
rev1.3.0

AMD Stream Computing

User Guide

D e c e m b e r 2 0 0 8

ii
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

© 2007, 2008 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, FireGL, Catalyst, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Microsoft, Windows, and Windows Vista
are registered trademarks of Microsoft Corporation in the U.S. and/or other juristictions.
Other names are for informational purposes only and may be trademarks of their respec-
tive owners.

The contents of this document are provided in connection with Advanced Micro Devices,
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication and reserves the right to
make changes to specifications and product descriptions at any time without notice. The
information contained herein may be of a preliminary or advance nature and is subject to
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever,
and disclaims any express or implied warranty, relating to its products including, but not
limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of AMD’s
product could create a situation where personal injury, death, or severe property or envi-
ronmental damage may occur. AMD reserves the right to discontinue or make changes to
its products at any time without notice.

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453

Sunnyvale, CA 94088-3453
www.amd.com

http://www.amd.com/

A M D S T R E A M C O M P U T I N G

iii
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Preface

About This Document
This document provides a basic description of the AMD Stream Computing
environment and components. It describes the basic architecture of stream
processors and provides useful performance tips. This document also provides
a guide for programmers who want to use the AMD Stream SDK to accelerate
their applications.

Audience
This document is intended for programmers. Programming guides for Brook+ and
CAL are provided. It assumes prior experience in writing code for CPUs and
basic understanding of threads. While a basic understanding of GPU
architectures is useful, this document does not assume prior graphics knowledge.

Organization
This document begins with an overview of the AMD Stream Computing
programming models, the stream processor hardware description, and a
discussion of performance and optimization when programming for stream
processors. Chapter 2 and Chapter 3 are programming guides for the Brook+
language and CAL platform, respectively. Appendix A and Appendix B are the
specifications for the Brook+ language and the CAL platform, respectively.
Appendix D lists the supported graphics cards with this version of the Stream
Computing SDK. Appendix E provides an introduction to the terminology used in
3D and shader programming. The last section of this book is a glossary of
acronyms and terms.

Conventions
The following conventions are used in this document.

mono-spaced font A filename, file path, or code.

* Any number of alphanumeric characters in the name of a code format, parameter,
or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most
value (in this case, 2).

A M D S T R E A M C O M P U T I N G

iv
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Related Documents
• AMD, R600 Technology, R600 Instruction Set Architecture, Sunnyvale, CA,

est. pub. date 2007. This document includes the RV670 GPU instruction
details.

• ISO/IEC 9899:TC2 - International Standard - Programming Languages - C

• Kernighan Brian W., and Ritchie, Dennis M., The C Programming Language,
Prentice-Hall, Inc., Upper Saddle River, NJ, 1978.

• I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.
Hanrahan, “Brook for GPUs: stream computing on graphics hardware,” ACM
Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

• AMD Intermediate Language (IL) Compiler Reference Manual. Published by
AMD.

• CAL Image. AMD’s Compute Abstraction Layer Program Binary Format
Specification. Published by AMD.

• Buck, Ian; Foley, Tim; Horn, Daniel; Sugerman, Jeremy; Hanrahan, Pat;
Houston, Mike; Fatahalian, Kayvon. “BrookGPU”
http://graphics.stanford.edu/projects/brookgpu/

• Buck, Ian. “Brook Spec v0.2”. October 31, 2003.
http://merrimac.stanford.edu/brook/brookspec-05-20-03.pdf

• OpenGL Programming Guide, at http://www.glprogramming.com/red/

• Microsoft DirectX Reference Website, at
http://msdn.microsoft.com/archive/default.asp?

url=/archive/en-
us/directx9_c_Summer_04/directx/graphics/reference/reference.asp

• GPGPU: http://www.gpgpu.org, and Stanford BrookGPU discussion forum
http://www.gpgpu.org/forums/

Contact Information
To submit questions or comments concerning this document, contact our
technical documentation staff at: streamcomputing@amd.com.

For questions concerning AMD Stream products, please email:
streamcomputing@amd.com.

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream computing.

A M D S T R E A M C O M P U T I N G

v
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

For questions about developing with AMD Stream, please email:
streamdeveloper@amd.com.

You can learn more about AMD Stream at:
http://ati.amd.com/technology/streamcomputing.

We also have a growing community of AMD Stream users! Come visit us at the
AMD Stream Developer Forum to find out what applications other users are trying
on their AMD Stream products!

http://forums.amd.com/devforum/categories.cfm?catid=328

A M D S T R E A M C O M P U T I N G

vi
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A M D S T R E A M C O M P U T I N G

vii
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Contents

Preface

Contents

Chapter 1 AMD Stream Computing Overview
1.1 The AMD Stream Computing Programming Model ... 1-1

1.1.1 Pseudo Code Explanation of AMD Stream Computing...1-3
1.1.2 Brook+ Open-Source Data-Parallel C Compiler ...1-8
1.1.3 AMD Compute Abstraction Layer (CAL) ...1-9
1.1.4 GPU ShaderAnalyzer ...1-10
1.1.5 AMD Core Math Library (ACML) ...1-11

1.2 Stream Processor Hardware Functionality ... 1-12
1.2.1 The Stream Processor...1-12
1.2.2 Thread Processing ...1-14
1.2.3 Flow Control ...1-14
1.2.4 Thread Creation..1-15
1.2.5 Memory Architecture and Access..1-16
1.2.6 Host-to-Stream Processor Communication ..1-19
1.2.7 Stream Processor Scheduling..1-20

1.3 Performance ... 1-22
1.3.1 Analyzing Stream Processor Kernels..1-22
1.3.2 Estimating Performance ..1-23
1.3.3 Additional Performance Factors ..1-24

Chapter 2 Brook+ Programming
2.1 Runtime Options .. 2-1
2.2 A Sample Application.. 2-2

2.2.1 Writing ...2-2
2.2.2 Building ...2-4
2.2.3 Executing ..2-6
2.2.4 Debugging...2-6

2.3 Included Samples... 2-6
2.3.1 Simple Matrix Multiply Example ...2-6
2.3.2 Optimized Matrix Multiply Example ...2-8

2.4 Example of Generated C++ Code for sum.br... 2-11
2.5 Building Brook+ ... 2-13

A M D S T R E A M C O M P U T I N G

viii
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.5.1 Visual Studio...2-13
2.5.2 Command Line ...2-13

2.6 The Brook+ Runtime API .. 2-14
2.6.1 Differences Between the C++ API and the Previous Programming Model.............2-14
2.6.2 Choosing a Programming Model ...2-15

2.7 Stream Management (Stream.h) ... 2-16
2.7.1 Public Methods...2-16
2.7.2 Public Data..2-19
2.7.3 Compatibility...2-19
2.7.4 Backend Performance ...2-19

2.8 Kernel Management... 2-20
2.9 Scatter/Gather Interface Changes.. 2-20
2.10 Converting Code to Use the New C++ API... 2-21

Chapter 3 AMD Compute Abstraction Layer (CAL) Programming Guide
3.1 Introduction .. 3-1

3.1.1 CAL System Architecture..3-1
3.1.2 CAL Programming Model..3-5
3.1.3 CAL Software Distribution ..3-6

3.2 CAL Application Programming Interface .. 3-7
3.2.1 CAL Runtime ..3-8
3.2.2 CAL Compiler ...3-14
3.2.3 Kernel Execution..3-16

3.3 HelloCAL Application .. 3-18
3.3.1 Code Walkthrough ...3-19

3.4 Performance Optimizations .. 3-24
3.4.1 Arithmetic Computations ..3-24
3.4.2 Memory Considerations ..3-25
3.4.3 Asynchronous Operations ..3-27

3.5 Tutorial Application.. 3-28
3.5.1 Problem Description ..3-29
3.5.2 Basic Implementation ..3-29
3.5.3 Optimized Implementation ..3-30

3.6 CAL/Direct3D Interoperability ... 3-33
3.7 Advanced Topics.. 3-33

3.7.1 Thread-Safety..3-33
3.7.2 Multiple Stream Processors..3-34
3.7.3 Using the Global Buffer in CAL ...3-35
3.7.4 Double Precision Arithmetic...3-37

Appendix A Brook+ Specification
A.1 The Structure of a Brook+ Program..A-1
A.2 Primitive Data Types..A-2

A M D S T R E A M C O M P U T I N G

ix
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A.3 Streams and Stream Operators..A-4
A.3.1 Streams .. A-4
A.3.2 Stream Declarations.. A-4
A.3.3 Stream Operators .. A-5

A.4 Kernels ..A-8
A.4.1 Kernel Types .. A-8
A.4.2 Kernel-Specified Communication Patterns .. A-10
A.4.3 Calling Other Code from Kernel Code ... A-11
A.4.4 Restrictions on Kernel Code ... A-11

A.5 Standard Library Functions and Intrinsics ...A-12

Appendix B The AMD Compute Abstraction Layer (CAL) API Specification
B.1 Programming Model ..B-1
B.2 Runtime ...B-3

B.2.1 System.. B-3
B.2.2 Device Management.. B-3
B.2.3 Memory Management.. B-3
B.2.4 Context Management .. B-4
B.2.5 Program Loader... B-4
B.2.6 Computation .. B-4

B.3 Platform API..B-4
B.3.1 System Component... B-4
B.3.2 Device Management.. B-5
B.3.3 Memory Management.. B-8
B.3.4 Context Management .. B-13
B.3.5 Loader... B-15
B.3.6 Computation .. B-17
B.3.7 Error Reporting.. B-20

B.4 Extensions ..B-20
B.4.1 Extension Functions ... B-20
B.4.2 Interoperability Extensions .. B-21
B.4.3 Counters... B-23

B.5 CAL API Types ...B-26
B.5.1 Enums... B-26
B.5.2 Structures... B-26

B.6 Function Calls in Alphabetic Order ...B-26

Appendix C BRCC Semantic Checks
C.1 Type Qualifiers ...C-1
C.2 Storage Classes ...C-1
C.3 Implicit Conversion Rules...C-2
C.4 Explicit Conversion Rules ..C-2
C.5 Vector Swizzle ..C-3

A M D S T R E A M C O M P U T I N G

x
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

C.6 Vector Literals ..C-3
C.7 indexof() and instance() Semantics ..C-3
C.8 Constant Buffer Support and Array Declarations..C-3
C.9 Semantics of Conditional Expressions...C-4
C.10 Function Call Semantics ...C-4
C.11 Function Definition Semantics ...C-4
C.12 Operators ..C-4
C.13 Index Expression Semantics ..C-5
C.14 Summary of Command-Line Options Affecting Semantic Checks..C-5

Appendix D Supported Devices

Appendix E Introduction to 3D Graphics and Shader Terminology
E.1 Shaders ... E-1
E.2 Domain of Execution ... E-1
E.3 Geometry and Vertices.. E-1

Glossary of Terms

A M D S T R E A M C O M P U T I N G

xi
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figures

1.1 AMD Stream Software Ecosystem ..1-1
1.2 Simplified AMD Stream Computing Programming Model ...1-2
1.3 Stream Processor Execution ...1-4
1.4 Matrix Multiply (nxk) X (kxm)...1-5
1.5 Brook+ Language Elements ..1-9
1.6 CAL Functionality...1-10
1.7 GSA User Interface Example ..1-11
1.8 Generalized Stream Processor Structure ..1-12
1.9 Simplified Block Diagram of the Stream Processor ..1-13
1.10 Rasterization of Threads to SIMD Engines...1-15
1.11 One Example of a Tiled Layout Format..1-19
1.12 Simplified Execution Of Threads On A Single Thread Processor..1-21
1.13 Thread Processor Stall Due to Data Dependency..1-22
1.14 AMD GPU ShaderAnalyzer Output ...1-23
2.1 Compiling a Brook+ File and Generating a C++ File ...2-5
2.2 Optimized Matrix Multiplication ..2-10
3.1 CAL System Architecture...3-2
3.2 CAL Device and Memory ..3-3
3.3 AMD Stream Processor Architecture...3-4
3.4 CAL Code Generation ...3-6
3.5 Context Management for Multi-Threaded Applications ...3-10
3.6 Local and Remote Memory ...3-11
3.7 Kernel Compilation Sequence ...3-16
3.8 Multiplication of Two Matrices ...3-29
3.9 Blocked Matrix Multiplication ...3-31
3.10 Micro-Tiled Blocked Matrix Multiplication ..3-32
3.11 CAL Application using Multiple Stream Processors..3-35
A.1 Symbols for Brook+ Building Blocks .. A-2
A.2 Simple Streamed Multiply-Add.. A-2
B.1 CAL System .. B-2
B.2 Context Queues .. B-3

A M D S T R E A M C O M P U T I N G

xii
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide 1-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Chapter 1
AMD Stream Computing Overview

AMD Stream Computing harnesses the tremendous processing power of GPUs
(stream processors) for high-performance, data-parallel computing in a wide
range of applications.1 The following is an overview of the AMD Stream
Computing programming model, hardware, and performance.

1.1 The AMD Stream Computing Programming Model
The AMD Stream Computing Model includes a software stack and the AMD
stream processors. Figure 1.1 illustrates the relationship of the AMD Stream
Computing components.

Figure 1.1 AMD Stream Software Ecosystem

The AMD Stream Computing software stack provides end-users and developers
with a complete, flexible suite of tools to leverage the processing power in AMD
stream processors. AMD software embraces open-systems, open-platform
standards. The AMD open platform strategy enables AMD technology partners
to develop and provide third-party development tools.

The software includes the following components:

• Compilers – like the Brook+ compiler with extensions for AMD devices.2

1. A stream is a collection of data elements of the same type that can be operated on in parallel.
2. See Chapter 2, “Brook+ Programming,” for using Brook+.

Libraries

Compilers

Brook+

Profilers

GPU
ShaderAnalyzer

Third-Party Tools

Brook+ Runtime
AMD

Multicore
CPUs

Compute Abstraction Layer

AMD
Stream

Processors

A M D S T R E A M C O M P U T I N G

1-2 The AMD Stream Computing Programming Model
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

• Device Driver for stream processors – AMD Compute Abstraction Layer
(CAL).1

• Performance Profiling Tools – GPU ShaderAnalyzer.

• Performance Libraries – ACML for optimized domain-specific algorithms.

The latest generation of AMD stream processors are programmed using the
unified shader programming model. Programmable stream cores execute various
user-developed programs, called stream kernels (or simply: kernels). These
stream cores can execute non-graphics functions using a virtualized SIMD
programming model operating on streams of data. In this programming model,
known as stream computing, arrays of input data elements stored in memory are
mapped onto a number of SIMD engines, which execute kernels to generate one
or more outputs that are written back to output arrays in memory.

Each instance of a kernel running on a SIMD engine's thread processor is called
a thread. A specified rectangular region of the output buffer to which threads are
mapped is known as the domain of execution.

The stream processor schedules the array of threads onto a group of thread
processors, until all threads have been processed. Subsequent kernels can then
be executed, until the application completes. A simplified view of the AMD
Stream Computing programming model and the mapping of threads to thread
processors is shown in Figure 1.2 (also see Figure 1.9).

Figure 1.2 Simplified AMD Stream Computing Programming Model

1. When using CAL, it might not be necessary to use Brook+; instead, it is possible to use AMD IL. See
Chapter 3, “AMD Compute Abstraction Layer (CAL) Programming Guide.”

A M D S T R E A M C O M P U T I N G

The AMD Stream Computing Programming Model 1-3
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

1.1.1 Pseudo Code Explanation of AMD Stream Computing

Another way to explain the AMD Stream Computing programming model is
through pseudo code.

Matrix Sum – The following example sums two matrices.

The CPU code is:

void sum(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

float a0 = A[i][j];
float b0 = B[i][j];

C[i][j] = a0 + b0;
}

}
}

This code can be rewritten as to emphasize the data parallel operations:

float sum_kernel(int y, int x, float M0[], float M1[])
{

float a0 = M0[y][x];
float b0 = M1[y][x];

return a0 + b0;
}

void sum(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

C[i][j] = sum_kernel(i, j, A, B);
}

}
}

The CPU executes the code serially such that C[0][0] is calculated before
C[0][1]. However, the elements of C can be calculated independently of each
other in any order. On a multi-CPU-core processor, they can also be calculated
in parallel.

A multi-threaded version of the code might look like this:

A M D S T R E A M C O M P U T I N G

1-4 The AMD Stream Computing Programming Model
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

void sum(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

launch_thread{ C[i][j] = sum_kernel(i, j, A, B); }
}

}

sync_threads{}
}

Effectively, this is the AMD Stream Computing programming model. The function
sum_kernel is the kernel written by the developer. The array C is the output
stream and defines the domain of execution (n x m). Independent threads that
run sum_kernel execute and write at every location in C. The hardware takes
the place of the nested for-loop.

Figure 1.3 illustrates the process of a matrix sum execution in a stream
processor. Since the stream processor can operate in parallel with the CPU,
sync_threads is used to wait for the threads to complete before continuing.
The CPU can perform other tasks while the stream processor is processing.

High-level languages for AMD Stream Computing, such as Brook+, abstract the
hardware details; no additional knowledge of stream processor hardware is
required. The developer writes kernels to be executed on the stream processor,
provides inputs and outputs, and defines the domains of execution.

Figure 1.3 Stream Processor Execution

A

C

B

X X X X
X X X X
X X X X
X X X X

X X X X
X X X X
X X X X
X X X X

Stream Processor:
Virtual SIMD

Domain of Execution

float sum_kernel (int y, int x, Mo [], M1 [])
{
 float a0 = M0 [y] [x];
 float b0 = M1 [y] [x];
 return a0 + b0;
} Kernel

A M D S T R E A M C O M P U T I N G

The AMD Stream Computing Programming Model 1-5
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Matrix Multiply – This example multiplies two matrices (see Figure 1.4). This
shows how some understanding of the hardware can improve performance.

Figure 1.4 Matrix Multiply (nxk) X (kxm)

The CPU code is:

void matmult(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

float total = 0;
for(int c=0; c<k; c++)

total += A[i][c] * B[c][j];

C[i][j] = total;
}

}
}

The kernel that can be executed on the stream processor is shown in bold. The
outer two for-loops represent the stream processor executing the kernel on the
domain of execution of array C.

k

n

m

k

m

n

A X B = C

A M D S T R E A M C O M P U T I N G

1-6 The AMD Stream Computing Programming Model
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Again, this code can be rewritten as to emphasize the data parallel operations:

float matmult_kernel(int y, int x, int k,
 float M0[], float M1[])
{

float total = 0;
for(int c=0; c<k; c++)
{

total += M0[y][c] * M1[c][x];
}

return total;
}

void matmult(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

launch_thread{C[i][j] = matmult_kernel(i, j, k, A, B);}
}

}

sync_threads{}
}

One feature of stream processors is that each thread processor can perform
parallel operations. So far, the examples indicate scalar operations in the kernel.
If the compiler detects parallelization within a kernel, it tries to optimize it. For
example, a thread processor can execute multiple multiplies and adds
simultaneously. To take advantage of the stream processor’s ability to perform
multiple operations at the same time, the user can explicitly code in vector
operations.

A M D S T R E A M C O M P U T I N G

The AMD Stream Computing Programming Model 1-7
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

The following implementation uses the float4 data type. This causes the thread
processors to execute four operations at the same time:

float4 matmult_kernel(int y, int x, int k,
 float4 M0[], float4 M1[])
{

float4 total = 0;
for(int c=0; c<k/4; c++)
{

total += M0[y][c] * M1[x][c];
}

return total;
}

void matmult(float4 A[], float4 B’[], float4 C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m/4; j++)
{

launch_thread{C[i][j] = matmult_kernel(j, i, k, A, B’);}
}

}

sync_threads{}
}

Several key changes in this code maximize performance. Since inputs and
outputs are now float4 instead of float, the domain of execution dimensions
decrease to (n x (m/4)); fewer threads are executed by the stream processor.

Also, the addressing for one of the arrays in the kernel has changed. To support
maximum usage of float4 operations, the second matrix, B, must be
transposed to B’. The inner loop also decreases by a factor of four. The
developer must decide if the extra step of transposing the input data is worth the
cost.

If the input matrices are small, the transposition cost might not be offset by the
performance gain in the kernel. If the matrices are large, the time to perform the
transpose might be offset by the optimized kernel and yield a performance gain.
If the input matrix sizes are variable, two separate code paths might be required
for optimal performance.

The following sections explain how the stream processor executes kernels. It
also teaches the developer how to optimize code for execution on the stream
processor.

A M D S T R E A M C O M P U T I N G

1-8 The AMD Stream Computing Programming Model
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

1.1.2 Brook+ Open-Source Data-Parallel C Compiler

Brook+ provides an explicit data-parallel C compiler using extensions to the
standard ANSI C programming language. The Brook+ computational model,
called streaming, goes beyond traditional, sequential programming languages by
providing:

• Data Parallelism – Brook+ provides an intuitive mechanism for specifying
single-instruction multiple-data (SIMD) operations.

• Arithmetic Intensity – the Brook+ interface encourages development of
efficient algorithms by minimizing global communication and maximizing
localized computation on stream processors.

The two key elements in the Brook+ language are:

• Stream – A collection of data elements of the same type that can be operated
on in parallel. Streams are notated in angle brackets.

• Kernel – A parallel function that operates on every element of a domain of
execution. Kernels are specified using the kernel keyword.

The following code shows a Brook+ kernel that adds two input streams and
stores the results in an output stream. The kernel performs an implicit loop over
each element in the output stream.

kernel
void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

As shown in Figure 1.5, the Brook+ software consists of:

• brcc – a source-to-source meta-compiler that translates Brook+ programs
(.br files) into device-dependent kernels embedded in valid C++ source
code. The generated C++ source includes the CPU code and the stream
processor device code, both of which are later linked into the executable.

