit board the de-
signer needs to work out the part placement and wiring. This has been done
for you and the resulting placement and wiring are shown in figure 9.3. Notice
that there is a top view and a bottom view. Since this circuit will be realized
on a wire-wrap board the bottom view shows all of the wiring.
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Cbypass

CbypassVo

Vin

SE Filter Board Diagram          TOP

R 2

R1
C1

R4

R
5

2
C

R3

Vin  A−
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Figure 9.3: S-E filter board part placement & wiring (Top & Bottom).
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9.4 Instructions

For the filter depicted in figure 9.1, follow the instructions and document the
work in a lab report. You will use the LF353 op amp. The power supplies should
be set to ±15V (the power supply connections are not show in in figure 9.1).

1) Construct the circuit in figure 9.1. Use the following values:

i) R1=22kΩ,

ii) R2=1kΩ,

iii) R3=1kΩ,

iv) R4=1kΩ,

v) R5=1kΩ,

vi) C=0.0068 µF .

2) Measure the transient response and make a table with the following columns:
Vin, Vo and t. Select at least 15 values; I expect to be able to reliably see
the response from the values selected.

3) Make a detailed plot on a linear scale of the transient response.

4) Find the following parameters:

i) ωd,

ii) α,

iii) and ζ.

You will need to apply the appropriate waveform and select the frequency
to enable you to see the transient response.

5) Measure the frequency response. Make a table with the following columns:
f , Vin, Vo, |Av|2, Av[dB], ∆t, T , and φ.

You will be expected to select the frequencies. I expect that you make
20 measurements for the frequency response. I also expect at least 5 mea-
surements around the resonant frequency.

6) Plot Av[dB] vs. log10(f) and φ vs. log10(f).

7) Find the following parameters:

i) Maximum gain,

ii) ωR,
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iii) and Q,

8) For a sine wave at fR, make a table with the following columns: |Vin|, |Vo|.
Select 10 values; the range of |Vo| should be from 500 mV up to 15 V .

9) Plot |Vo| vs. |Vin| using this data.

10) Do the following:

i) Input a square wave at the resonant frequency.

ii) Plot the signal on the scope (Amplitude vs. time).

iii) Mathematically describe the signal based on the measurements.

iv) Compare the amplitude of the output signal to that of the input square
wave.

v) Gradually lower the frequency of the input square wave.

vi) What happens ? At the first interval where you again see a waveform,
plot the waveform seen on the scope (Amplitude vs. time). RECORD
THIS FREQUENCY !!!

vii) Mathematically describe the signal based on the measurements.

viii) Compare the amplitude of the output signal to that of the input square
wave.

ix) Repeat (v) through (viii) again for the next lower frequency.

11) Repeat part 10 using a sawtooth waveform as the input signal.

12) Replace R1 with a 5.6 kΩ resistor. Repeat parts 1 through 7.

9.5 Questions

1) Is the system critically damped, over-damped or under-damped or neither ?

2) What is the linear amplitude range for signal at resonance ?

3) What the components of the square wave based upon the output signals
measured in part 10 ?

4) What the components of the sawtooth waveform based upon the output
signals measured in part 10 ?

5) From the measurements in parts 1 through 7 what can be determined from
the relationship between R1 and the Q and R1 and the damping ?
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6) Is there a relationship between Q and ζ ? For just this case or for all
2nd-order systems ?
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