• brt – a runtime library that executes a kernel invoked from the CPU code in
the application. Brook+ includes various runtimes for CPUs and stream
processors; you can select the execution model at application run-time. The
CPU runtime serves as a good debugging tool when developing stream
kernels.

A M D S T R E A M C O M P U T I N G

The AMD Stream Computing Programming Model 1-9
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.5 Brook+ Language Elements

AMD has enhanced brcc to produce the virtual ISA, called the AMD IL (for
intermediate language). AMD also has enhanced the brt with a backend
optimized for AMD stream processors using the CAL driver (see Section 1.1.3,
“AMD Compute Abstraction Layer (CAL),” page 1-9).

1.1.3 AMD Compute Abstraction Layer (CAL)

The AMD Compute Abstraction Layer (CAL) is a device driver library that
provides a forward-compatible interface to AMD stream processors (see
Figure 1.6). CAL lets software developers interact with the stream processor
cores at the lowest-level for optimized performance, while maintaining forward
compatibility. CAL provides:

• Device Specific Code Generation

• Device Management

• Resource Management

• Kernel Loading and Execution

• Multi-device support

• Interoperability with 3D Graphics APIs

CPU, Stream
Code Splitter

Kernel
Complier

Stream Runtime

CPU Backend

Integrated Stream
Kernel and

CPU Program

CPU Code (C) CPU Emulation
Code (C++)

AMD Stream Processor
Device Code (IL)

brcc

brt

Backend (CAL)
Stream Processor

A M D S T R E A M C O M P U T I N G

1-10 The AMD Stream Computing Programming Model
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.6 CAL Functionality

CAL includes a set of C routines and data types that allow higher-level software
tools to control hardware memory buffers (device-level streams) and stream
processor programs (device-level kernels). The CAL runtime accepts kernels
written in AMD IL and generates optimized code for the target architecture. It also
provides access to device-specific features.

1.1.4 GPU ShaderAnalyzer

The GPU ShaderAnalyzer is a performance-profiling tool developers can use to
develop and profile stream kernels. It can be downloaded for free from the AMD
developer web pages,
http://ati.amd.com/technology/streamcomputing/sdkdownload.html.

Features provided by the GPU ShaderAnalyzer include:

• Quick syntax checking of programs written in Brook+.

• Online kernel compilation to generate the equivalent AMD IL and the
processor-specific ISA assembly. The generated assembly can be modified
manually and used in a CAL application.

• Performance characterization of arithmetic, memory, and flow-control
instructions.

The GPU ShaderAnalyzer has a simple graphical user interface. Figure 1.7
shows an example kernel, that was written in Brook+ and is converted to AMD
IL. The generated AMD IL can be sent to the CAL runtime compiler for object
code generation and subsequent execution.

CAL Runtime

Stream
Processor
Executable

Stream
Processor

Buffers

Stream
Processor 0

Stream
Processor 1

Stream
Processor n

A M D S T R E A M C O M P U T I N G

The AMD Stream Computing Programming Model 1-11
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.7 GSA User Interface Example

Note that:

• The input program can be edited directly in the Source Code window on the
top-left.

• The function name must be the name of the Brook+ kernel.

• The target compiler must be set to Brook+ in the HLSL Compiler section.

• The output program type can be set using the Format selection tab in the
Object Code section.

1.1.5 AMD Core Math Library (ACML)

The ACML includes a collection of commonly used mathematical software
routines. It is optimized for AMD platforms and provides a quick path to high-
performance development.

The ACML includes implementations of:

• Full Basic Linear Algebra Subroutines (BLAS)

• Linear Algebra Package (LAPACK) routines

• Fast Fourier Transform (FFT) routines

Input Kernel
in High-Level
Language

Performance
Statistics on
various Stream
Processors

Front-end Compiler
and other flags

Output Kernel
Type

Output Kernel
String

A M D S T R E A M C O M P U T I N G

1-12 Stream Processor Hardware Functionality
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

• Math transcendental routines

• Random Number Generator routines

The ACML includes a stream processing backend for load balancing of
computations between the CPU and stream processor depending upon the
suitability of the task for a particular architecture.1 This is done at runtime.

1.2 Stream Processor Hardware Functionality
Figure 1.8 shows a simplified block diagram of a generalized stream processor.

Figure 1.8 Generalized Stream Processor Structure

1.2.1 The Stream Processor

Figure 1.9 is a simplified diagram of an AMD stream processor. Different stream
processors have different characteristics (such as the number of SIMD engines),
but follow a similar design pattern.

Stream processors comprise groups of SIMD engines (see Figure 1.2). Each
SIMD engine contains numerous thread processors, which are responsible for
executing kernels, each operating on an independent data stream. Thread
processors, in turn, contain numerous stream cores, which are the fundamental,
programmable computational units, responsible for performing integer, single,
precision floating point, double precision floating point, and transcendental
operations. All thread processors within a SIMD engine execute the same
instruction sequence; different SIMD engines can execute different instructions.

1. The stream-accelerated version of the ACML is called ACML-GPU. The ACML-GPU uses the stream
processor to accelerate ACML routines that can benefit from stream acceleration. The ACML-GPU
currently provides stream-accelerated implementations of SGEMM and DGEMM.

Stream Processor

SIMD
Engine

. . .

. . .Thread
Processors

. . .Stream Cores

SIMD
Engine

SIMD
Engine

Stream Processor

A M D S T R E A M C O M P U T I N G

Stream Processor Hardware Functionality 1-13
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.9 Simplified Block Diagram of the Stream Processor1

A thread processor is arranged as a five-way VLIW processor (see bottom of
Figure 1.9). Up to five scalar operations can be co-issued in a very long
instruction word (VLIW) instruction. Stream cores can execute single-precision
floating point or integer operations. One of the five stream cores also can handle
transcendental operations (sine, cosine, logarithm, etc.)2. Double-precision
floating point operations are processed by connecting four of the stream cores

1. As described later, much of this is transparent to the programmer.

Ultra-Threaded Dispatch Processor

SIMD
Engine

SIMD
Engine

SIMD
Engine

SIMD
Engine

General-Purpose Registers

Branch
Execution
Unit

Stream
Cores

T-Stream
 Core

Instruction
and Control
Flow

Thread
Processor

A M D S T R E A M C O M P U T I N G

1-14 Stream Processor Hardware Functionality
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

(excluding the transcendental core) to perform a single double-precision
operation. The thread processor also contains one branch execution unit to
handle branch instructions.

Different stream processors have different numbers of stream cores. For
example, the ATI Radeon™ 3870 GPU (RV670) stream processor has four SIMD
engines, each with 16 thread processors, and each thread processor contains
five stream cores; this yields 320 physical stream cores.

1.2.2 Thread Processing

All thread processors within a SIMD engine execute the same instruction for each
cycle. To hide latencies due to memory accesses and stream core operations,
multiple threads are interleaved; thus, in a thread processor, up to four threads
can issue four VLIW instructions over four cycles. For example, on the ATI
Radeon™ 3870 GPU (RV670) stream processor, the 16 thread processors
execute the same instructions, with each thread processor processing four
threads at a time; effectively, this appears as a 64-wide SIMD engine. The group
of threads that are executed together is called a wavefront.

The size of wavefronts can differ on different stream processors. For example,
the ATI Radeon™ HD 2600 and the ATI Radeon™ HD 2400 graphics cards each
have fewer thread processors in each SIMD engine on their stream processors
compared to the ATI Radeon™ 3870 GPU (RV670) stream processor; therefore,
the wavefront sizes are 32 and 16 threads, respectively. The AMD FireStream™
9170 stream processor, which uses the RV670 stream processor, has a
wavefront size of 64 threads.

SIMD engines operate independently of each other, so it is possible for each
array to execute different instructions.

1.2.3 Flow Control

Flow control, such as branching, is done by combining all necessary paths as a
wavefront. If threads within a wavefront diverge, all paths are executed serially.
For example, if a thread contains a branch with two paths, the wavefront first
executes one path, then the second path. The total time to execute the branch
is the sum of each path time. An important point is that even if only one thread
in a wavefront diverges, the rest of the threads in the wavefront execute the
branch. The number of threads that must be executed during a branch is called
the branch granularity. On AMD hardware, the branch granularity is the same as
the wavefront granularity.

Example 1: If two branches, A and B, take the same amount of time t to execute
over a wavefront, the total time of execution, if any thread diverges, is 2t.

Loops execute in a similar fashion, where the wavefront occupies a SIMD engine
as long as there is at least one thread in the wavefront still being processed.

2. For the actual operations, see the AMD Compute Abstraction Layer (CAL) Technology Intermediate
Language (IL) Reference Manual.

A M D S T R E A M C O M P U T I N G

Stream Processor Hardware Functionality 1-15
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Thus, the total execution time for the wavefront is determined by the thread with
the longest execution time.

Example 2: If t is the time it takes to execute a single iteration of a loop; and
within a wavefront all threads execute the loop one time, except for a single
thread that executes the loop 100 times, the time it takes to execute that entire
wavefront is 100t.

1.2.4 Thread Creation

Wavefronts are composed of quads, which are groups of 2x2 threads in the
domain. Quads are processed together. If there are non-active threads within a
quad, the thread processors that would have been mapped to those threads are
idle. The simplest example is a domain of execution of height or width one. In
this case, since quads are not fully covered, the hardware is only half used
because half the quad is empty.

Wavefront construction and order of thread execution are determined by the
rasterization order of the domain of execution (see Figure 1.10). Rasterization is
the process of mapping threads from the domain of execution to SIMD engines1.

Figure 1.10 Rasterization of Threads to SIMD Engines

1. Rasterization is a carryover from graphics terminology, where it refers to the process of
turning geometry, such as triangles, into pixels.

A M D S T R E A M C O M P U T I N G

1-16 Stream Processor Hardware Functionality
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

1.2.4.1 Rasterization

Rasterization follows a pre-set zig-zag-like pattern across the domain of
execution. The exact pattern normally is not disclosed because it might change
in subsequent stream processor generations. The pattern is based on multiples
of 8x8 blocks (16 quads) within the domain, matching the size of a wavefront.
For example, if the domain of execution is 16x16, the first 8x8 block maps to one
wavefront and is executed in one SIMD engine. A second 8x8 block maps to
another wavefront and is executed in another SIMD engine. This continues until
all 8x8 blocks in the domain are mapped to SIMD engines.

1.2.4.2 Thread Optimization

AMD hardware is designed to maximize the number of active threads in a
wavefront. So, if there are partial 8x8 blocks, the stream processor tries to fill the
rest of the wavefront from other blocks, but within the quad limitation. For
example, if the domain is of height 2, the wavefront is constructed using blocks
of height 2 and width 32. Thus, having domains that are a multiple of 8x8 is not
necessary, but might be more efficient.

This rasterization process is transparent to the user, but can affect memory
access performance, as described in Section 1.2.5.1, “Memory Access,” page 1-
17.

1.2.5 Memory Architecture and Access

There are three memory domains for developing stream processor applications:
host (CPU) memory, PCIe memory, local (stream processor) memory.

Host (CPU) memory is used by applications. It is only available to the user’s
applications; the GPU cannot access it. This is where the application’s data
structures and program data reside.

PCIe memory is a section of host (CPU) memory set aside for PCIe use. It is
accessible from the host program and the stream process and can be modified
by both. Modifying this memory requires synchronization between the stream
processor and CPU, usually with the calCtxIsEventDone API call. Brook+
makes this transparent.

Local (stream processor) memory is the GPU version of host memory. It is only
accessible by the stream processor and cannot be accessed through the CPU.

There are three ways to copy data to stream processor memory:

• Implicitly through calResMap/calResUnmap.

• Explicitly through calCtxMemCopy.

• Explicitly with a custom kernel that reads from PCIe memory and writes to
stream processor memory.

The important consideration when using these interfaces is the amount of
copying involved. In a program that does not handle memory transfers (such as

A M D S T R E A M C O M P U T I N G

Stream Processor Hardware Functionality 1-17
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

all of the samples), there is a two copy processes: between host and PCIe, and
between PCIe and stream processor. This is why there is a huge performance
difference between the system GFLOPS and the kernel GFLOPS.

With proper memory transfer management and the use of system pinned
memory (host/CPU memory remapped to the PCIe memory space) through
calCtxResCreate in the cal_ext.h, copying between host (CPU) memory and
PCIe memory can be skipped. Note that this is not an easy API call to use and
comes with many constraints, such as page boundary and memory alignment.

Double copying lowers the overall system memory bandwidth. Copies between
host (CPU) memory and PCIe memory usually are in the hundreds of MBps;
those between the PCIe memory and stream processor memory are in the GBps
range. On-chip memory bandwidth is in the tens to hundred GBps range. In
stream processor programming, pipeline executions and copies, or other
techniques, to reduce these copy bottlenecks.

CAL resources used by Brook+ can be located in two of the three memory
locations (PCIe memory, local stream processor memory).

To create a local (stream processor) memory space, use calResAllocLocal API
function; to create a PCIe memory space, use the calResAllocRemote API
function.

1.2.5.1 Memory Access

Accessing stream processor local memory typically is an order of magnitude
faster than accessing remote (system or CPU) memory. However, stream cores
(see Figure 1.8) do not directly access memory; instead, they issue memory
requests through dedicated hardware units. When a thread tries to access
memory, the thread is transferred to the appropriate fetch unit. The thread is then
deactivated until the access unit finishes accessing memory. Meanwhile, other
threads can be active within the SIMD engine, contributing to better performance.
The data fetch units handle three basic types of memory operations: loads,
stores, and streaming stores. Stream processors now can store writes to random
memory locations using global buffers.

1.2.5.2 Global Buffer

The global buffer lets applications read from, and write to, arbitrary locations in
input buffers and output buffers, respectively. When using a global buffer,
memory-read and memory-write operations from the stream kernel are done
using regular stream processor instructions with the global buffer used as the
source or destination for the instruction. The programming interface is similar to
load/store operations used with CPU programs, where the relative address in the
read/write buffer is specified.

1.2.5.3 Memory Loads

Memory loads are done by addressing the desired location in the input memory
using the fetch unit. The fetch units can process either 1D or 2D addresses.

A M D S T R E A M C O M P U T I N G

1-18 Stream Processor Hardware Functionality
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

These addresses can be normalized or un-normalized. Normalized coordinates
are between 0.0 and 1.0 (inclusive). For the fetch units to handle 2D addresses
and normalized coordinates, pre-allocated memory segments must be bound to
the fetch unit so that the correct memory address can be computed. For a single
kernel invocation, up to 128 memory segments can be bound at once. The
maximum number of 2D addresses is 8192x8192. When accessing a global
buffer, of which only one can be bound at a time, addresses must be un-
normalized, 1D coordinates. Memory loads are usually cached, except for loads
from a global buffer, which are not cached.

1.2.5.4 Memory Stores

When using a global buffer, each thread can write to an arbitrary location within
the global buffer. Only one global buffer is allowed to be bound at a time for a
particular kernel invocation. The same global buffer must be used for loads and
stores. Global buffers use a linear memory layout. If consecutive addresses are
written, the SIMD engine issues a burst write for more efficient memory access.

1.2.5.5 Streaming Stores

Kernels can perform streaming writes in up to eight separate memory segments.
The streaming writes occur only once per kernel invocation: only one write is
allowed per segment, and the write location is implicitly computed based on each
thread's location in the domain of execution. For example, the thread at location
<1,1> in the domain would write to location <1,1> in each bound memory
segment. For these addresses to computed implicitly, the sizes of the bound
memory segments must be the same and specified beforehand.

1.2.5.6 Memory Tiling

There are many possible physical memory layouts for data streams. AMD stream
processors can access memory in a tiled or in a linear arrangement.

• Linear – A linear layout format arranges the data linearly in memory such
that element addresses are sequential. This is the layout that is familiar to
CPU programmers. This format must be used for global buffers.

• Tiled – A tiled layout format has a pre-defined sequence of element blocks
arranged in sequential memory addresses (see Figure 1.11). Translating
from user address space to the tiled arrangement is transparent to the user.
Tiled memory layouts provide an optimized memory access pattern to make
more efficient use of the RAM attached to the stream processor. This
contributes to lower latency.

A M D S T R E A M C O M P U T I N G

Stream Processor Hardware Functionality 1-19
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.11 One Example of a Tiled Layout Format

1.2.6 Host-to-Stream Processor Communication

The following subsections discuss the communication between the host (CPU)
and the stream processor. This includes an overview of the PCI Express® bus,
processing API calls, and DMA transfers.

1.2.6.1 PCI Express Bus

Communication and data transfers between the system and the stream
processor occur on the PCI Express® (PCIe®) channel. AMD Stream Computing
cards use PCIe 2.0 x16 (second generation, 16 lanes). Generation 1 x16 has a
theoretical maximum throughput of 4 GBps in each direction. Generation 2 x16
doubles the throughput to 8 GBps in each direction. Actual transfer performance
is CPU and chipset dependent.

Transfers from the system to the stream processor are done either by the
command processor or by the DMA engine. The stream processor also can read
and write system memory directly from the SIMD engine through kernel
instructions over the PCIe® bus.

1.2.6.2 Processing API Calls: The Command Processor

The host application does not interact with the stream processor directly. A driver
layer translates and issues commands to the hardware on behalf of the
application.

Most commands to the stream processor are buffered in a command queue on
the host side. The command queue is flushed to the stream processor, and the
commands are processed by it, only when a kernel program is executed.
Flushing sends the current state of the command queue to the stream processor.
There is no guarantee as to when commands from the command queue are

A B E F
C D G H
I J M N
K L O P

A B C D E F G H

I J K L M N O P

Physical

Logical

A M D S T R E A M C O M P U T I N G

1-20 Stream Processor Hardware Functionality
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

executed, only that they are executed in order. Unless the stream processor is
busy, commands are executed immediately.

Command queue elements include:

• Kernel execution calls

• Kernels

• Constants

1.2.6.3 DMA Transfers

Direct Memory Access (DMA) memory transfers can be executed separately from
the command queue using the DMA engine on the stream processor. DMA calls
are executed immediately; and the order of DMA calls and command queue
flushes is guaranteed.

DMA transfers can occur asynchronously. This means that a DMA transfer is
executed concurrently with other system or stream processor operations.
However, data is not guaranteed to be ready until the DMA engine signals that
the event or transfer is completed. The application can query the hardware for
DMA event completion. If used carefully, DMA transfers are another source of
parallelization.

The thread processors handle non-DMA memory transfers.

1.2.7 Stream Processor Scheduling

Stream processors are very efficient at running large numbers of threads in a
manner transparent to the application. Each stream processor uses the large
number of threads to hide memory access latencies by having the resource
scheduler switch the active thread in a given thread processor whenever the
current thread is waiting for a memory access to complete. This time multiplexing
is also used to hide the latency of stream core operations resulting from
pipelining. Hiding memory access latencies requires that each thread contain a
large number of calculations.

Figure 1.12 shows the timing of a simplified execution of threads in a single
thread processor. At time 0, the threads are queued and waiting for execution.
In this example, only four threads (T0…T3) are scheduled for the processor. The
hardware limit for the number of active threads is dependent on the resource
usage (such as the number of active registers used) of the program being
executed. An optimally programmed stream processor typically has thousands of
active threads.

A M D S T R E A M C O M P U T I N G

Stream Processor Hardware Functionality 1-21
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.12 Simplified Execution Of Threads On A Single Thread
Processor

At runtime, thread T0 executes until cycle 20; at this time a stall occurs due to a
memory fetch request. The scheduler then begins execution of the next thread,
T1. Thread T1 executes until it stalls or completes. New threads execute, and
the process continues until the available number of active threads is reached.
The scheduler then returns to the first thread, T0.

If the data thread T0 is waiting for has returned from memory, T0 continues
execution. In the example in Figure 1.12, the data is ready, so T0 continues.
Since there were enough threads and stream core operations to cover the long
memory latencies, the thread processor does not idle. This method of memory
latency hiding helps the stream processor achieve maximum performance.

If the data for thread T0 is not ready, the thread processor waits until thread T0
is ready to execute, even if there are other threads ready to execute, as
demonstrated in Figure 1.13.

X

X X X X

X X X X X X X

X X X X X X XT0

T1

T2

T3

 0 20 40 60 80

Thread

STALL

STALL

STALL

STALL

READY

= executing = stalled= ready (not executing)

READY

READY

READY

XX

A M D S T R E A M C O M P U T I N G

1-22 Performance
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.13 Thread Processor Stall Due to Data Dependency

The causes for this situation are discussed in the following sections.

1.3 Performance
This section discusses performance and optimization when programming for
stream processors.

1.3.1 Analyzing Stream Processor Kernels

Kernels must be compiled to native hardware instructions. The AMD GPU
ShaderAnalyzer (Figure 1.14) can provide the instruction set architecture (ISA)
disassembly. This tool can show the instructions executed on the hardware, as
well as the number of active registers used.

Looking at the ISA of an example program (see Figure 1.14), instructions are
grouped into clauses. A clause is a set of sequential instructions that executes
without pre-emption. There are three types of instructions: stream core, local
memory fetch, and memory read/write. Clauses can only contain one type of
instruction. Only one clause is loaded onto a SIMD engine or the local memory
fetch units at a time; however, multiple clauses can be executed in parallel
because each SIMD can run a different clause.

Figure 1.14 shows an implementation of matrix multiply using Brook+. The
resulting ISA code contains eight clauses (00…07). Of these, 00, 02, 03, and 05
are stream core clauses; 01 and 06 are branch clauses; 04 is a fetch clause; and
07 is a memory write clause. There are seven stream core instructions and two
fetch instructions.

T0

T1

T2

T3

 0 20 40 60 80

Thread

STALL

STALL

STALL

STALL

= executing = stalled= ready (not executing) XX

X X X X X X XX X

X X X X X X X

X X X X X X XX X

X X X X X X XX X X X

A M D S T R E A M C O M P U T I N G

Performance 1-23
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 1.14 AMD GPU ShaderAnalyzer Output

1.3.2 Estimating Performance

Estimating the theoretical performance of a kernel running on a stream processor
is important because it helps developers identify and remove performance
bottlenecks.

The last section shows the components of the instructions of a kernel. This is
needed for the theoretical estimates. The other information needed consists of:

• Number of stream cores

• Number of local memory fetch units

• Memory bus size

• Engine clock frequency

• Memory clock frequency

For the ATI Radeon™ 3870 GPU (RV670) stream processor, the number of
thread processors that execute the VLIW instructions is 64. The memory bus size
is 256 bits. The engine and memory clocks are dependent on the stream
processor (see the technical specifications for a specific stream processor for the
rates). A typical ATI Radeon™ HD 3870 graphics card, which uses the RV670

A M D S T R E A M C O M P U T I N G

1-24 Performance
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

stream processor, has an engine clock of 775 MHz and a memory clock of
1125 MHz.

A kernel with only stream core instructions has a theoretical performance of:

The number of threads is the size of the domain of execution. Taking the ATI
Radeon™ 3870 GPU (RV670) stream processor as an example, a one stream
core instruction kernel with a domain of two million threads theoretically executes
in:

A kernel with only a single fetch instruction has a theoretical performance of:

Local memory fetch units operate on the engine clock; thus, the 3D engine speed
was used in the calculation above.

Memory performance estimation is based on the total amount of data being read
from, and written to, memory per thread:

A simple copy kernel (one byte in and one byte out) with a domain of two million
threads has a theoretical memory performance of:

All hardware units run in parallel. Thus, the theoretical performance is the worst
case of the three estimates. In the example of a kernel with one stream core
instruction, one fetch instruction, and one byte input and output, the theoretical
runtime would be 0.16 ms. This kernel is considered fetch-bound because the
local memory fetch units are the bottleneck.

Note that the theoretical performance serves only as a guide. As kernel
complexity increases, the ability to model the hardware becomes more difficult.
Also, the above memory performance model is based on ideal (sequential)
memory access patterns. Section 1.3.3, “Additional Performance Factors,”
explores additional factors which affect performance.

1.3.3 Additional Performance Factors

This section describes potential factors that can impact kernel performance on
the stream processor.

(# threads) x (# VLIW stream core instructions/thread)

(stream core instructions / clk) x (3D engine clock)

(2M threads) x (1 stream core instruction/thread)

(64 stream core instructions / clk) x 775 MHz
= 0.04 ms

(# threads) x (# fetch instructions/thread)

(fetches / clk) x (3D engine clock)

2M x 1

16 x 775 MHz
=

= 0.16 ms

(# threads) x (in + out bits per thread)

(bus) x (memory clock)

(2M threads) x (16 bits)

(256 bits) x (1125 MHz x 2DDR)
= 0.056 ms

A M D S T R E A M C O M P U T I N G

Performance 1-25
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

1.3.3.1 Register Usage

The number of active wavefronts depends on the active register usage of a
kernel. This can be determined from the ISA disassembly provided by the GPU
ShaderAnalyzer or other tools. Compilers try to optimize for the best register use;
however, manual optimizations often can yield better results. Optimizing register
counts yields performance gains through better memory latency hiding. However,
a stream-core-bound kernel is bound by the peak stream core performance, even
if many threads are active simultaneously.

When too many active registers are used, the stream processor places excess
registers into memory. If this happens, performance is significantly impacted.

1.3.3.2 Domain Size

Stream processors have deep pipelines and many parallel execution units. Thus,
stream processors require a large number of threads to be executed for
maximum efficiency. This, however, is highly application workload dependent.

As mentioned in Section 1.2.2, “Thread Processing,” page 1-14, and
Section 1.2.4, “Thread Creation,” page 1-15, threads are executed on the
hardware in wavefronts and quads. It is recommended that, at a minimum,
domains have a height or width of a multiple of two.

1.3.3.3 Stream Core to Fetch Instruction Ratio

One often-cited kernel statistic is the stream core-to-fetch (instructions) ratio. As
shown in Section 1.3.2, “Estimating Performance,” page 1-23, there must be
enough stream core instructions to hide the fetch latencies. This consideration is
not intended for initially developing kernel programs, but rather for cases where
the performance of the kernel program is not as expected. This ratio is device-
specific.

1.3.3.4 Memory Fetch Instructions

Since there are normally significantly more stream core resources than memory
fetch resources, it is important that the developer keep memory fetch instructions
to a minimum. Every memory fetch instruction takes at least one cycle. If the
kernel is designed to fetch from consecutive data locations, then vector fetches
can make more efficient use of the fetch resources. For example, a kernel can
issue a fetch for a float4 type in one cycle versus four separate float fetches in
four cycles. Sometimes, the compiler consolidates fetches; however, if there is
math involved in calculating addresses, the compiler might not be able to perform
the optimization for the developer. One solution is to explicitly load data into
registers as a first step (prefetching), rather than calling for fetches in the code
as needed.

1.3.3.5 Thread Processor Use

Most developers are used to programming with scalar operations. The compiler
attempts to parallelize kernels into VLIW instructions for the developer. However,

A M D S T R E A M C O M P U T I N G

1-26 Performance
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

if instructions are highly dependent on each other, the VLIW might have low
occupancy; then, the thread processors are under-used. One optimization is to
vectorize not just fetches, but also threads. This is done by combining multiple
threads into a single thread and writing out multiple results with a vector data
type, such as float4.

Since threads can write out up to eight vector types, it is possible to do much
more work per thread by vectorizing them. This not only minimizes the number
of stream core operations, but also might reduce the number of memory fetches.

Further optimization is achieved by having data ready in registers, since reading
from registers is faster than fetching data from the cache.

1.3.3.6 Memory Access Patterns

The hardware is optimized for sequential memory access within, and between,
threads. This is due to the way the DRAM and the cache are set up. On a
memory fetch, an entire cache line is returned, which accelerates the next fetch
in the sequence. Also, tiled memory works with thread rasterization (discussed
in Section 1.2.4, “Thread Creation,” page 1-15) to accelerate memory fetches
and increase performance. This is because consecutively created threads are
likely to have their fetches in the cache already, leading to less stalling in the
thread processor.

When a stream is formatted with a linear layout, performance can be negatively
affected. More cache lines might be fetched to service the reads than from a tiled
format.

Random accesses into memory, and fetch patterns that consistently access the
same memory bank and channel (all fetches going to the same physical memory
chip), cause the greatest degradation in memory performance.

Since memory access patterns can throw off performance estimates, it is
possible to isolate the stream core and fetch performance by reducing input
stream sizes to just one element. This determines if a kernel is memory bound
or not, since by reducing the input stream size, the input stream data remains in
the cache. This technique only works on fetches that do not depend on a value
written from the kernel.

1.3.3.7 Command Processor

Since the command queue is flushed on every execution of a stream processor
program, short kernels and small domains can cause many gaps to be inserted
in the execution pipeline.

Having too large of a command queue also can affect performance. The buffer
in the command processor has a finite size. Thus, very large command queues
must be repackaged into smaller queues. As a result, extra overhead can occur
when handling very large command queues.

A M D S T R E A M C O M P U T I N G

Performance 1-27
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

1.3.3.8 Bus Transfers

Ideally, total stream processor time measures not only the kernel compute time,
but also the transfer of data over the system bus between the host and the
stream processor, or between multiple stream processors. Bus transfers are
highly platform dependent, so running the application on another system
sometimes can be the quickest attempt at optimization.

Another method for improving performance is to hide the data transfer time with
other work. Since the stream processor can read and write data directly from host
memory, for some applications it might be better to leave the input or output
streams in host memory and avoid any explicit bus transfer steps.

Since DMA transfers are asynchronous, they can be hidden through other CPU
or stream processor computations. This can be achieved by subdividing a large
domain and transferring data for subsequent kernels during prior kernel
executions. However, it is important to ensure that asynchronous transfers have
completed before a kernel tries to use transferred data for computation.

A M D S T R E A M C O M P U T I N G

1-28 Performance
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide 2-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Chapter 2
Brook+ Programming

This chapter is for developers using the Brook+ language to develop applications
for AMD stream processors. See Brook+ Language Specification for a complete
development guide and language specification. Also, see Section 3.1,
“Introduction,” page 3-1, for an introduction to the stream processor architecture.

This release of AMD Brook+ Software Development Kit includes a single install
package (MSI). The user installing it must have administrative privileges. See the
Brook+_Installation_Notes.pdf for prerequisites, installation procedures, and
Visual Studio syntax highlighting information.

2.1 Runtime Options
Before running Brook+, note the following for Brook+.

• BRT_RUNTIME - This environment variable lets you target either the CPU
backend (for easy kernel debugging) or the CAL backend (for running on the
GPU). If this environment variable is not set, the default is the CAL backend.

– Set to cpu to target the CPU backend.

– Setting to cal to target the CAL backend.

• BRT_ADAPTER - This environment variable lets you target a specific GPU in a
multi-GPU system. The first GPU is 0, the second GPU is 1, and the nth GPU
is N-1. If this environment variable is not set, the default is 0 (the first GPU).

• BRT_PERMIT_READ_WRITE_ALIASING - This environment variable lets you bind,
at runtime, a stream as both the input stream and output stream. This is not
recommended when writing new code. For more information, see the
installation notes for Brook+.

• BRT_LOG_FILE - This variable let you specify a filename (and its location) that
contains internal diagnostic information.

When running Brook+ under Linux, note the following.

• DISPLAY - Ensure this is set to 0.0 to point CAL at the local X Windows
server. CAL accesses the GPU through the X Windows server on the local
machine.

• Ensure your current login session has permission to access the local X
Windows server. Do this by logging into the X Windows console locally. If you
must access the machine remotely, ensure that your remote session has
access rights to the local X Windows server.

A M D S T R E A M C O M P U T I N G

2-2 A Sample Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.2 A Sample Application
Brook+ comes in two components: the compiler (brcc.exe) and the Brook+
runtime libraries. Building an application consists of:

1. Using the Brook+ compiler to compile the Brook+ source code into a C++
file. This contains the CPU and stream processor code.

2. Compiling the C++ file with the rest of the application and link it with the
Brook+ runtime libraries.

The following subsections detail writing, building, executing, debugging, and
logging a sample application.

2.2.1 Writing

The following is an example Brook+ source code for sum.br that adds two
streams and outputs to a third. Brook+ source files normally are given a .br
extension.

Sum.br

#include <stdio.h>

kernel void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

int main(int argc, char** argv)
{

int i, j;
float a<10, 10>;
float b<10, 10>;
float c<10, 10>;

float input_a[10][10];
float input_b[10][10];
float input_c[10][10];
for(i=0; i<10; i++)
{

for(j=0; j<10; j++)
{

input_a[i][j] = (float) i;
input_b[i][j] = (float) j;

}
}

streamRead(a, input_a);
streamRead(b, input_b);

sum(a, b, c);

streamWrite(c, input_c);

for(i=0; i<10; i++)

A M D S T R E A M C O M P U T I N G

A Sample Application 2-3
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

{
for(j=0; j<10; j++)
{

printf("%6.2f ", input_c[i][j]);
}
printf("\n");

}

return 0;
}

Brook+ code is very similar to C/C++. Note the following limitations.

First, brcc functions like a C compiler; thus, programs must adhere to standard
C constructions (for example: variables are declared at the beginning of code
blocks). The Brook+ compiler has no built-in preprocessor. If the kernel code
uses preprocessor directives, the Brook+ file must be processed by a
preprocessor before it is passed to the Brook+ compiler. The Brook+ compiler
reports a problem when there is a preprocessor directive inside the kernel code,
but passes preprocessor directives in non-kernel code to the C++ compiler
invoked in the second step of the compilation.

For more complex applications, carefully partition the C code and the Brook+
code into manageable, easily maintainable sections. So, instead of using main,
a function can be declared there and called from a C/C++ source file.

2.2.1.1 Kernels

From the example on page 2-2:

kernel void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

...

sum(a, b, c);
Kernels are functions that run on the stream processor. The kernel is invoked on
every element of the stream. Kernels are executed by calling them, just as in C
with the actual parameters.

Kernels are written like C, but with some extensions and limitations (see the
Brook+ Language Specification for a complete listing). In the following example,
a and b are input streams, and c is the output stream. Streams use angle
brackets. In this situation, the API automatically handles stream addressing.

2.2.1.2 Streams

From the example on page 2-2:

float a<10, 10>;
float b<10, 10>;
float c<10, 10>;

A M D S T R E A M C O M P U T I N G

2-4 A Sample Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Streams are created using angle brackets (rather than square brackets used for
arrays in C/C++). The hardware natively supports only 1D arrays up to 8192
elements, and 2D arrays up to 8192x8192 elements, where an element is the
stream data type (for example: float4). Higher dimensions and larger sizes have
limited support through address virtualization at compile time (possibly affecting
the performance). For example, a 1D array can be virtualized to 64M
(8192x8192) elements. See Section 2.2.2, “Building,” page 2-4, for enabling
address virtualization; also see Section 4.1 of the Brook+ Language Specification
for more details.

2.2.1.3 Handling Streams

From the example on page 2-2:

streamRead(a, input_a);
streamRead(b, input_b);
...
streamWrite(c, input_c);

Streams cannot be accessed directly by the application. Data must be copied
between streams and memory using streamRead() and streamWrite().

2.2.2 Building

Use the following steps to build:

Step 1. Compile with brcc.exe, which can be found in
<BROOKROOT>\sdk\bin\

brcc [-hkrbfilxaec] [-w level] [-o prefix] [-p shader] <.br file>

-h Help (print this message).

-k Keep generated IL program (in <filename.il>).

-r Disable address virtualization.

-o Prefix prefix prepended to all output files.

-p Shader CPU or CAL (can specify multiple).

-s Tokenize into char list generated IL program.

-b Turn on bison debugging.

-f Turn on flex debugging.

-i Specify include directory for passing to external
preprocessor.

-l Insert #line directives into generated code.

-w Specify warning level. Level can be 0, 1, 2, 3;
the default is level 0 (valid only with -a flag).

-x Turn on warnings as errors (valid only with -a flag).

streamRead(stream *, void *); Copies data from memory to stream.
streamWrite(stream *, void *); Copies data from stream to memory.

A M D S T R E A M C O M P U T I N G

A Sample Application 2-5
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

-a Disable strong type checking.

-e Adds extern C for non kernel function declarations.

-c Disable cached gather array feature.

In the example on page 2-2, use:

brcc.exe -o sum sum.br

This compiles the Brook+ file sum.br (see Figure 2.1) and generates a
C++ file, sum.cpp, and a .h file. Note that the .cpp file is output with
#line directives; in most cases, this lets you step through the
corresponding .br file in a debugger.

Figure 2.1 Compiling a Brook+ File and Generating a C++ File

In Visual Studio, you can add the Brook+ compilation step as a custom
build event for the Brook+ file. Right-click on the Brook+ file in the
project, and select Properties.

In Command Line, add the compiler command. For Outputs, add the
location of the generated C++ file. You then can add the generated C++
file to the project. Later Brook+ compiles overwrite the existing C++ file.

Brook+ header files are located in <BROOKROOT>\sdk\include.

3. Add brook.lib to Linker > Input > Additional Dependencies. This library can
be found in <BROOKROOT>\sdk\lib\.

4. Compile the application with the generated C++ files.

To use a makefile, see <BROOKROOT>\samples\util\build for examples.

A M D S T R E A M C O M P U T I N G

2-6 Included Samples
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.2.3 Executing

If the installation was followed correctly and the build was successful, run the
executable. If the application does not run, then at least one path has not been
set.

2.2.4 Debugging

When debugging an application, debugging happens on the generated C++
source, not on the original Brook+ source. For a complete example, see
Section 2.4, “Example of Generated C++ Code for sum.br,” page 2-11.

There is no hardware debugging of stream kernels (for example:
__sum_cal_desc); it is not possible to step through the kernel code. The kernel
inputs and outputs can be inspected (before a streamRead and after a
streamWrite). Kernels can be written so that intermediate data can be output to
streams and inspected.

Alternatively, kernels can be stepped through and debugged as usual using the
CPU emulation mode (for example: __sum_cpu and __sum_cpu_inner). To
enable CPU emulation, create and set the environment variable:

BRT_RUNTIME = cpu

To return to the CAL backend, either delete the environment variable or set it to:

BRT_RUNTIME = cal

2.3 Included Samples
The Brook+ folder contains sample applications that can be built using the
included makefiles or the included Visual Studio solution file
<BROOKROOT>\samples\samples.sln.

Release builds of the samples are pre-built and located in:
<BROOKROOT>\samples\bin\.

2.3.1 Simple Matrix Multiply Example

This example is a standard matrix multiply. The code presented here is excerpted
from the simple_matmult example found in the samples directory.

///!
//! C = A * B
//! \param Width The value for which the loop runs over the matrices
//! \param A Input matrix A(MxK)
//! \param B Input matrix B(KxN)
//! \param result Output matrix(MxN)
//!
///
kernel void
simple_matmult(float Width, float A[][], float B[][], out float result<>)
{

// vPos - Position of the output matrix i.e. (x,y)
float2 vPos = indexof(result).xy;

A M D S T R E A M C O M P U T I N G

Included Samples 2-7
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

// index - coordinates of A & B from where the values are fetched
float4 index = float4(vPos.x, 0.0f, 0.0f, vPos.y);
// step - represents the step by which index is incremented
float4 step = float4(0.0f, 1.0f, 1.0f, 0.0f);

// accumulator - Accumulates the result of intermediate calculation
// between A & B
float accumulator = 0.0f;

// Running a loop which starts from
// (0,vPos.y) in A and (vPos.x,0) in B
// and increments the 'y' value of A and the 'x' value of B
// which basically implies that we're fetching values from
// the 'vPos.y'th row of A and 'vPox.x'th column of B
float i0 = Width;
while(i0 > 0)
{

// A[i][k] * B[k][j]
accumulator += A[index.zw]*B[index.xy];
index += step;
i0 = i0 - 1.0f;

}

// Writing the result back to the buffer
result = accumulator;

}
int main(int argc, char** argv)
{

float A<Height, Width>;
float B<Width, Height>;
float C<Height, Height>;
float* inputA;
float* inputB;
float* output;
…
streamRead(A, inputA);
streamRead(B, inputB);
…
simple_matmult((float)Width, A, B, C);
…
streamWrite(C, output);
…

}

Starting at main, three streams are created representing the input (A and B)
matrices and the output matrix (streams are used to represent a matrix). Then,
three corresponding memory buffers are declared (inputA, inputB, and inputC).

Next, streamRead() copies data from inputA to stream A, and data from inputB
to stream B.

The line simple_matmult((float)Width, A, B, C); binds the kernel to the
size parameter Width, the input streams A and B, and the output stream C; this
also triggers execution of the kernel by the stream processor. In a simple matrix
multiply operation, the kernel reads in one row vector from one matrix and a
column vector from another matrix; it applies a dot product to the two vectors,
and writes out the result. In the example above, the kernel is invoked at each
data location in the output stream. The kernel:

1. loops over the row of matrix A,

2. loops over the column of matrix B,

3. fetches a value from each matrix, and

A M D S T R E A M C O M P U T I N G

2-8 Included Samples
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

4. accumulates the values.

A feature used by this kernel is vector data types (float2 and float4). Brook+
can support data types of up to four elements. Elements can also be accessed
in any combination. This is also known as swizzling.

There is also a difference between the stream inputs in this kernel compared to
those of the earlier sum kernel. Here, the inputs are passed in using square
brackets, which means that the input streams are treated as a memory array, and
data elements are addressed directly. This is also known as a gather stream. An
important distinction between kernel code and C code is that gather streams
must be accessed using vector types, instead of multiple square brackets. For
example, A[x][y] is not allowed.

To determine which row/column the kernel must access, the output location to
which the kernel is writing must be specified. This is done through the indexof()
function, which returns an integer (x,y) position of the output domain.

In the while loop, column values are read from matrix A and multiplied against
values from matrix B. The accumulator variable accumulates the resulting
values.

Like the earlier sum example, the result is written without bracket operators.
Brook+ automatically writes the data out to the correct location; in this case, the
location found in indexof() of the output stream.

2.3.2 Optimized Matrix Multiply Example

A disadvantage to the above kernel is that the same data is reused by the kernel
at separate output locations. For example, at neighboring output locations, the
kernel is reusing the same row vector or column vector data. Generally, fetching
data from memory is expensive relative to processing data inside the stream
processor.

One optimization technique is to perform more computations in the kernel, so that
the reads are aggregated. This is the kernel from the optimized matrix multiply
sample.

kernel void
optimized_matmult(float loopVar0,

float4 A1[][], float4 A2[][], float4 A3[][], float4 A4[][],
float4 A5[][], float4 A6[][], float4 A7[][], float4 A8[][],
float4 B1[][], float4 B2[][], float4 B3[][], float4 B4[][],
out float4 C1<>, out float4 C2<>, out float4 C3<>,
out float4 C4<>, out float4 C5<>, out float4 C6<>,
out float4 C7<>, out float4 C8<>)

{
// vPos - Position of the output matrix i.e. (x,y)
float2 vPos = indexof(C1).xy;

// Setting four210
float4 four210 = float4(4.0f, 2.0f, 1.0f, 0.0f);

// index - coordinates of A & B from where the values are fetched

A M D S T R E A M C O M P U T I N G

Included Samples 2-9
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

float4 index = float4(vPos.x, vPos.y, four210.w, four210.w);

// Declaring and initializing accumulators
float4 accumulator1 = four210.wwww;
float4 accumulator2 = four210.wwww;
float4 accumulator3 = four210.wwww;
float4 accumulator4 = four210.wwww;
float4 accumulator5 = four210.wwww;
float4 accumulator6 = four210.wwww;
float4 accumulator7 = four210.wwww;
float4 accumulator8 = four210.wwww;

float i0 = loopVar0;

while(i0 > 0.0f)
{

// Fetching values from A
float4 A11 = A1[index.wy];
float4 A22 = A2[index.wy];
float4 A33 = A3[index.wy];
float4 A44 = A4[index.wy];
float4 A55 = A5[index.wy];
float4 A66 = A6[index.wy];
float4 A77 = A7[index.wy];
float4 A88 = A8[index.wy];

// Fetching values from B
float4 B11 = B1[index.xw];
float4 B22 = B2[index.xw];
float4 B33 = B3[index.xw];
float4 B44 = B4[index.xw];
accumulator1 += A11.xxxx * B11.xyzw + A11.yyyy * B22.xyzw +

A11.zzzz * B33.xyzw + A11.wwww * B44.xyzw;
accumulator2 += A22.xxxx * B11.xyzw + A22.yyyy * B22.xyzw +

A22.zzzz * B33.xyzw + A22.wwww * B44.xyzw;
accumulator3 += A33.xxxx * B11.xyzw + A33.yyyy * B22.xyzw +

A33.zzzz * B33.xyzw + A33.wwww * B44.xyzw;
accumulator4 += A44.xxxx * B11.xyzw + A44.yyyy * B22.xyzw +

A44.zzzz * B33.xyzw + A44.wwww * B44.xyzw;
accumulator5 += A55.xxxx * B11.xyzw + A55.yyyy * B22.xyzw +

A55.zzzz * B33.xyzw + A55.wwww * B44.xyzw;
accumulator6 += A66.xxxx * B11.xyzw + A66.yyyy * B22.xyzw +

A66.zzzz * B33.xyzw + A66.wwww * B44.xyzw;
accumulator7 += A77.xxxx * B11.xyzw + A77.yyyy * B22.xyzw +

A77.zzzz * B33.xyzw + A77.wwww * B44.xyzw;
accumulator8 += A88.xxxx * B11.xyzw + A88.yyyy * B22.xyzw +

A88.zzzz * B33.xyzw + A88.wwww * B44.xyzw;

index += four210.wwwz;
// Reducing iterator
i0 = i0 - 1.0f;

}

C1 = accumulator1;
C2 = accumulator2;
C3 = accumulator3;
C4 = accumulator4;
C5 = accumulator5;

A M D S T R E A M C O M P U T I N G

2-10 Included Samples
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

C6 = accumulator6;
C7 = accumulator7;
C8 = accumulator8;

}

This example optimizes the kernel by:

• Using input streams of vector data types. In this case, float4 is used so that
every fetch retrieves four values simultaneously.

• Writing to eight streams simultaneously from the kernel. Using the CAL
backend, Brook+ supports up to eight outputs per kernel. Each invocation of
this kernel calculates 4×8 = 32 output values. Aggregating the memory
fetches per kernel significantly increases the efficiency of the stream
processor.

• Separating the two input matrices into multiple slices. This decreases the
number of calculations needed to determine the addresses. The same
address used to fetch from different inputs representing the slices of the
matrices.

Figure 2.2 illustrates the optimized matrix multiplication.

Figure 2.2 Optimized Matrix Multiplication

During each iteration of the loop in this kernel implementation, an 8x4 sub-matrix
is fetched from matrix A, and a 4x4 sub-matrix is fetched from matrix B.
Multiplying these two sub-matrices results in an 8x4 sub-matrix. In the next
iteration of the loop, the next 8x4 sub-matrix in the row is fetched from A, and
the next 4x4 sub-matrix in the column is fetched from B. These matrices are
multiplied and accumulated with the earlier results. The resulting 8x4 matrix is
output to a stream.

8x4

A B

X

A M D S T R E A M C O M P U T I N G

Example of Generated C++ Code for sum.br 2-11
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.4 Example of Generated C++ Code for sum.br
//
// Generated by BRCC v0.1
// BRCC Compiled on: Nov 5 2007 16:24:44
//

#include <brook/brook.hpp>
#include <stdio.h>

namespace {
 using namespace ::brook::desc;
 static const gpu_kernel_desc __sum_cal_desc = gpu_kernel_desc()
 .technique(gpu_technique_desc()
 .pass(gpu_pass_desc(
 "il_ps_2_0\n"
 "dcl_cb cb0[1]\n"

"dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)\n
"
 "dcl_input_generic_interp(linear) v0.xy__\n"

"dcl_resource_id(1)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)\n
"

"dcl_input_generic_interp(linear) v1.xy__\n"
"sample_resource(0)_sampler(0) r0.x, v0.xy00\n"

 "sample_resource(1)_sampler(1) r1.x, v1.xy00\n"
 "mov r2.x, r0.xxxx\n"
 "mov r3.x, r1.xxxx\n"
 "call 0\n"
 "mov r4.x, r5.xxxx\n"
 "dcl_output_generic o0\n"
 "mov o0, r4.xxxx\n"
 "ret\n"
 "func 0\n"
 "add r6.x, r2.xxxx, r3.xxxx\n"
 "mov r7.x, r6.xxxx\n"
 "mov r5.x, r7.xxxx\n"
 "ret\n"
 "end\n"
 " \n"
 "##!!BRCC\n"
 "##narg:3\n"
 "##s:1:a\n"
 "##s:1:b\n"
 "##o:1:c\n"
 "##workspace:1024\n"
 "##!!multipleOutputInfo:0:1:\n"
 "##!!fullAddressTrans:0:\n"
 "##!!reductionFactor:0:\n"
 "")
 .sampler(1, 0)
 .sampler(2, 0)
 .interpolant(1, kStreamInterpolant_Position)
 .interpolant(2, kStreamInterpolant_Position)
 .output(3, 0)
)
);
 static const void* __sum_cal = &__sum_cal_desc;
}

static const char *__sum_ps30= NULL;
void __sum_cpu_inner(const __BrtFloat1 &a,
 const __BrtFloat1 &b,
 __BrtFloat1 &c)
{
 c = a + b;
}
void __sum_cpu(::brook::Kernel *__k, const std::vector<void *>&args)
{
 ::brook::StreamInterface *arg_a =
(::brook::StreamInterface *) args[0];
 ::brook::StreamInterface *arg_b =
(::brook::StreamInterface *) args[1];
 ::brook::StreamInterface *arg_c =

A M D S T R E A M C O M P U T I N G

2-12 Example of Generated C++ Code for sum.br
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

(::brook::StreamInterface *) args[2];

 do {
 Addressable <__BrtFloat1 > __out_arg_c((__BrtFloat1 *) __k->FetchElem(arg_c));

 __sum_cpu_inner (Addressable <__BrtFloat1 >((__BrtFloat1 *) __k->FetchElem(arg_a)),
Addressable <__BrtFloat1 >((__BrtFloat1 *) __k->FetchElem(arg_b)), __out_arg_c);

 *reinterpret_cast<__BrtFloat1 *>(__out_arg_c.address) =
__out_arg_c.castToArg(*reinterpret_cast<__BrtFloat1 *>
 (__out_arg_c.address));
 } while (__k->Continue());
}

void sum (::brook::stream a,
::brook::stream b,
::brook::stream c) {

 static const void *__sum_fp[] = {
 "ps30", __sum_ps30,
 "cal", __sum_cal,
 "cpu", (void *) __sum_cpu,
 NULL, NULL };
 static ::brook::kernel __k(__sum_fp);

 __k->PushStream(a);
 __k->PushStream(b);
 __k->PushOutput(c);
 __k->Map();

}

int main(int argc, char **argv)
{
 int i;
 int j;
 ::brook::stream a(::brook::getStreamType((float *)0), 10 , 10,-1);
 ::brook::stream b(::brook::getStreamType((float *)0), 10 , 10,-1);
 ::brook::stream c(::brook::getStreamType((float *)0), 10 , 10,-1);
 float input_a[10][10];
 float input_b[10][10];
 float input_c[10][10];

 for (i = 0; i < 10; i++)
 {
 for (j = 0; j < 10; j++)
 {
 input_a[i][j] = (float) (i);
 input_b[i][j] = (float) (j);
 }

 }

 streamRead(a, input_a);
 streamRead(b, input_b);
 sum(a, b, c);
 streamWrite(c, input_c);
 for (i = 0; i < 10; i++)
 {
 for (j = 0; j < 10; j++)
 {
 printf("%6.2f ", input_c[i][j]);
 }

 printf("\n");
 }

 return 0;
}

A M D S T R E A M C O M P U T I N G

Building Brook+ 2-13
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.5 Building Brook+
Both the release and debug builds of the Brook+ compiler and runtime libraries
come pre-built; however, they also can be built using the provided source.

The path to the pre-built SDK (binary, library, and headers) is:

<BROOKROOT>\sdk\

On Windows systems, Brook+ can be built either from the command line or
inside Visual Studio. Either way requires a full install of Cygwin
(www.cygwin.com).

2.5.1 Visual Studio

You can build the brcc and the Brook+ runtime using the included Visual Studio
solution file, which is located at:

<BROOKROOT>\platform\brook.sln

The configuration for getting the Debug or the Release executable is available
through the Configuration pull-down menu.

The default output directories of builds using Visual Studio are:

brcc.exe: <BROOKROOT>\platform\brcc\bin\xp_x86_32
brook.lib: <BROOKROOT>\platform\runtime\lib\xp_x86_32

Files in the SDK tree are not replaced with the new builds. If make is installed, in
<BROOKROOT>\platform:

• run make updatesdk to copy the debug to the SDK tree,

• or run make udpatesdk RELEASE=1 to copy the release builds to the SDK
tree.

2.5.2 Command Line

The Brook+ tools can be built from the command line or through a Cygwin shell.

1. The Visual Studio compiler (cl.exe) and linker (link.exe) must be in the
path. Default location is:

C:\Program Files\Microsoft Visual Studio 8\VC\bin

Note that in the path, the Visual Studio link.exe must come before the
Cygwin link.exe.

2. Run make at <BROOKROOT>\platform\ for a debug build and run make
RELEASE=1 for a release build.

Unlike the Visual Studio builds, the SDK tree is rebuilt and overwritten with the
new Brook+ builds.

To clean the build, use make clean for debug builds and make clean RELEASE=1
for release builds.

A M D S T R E A M C O M P U T I N G

2-14 The Brook+ Runtime API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.6 The Brook+ Runtime API
The most significant change in Brook+ 1.3beta is a completely rewritten runtime
engine. In addition to improvements in performance and stability, there is a new
C++ API available for developers looking for a lower-level and more flexible way
to access the GPU.

2.6.1 Differences Between the C++ API and the Previous Programming Model

Differences between this and the previous programming model include:

• dynamic stream management

• error handling

• execution domain control

• compatibility with C++ code

The following subsections discuss these differences.

2.6.1.1 Dynamic Stream Management

Brook, BrookGPU, and the legacy version of Brook+ use a statically allocated
stream graph and prohibit streams that are bound for simultaneous read and
write. At the C++ API level, there are no such restrictions: streams are proxies
for GPU memory and can be dynamically allocated and passed between
functions like any other C++ object.

2.6.1.2 Error Handling

Errors are now trapped by the runtime and communicated back to the client. As
GPU-side errors can be asynchronous relative to host-side control flow, the error
is not passed directly back to the host; instead, it is associated with a stream and
propagated through the stream graph. The application checks the final output
stream to find out if an error occurred in the process.

2.6.1.3 Execution Domain Control

When using a scatter stream as an output, it is not useful to enforce a simple
one-to-one mapping between the layout of the output stream and the layout of
the execution domain (the “virtual SIMD array” that runs the kernels).

We now provide an extensible and optional mechanism to supply additional
parameters to a kernel invocation.

2.6.1.4 Compatibility With C++ code

Kernel code is still restricted to a subset of C, but moving all other code outside
the .br file means that developers can write their application in C++.

A M D S T R E A M C O M P U T I N G

The Brook+ Runtime API 2-15
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.6.2 Choosing a Programming Model

We recommend that new projects use the C++ API rather than the legacy model.
The only reasons for using the legacy Brook interface are:

• for compatibility with other Brook implementations, or

• to benefit from potential compiler improvements, or

• the project is very small and/or simple.

Example

Consider this code fragment:

kernel sum(double a<>, double b<>, out double c<>)
{
 c = a + b;
}

void vector_add(double *in_a, double *in_b, double *out, unsigned
int length)
{
 double s1<length>, s2<length>, s3<length>;

 streamRead(s1, in_a);
 streamRead(s2, in_b);

 sum (s1, s2, s3);

 streamWrite(s3, out);
}

Several limitations of the legacy model are exposed:

• Not all hardware has support for doubles; but there is no way of handling
this. See page D-1 for a list of devices that support this feature.

• If there is not enough memory to allocate any of the streams, the program
terminates.

• Data can only be passed around by host-side code in host-side memory,
potentially requiring multiple extra copies.

Using the new API, this code looks like:

kernel sum(double a<>, double b<>, out double c<>)
{
 c = a + b;
}

Stream<double> *vector_add(double *in_a, double *in_b, unsigned int
length)
{
 Stream<double> s1(1, length);

Stream<double> s2(1, length);
 Stream<double> *s3 = new Stream<double>(1, length);

A M D S T R E A M C O M P U T I N G

2-16 Stream Management (Stream.h)
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

 s1.read(in_a);
 s2.read(in_b);

 sum(s1, s2, s3);

 if (s3->error())
 {

delete s3;
return NULL;

 }
 return s3;
}

Note that kernel definitions have not changed from the 1.2 format. All the
differences are on the host side. Looking at the changes line by line, we have:

• The vector_add function now returns a pointer to a stream.

• The three streams (s1, s2, s3) are allocated as C++ objects using a
templated constructor.

• streamRead() and streamWrite() are now methods of the Stream<> class.

• Stream objects now track errors instead of aborting. (For more details on the
error handling mechanism, see Section 2.7.1, “Public Methods,” page 2-16).

• Streams can be passed around by host-side code, removing the need for
redundant copies.

2.7 Stream Management (Stream.h)
The classes and functions in this file provide a mechanism for creating and
managing streams. At this level of abstraction, a stream effectively is a proxy
object for a remote array and some error-tracking information. (Other stream
semantics are part of the Brook+ language definition and are not enforced by the
runtime.)

Backend-specific details are not visible at this level.

2.7.1 Public Methods

The Stream class exposes the following public methods.

Stream::Stream(unsigned short rank, unsigned int* dimensions)

where:

rank Number of dimensions in the stream.1

dimensions Upper bound of each dimension. (Array indices run from 0 to
dimensions[n]-1 as in conventional C code).

1. This is similar to, but not exactly the same as, “rank” in the mathematical sense.

A M D S T R E A M C O M P U T I N G

Stream Management (Stream.h) 2-17
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Use this standard constructor when the application code creates a stream. The
underlying representation is determined by the backend being used and is
transparent to the client.

If creation fails, the stream error state is set to BR_ERROR_DECLARATION.

Examples:

unsigned int n = 10000; // 1D double
Stream<double> s(1, &n);

unsigned int dims[2] = {1024, 1024}; // 2D float
Stream<float> *s = new Stream<float>(2, dims);

explicit Stream::Stream(StreamImpl* streamImpl)

where:

streamImpl is the pointer to underlying stream implementation.

This is intended only for internal API use. It wraps a backend-specific stream
implementation in a generic Stream container.

void Stream::read(const void* ptr)

Copies data from a host-side pointer to the memory associated with a
stream. It is equivalent to streamRead() in the legacy API. For the CAL
backend, this includes a copy over the PCI Express bus; however, transfer
speed has been improved greatly compared to the legacy implementation.

Note that the runtime does not check that ptr points to a sufficiently large
area of memory. This is the programmer’s responsibility.

void Stream::write(void* ptr) const

Copies data from the memory associated with a stream to a host-side
pointer. This is equivalent to streamWrite() in the legacy API.

This is a synchronous call and blocks any return to the caller until all data
has been written to the host. (For the CAL backend, this includes a copy over
the PCI Express bus; however, transfer speed has been improved greatly
compared to the legacy implementation.

Note that the runtime does not check that ptr points to a sufficiently large
area of memory, this is the user's responsibility.

Stream<T> Stream::domain(unsigned int* start, unsigned int* end)
const

Extract a sub-region of interest from the Stream lying between the start and
end positions in the stream. The routine returns another stream that
corresponds to the selected region.

The new stream is treated as a sub-region within the original stream;
however, unlike the legacy API, modifications to the child are not guaranteed
to be immediately reflected in the parent. Instead, changes can be
propagated at any point between them occurring in the child and the child's
destructor being called. (A change made in the child can become visible in

A M D S T R E A M C O M P U T I N G

2-18 Stream Management (Stream.h)
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

the parent at any point between it first happening and the child ceasing to
exist.)

BRerror Stream::error()

This checks if an error occurred during processing of this stream or any of
the streams from which it was computed. Returns an error code (enum) for
first error that occurred, or BR_NO_ERROR if no error occurred.

The error state is cleared when the error() routine is called.

Error Codes:

enum BRerror
{
 BR_NO_ERROR = 0, // No error. All’s well
 BR_ERROR_DECLARATION, // Error in Stream Declaration
 BR_ERROR_READ, // Error during Stream::read
 BR_ERROR_WRITE, // Error during Stream::write
 BR_ERROR_KERNEL, // Error during Kernel Invocation
 BR_ERROR_DOMAIN, // Error in domain operator
 BR_ERROR_INVALID_PARAMATER, // An invalid parameter was passed
 BR_ERROR_NOT_SUPPORTED // Feature not supported in brook+

 //or in the underlying hardware
};

const char* Stream::errorLog();

Returns NULL-terminated char string with log messages. Unlike the error()
call, which records only the first error that occurred, errorLog() accumulates
a list of all errors from the first onward.

Any error that occurs on a stream is propagated inside the Brook+ data flow
pipeline to tag other streams as being in an error state. For example, if an
input stream used in a kernel invocation contains an error, the subsequent
output stream also is flagged as erroneous. As host and runtime code are
potentially asynchronous, it is not practical to check for errors after every
stream-related routine invocation. Whenever an error occurs, the stream
class appends that error to an internal error log. The Stream::errorLog()
lets you read this error log in the form of a C string.

Example

Here is an example that illustrates the usage of this interface.

int copy(const void *inputPtr, void *outputPtr, unsigned int
dims[2])
{

Stream<float> X(2, dims), Y(2, dims);

// Initialize X
X.read(inputPtr);

// Invoke the kernel
copy(X, Y);

// Copy Y back
Y.write(outputPtr);

A M D S T R E A M C O M P U T I N G

Stream Management (Stream.h) 2-19
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

if(Y.error())
{

std::cerr >> "Error in Stream Y" >> Y.errorLog() >> std::endl;
return -1;

}
}

operator Stream::StreamImpl*() const

Intended only for internal API use. Returns a pointer to the backend-specific
stream implementation inside a generic stream container.

Stream::~Stream()

Destroys the proxy object. Actual deallocation of the underlying resources
might not happen immediately as some backends use a lazy allocation
strategy to improve performance.

2.7.2 Public Data

None.

2.7.3 Compatibility

A preprocessor macro, USE_OLD_API, is defined at the top of this file and used
to enable/disable support for certain legacy API functions.

When this flag is enabled, the following additional functions and methods are
available:

Stream<T> domain(int start, int end) const;
Stream<T> domain(int2 start, int2 end) const;
Stream<T> domain(int3 start, int3 end) const;
Stream<T> domain(int4 start, int4 end) const;
Stream<T> execDomain(int numThreads) const;

template<class T>
void streamRead(brook::Stream<T> stream, void* ptr);

template<class T>
void streamWrite(brook::Stream<T> stream, void* ptr);

These work as they did in the legacy Brook+ API.

2.7.4 Backend Performance

The current implementation supports two backends: CPU emulation and GPU via
CAL. The 1.3_beta CAL backend offers significantly better performance
compared to both the CPU backend and the 1.2_beta CAL implementation.

A M D S T R E A M C O M P U T I N G

2-20 Kernel Management
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

2.8 Kernel Management
Invoking kernels in Brook+ is usually as simple as calling a C function with the
same name and arguments as the kernel defined by the application in the .br
file. Generally, the runtime handles all the mapping and device management
transparently, but in some situations the user might require direct control of
backend-specific features. To enable this, we provide a lower-level kernel
interface API, as described below.

For each kernel, brcc generates an overloaded C++ operator for the KernelInterface
that provides a mechanism for overriding some or all of the defaults.

The current CAL implementation lets the user override the domain of execution
of the kernel launch. This is extremely useful for cases where the execution
domain is not uniquely defined by the kernel parameters (for example: when
using scatter outputs).

class KernelInterface
{
public:

 // Constructor and Destructor

 KernelInterface();
 ~KernelInterface();

 // Methods to control domain of execution

 void domainOffset(uint4 offset);
 void domainSize(uint4 size);
};

Example:

The following kernel performs random access writes to a scatter stream by using
indices from another stream index.

kernel void
scatter(float index<>, float a<>, out float b[])
{

b[index] = a;
}

To set the domain of execution parameters and launch the kernel:

scatter.domainOffset(offset);
scatter.domainSize(size);
scatter(index, a, b);

2.9 Scatter/Gather Interface Changes
In addition to the KernelInterface feature described above, the new API provides
an improved alternative to the indexof() intrinsic, instance().

A M D S T R E A M C O M P U T I N G

Converting Code to Use the New C++ API 2-21
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Unlike indexof(), instance() always integers not floats, and is always a four-
element vector (zero-padded where appropriate). This makes for much simpler
code, as shown below.

kernel void
simple_matmult_indexof(float Width, float A[][], float B[][], out
float C<>)
{
 float2 pos = indexof(C).xy;
 float4 ind = float4(pos.x, .0f, .0f, pos.y);
 float4 step = float4(.0f, 1.0f, 1.0f, 0.0f);
 float prod = 0.0f, i0 = 0.0f;

 for(i0 = 0.0f; i0 < Width; i0 += 1.0f)
 {
 prod += A[ind.zw] * B[ind.xy];
 ind += step;
 }

 // Writing the result back to the buffer
 C = prod;
}

kernel void
simple_matmult_instance(uint Width, float A[][], float B[][], out
float C<>)
{
 uint4 pos = instance();

 float prod = 0.0f;
 uint i0 = 0;

 for(i0 = 0; i0 < Width; i0++)
 {
 prod += A[pos.y][i0] * B[i0][pos.x];
 index += step;
 }

 // Writing the result back to the buffer
 C = prod;
}

2.10 Converting Code to Use the New C++ API
The C++ API is recommended for all future code because it offers greater
flexibility and access to more features than the legacy Brook+ API. The following
example explains how to convert existing legacy code to use the new API. This
example translates the Binary Search sample application supplied in the SDK.

A M D S T R E A M C O M P U T I N G

2-22 Converting Code to Use the New C++ API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Table 1 provides a side-by-side comparison of the kernel code as used in the
legacy interface and the new API. For clarity, large sections of code are omitted.

In summary, very little has changed between the two versions. There have been
minor cleanups, but kernel code remains essentially unchanged.

Table 1 Kernel Code Comparison: Legacy vs New API

Legacy New API

kernel void binary_search(float searchValue<>, float
array[], out float index<>, float arraySize, float
lgWidth) {

 float i;

 float numIter = lgWidth;
 float stride;
 float compareValue, dir;

 float idx = stride = floor((arraySize * 0.5f) +
0.5f);

 index = 0.0f;

 for (i = 0.0f; i < (numIter); i += 1.0f) {
 stride = floor((stride * 0.5f) + 0.5f);
 compareValue = array[idx];
 dir = (searchValue <= compareValue) ? -1.0f :
1.0f;
 idx = idx + dir * stride;
 }

 // last iteration has stride fixed at 1
 compareValue = array[idx];
 idx = idx + ((searchValue <= compareValue) ? -1.0f :
1.0f);

 // last pass check
 compareValue = array[idx];
 idx = idx + ((searchValue <= compareValue) ? 0.0f :
1.0f);
 if (idx < 0.0f)
 {
 idx = 0.0f;
 }

 // if we've found the value, write the array index
into the output, otherwise, write -1
 compareValue = array[idx];
 idx = (searchValue == compareValue) ? idx : -1.0f;

 index = idx;
}

kernel void binary_search(float searchValue<>, float
array[], out float index<>, float arraySize, int
lgWidth)
{
 float stride;
 float compareValue, dir;

 float idx = stride = floor((arraySize * 0.5f) +
0.5f);

 int i;
 for (i = 0; i < lgWidth; ++i)
 {
 stride = floor((stride * 0.5f) + 0.5f);
 compareValue = array[idx];
 dir = (searchValue <= compareValue) ? -1.0f :
1.0f;
 idx = idx + dir * stride;
 }

 compareValue = array[idx];
 idx = idx + ((searchValue <= compareValue) ? -1.0f
: 1.0f);

 // last pass check
 compareValue = array[idx];
 idx = idx + ((searchValue <= compareValue) ? 0.0f
: 1.0f);
 if (idx < 0.0f)
 {
 idx = 0.0f;
 }

 // if we've found the value, write the array index
into the output, otherwise, write -1
 compareValue = array[idx];
 idx = (searchValue == compareValue) ? idx : -1.0f;

 index = idx;
}

A M D S T R E A M C O M P U T I N G

Converting Code to Use the New C++ API 2-23
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Table 2 provides a side-by-side comparison of the host code as used in the
legacy interface and the new API.

As can be seen from Table 2, the host-side code has changed considerably.

At a project structure level, host code and kernel code now are in different files.
The kernel code lives in .br files as before, but the host-side code is in regular
C++ source files. The Brook+ compiler, brcc, compiles Brook+ source to a header
file (here brookgenfiles/binary_search.h) containing all the internal definitions and
bindings required by the C++ runtime. This file must be included by the host-side
source file.

Table 2 Host Code Comparison: Legacy vs New API

Legacy New API

int main(int argc, char** argv)
{
 unsigned int i = 0;
 unsigned int lgWidth = 0;
 float* array = NULL;
 float* searchValues = NULL;
 float* indices[2] = { NULL };
 unsigned int Length, Searches;

 {
 float searchValueStream<Searches>;
 float indicesStream<Searches>;
 float arrayStream<Length>;

// Record GPU Total Time
 Start(0);

 for (i = 0; i < cmd.Iterations; ++i)
{

 // Copy searchable data and search keys
to streams

 streamRead(arrayStream, array);
 streamRead(searchValueStream,

searchValues);

 // Execute parallel binary search
 binary_search(searchValueStream,

arrayStream,
indicesStream, (float)(Length), (float)lgWidth);

 // Copy results from stream
 streamWrite(indicesStream, indices[0]);
}

 }
}

#include "brookgenfiles/binary_search.h"

int BinarySearch::run()
{
 unsigned int retVal = 0;

 // Brook code block
 {
 unsigned int arrayDim[] = {_length};
 unsigned int searchDim[] = {_width};

 ::brook::Stream<float> searchValueStream(1,
searchDim);
 ::brook::Stream<float> indicesStream(1,
searchDim);
 ::brook::Stream<float> arrayStream(1,
arrayDim);

 for (unsigned int i = 0; i < info-
>Iterations; ++i)
 {
 // Copy searchable data and search keys
to streams
 arrayStream.read(_array);
 searchValueStream.read(_searchValues);

 // Execute parallel binary search
 binary_search(searchValueStream,
arrayStream,
 indicesStream,
(float)(_length), _lgWidth);

 // Copy results from stream
 indicesStream.write(_indices[0]);

 //Handle errors if occured
 if(indicesStream.error())
 {
 std::cout << "Error occured" <<
std::endl;
 std::cout << indicesStream.errorLog()
<< std::endl;
 retVal = -1;
 }
 }

 timer->Stop();
 }
 return retVal;
}

A M D S T R E A M C O M P U T I N G

2-24 Converting Code to Use the New C++ API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Also note that the stream definitions have changed. Legacy-mode stream
definitions are static and use extended syntax. C++ API definitions are
conventional object instantiations, meaning that they can have their addresses
taken and passed between functions, as with any other object. Reading from,
and writing to, streams now is a method of the Stream class.

Finally, streams now maintain an error status that can be queried by the host to
check if a computation (or string of computations, since errors propagate
between streams) completed correctly.

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide 3-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Chapter 3
AMD Compute Abstraction Layer
(CAL) Programming Guide

3.1 Introduction
The AMD Compute Abstraction Layer (CAL) provides an easy-to-use, forward-
compatible interface to the high-performance, floating-point, parallel processor
arrays found in AMD stream processors. CAL, part of AMD’s Stream Computing
Software stack (see Figure 1.1), abstracts the hardware details of the AMD
stream processor. It provides the following features:

• Device management

• Resource management

• Code generation

• Kernel loading and execution

CAL provides a device driver library that allows applications to interact with the
stream cores at the lowest-level for optimized performance, while maintaining
forward compatibility.

Note: For developers beginning to develop stream computing software for
stream processors, AMD recommends becoming familiar with the
basic concepts of stream processor programming by looking at the
Brook+ software. (Brook+ is a higher-level language that is easier
to use, but does not provide all the functionality that CAL does.)

Brook+ provides an easy-to-use, high-level interface for stream computing,
including a CAL-based runtime backend that is optimized for AMD stream
processors. The CAL API is ideal for performance-sensitive developers because
it minimizes software overhead and provides full-control over hardware-specific
features that might not be available with higher-level tools.

The following subsections provide an overview of the CAL system architecture,
stream processor architecture, and the execution model that it provides to the
application. For information on prerequisites and installation procedures, see the
CAL_Installation_Notes.pdf.

3.1.1 CAL System Architecture

A typical CAL application includes two parts:

• a program running on the host CPU (written in C/C++), the application, and

A M D S T R E A M C O M P U T I N G

3-2 Introduction
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

• a program running on the stream processor, the kernel (written in a high-level
language, such as AMD IL).

The CAL API comprises one or more stream processors connected to one or
more CPUs by a high-speed bus. The CPU runs the CAL and controls the stream
processor by sending commands using the CAL API. The stream processor runs
the kernel specified by the application. The stream processor device driver
program (CAL) runs on the host CPU.

Figure 3.1 is a block diagram of the various CAL system components and their
interaction. Both the CPU and stream processor are in close proximity to their
local memory subsystems. In this figure:

• Local memory subsystem – the CAL local memory. This is the memory
subsystem attached to each stream processor. (From the perspective of
CAL, the Stream Processor is local, and the CPU is remote.)

• System memory – the single memory subsystem attached to all CPUs.

CPUs can read from, and write to, the system memory directly; however, stream
processors can read from, and write to:

• their own local stream processor memory using their fast memory
interconnects, as well as

• system memory using PCIe.

Figure 3.1 CAL System Architecture

The CAL runtime allows managing multiple stream processors directly from the
host application. This lets applications divide computational tasks among multiple
parallel execution units and scale the application in terms of computational
performance and available resources. With CAL, applications control the task of
partitioning the problem and scheduling among different stream processors (see
Section 3.7, “Advanced Topics.”)

 Local
Memory

CPUsCPU
 Local
Memory

Stream
Processor

Stream
Processor

 Remote
(System)
Memory

H
ig

h
-S

p
ee

d
 I/

O
 B

u
s

A M D S T R E A M C O M P U T I N G

Introduction 3-3
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.1.1.1 CAL Device

The CAL API exposes the stream processors as a Single Instruction, Multiple
Data (SIMD) array of computational processors. These processors execute the
loaded kernel. The kernel reads the input data from one or more input resources,
performs computations, and writes the results to one or more output resources
(see Figure 3.2). The parallel computation is invoked by setting up one or more
outputs and specifying a domain of execution for this output. The device has a
scheduler that distributes the workload to the SIMD processors.

Figure 3.2 CAL Device and Memory

Since the stream processor can access both local device memory and remote
memory, inputs and outputs to the kernel can reside in either memory subsystem.
Data can be moved across different memory systems by the CPU, stream
processor, or the DMA engine. Additional inputs to the kernel, such as constants,
can be specified. Constants typically are transferred from remote memory to local
memory before the kernel is invoked on the device.

3.1.1.2 Stream Processor Architecture

The AMD stream processor has a parallel micro-architecture for computer
graphics and general-purpose parallel computing applications. Any data-intensive
application that can be mapped to one or more kernels and the input/output
resource can run on the AMD stream processor.

Figure 3.3 shows a block diagram of the AMD stream processor and other
components of a CAL application.

 Kernel

Outputs

Inputs Device

Memory

A M D S T R E A M C O M P U T I N G

3-4 Introduction
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 3.3 AMD Stream Processor Architecture

• The command processor reads and initiates commands that the host CPU
has sent to the stream processor for execution. The command processor
notifies the host when the commands are completed.

• The stream processor array is organized as a set of SIMD engines, each
independent of the others, that operate in parallel on data streams. The
SIMD pipelines can process data or transfer data to and from memory.

• The memory controller has direct access to all local memory and host-
specified areas of system memory. To satisfy read/write requests, the
memory controller performs the functions of a direct-memory access (DMA)
controller.

• The stream processor has various caches for data and instructions between
the memory controller and the stream processor array.

Kernels are controlled by host commands sent to the stream processors’
command processor. These commands typically:

• specify the data domain on which the stream processor operates,

• invalidate and flush caches on the stream processor,

• set up internal base-addresses and other configuration registers,

• request the stream processor to begin execution of a kernel.

Host Application
Compute Driver

System
Memory

Remote
(System) Memory

Commands

Instructions
and Constants

Inputs
and outputs

Commands

Instructions
and Constants

Inputs
and outputs

Command Processor

Ultra-Threaded Dispatch Processor

Output Cache

L1
 In

pu
t C

ac
he

L2
 In

pu
t C

ac
he

M
em

or
y

C
on

tro
lle

r

D
M

A

In
st

ru
ct

io
n

an
d

C
on

st
an

t C
ac

he

Program
Counter

Program
Counter

Program
Counter

Program
Counter

AMD
Stream
Processor

A M D S T R E A M C O M P U T I N G

Introduction 3-5
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

The command processor requests a SIMD engine to execute a kernel by passing
it an identifier pair (x, y) and the location in memory of the kernel code. The SIMD
pipeline then loads instructions and data from memory, begins execution, and
continues until the end of the kernel.

Conceptually, each SIMD pipeline maintains a separate interface to memory,
consisting of index pairs and a field identifying the type of request (kernel
instruction, floating-point constant, integer constant, input read, or output write)1.
The index pairs for inputs, outputs, and constants are specified by the requesting
stream processor instructions from the hardware-maintained kernel state in the
pipelines.

The stream processor memory is high-speed DRAM connected to the SIMD
engines using a high-speed proprietary interconnect. A host application (running
on the CPU) cannot write to stream processor local memory directly, but it can
command the stream processor to copy data from system (CPU) memory to
stream processor memory, or vice versa.

3.1.2 CAL Programming Model

CAL provides access to the AMD stream processor by offering the runtime and
code generation services detailed in the following subsections.

3.1.2.1 Run Time Services

The CAL runtime library, amdcalrt, can load and execute the binary image
generated by the compiler. The runtime implements:

• Device Management: CAL runtime identifies all valid CAL devices on the
system. It lets the application query individual device parameters and
establish a connection to the device for further operations.

• Resource Management: CAL runtime handles the management of all
resources, including memory pools available on the system. Memory can be
allocated on device local and remote memory subsystems. Data buffers can
be efficiently moved between subsystems using DMA transfers.

• Kernel Loading and Execution: CAL runtime manages the device state and
lets applications set various parameters required for the kernel execution. It
provides mechanisms for loading binary images on devices as modules,
executing these modules, and synchronizing the execution with the
application process.

3.1.2.2 Code Generation Services

The CAL compiler, which is distributed as a separate library (amdcalcl) with the
CAL SDK, is responsible for the stream processor-specific code generation. The
CAL compiler accepts a stream kernel written in one of the supported interfaces
and generates the object code for the specified device architecture. The resulting

1. Boolean and double constants are not supported.

A M D S T R E A M C O M P U T I N G

3-6 Introduction
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

CAL object and binary image can be loaded directly on a CAL device for
execution (see Figure 3.4).

Figure 3.4 CAL Code Generation

The CAL API allows developing stream kernels directly using:

• Device-specific Instruction Set Architecture.

• Pseudo-Assembly languages like AMD’s Intermediate Language (IL).

The kernel can be developed in a device-independent manner using the AMD IL.
It also is possible to program in a C-like high-level language, such as Brook+.
See Appendix B, “The AMD Compute Abstraction Layer (CAL) API Specification”
for more information on such tools.

3.1.3 CAL Software Distribution

The distribution software bundle consists of the CAL SDK, which includes
platform-specific binaries, header files, sample code, and documentation. This
document assumes that the reader has installed the CAL SDK.

On Windows®, CAL files are installed in the %SystemDrive%\Program
Files\AMD\AMD CAL x.x.x directory, where xxx refers to the software version
currently installed. The following sections refer to the installation location of the
CAL SDK as $(CALROOT) and use UNIX-style filepaths for relative paths to
specific components.

 External Tools for High
Level Language Translation

Application

AMD IL

CAL Compiler

 Processor
specific ISA

A M D S T R E A M C O M P U T I N G

CAL Application Programming Interface 3-7
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

The SDK contains the following components –

The samples included in the SDK contain simple example programs that illustrate
specific CAL features, as well as tutorial programs under
$(CALROOT)/samples/tutorial. The reader should build and run some of the
sample programs to ensure that the system is configured properly and software
is installed correctly for CAL development. See the release notes for detailed
instructions on the software installation and system configuration.

3.2 CAL Application Programming Interface
The CAL API contains a few C function calls and simple data types used for data
specification and processing on the device. The complete list of all functions,
along with their C declarations, are in Appendix B, “The AMD Compute
Abstraction Layer (CAL) API Specification”. Note the following conventions
regarding the CAL API:

• All CAL runtime functions use the prefix cal. All CAL compiler functions use
the prefix calcl.

• All CAL utilities use the prefix calut.

• All CAL extensions use the prefix calext.

• All CAL data types are prefixed with CAL. The data types are either typedefs
to built-in C types, or enums.

• CAL functions return a status code, CALresult. This can be used to check
for any internal or usage error within the function. (The exception is
disassemble functions, which use calcldisassemble[image|object].) On
success, all functions return CAL_RESULT_OK. The calGetErrorString
function provides more information about the error in a human readable
string.

• CAL uses opaque handles for internal data structures like CALdevice and
CALresource.

The following sections provide more information about the two main components
of the API: the CAL runtime, and the CAL compiler. The complete list of CAL
compiler and runtime function calls is in Appendix B, “The AMD Compute
Abstraction Layer (CAL) API Specification”.

Component Installation Location

Header files $(CALROOT)/include

Libraries and DLLs (Windows only) $(CALROOT)/lib

Documentation $(CALROOT)/doc

Sample applications $(CALROOT)/samples

Binaries for sample applications $(CALROOT)/bin

Development Tools and Utilities $(CALROOT)/tools, $(CALROOT)/utilities

A M D S T R E A M C O M P U T I N G

3-8 CAL Application Programming Interface
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.2.1 CAL Runtime

The CAL runtime comprises:

• System initialization and query

• Device management

• Context management

• Memory management,

• Program loading

• Program execution

This section covers the first four bulleted items. The last two components,
program loading and program execution, are covered in Section 3.2.3, “Kernel
Execution,” page 3-16.

3.2.1.1 Linux Runtime Options

Note the following for CAL when running under Linux.

• DISPLAY - Ensure this is set to 0.0 to point CAL at the local X Windows
server. CAL accesses the GPU through the X Windows server on the local
machine.

• Ensure your current login session has permission to access the local X
Windows server. Do this by logging into the X Windows console locally. If you
must access the machine remotely, ensure that your remote session has
access rights to the local X Windows server.

3.2.1.2 System Initialization and Query

The CAL runtime provides mechanisms for initializing, and shutting down, a CAL
system. It also contains methods to query the version of the CAL runtime.

The first CAL routine to be invoked from an application is calInit. It initializes
the CAL API and identifies all valid CAL devices on the system. Invoking any
other CAL function prior to calInit results in an error code, CAL_RESULT_ERROR.
If calInit has already been invoked, the routine returns CAL_RESULT_ALREADY.
Similarly, calShutdown must be called before the application exits for the
application to shutdown properly. Invoking another CAL routine after
calShutdown results in a CAL_RESULT_NOT_INITIALIZED error.

Query the CAL version on the system with the calGetVersion routine. It
provides the major and minor version numbers of the CAL release, as well as
the implementation instance of the supplied version number.

3.2.1.3 Device Management

The CAL runtime supports managing multiple devices in the system. The CAL
API identifies each device in the system with a unique numeric identifier in the
range [0..N-1], where N is the number of CAL-supported devices on the

A M D S T R E A M C O M P U T I N G

CAL Application Programming Interface 3-9
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

system. To find the number of stream processors in the system use the
calDeviceGetCount routine (see the FindNumDevices tutorial program). For
further information on each device, use the calDeviceGetInfo routine. It returns
information on the specific device, including the device type and maximum valid
dimensions of 1D and 2D buffer resources that can be allocated on this device.

Before any operations can be done on a given CAL device, the application must
open a dedicated connection to the device using the calDeviceOpen routine.
Similarly, the device must be closed before the application exits using the
calDeviceClose routine (see the OpenCloseDevice tutorial program).

The calDeviceOpen routine accepts the numeric identifier for the stream
processor that must be opened; when it is open, the routine returns a pointer to
the device.

The following code uses these routines.

// Initialize CAL system for computation
if(calInit() != CAL_RESULT_OK) ERROR_OCCURRED();

// Query and print the runtime version that is loaded
CALuint version[3];
calGetVersion(&version[0], &version[1], &version[2]);
fprintf(stderr, “CAL Runtime version %d.%d.%d\n”,

version[0], version[1], version[2]);

// Query the number of devices on the system
CALuint numDevices = 0;
if(calDeviceGetCount(&numDevices) != CAL_RESULT_OK) ERROR_OCCURRED();

// Get the information on the 0th device
CALdeviceinfo info;
if(calDeviceGetInfo(&info, 0) != CAL_RESULT_OK) ERROR_OCCURRED();

switch(info.target)
{

case CAL_TARGET_600:
fprintf(stdout, "Device Type = GPU R600\n");
break;

case CAL_TARGET_670:
fprintf(stdout, "Device Type = GPU RV670\n");
break;

}

// Opening the 0th device
CALdevice device = 0;
if(calDeviceOpen(&device, 0) != CAL_RESULT_OK) ERROR_OCCURRED();

// Use the device
// ……………

// Closing the device
calDeviceClose(device);

// Shutting down CAL
if(calShutdown() != CAL_RESULT_OK) ERROR_OCCURRED();

A M D S T R E A M C O M P U T I N G

3-10 CAL Application Programming Interface
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

The calDeviceGetInfo routine provides basic information. For more detailed
information about the device, use the calDeviceGetAttribs routine. It returns a
C struct of type CALdeviceattribs with fields of information on the stream
processor ASIC type, available local and remote RAM sizes, and stream
processor clock speed. Note, however, that setting struct.struct_size to the
size of CALdeviceattribs must be done before calling calDeviceGetAttribs.

3.2.1.4 Context Management

To execute a kernel on a CAL device, the application must have a valid CAL
context on that device (see the CreateContext tutorial program). A CAL context
is an abstraction representing all the device states that affect the execution of a
CAL kernel. A CAL device can have multiple contexts, but the same context
cannot be shared by more than one CAL device. For multi-threaded applications,
each CPU thread must use a separate CAL context for communicating with the
CAL device (see Figure 3.5; also, see Section 3.7, “Advanced Topics,” for more
information).

Figure 3.5 Context Management for Multi-Threaded Applications

A CAL context can be created on the specified device using the calCtxCreate
routine. Similarly, a context can be deleted using the calCtxDestroy routine.

// Create context on the device
CALContext ctx;
if(calCtxCreate(&ctx, device) != CAL_RESULT_OK) ERROR_OCCURRED();
// Destroy the context
if(calCtxDestroy(ctx) != CAL_RESULT_OK) ERROR_OCCURRED();

3.2.1.5 Memory Management

All CAL devices have access to local and remote memory subsystems through
CAL kernels running on the device. These discrete memory subsystems are
known collectively as memory pools. In the case of stream processors, local

Application

Thread Thread Thread

CAL
Context

CAL
Context

CAL
Context

CAL
Device

A M D S T R E A M C O M P U T I N G

CAL Application Programming Interface 3-11
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

memory corresponds to the high-speed video memory located on the graphics
board. Remote memory corresponds to memory that is not local to the given
device but still visible to a set of devices (see Figure 3.6). To find the total size
of each memory pool available to a given device, use the calDeviceGetAttribs
routine.

Figure 3.6 Local and Remote Memory

The most common case of remote memory that is accessible from the stream
processors is the system memory. In this case, the stream kernel accesses
memory over the PCIe bus. This access usually is slower and incurs a higher
latency compared to local memory. Performance is dependent on the
characteristics and architectural topology of the host RAM, processor, and the
PCIe controller on the system.

The following steps allocate, initialize and use memory buffers in a CAL kernel:

• Allocate memory resources with desired parameters and memory subsystem.

• Map input and constant resources to application address space, and initialize
contents on the host.

• Provide each resource with context-specific memory handles.

• Bind memory handles to corresponding parameter names in the kernel.

3.2.1.6 Resources

In CAL, all physical memory blocks allocated by the application for use in stream
kernels are referred to as resources. These blocks can be allocated as one-
dimensional or as two-dimensional arrays of data. The data type and format for
each element in the array must be specified at the time of resource allocation
(see the CreateResource tutorial program).

The supported formats include:

Local Memory

Device 1

Remote Memory

Program

Local Memory

Device 2

Program

A M D S T R E A M C O M P U T I N G

3-12 CAL Application Programming Interface
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

• 8-, 16-, and 32-bit, signed and unsigned integer types with 1, 2, and 4
components per element, as well as

• 32- and 64-bit floating point types with 1, 2, and 4 components per element.

The formats are specified using the CALformat enumerated type. The enums use
the naming syntax CAL_FORMAT_type_n, where type is the data type and n is the
number of components per element. For example, CAL_FORMAT_UBYTE_4
represents an element with four 4 8-bit unsigned integer values per element.

Note: 4-component 64-bit floating point types are not supported with this
version of the CAL release.

Memory can be allocated locally (stream processor memory) or remotely (system
memory). In the case of remote allocation, the CAL API lets the application
control the list of devices that can access the resource directly. Remote memory
can serve as a mechanism for sharing memory resources between multiple
devices. This prevents the application from having to create multiple copies of
the data.

Local resources can be allocated using the calResAllocLocalnD routines, where
n is the dimension of the array. Currently, n can be only 1 or 2. The routine
requires the application to pass the CALDevice on which the resource is allocated
along with other parameters such as width, height, format, etc. Similarly, remote
resources are allocated using the calResAllocRemotenD routines and require the
list of CAL devices that can share the remote resource. The allocated resource
is visible only to these devices. On successful completion of the allocation, the
CAL API returns a pointer to the newly allocated CALResource. To deallocate a
resource, use the calResFree routine.

The following code allocates a 2D resource of 32-bit floating point values on the
specified CAL device.

// Allocate 2D array of FLOAT_1 data
CALresource resLocal = 0;
if(calResAllocLocal2D(&resLocal, device, width, height,

CAL_FORMAT_FLOAT_1, 0) != CAL_RESULT_OK)
ERROR_OCCURRED();

// Do the computations
// ……………

// De-allocate the resource
if(calResFree(resLocal) != CAL_RESULT_OK) ERROR_OCCURRED();

CAL memory is used as inputs, outputs, or constants to CAL kernels. For inputs
and constants, first initialize the contents of the memory buffer from the host
application. One way to do this is to map the memory to the application’s address
space using the calResMap routine. The routine returns a host-side memory
pointer that the application can dereference; the application then initializes the
buffer. The routine also returns the pitch of the data buffer, which must be
considered when dereferencing this data. The pitch corresponds to the number
of elements in each row of the resource. This usually is equal to, or greater than,

A M D S T R E A M C O M P U T I N G

CAL Application Programming Interface 3-13
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

the width specified in the allocation routine. The size of the memory buffer
allocated is given by:

Allocated Buffer Size = Pitch * Height * Number of components *
Size of data type

The following code demonstrates how to use calResMap to initialize the resource
allocated above.

// Map the memory handle to CPU pointer
float *dataPtr = NULL;
CALuint pitch = 0;
if(calResMap((CALVoid **)&dataPtr, &pitch, resLocal, 0) !=

CAL_RESULT_OK) ERROR_OCCURRED();

// Initialize the data values
for(int i = 0; i < height; i++)
{

// Note the use of the pitch returned by calResMap to properly
// offset into the memory pointer
float* tmp = &dataPtr[i * pitch];

for (int j = 0; j < width; j++)
{

// At this place depending on the format (1,2,4) we can
// specify relevant values i.e.
// For FLOAT_1, we should initialize temp[j]
// For FLOAt_2, we should initialize temp[2*j] & temp[2*j + 1]
// For FLOAT_4, we should initialize temp[4*j], temp[4*j + 1],
// temp[4*j + 2] & temp[4*j + 3]

tmp[j] = (float)(i * width + j);
}

}

// Unmap the memory handle
if(calResUnmap(resLocal) != CAL_RESULT_OK) ERROR_OCCURRED();

Note that a mapped resource cannot be used in a CAL kernel; the resource must
be unmapped using calResUnmap before being used as shown above.

3.2.1.7 Memory Handles

Once a resource has been allocated, it must be bound to a given CAL context
before being used in a CAL kernel. CAL resources are not context-specific.
Hence, they first must be mapped to the given context’s address space before
being addressed by that context. This is done using the calCtxGetMem routine.
When this is done, the routine returns a context-specific memory handle to the
resource. This handle can be used for subsequent operations, such as reading
from, and writing to, the resource. Once the memory handle is no longer needed,
the handle can be released using the calCtxReleaseMem routine.

// Map the given resource to a new memory handle for this context
CALmem memLocal = 0;
if(calCtxGetMem(&memLocal, ctx, resLocal) != CAL_RESULT_OK)

ERROR_OCCURRED();

A M D S T R E A M C O M P U T I N G

3-14 CAL Application Programming Interface
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

// Use the memory handle
// ………………

// Release the resource to context mapping
if(calCtxReleaseMem(ctx, memLocal) != CAL_RESULT_OK)
ERROR_OCCURRED();

The SetupData routine in the basic tutorial program implements the steps
required to allocate, initialize, and use memory buffers in a kernel. The last step
of binding memory handles to kernel names and parameter names is explained
in Section 3.2.3, “Kernel Execution.”

3.2.2 CAL Compiler

The CAL compiler provides a high-level runtime interface for compiling stream
kernels written in one of the supported programming interfaces. The compiler can
be invoked either at runtime or offline. Invoking them at runtime typically happens
during kernel development when the developer constantly modifies the kernel
and tests the output results. Invoking the offline compiler is suitable for
production-class applications, including kernels that have already been
developed and are loaded and invoked only at runtime. This mechanism prevents
the overhead of compiling the kernel each time the application is executed.

AMD provides other useful tools that can be used for fast and easy development
of efficient stream kernels. See Appendix B, “The AMD Compute Abstraction
Layer (CAL) API Specification” and Section 1.1.4, “GPU ShaderAnalyzer,”
page 1-10, for more information.

3.2.2.1 Compilation and Linking

The CAL compiler accepts the kernel in one of the supported programming
interfaces and generates a binary object specific to a given target CAL device
using calclCompile (see the CompileProgram tutorial program). The routine
requires the application to specify, as arguments, the interface type and the
target device architecture for the resulting binary object, along with the C-style
string for the stream kernel. Once compiled, the object must be linked into a
binary image using calclLink, which generates this image. The binary object
and image are returned as the handles CALobject and CALimage, respectively.

Note the following guidelines for the CAL compiler API:

• Only the AMD IL and the stream processor-specific Instruction Set
Architecture (ISA) are supported as the runtime programming interfaces by
calclCompile.

• The target device architecture supported includes AMD stream processors
listed under the CALtarget enumerated type.

The following code shows the use of the CAL compiler API for querying the
compiler version, compiling a minimal AMD IL kernel and linking the resulting
object into the final binary image. Note the use of the calclFreeObject and

A M D S T R E A M C O M P U T I N G

CAL Application Programming Interface 3-15
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calclFreeImage routines for deallocating the memory allocated by the CAL
compiler for the program object and binary image.

// Kernel string
const char ilKernel[] =
"il_ps_2_0 \n"
// other instructions
"ret_dyn \n"
"end \n";

// Query and print the compiler version that is loaded
CALuint version[3];
calclGetVersion(&version[0], &version[1], &version[2]);
fprintf(stderr, "CAL Compiler version %d.%d.%d\n",

version[0], version[1], version[2]);

// Compile the IL kernel
CALobject object = NULL;
if(calclCompile(&object, CAL_LANGUAGE_IL, ilKernel, CAL_TARGET_670) !=

CAL_RESULT_OK))
ERROR_OCCURRED();

// Link the objects into CAL image
CALimage image = NULL;
if(calclLink (&image, &object, 1) != CAL_RESULT_OK))

ERROR_OCCURRED();

// Use the CAL runtime API to load and run the kernel
// ……………

// Free the object
calclFreeObject(object);

// Free the image
calclFreeImage(image);

3.2.2.2 Stream Processor ISA

The CAL compiler compiles and optimizes the input AMD IL pseudo-assembly to
generate the stream processor-specific ISA. The developer can use the AMD IL
or the stream processor ISA for developing the kernel. Figure 3.7 illustrates the
sequence of steps used during the compilation process. In the latter case,
calclAssembleObject is used to create the CALObject from the stream
processor ISA. Note that this routine performs no optimizations, and the resulting
binary is a direct mapping of the specified stream processor ISA. When using the
AMD IL, the conversion from AMD IL to the stream processor ISA is done
internally by the CAL compiler. This process is transparent to the application.
However, reviewing and understanding the stream processor ISA can be
extremely useful for program debugging and performance profiling purposes. To
get the stream processor ISA for a given CALimage, use the
calclDisassembleImage routine; for CAL objects, use
calclDisassembleObject.

A M D S T R E A M C O M P U T I N G

3-16 CAL Application Programming Interface
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 3.7 Kernel Compilation Sequence

3.2.2.3 High Level Kernel Languages

High-level kernel languages, such as Brook+, provide advantages during kernel
development such as ease of development, code readability, maintainability, and
reuse. AMD-specific interfaces such as AMD IL provide access to lower-level
features in the device, permitting improved features and performance tuning. To
facilitate leveraging the advantages of each programming interface, AMD
provides offline tools that aid with high-level kernel development while providing
low-level control by exposing the AMD IL and the stream processor ISA. For
example, developers can use Brook+ to develop their kernels, then generate the
equivalent AMD IL using offline tools provided by AMD (see Appendix B, “The
AMD Compute Abstraction Layer (CAL) API Specification,” and Section 1.1.4,
“GPU ShaderAnalyzer,” page 1-10). The generated AMD IL kernel then can be
passed to the CAL compiler, with any required modifications, for generating the
binary image.

3.2.3 Kernel Execution

Once the application has initialized the various components (including the device,
memory buffers and program binary), it is ready to execute the kernel on the
device. Kernel execution on a CAL device consists of the following high level
steps: module loading, parameter binding and kernel invocation (see the basic
tutorial program).

3.2.3.1 Module Loading

Once a CAL image has been linked, it must be loaded as an executable module
by the CAL runtime using the calModuleLoad routine. For execution, the runtime
must specify the entry point within the module. This can be queried using the
function name in the original kernel string. Currently, the function name is always
set to main. The following code is an example of loading an executable module.

AMD IL Stream Processor ISA

Psuedo-Assembly
Programming Interface

Device-Specific
Assembly

il_ps_2_0
dcl_output_generic o0
mov o0, v0.xyxx
ret_dyn
end

00 ALU: ADDR(32) CNT(4) KCACHE0(CB0:0-15)
 0 x: MOV R0.x, KC0[0].x
 y: MOV R0.y, KC0[0].y
 z: MOV R0.z, KC0[0].z
 w: MOV R0.w, KC0[0].w
01 EXP_DONE: PIX0, R0
END_OF_PROGRAM

CALObject object;
calclCompile(&object,
 CAL_LANGUAGE_IL,
 ilProgram,
 CAL_TARGET_670);

CALObject object;
calclAssembleObject(&object,
 CAL_PROGRAM_TYPE_PS,
 isaProgram,
 CAL_TARGET_670);

A M D S T R E A M C O M P U T I N G

CAL Application Programming Interface 3-17
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

// Load CAL image as a runtime module for this context
CALmodule module = 0;
if(calModuleLoad(&module, ctx, image) != CAL_RESULT_OK)

ERROR_OCCURRED();

// Query the entry point in the module for the function “main”
CALfunc entry = 0;
if(calModuleGetEntry(&entry, ctx, module, "main") != CAL_RESULT_OK)

ERROR_OCCURRED();

3.2.3.2 Parameter Binding

The CAL runtime API also provides an interface to set up various parameters
(inputs and outputs) required by the CAL API for proper execution. CAL identifies
each parameter in the module by its variable name in the original kernel string.
These variables are AMD IL-style names for inputs (i#), outputs (o#), and
constant buffers (cb#), as shown in the following code. The runtime provides a
routine, calModuleGetName, that allows retrieving a handle from each of the
variables in the module as CALname. Here, x#[] is for the scratch buffer, g[]
is for the global buffer, i# is for the input buffer, and o# is for the output buffer.
These parameter name handles subsequently can be bound to specific memory
handles using calCtxSetMem, then used by the CAL kernel at runtime. The
following code is an example of binding parameters.

// Query the variable names for input 0 and output 0
CALname input = 0, output = 0;
if(calModuleGetName(&input, ctx, module, "i0") != CAL_RESULT_OK ||

calModuleGetName(&output, ctx, module, "o0") != CAL_RESULT_OK)
ERROR_OCCURRED();

CALmem inputMem = 0, outputMem = 0;

// Bind resources to memory handles for this context
// ……………

// Bind the parameters to memory handles
if(calCtxSetMem(ctx, input, inputMem) != CAL_RESULT_OK ||

calCtxSetMem(ctx, output, outputMem) != CAL_RESULT_OK)
ERROR_OCCURRED();

3.2.3.3 Kernel Invocation

Kernels are executed over a rectangular region of the output buffer called the
domain of execution. The kernel is launched using the calCtxRunProgram
routine, which specifies the context, entry point, and domain of execution. The
routine returns an event identifier for this invocation. The calCtxRunProgram
routine is a non-blocking routine and returns immediately. The application thread
calling this routine is free to execute other tasks while the computation is being
done on the CAL device. Alternatively, the application thread can use a busy-wait
loop to keep polling on the completion of the event by using the
calCtxIsEventDone routine. The following code is an example of invoking a
kernel.

A M D S T R E A M C O M P U T I N G

3-18 HelloCAL Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

// Setup the domain for execution
CALdomain domain = {0, 0, width, height};

// Event ID corresponding to the kernel invocation
CALevent event = 0;

// Launch the CAL kernel on the given domain
if(calCtxRunProgram(&event, ctx, entry, &domain) != CAL_RESULT_OK)

ERROR_OCCURRED();

// Wait on the event for kernel completion
while(calCtxIsEventDone(ctx, event) == CAL_RESULT_PENDING);

When the above loop returns, the stream kernel has finished execution, and the
output memory can be dereferenced (using calResMap) to access the output
results. Note the following:

• The domain (domain of execution) is a subset of the output buffer. The
stream processor creates a separate thread for each (x,y) location in the
domain of execution.

• For improved performance, calCtxRunProgram does not immediately
dispatch the program for execution on the stream processor. To force the
dispatch, the application must call calCtxIsEventDone and calCtxFlush on
the corresponding event.

3.3 HelloCAL Application
This section provides a simple example that combines the concepts covered in
previous sections in the form of a HelloCAL application. This program
demonstrates the following components:

• Initializing CAL

• Compiling and loading a stream kernel

• Opening a connection to a CAL device

• Allocating memory

• Specifying kernel parameters including inputs, outputs, and constants

• Executing the CAL kernel

HelloCAL uses a CAL kernel written in AMD IL; this shows the actions taken
when running a CAL application. The kernel reads from one input, multiplies the
resulting value by a constant, and writes to one output. In vector notation, the
computation can be represented as:

Out(1:N) = In(1:N) * constant;

A M D S T R E A M C O M P U T I N G

HelloCAL Application 3-19
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.3.1 Code Walkthrough

This section analyzes the major blocks of code in HelloCAL. The code provided
in this section is a complete application. The reader can copy the code examples
into a separate C++ file to compile and run it.

3.3.1.1 Basic Infrastructural Code

The following code contains the basic infrastructural code, including headers
used by the application. Note that cal.h and calcl.h are shipped as part of the
standard CAL headers. Building HelloCAL requires the amdcalrt and amdcalcl
libraries.

///
//! Header files
///
#include "cal.h"
#include "calcl.h"
#include <string>

The reader must have a basic understanding of AMD IL. The AMD IL
Programmer’s Manual provides a detailed specification on the AMD IL interface.

3.3.1.2 Defining the Stream Kernel

The following code defines the stream kernel written in AMD IL.

This stream kernel:

• Looks up the 0’th input buffer via the 0’th sampler, using
sample_resource(n)_sampler(m) instruction. The current fragment’s
position, v0.xy, is the index into the input buffer. It stores the resulting value
in temporary register r0.

• Multiplies the value in r0 with the constant cb0[0], and writes the resulting
value to output buffer o0.

//
//! Device Kernel to be executed on the GPU
//
//! IL Kernel
std::string kernelIL =
"il_ps_2_0\n"
"dcl_input_position_interp(linear_noperspective) vWinCoord0.xy__\n"
"dcl_output_generic o0\n"
"dcl_cb cb0[1]\n"
"dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fm
tw(float)\n"
"sample_resource(0)_sampler(0) r0, vWinCoord0.xyxx\n"
"mul o0, r0, cb0[0]\n"
"end\n";

};

A M D S T R E A M C O M P U T I N G

3-20 HelloCAL Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.3.1.3 Application Code

The following code contains the actual application code that initializes CAL,
queries the number of devices on the given system, and opens a connection to
the 0’th CAL device. The application then creates a CAL context on this device.

///
//! Main function
///
int main(int argc, char** argv)
{

// Initializing CAL
calInit();
//--
// Querying and opening device
//--
// Finding number of devices
CALuint numDevices = 0;
calDeviceGetCount(&numDevices);

// Opening device
CALdevice device = 0;
calDeviceOpen(&device, 0);

// Querying device info
CALdeviceinfo info;
calDeviceGetInfo(&info, 0);

// Creating context w.r.t. to opened device
CALcontext ctx = 0;

calCtxCreate(&ctx, device);

3.3.1.4 Compile the Stream Kernel and Link Generated Object

The following code compiles the stream kernel using the calcl compiler; it then
links the generated object files into a CALimage. Note that the stream kernel is
being compiled for the AMD device queried to be present on the system using
the calDeviceGetInfo routine. Also note that the calclLink routine can be
used to link multiple object files into a single binary image.

//---
// Compiling Device Kernel
//---
CALobject obj = NULL;
CALimage image = NULL;
CALlanguage lang = CAL_LANGUAGE_IL;
std::string kernel = kernelIL;
std::string kernelType = "IL";

if (calclCompile(&obj, lang, kernel.c_str(), info.target) !=
CAL_RESULT_OK)

{
fprintf(stdout, "Kernel compilation failed. Exiting.\n");
return 1;

}

if (calclLink(&image, &obj, 1) != CAL_RESULT_OK)
{

fprintf(stdout, "Kernel linking failed. Exiting.\n");
return 1;

}

A M D S T R E A M C O M P U T I N G

HelloCAL Application 3-21
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.3.1.5 Allocate Memory

The following code allocates memory for various buffers to be used by the CAL
API. Note that:

• All memory buffers in the application are allocated locally to the opened CAL
device. In the case of stream processors, this memory corresponds to stream
processor memory.

• The input and output buffers contain one-element float values. CAL also
allows elements with one, two, and four data values per element arranged in
an interleaved manner. For example, CAL_FORMAT_FLOAT4 stores four floating
point values per element in the buffer. This can be extremely useful in certain
algorithms since it allows reading multiple values using a single read
instruction.

• The resources must be mapped to CPU memory handles before they can be
referenced in the application. The pitch of the buffer must be considered
while dereferencing the data pointer.

• Any constants required by the kernel can be passed as a one-dimensional
array of data values. This array must be allocated, mapped, and initialized
similar to the way input buffers are handled. In the following code, the
constant buffer is allocated in remote memory.

//---
// Allocating and initializing resources
//---
// Input and output resources
CALresource inputRes = 0;
CALresource outputRes = 0;

calResAllocLocal2D(&inputRes, device, 256, 256, CAL_FORMAT_FLOAT_1, 0);
calResAllocLocal2D(&outputRes, device, 256, 256, CAL_FORMAT_FLOAT_1, 0);

// Constant resource
CALresource constRes = 0;
calResAllocRemote1D(&constRes, &device, 1, 1, CAL_FORMAT_FLOAT_4, 0);

// Setup input buffer – map resource to CPU, initialize values, unmap resource
float* fdata = NULL;
CALuint pitch = 0;
CALmem inputMem = 0;

// Mapping resource to CPU
calResMap((CALvoid**)&fdata, &pitch, inputRes, 0);
for (int i = 0; i < 256; ++i)
{

float* tmp = &fdata[i * pitch];
for (int j = 0; j < 256; ++j)
{

tmp[j] = (float)(i * pitch + j);
}

}
calResUnmap(inputRes);

// Setup const buffer – map resource to CPU, initialize values, unmap resource
float* constPtr = NULL;
CALuint constPitch = 0;
CALmem constMem = 0;

A M D S T R E A M C O M P U T I N G

3-22 HelloCAL Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calResMap((CALvoid**)&constPtr, &constPitch, constRes, 0);
constPtr[0] = 0.5f, constPtr[1] = 0.0f;
constPtr[2] = 0.0f; constPtr[3] = 0.0f;
calResUnmap(constRes);

// Mapping output resource to CPU and initializing values
void* data = NULL;

// Getting memory handle from resources
CALmem outputMem = 0;
calResMap(&data, &pitch, outputRes, 0);
memset(data, 0, pitch * 256 * sizeof(float));
calResUnmap(outputRes);

// Get memory handles for various resources
calCtxGetMem(&constMem, ctx, constRes);
calCtxGetMem(&outputMem, ctx, outputRes);
calCtxGetMem(&inputMem, ctx, inputRes);

3.3.1.6 Preparing the Stream Kernel for Execution

The following code prepares the stream kernel for execution. The CAL image is
first loaded into a CALmodule. Subsequently, the names for various parameters
used in the stream kernel, including the input, output, and constant buffers, are
queried from the module. The names are then bound to appropriate memory
handles corresponding to these parameters. Finally, the kernel’s domain of
execution is set up. In this case, the domain is the same as the dimensions of
the output buffer. This is the most commonly used scenario, even though CAL
allows specifying domains that are subsets of the output buffers. Note that all the
settings mentioned above are collectively called the kernel state and are
associated with the current CAL context.

//---
// Loading module and setting domain
//---

// Creating module using compiled image
CALmodule module = 0;
calModuleLoad(&module, ctx, image);

// Defining symbols in module
CALfunc func = 0;
CALname inName = 0, outName = 0, constName = 0;

// Defining entry point for the module
calModuleGetEntry(&func, ctx, module, "main");
calModuleGetName(&inName, ctx, module, "i0");
calModuleGetName(&outName, ctx, module, "o0");
calModuleGetName(&constName, ctx, module, "cb0");

// Setting input and output buffers
// used in the kernel
calCtxSetMem(ctx, inName, inputMem);
calCtxSetMem(ctx, outName, outputMem);
calCtxSetMem(ctx, constName, constMem);

// Setting domain
CALdomain domain = {0, 0, 256, 256};

A M D S T R E A M C O M P U T I N G

HelloCAL Application 3-23
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.3.1.7 Kernel Execution

Once the above state has been set, the stream kernel can be launched using the
calCtxRunProgram routine. The function main in the stream kernel is queried
from the module and specified as the entry point during kernel launch. The
calCtxRunProgram function returns an event identifier, CALevent, for the current
kernel launch. This identifier can determine if the event has completed. Note that
if a certain state setting required by the kernel is not set up before launching the
kernel, the calCtxRunProgram call fails.

//---
// Executing kernel and waiting for kernel to terminate
//---

// Event to check completion of the kernel
CALevent e = 0;
calCtxRunProgram(&e, ctx, func, &domain);

// Checking whether the execution of the kernel is complete or not
while (calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

// Reading output from output resources
calResMap((CALvoid**)&fdata, &pitch, outputRes, 0);
for (int i = 0; i < 8; ++i)
{

float* tmp = &fdata[i * pitch];
for(int j = 0; j < 8; ++j)
{

printf("%f ", tmp[j]);
}
printf("\n");

}
calResUnmap(outputRes);

When the calCtxIsEventDone loop ends, the stream kernel has finished
execution. The output memory can be dereferenced (using calMemResMap) to
access the results in system memory.

3.3.1.8 De-Allocation and Releasing Connections

After the kernel execution, de-allocate the various resources, and release the
connections to the device and corresponding contexts to exit the application
cleanly. The following code demonstrates this process. Resource de-allocation
includes:

• unbinding of memory handles (setting handle identifier as 0 in
calCtxSetMem),

• releasing memory handles (calCtxReleaseMem), and

• de-allocating resources (calResFree).

Devices and contexts can be released by destroying the context
(calCtxDestroy) and closing the device (calDeviceClose).

A M D S T R E A M C O M P U T I N G

3-24 Performance Optimizations
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

//---
// Cleaning up
//---

// Unloading the module
calModuleUnload(ctx, module);

// Freeing compiled kernel binary
calclFreeImage(image);
calclFreeObject(obj);

// Releasing resource from context
calCtxReleaseMem(ctx, inputMem);
calCtxReleaseMem(ctx, constMem);
calCtxReleaseMem(ctx, outputMem);

// Deallocating resources
calResFree(outputRes);
calResFree(constRes);
calResFree(inputRes);

// Destroying context
calCtxDestroy(ctx);
// Closing device
calDeviceClose(device);

// Shutting down CAL
calShutdown();

return 0;
}

Remember that calShutdown must be the last CAL routine to be called by the
application.

3.4 Performance Optimizations
A main objective of CAL is to facilitate high-performance computing by leveraging
the power of AMD Stream Processors. It is important to understand the
performance characteristics of these devices to achieve the expected
performance. The following subsections provide information for developers to
fine-tune the performance of their CAL applications.

3.4.1 Arithmetic Computations

Modern computational devices are extremely fast at arithmetic computations due
to the large number of stream cores. This is true for floating point and integer
arithmetic operations. For example, the peak floating point computation capability
of a device is given by:

Peak GPU FLOPs = Number of FP stream cores * FLOPS per stream core unit

The AMD RV670 stream processor has 320 stream cores. Each of these is
capable of executing one MAD (multiply and add) instruction per clock cycle. If

A M D S T R E A M C O M P U T I N G

Performance Optimizations 3-25
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

the clock rate on the stream cores is 800 MHz, the FLOPs per stream core are
given by:

FLOPS per Stream Core = Clock rate * Number of FP Ops per clock
= 800 * 106 * 2
= 1.6 GigaFLOPS

Thus, the cumulative FLOPS of the stream processor is given by:

Peak GPU FLOPS = 320 * 1.6 = 512 GigaFLOPS

The stream processor is extremely powerful at stream core computations. The
CAL compiler optimizes the input AMD IL so the stream cores are used
efficiently. The compiler also removes unnecessary computations in the kernel
and optimizes the use of processor resources like temporary registers. Note that
no optimizations are done if the kernel is written in the device ISA.

3.4.2 Memory Considerations

Stream kernels access memory for reading from inputs and writing to outputs.
Getting the maximum performance from a CAL kernel usually means optimizing
the memory access characteristics of the kernel. The following subsections
discuss these considerations.

3.4.2.1 Local and Remote Resources

Accessing local memory from the device is typically more efficient due to the low-
latency, high-bandwidth interconnect between the device and local memory. To
minimize the effect on performance, memory intensive kernels can:

• Copy the input data buffers to local memory.

• Execute the stream kernel by reading from local inputs and writing to local
outputs.

• Copy the outputs to application’s address space in system memory.

3.4.2.2 Cached Remote Resources

A typical CAL application initializes input data in system memory. In some cases,
the data must be processed by the CPU before being sent to the stream
processor for further processing. This processing requires the CPU to read from,
and write to, system memory. Here, it might be more efficient to request CAL to
allocate this remote (CPU) memory from cached system memory for faster
processing of data from the CPU. This can be done by specifying the
CAL_RESALLOC_CACHEABLE flag to calResAllocRemote* routines, as shown in the
following code.

A M D S T R E A M C O M P U T I N G

3-26 Performance Optimizations
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

// Allocate cached 2D remote resource
CALresource cachedRes = 0;
if(calResAllocRemote2D(&cachedRes, &device, 1, width, height,

CAL_FORMAT_FLOAT_4, CAL_RESALLOC_CACHEABLE != CAL_RESULT_OK)
{

fprintf(stdout, "Cached resources not available on device
%u\n",

device);
return -1;

}

When using cached system memory, note that:

• By default, the memory allocated by CAL is uncached system memory if the
flag passed to calResAllocRemote* is zero.

• Uncached memory typically gives better performance for memory operations
that do not use the CPU; for example, DMA (direct memory access)
operations used to transfer data from system memory to stream processor
local memory, and vice-versa. Note that accessing uncached memory from
the CPU degrades performance.

• The application must verify the value returned by calResAllocRemote* to
see if the allocation succeeded before using the CAL resource. When
requesting cached system memory, calResAllocRemote* fails and returns a
NULL resource handle when:

– The host system on which the application is running does not support
cached system memory.

– The amount of cached system memory requested is not available. The
maximum size of cached memory available to an application typically is
limited by the underlying operating system. The exact value can be
queried using the calDeviceGetAttribs routine. The value is stored as
cachedRemoteRAM under CALdeviceattribs.

3.4.2.3 Direct Memory Access (DMA)

Direct memory access (DMA) allows devices attached to the host sub-system to
access system memory directly, independent of the CPU (see the
DownloadReadback tutorial program). Depending on the available system
interconnect between the system memory and the stream processor, using DMA
can help improved data transfer rates when moving data between the system
memory and stream processor local memory. As seen in Figure 3.3, the AMD
stream processor contains a dedicated DMA unit for these operations. This DMA
unit can run asynchronously from the rest of the stream processor, allowing
parallel data transfers when the SIMD engine is busy running a previous stream
kernel.

Applications can request a DMA transfer from CAL using the calMemCopy routine
when copying data buffers between remote (system) and local (stream
processor) memory, as shown in the following code.

A M D S T R E A M C O M P U T I N G

Performance Optimizations 3-27
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

int
copyData(CALcontext ctx, CALmem input, CALmem output)
{

// Initiate the DMA transfer – input is a remote resource
// and output is a device local resource
CALevent e;
CALresult r = calMemCopy(&e, ctx, input, output, 0);
if (r != CAL_RESULT_OK)
{

fprintf(stdout, "Error occurred in calMemCopy\n");
return -1;

}

// Potentially do other stuff except for dereferencing input or
// output resources
// ……………

// If the routine did not return any error, wait for the DMA
// to finish
if (r == CAL_RESULT_OK)

{
while (calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

}

3.4.3 Asynchronous Operations

The calCtxRunProgram and calMemCopy routines are non-blocking and return
immediately. Both return a CALevent that can be polled using
calCtxIsEventDone to check for routine completion. Since these routines are
executed on dedicated hardware units on the stream processor, namely the DMA
unit and the Stream Processor array, the application thread is free to perform
other operations on the CPU in parallel.

For example, consider an application that must perform CPU computations in the
application thread and also run another kernel on the stream processor. The
following code shows one way of doing this.

// Launch GPU kernel
CALevent e;
if(calCtxRunProgram(&e, ctx, func, &rect) != CAL_RESULT_OK)

fprintf(stderr, "Error in run kernel\n");

// Wait for the GPU kernel to finish
while(calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

// Perform CPU operations _after_ the GPU kernel is complete
performCPUOperations();

// Map the output resource to application data pointer
calResMap((CALvoid**)&fdata, &pitch, outputRes, 0);

A M D S T R E A M C O M P U T I N G

3-28 Tutorial Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

The following code implements the same operations as above, but probably
finishes more quickly since it executes the CPU operations in parallel with the
stream kernel.

// Launch GPU kernel
CALevent e;
if(calCtxRunProgram(&e, ctx, func, &rect) != CAL_RESULT_OK)

fprintf(stderr, "Error in run kernel\n");

// Force a dispatch of the kernel to the device
calCtxIsEventDone(ctx, e);

// Perform CPU operations _in parallel_ with the GPU kernel
execution
performCPUOperations();

// Wait for the GPU kernel to finish
while(calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

// Map the output resource to application data pointer
calResMap((CALvoid**)&fdata, &pitch, outputRes, 0);

Note that the above code assumes that the CPU operations in
performCPUOperations() do not use, or depend upon, any of the output values
computed in the stream kernel. If calResMap is called before the
calCtxIsEventDone loop, the above code might generate incorrect results. The
same logic mentioned above can be applied for all combinations of DMA
transfers, stream kernel execution, and CPU computations.

When using the CAL API, the application must correctly synchronize operations
between the stream processor, DMA engine, and CPU. The above example
shows how developers can use the CAL API to improve application performance
with a proper understanding of the data dependencies in the application and the
underlying system’s architecture.

These DMA transfers can be asynchronous. The DMA engine executes each
transfer separately from the command queue. DMA calls are executed
immediately; and the order of DMA calls and command queue flushes is
guaranteed.

DMA transfer execute concurrently with other system or stream processor
operations; however, data is not guaranteed to be ready until the DMA engine
signals that the event or transfer is completed. The application can query the
hardware for DMA event completion. DMA transfers can be another source of
parallelization.

3.5 Tutorial Application
This section uses a very common problem in Linear Algebra, matrix
multiplication, as an illustration for developing a CAL stream kernel and
optimizing it to get the best possible performance from the CAL device. It
implements multiplication of two 2-dimensional matrices using CAL; it then

A M D S T R E A M C O M P U T I N G

Tutorial Application 3-29
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

demonstrates performance optimizations to achieve an order-of-magnitude
performance improvement.

3.5.1 Problem Description

If A is an m-by-k matrix, and B is an k-by-n matrix, their product is an m x n matrix
denoted by AB. The elements of the product matrix AB are given by:

for each pair (i, j) in 1 ≤ i ≤ m and 1 ≤ j ≤ k. Figure 3.8 shows this operation
for a single element in the output matrix C.

Figure 3.8 Multiplication of Two Matrices

3.5.2 Basic Implementation

It is easy to see from Figure 3.8 that the complete operation involves mkn
multiplications and mkn additions. Thus, the complexity of the algorithm is O(n3).
Notice that the computation of each element in the output matrix requires k
values to be read, each from matrices A and B, followed by 2k scalar operations
(k additions and k multiplications).

The following code contains the pseudo-code for the basic matrix-matrix
multiplication algorithm that can be implemented on a CAL device.

//
// (i,j) is the index of the current element being processed
//
input A; // Input matrix (m, k) in size
input B; // Input matrix (k, n) in size
output C; // Output matrix (m, n) in size

void main()
{

// Initialize the element to zero
C[i,j] = 0.0;

(AB)ij Σ airbrj = ai1b1j + ai2b2j + ... + aikbkj=
k

r=1

C(m,n)B(k,n)

Read k
values

A(m,k)

Read k
values

Write 1
 value

2k scalar

X =

A M D S T R E A M C O M P U T I N G

3-30 Tutorial Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

// Iterate over i'th row in matrix A and j’th column in matrix B
// to compute the value of C[i,j]
for (p=0; p<k; p++)

C[i,j] += A[i,p] * B[p,j];
}

The output domain is the output buffer C, which is m-by-n in size. The same code
is executed for each element in this domain to compute, and write to, individual
elements in the output matrix.

The performance of the above algorithm is not optimal because of the poor cache
hit ratio while accessing the elements in input matrices. The stream kernel
accesses elements along a given column (j) of matrix B for each element in the
output matrix. Assuming that memory in the input buffers is arranged in row-
major order, and assuming that the size of each cache block is smaller than the
row size, n, successive memory reads from matrix B come from different cache
blocks. Further assuming that matrix B is bigger than the size of the cache, each
memory read might result in a cache miss. Usually, however, some data reuse
occurs since adjacent elements in the matrix are processed by the other element
processors in the device. Also, on stream processors, the internal memory layout
uses tiling, which further improves the data reuse.

3.5.3 Optimized Implementation

One commonly used algorithm for improving the cache hit ratio performs the
following operations:

• Divide the input and output matrices into sub-matrices.

• Compute the product matrix one block at a time, by multiplying blocks from
the input matrices.

It has been shown that the matrix multiplication operation can also be written in
blocked form by dividing matrix A in MxK blocks and matrix B in KxN blocks. The
resulting matrix, C, has MxN blocks. Figure 3.9 shows this decomposition.
Elements of output matrix C are computed block-by-block, by multiplying blocks
from matrices A and B given by the following equation.

A M D S T R E A M C O M P U T I N G

Tutorial Application 3-31
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 3.9 Blocked Matrix Multiplication

The modified block multiplication algorithm results in much better cache hits
compared to the original algorithm. To understand this better, assume:

• the size of the sub-blocks in matrices A and B are chosen to be the same
as the size of a cache block, s, used by the device

• the stream processor has separate caches for memory read and write
operations,

• the total size of the read cache is ≥ 4s (the size of 4 cache blocks.)

Now, for a given block in output matrix C, there is only one cache miss per block.
Subsequent memory reads are serviced from the cache.

The following code shows the pseudo-code for the modified block algorithm. This
implementation adds further optimizations to the general block algorithm
discussed above.

//
// (i,j) is the index of the current fragment
//
input A00, A01, A10, A11; // Input matrices (m/4, k/4) in size, 4-values per element
input B00, B01, B10, B11; // Input matrices (k/4, n/4) in size, 4-values per element
output C00, C01, C10, C11;// Output matrices (m/4, n/4) in size, 4-values per element

main() {

// Initialize the elements to zero
C00[i,j] = C01[i,j] = C10[i,j] = C00[i,j] = 0;

// Iterate over i'th row in matrix A and j’th column in matrix B
// to compute the values of C00[i,j], C01[i,j], C10[i,j] and C11[i,j]
for (p = 0; p < k/4; p++)
{

C00[i,j].xyzw += A00[i,p].xxzz * B00[p,j].xyxy + A10[i,p].yyww * B01[p,j].zwzw;
C10[i,j].xyzw += A00[i,p].xxzz * B10[p,j].xyxy + A10[i,p].yyww * B11[p,j].zwzw;
C01[i,j].xyzw += A01[i,p].xxzz * B00[p,j].xyxy + A11[i,p].yyww * B01[p,j].zwzw;
C11[i,j].xyzw += A01[i,p].xxzz * B10[p,j].xyxy + A11[i,p].yyww * B11[p,j].zwzw;

}
}

... aK1

...

.........

aK2

aKM

...

a21

a22

a11

a12

aK2aK1 ...

... bN1

...

.........

bN2

bNK

...

b21

b22

b11

b12

b2Kb1K ...

... cN1

...

.........

cN2

cNM

...

c21

c22

c11

c12

c2Mc1M ...

X =

c i j = a br ji r
r = 1

K

A M D S T R E A M C O M P U T I N G

3-32 Tutorial Application
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Note the following important points about the stream kernel in the above
implementation:

• It processes all four blocks in output matrix C within the computational loop.

• It leverages the superscalar floating units available on the SIMD engine by
packing the input matrices so that each element in the input and output
matrices contains four values.

– The size of each matrix block now becomes 1/16th of the original matrix
size (divided into 4 blocks with 4 values per element).

– The number of output values computed and written by each stream
kernel is 16.

– To get the correct result, the input data must be preprocessed so that
each four-component element in the input matrices contain a 2x2 micro-
tile of data values from the original matrix (see Figure 3.10).

– The matrix multiplication done inside the loop computes a 2x2 micro-tile
in the output matrix and writes it as a four-component element. Thus, the
output data also must be post-processed to re-arrange the data in the
correct order.

Figure 3.10 Micro-Tiled Blocked Matrix Multiplication

If the conditions specified earlier in this section hold true, the above algorithm
gives near optimal performance with close to 100% cache hit ratio. However, in
actual implementations, the total working set for each block multiplication might
not fit in the cache. The reads cause cache misses, reducing the performance of
the operation.

Note that the exact blocked decomposition scheme (values for M, N and K
mentioned above) used in the implementation depend on the capabilities of the
underlying stream processor architecture. For a stream processor that has a
maximum of eight output buffers, the maximum number of tiles in the
decomposed matrix is limited to 8x1. The best-performing algorithm that ships
with the CAL SDK uses M = 8, K = 4, N = 8. With the four-component packing,
it performs multiplication of 8x1 four-component blocks for matrix A with 4x1 four-
component blocks of matrix B to compute 8x1 four-component blocks of matrix C.

A M D S T R E A M C O M P U T I N G

CAL/Direct3D Interoperability 3-33
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.6 CAL/Direct3D Interoperability
CAL features extensions providing interoperability with Direct3D 9 and
Direct3D 10 on Windows Vista®. When interoperability is used, Direct3D memory
allocations can be used as inputs to, or outputs of, CAL kernels. The application
must synchronize accesses of the memory from the CAL and Direct3D APIs. This
can be done by using calCtxIsEventDone and Direct3D queries.

To use the interoperability, first the appropriate calD3DAssociate call must be
made. This associates a CAL device to the corresponding Direct3D device. Once
the devices have been associated, use the calD3DMap functions to create a
CALresource from a Direct3D object. The CALresources returned from these
calls can be used like any other CAL resource. When the application is finished
using the allocation, it can be freed with the standard calResFree call. The
CALresource must be freed before the Direct3D object is released.

Section B.4.2, “Interoperability Extensions,” page B-21, provides details of the
interoperability extensions.

3.7 Advanced Topics
This section covers some advanced topics for developers who want to add new
features to CAL applications or use specific features in certain AMD processors.

3.7.1 Thread-Safety

Most computationally expensive applications use multiple CPU threads to
improve application performance and/or responsiveness. This typically is done by
using techniques like task partitioning and pipelining in conjunction with
asynchronous parallel execution on multiple processing units. In general, the CAL
API is not re-entrant; that is, if more than one thread is active within a CAL
function, the function invocation is not thread-safe. To invoke the same CAL
function from multiple threads, the application must serialize access to these
functions using synchronization primitives such as locks. The calCtx* functions
are the exception to this rule. These functions are inherently thread safe if each
thread uses a separate context. Such a model permits actions on a given context
to be completely asynchronous from those on other contexts by using separate
threads.

When using the CAL API in multi-threaded applications:

• CAL Compiler routines are not thread-safe. Applications invoking compiler
routines from multiple threads must do proper synchronization to serialize the
invocation of these routines.

• CAL Runtime routines that are either context-specific or device-specific are
thread-safe. All other CAL runtime routines are not thread-safe.

• If the same context is shared among multiple threads, invocation of the
calCtx* functions must be serialized by the application.

A M D S T R E A M C O M P U T I N G

3-34 Advanced Topics
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3.7.2 Multiple Stream Processors

Modern PC architecture allows deploying multiple PCIe devices on a system.
CAL allows applications to improve performance by leveraging the computational
power of multiple stream processor units that might be available on the system.
Multiple devices can run in parallel by using separate threads managing each of
the stream processors using one context per device1. CAL detects all available
stream processors on the system during initialization in calInit. Subsequently,
applications can query the number of devices on the system using
calDeviceGetCount and then implement task partitioning and scheduling on the
available devices.

Figure 3.11 shows a simple application control flow for an application using two
stream processors. In this example, the main application thread sets up the
application data and compiles the various CAL stream kernels. It then creates
two CPU threads from the host application: one for managing each stream
processor. Each of these threads internally open a CAL device, create a context
on this device, and then run stream kernels. This scheme allows each of the
devices to run in parallel, asynchronous to each other. The actual data or task
partitioning algorithm used to load-balance the work-load between the devices is
dependent on the application.

Note that CAL compiler routines are not thread safe; thus, they are called from
the application thread. If the application must call compiler routines from the
compute threads, it must enforce serial execution using appropriate
synchronization primitives. Also, the term Stream Processor Compute Thread in
Figure 3.11 is used for application-created threads that are created on the CPU
and are used to manage the communication with individual stream processors.
Do not confuse the term with the actual computational threads that run on the
stream processor.

1. Note that the application determines whether to use a separate host CPU thread per stream proces-
sor context, or if a single host thread manages several different stream processor contexts.

A M D S T R E A M C O M P U T I N G

Advanced Topics 3-35
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure 3.11 CAL Application using Multiple Stream Processors

3.7.3 Using the Global Buffer in CAL

The global buffer lets applications read from, and write to, arbitrary locations in
input buffers and output buffers, respectively (see the scatter_IL and
gather_IL sample programs in the $(CALROOT)/samples/languages/IL
directory). To use global buffers, the application must perform two main
modifications to a CAL application:

• request the CAL runtime to allocate global buffers when allocating resources
using CAL_RESALLOC_GLOBAL_BUFFER, and

• specify the output (input) position for the output (input) value to be written to
(read from) the global output (input) buffer.

3.7.3.1 Global Buffer Allocation

A global buffer can be allocated using the CAL runtime API: simply pass the
CAL_RESALLOC_GLOBAL_BUFFER flag while allocating CAL resources. Global
buffers can be allocated as local (stream processor) and as remote (system)
memory. The following code shows this:

Application
Thread

Stream Processor
ComputeThread 0

calDeviceOpen(&dev0, 0)
calCtxCreate(&ctx0, dev0)

calDeviceOpen(&dev1, 1)
calCtxCreate(&ctx1, dev1)

Setup program, inputs,
outputs, constants

calCtxRunProgram(&ctx0,..)
calCtxIsEventDone(ctx0,..)

Setup program, inputs,
outputs, constants

calCtxRunProgram(&ctx1,..)
calCtxIsEventDone(ctx1,..)

Done?
No

Yes
Done?

No

Yes
calCtxDestroy(ctx0)
calDeviceClose(dev0)

calCtxDestroy(ctx1)
calDeviceClose(dev1)

calclCompile(...)
calclLink(...) Stream Processor

ComputeThread 0

A M D S T R E A M C O M P U T I N G

3-36 Advanced Topics
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

CALresource remoteGlobalRes = 0, localGlobalRes = 0;
CALformat format = CAL_FORMAT_FLOAT_1;
CALresallocflags flag = CAL_RESALLOC_GLOBAL_BUFFER;

// Allocate 2D global remote resource
calResAllocRemote2D(&remoteGlobalRes, &device, 1, width, height,

format, flag);
if(!remoteGlobalRes)
{

fprintf(stdout, "Global remote resource not available on device \n");
return -1;

}

// Allocate 2D global local resource
calResAllocLocal2D(&localGlobalRes, device, width, height, format, flag);
if(!localGlobalRes)
{

fprintf(stdout, "Global local resource not available on device \n");
return -1;

}

The rest of the mechanism for binding the resources to CPU pointers, CAL
context-specific memory handles, and stream kernel inputs and outputs remain
the same as normal CAL data buffers.

Note: Global (Linear) buffers are always padded to a 64-element bound-
ary; however, the memexport instruction is not constrained by this,
and the program can write into the pad area. During mapping, when
copying from local to remote storage, data written to the pad area
is not copied (it is lost).

The hardware output paths are different when a buffer is attached
as an export buffer rather than an output buffer.

Ensure that the global buffer has a width that is a multiple of 64
elements.

When entering a width that is not multiple of 64 and using the glo-
bal buffer, calResAllocLocal2D returns a warning. Users also can
query the error message for this warning.

3.7.3.2 Accessing the Global Buffer From a Stream Kernel

The following AMD IL kernel reads data from an input buffer and uses this value
as an address to write into the global output buffer. The value written is the
position in the domain corresponding to the current instance of the stream kernel.

A M D S T R E A M C O M P U T I N G

Advanced Topics 3-37
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

"il_ps_2_0\n"

// Declarations for inputs and outputs
"dcl_input_position_interp(linear_noperspective) v0\n"
"dcl_output_generic o0\n"
"dcl_cb cb0[1]\n"
"dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)\n"

// Read from (x,y)
"sample_resource(0)_sampler(0) r0, vWinCoord0.xyxx\n"

// Compute output address by computing offset in global buffer
"mad r0.x, r0.y, cb0[0].x, r0.x\n"

// Convert address from float to integer
"ftoi r1.x, r0.x\n"

// Output current position to output address in the global buffer
"mov g[r1.x], vWinCoord0.xy\n"

"ret_dyn\n"
"end\n";

Note that in this code:

• The global buffer is accessed using the global memory register, g[address].

• The address passed to the global buffer must be a scalar integer value. The
address can be a literal constant (for example, g[2]) or a temporary register
(r1.x in the above example).

3.7.4 Double Precision Arithmetic

Double precision arithmetic allows applications to minimize computational
inaccuracies that can result due to the use of single-precision arithmetic. Support
for double precision is a crucial factor for certain applications, including
engineering analysis, scientific simulations, etc. The AMD IL provides special
instructions that allow applications to perform computations using 64-bit double
precision in the stream processor (see the DoublePrecision tutorial program,
located in $CALROOT\samples\tutorial\). Typically, double precision
instructions are simply specified by prefixing the single-precision floating point
instructions with d (for example, the double precision counterpart for the add
instruction is dadd). For a complete reference on AMD IL syntax, as well as a list
of double precision instructions, see the AMD Intermediate Language (IL)
Compiler Reference Manual.

Assume temporary 32-bit registers. To represent 64-bit arithmetic values, two
register components are used. The f2d and d2f instructions can convert from
single-precision to double-precision and back. The following AMD IL kernel
snippet converts two 32-bit floating values to 64-bit double precision and
multiplies the values using 64-bit instructions. (Note that using conversion
functions that are not in the range specified in Section 6.3 of the AMD Compute
Abstraction Layer (CAL) Intermediate Language (IL) Reference Manual can
result in the degradation of accuracy.)

A M D S T R E A M C O M P U T I N G

3-38 Advanced Topics
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

//Convert to double precision values
"f2d r1.xy, r0.x\n"
"f2d r1.zw, r0.y\n"

// Perform double precision multiplication
"dmul r2.zw, r1.zw, r1.xy\n"

The dmul instruction performs a single double-precision multiplication using two
components of the source and destination registers. Note that the following
operation for double-precision multiplication also performs a single scalar
multiplication operation and not a vector multiplication, as might be expected.

// The following operation is the same as dmul r2.xy, r1.xy, r1.xy
dmul r2, r1, r1

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide A-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Appendix A
Brook+ Specification

This chapter describes the Brook+ language as implemented for AMD stream
processors. Brook+ provides a rapid prototyping tool for developers of high-
performance applications to test ideas on stream processor, multi-stream-
processors, or multi-core CPU platforms.

A.1 The Structure of a Brook+ Program
Conventional C code describes a single thread of execution. Although extensions
exist at the library level to manipulate threads and processes, the language
specification (including the standard library) does not address parallelism.

Brook+ is an extension of C that supports an explicit model of parallelism. As
explained below, it is based on a graph consisting of nodes that manipulate data
and arcs that indicate the flow of data through the system (see Figure A.1 and
Figure A.2). (Note that this assumes a much more regular and bounded flow of
data than is the case for a traditional dataflow machine.)

A node can either restructure data or perform computations, but not both. Nodes
that restructure data are called stream operators; nodes that perform
computations are known as kernels. Both are independent processes that share
a state only with that part of the system to which they are explicitly connected.
A node starts when the program containing it starts; it executes whenever input
data and output buffers are available; it ends when its parent program has
completed execution.

An arc, known as a stream1 in Brook+, connects two nodes. It does not provide
any storage; instead, it maps the output of one node to the input(s) of one or
more other nodes. (Implementations are permitted to introduce intermediate
storage for streams, and often do, so long as this storage is transparent to the
code.)

Brook+ also provides iterators that linearly interpolate values across a stream.
These are like kernels that take no inputs and compute a trivial function of the
stream indexes.

1. Streams provide connectivity between processing stages. A stream is a reference to an N-dimension-
al array of identically-typed primitive elements (a container with a coordinate space); however, it has
more restricted access semantics than do conventional arrays. These restrictions permit optimization
of both storage requirements and computation locality, providing higher performance for those algo-
rithms that this model can accommodate.

A M D S T R E A M C O M P U T I N G

A-2 Primitive Data Types
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

The symbols shown in Figure A.1 represent the basic building blocks described
above.

Figure A.1 Symbols for Brook+ Building Blocks

The simple illustration in Figure A.2 gives a context for these symbols. It
represents a multiply-accumulate operation applied to a 10x20 grid of points.

Figure A.2 Simple Streamed Multiply-Add

A.2 Primitive Data Types
These types can be used as primitive elements.

These primitive types can be aggregated using struct sub-scripting to generate
more complex types of stream elements.

Kernel

Stream Operator

Stream, bound for
sequential access

Stream, bound for
random access reads
(gather mode)

Stream, bound for
random access writes
(scatter mode)

streamRead

streamRead

streamRead

d=a*b

e=c+d streamWrite

a<10,20>

d<10,20>

b<10,20>

c<10,20>

e<10,20>

int 32-bit integer, signed by default
float 32-bit floating point

double
64-bit floating point; this can have a
maximum of two elements

A M D S T R E A M C O M P U T I N G

Primitive Data Types A-3
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

For example:

struct five_floats
{

float4 a;
float b;

};

is a valid Brook+ data type.

Brook+ provides built-in short vector types for float, double, and int; this lets
code be tuned explicitly for commonly available short-SIMD machines. Here,
short vector means 2 to 4 elements long. The names of these types are built from
the name of their base type, with the size appended as a suffix (for example:
“float3”, and “int2”). These short-vector forms also can be used as primitive
elements.

Access to the fields of a short vector type is through structure member syntax,
as in standard C code. For example, the float short vectors have the following
equivalence:

float2 = struct {floatx; floaty}
float3 = struct {floatx; floaty; floatz}
float4 = struct {floatx; floaty; floatz; floatw}

When an operator is applied to operands of a short vector type, it is equivalent
to applying the operator to each field individually. For example:

float2 a, b, c;
c = a + b;

is equivalent to:

float2 a, b, c;
c.x = a.x + b.x;
c.y = a.y + b.y;

Relational Operators on Short Vectors

Relational operators on short vectors in conditional expressions assume an x
component as the conditional expression. When using the output of a relational
operator as the input to a conditional expression, only the x component of the
value is considered. If your application requires full component-wise conditional
expressions, you must operate on each component individually.

When you perform an operation on short vectors, the expected behavior is that:

float4 a,b
float4 c;
c = a + b;

is the same as:

c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;

A M D S T R E A M C O M P U T I N G

A-4 Streams and Stream Operators
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

c.w = a.w + b.w;

However, for relational operators, such as a < b, the following code illustrates
the difference:

d = a < b ? a : b is the same as:

bool4 c;
c.x = a.x < b.x;
c.y = a.y < b.y;
c.z = a.z < b.z;
c.w = a.w < b.w;

d.x = c.x ? a.x : b.x;
d.y = c.x ? a.y : b.y;
d.z = c.x ? a.z : b.z;

A.3 Streams and Stream Operators
This section describes the function of streams, the syntax for stream
declarations, and how to use stream operators.

A.3.1 Streams

Streams provide connectivity between processing stages. A stream is a reference
to an N-dimensional array of identically-typed primitive elements (a container with
a coordinate space); however, it has more restricted access semantics than do
conventional arrays. These restrictions permit optimization of both storage
requirements and computation locality, providing higher performance for those
algorithms that this model can accommodate.

Logically, streams do not cause storage to be allocated; however,
implementations often allocate large amounts of intermediate storage to contain
the data flowing around the system in streams.

As with C arrays, all dimensions but the left-most (slowest changing) must have
explicitly specified bounds. The uppermost dimension can be specified implicitly.

A.3.2 Stream Declarations

The syntax for specifying a stream is similar to other C variable or type
declarations, except that angle brackets are used to mark the type/variable as a
stream and to delineate the stream dimensions. For example:

float a<>; 1D, unspecified length containing float elements.

int c<100>; 1D, 100 int elements long.

int d<100,200,300>; 3D, 100x200x300 int elements in size.

double e<,100>; 2D, unspecified length but 100 double elements wide.

A M D S T R E A M C O M P U T I N G

Streams and Stream Operators A-5
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Unspecified lengths are permitted only for declarations that form part of formal
parameters1, all other declarations must specify all sizes explicitly. All dimensions
must be integer expressions.

The elements of a stream cannot be accessed from regular C code; they are
visible only to kernels and stream operators. (See Section A.3.3.1, “I/O Stream
Operators,” page A-5, for more details.)

Streams can contain aggregates of primitive elements, but aggregates of streams
are not permitted.

The current implementation supports streams containing up to 223 elements.

A.3.3 Stream Operators

A stream operator looks like a function call and either:

• remaps a stream, or presents a remapped view of a stream, without
changing data at the element level, or

• provides an I/O mechanism between the streaming world of the Brook+ code
and the enclosing host environment.

A.3.3.1 I/O Stream Operators

The following describes copying data to, and from, host (CPU) memory. For
information about memory architecture and accessing, see Section 1.2.5,
“Memory Architecture and Access,” page 1-16.

Copying Data from Host (CPU) Memory –

When reading a stream, it is copied twice: first, from the host (CPU) memory to
the PCIe memory, then to the local (stream processor) memory.

The code:

streamRead(destination_stream, source_array)

copies the elements of source_array to destination_stream.

The number of dimensions, size, and element types must match; otherwise, the
behavior is undefined.

A streamRead operation includes the following order of CAL function calls.

1. calResMap maps the memory resource to the stream.

2. memcopy copies the data from the data pointer to the stream resource.

3. calResUnmap unmaps the memory resource.

4. calMemCopy copies the memory to the graphics device. This is required only
if the resource was allocated as remote.

1. Formal parameters are the names given in the function definition; this is distinct from actual param-
eters, which are the values passed to the function.

A M D S T R E A M C O M P U T I N G

A-6 Streams and Stream Operators
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Copying Data to Host (CPU) Memory –

When writing a stream, it is copied twice: first from local (stream processor)
memory to the PCIe memory, then to the main host (CPU) memory. The code:

streamWrite(source_stream, destination_array)

copies elements from source_stream to destination_array.

The number of dimensions, size, and element types must match; otherwise, the
behavior is undefined.

A streamWrite operation includes the CAL function calls listed above in the
following order.

1. calMemCopy copies the memory to the graphics device. This is required only
if the resource was allocated as remote.

1. calResMap maps the memory resource to the stream.

2. memcopy copies the data from the data pointer to the stream resource.

3. calResUnmap unmaps the memory resource.

A.3.3.2 Implicit Insertion of Stream Operators

If a kernel is bound to a stream the size of which is different from that specified
in the kernel's formal parameter, Brook+ Beta-1 automatically inserts an implicit
stream operator that rescales the stream to match. The following examples
illustrate this.

The first example is an instance of downscaling from a larger stream to a smaller
one.

#include <stdio.h>

kernel void copy(float a<>, out float b<>)
{
 b = a;
}

int main(int argc, char **argv)
{
 float src<10>;
 float dst<5>;
 float s[10];
 float d[5];
 int i;

 for (i = 0; i < 10; i++)
 {
 s[i] = (float)i;
 }

 streamRead(src, s);
 copy(src, dst);
 streamWrite(dst, d);

A M D S T R E A M C O M P U T I N G

Streams and Stream Operators A-7
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

 for (i = 0; i < 10; i++)
 {
 printf("%4.1f ", s[i]);
 if (i < 5)
 {
 printf("%4.1f", d[i]);
 }
 puts("");
 }
}

Here, the source stream is twice the size of the destination stream; so the kernel
downscales during the copy process by skipping every second element in the
input. The result of running this example is:

0.0 0.0
1.0 2.0
2.0 4.0
3.0 6.0
4.0 8.0
5.0
6.0
7.0
8.0
9.0

Upscaling is similar:

#include <stdio.h>
kernel void copy(float a<>, out float b<>)
{
 b = a;
}
int main(int argc, char **argv)
{
 float src<5>;
 float dst<10>;
 float s[5];
 float d[10];
 int i;
 for (i = 0; i < 5; i++)
 {
 s[i] = (float)i;
 }
 streamRead(src, s);
 copy(src, dst);
 streamWrite(dst, d);
 for (i = 0; i < 10; i++)
 {
 if (i < 5)
 {
 printf("%4.1f ", s[i]);
 }
 else
 {
 printf(" ");
 }

A M D S T R E A M C O M P U T I N G

A-8 Kernels
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

 printf("%4.1f\n", d[i]);
 }
}

Here, the situation is reversed, and the kernel upscales the input stream by
replicating each element. The result is:

 0.0 0.0
 1.0 0.0
 2.0 1.0
 3.0 1.0
 4.0 2.0
 2.0
 3.0
 3.0
 4.0
 4.0

A.4 Kernels
Kernels are the part of the streaming model used to define computation. The
most basic form is simply mapped over input data and produces one output item
for each input tuple. Subsequent extensions of the basic model provide random-
access functionality, variable output counts, and reduction/accumulation
operations.

A.4.1 Kernel Types

There are two kernel types: basic and reduction. The following subsections
provide information about each.

A.4.1.1 The Basic Kernel

The simplest type of kernel takes an element from the same location in each
input stream, computes a function of it, then writes it to the corresponding
location in the output stream. This is repeated for every element.

void kernel mad(float a<>, float b<>, float c, out float d<>)
{

d = a * b + c;
}

The input streams must all be of the same size for this operation to be
meaningful (however, see Section A.3.3.2, “Implicit Insertion of Stream
Operators,” page A-6). When the sizes can be determined at compile-time,
implementations are required to check correctness. When the stream sizes
cannot be determined at compile-time, provide a compile-time option to enable
or disable runtime checking.

The current implementation supports binding 128 inputs and 8 outputs to a single
kernel.

A M D S T R E A M C O M P U T I N G

Kernels A-9
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A.4.1.2 Reduction Kernels

Reductions are kernels that decrease the dimensionality of a stream by folding
along one axis using an associative and commutative binary operation. The
requirement that the operation be associative and commutative means that the
result is independent of evaluation order, modulo, any issues due to limited
floating point precision.

Brook+ provides two mechanisms for specifying reductions: reduction variables
and reduction functions.

A reduction variable is specified as part of a kernel and operated on using any
of the C assignment operators that satisfies the associativity and commutativity
requirements; that is: +=, *=, |=, and ^=.

Reduction variables can be any of the primitive types specified above.

For example:

void kernel sum(float a<>, reduce float b)
{

b += a;
}

Reduction variables do not necessarily have to be updated for every kernel
invocation.

For example:

void kernel cond_sum(float a<>, reduce float c)
{

if (a > 10.0)
{

c += a;
}

}

Provide the correct identities (0 for addition, 1 for multiplication, ∞ for max, etc.)
as part of the invocation of the reduction.

In addition to the associative assignment operators listed above, the programmer
also can specify a reduction function that is guaranteed to meet the same
requirements. (This is not checked by the compiler). A reduction function is
marked by prefixing the function definition and the reduction variable with the
reduce keyword1.

1. Currently, prefixing the variable is sufficient to mark the kernel as a reduce kernel.

A M D S T R E A M C O M P U T I N G

A-10 Kernels
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

For example:

reduce void max_reduce(double a, reduce double b)
{

if (a > b)
b = a;

}

reduce void min_reduce(double a, reduce double b)
{

if (a < b)
b = a;

}

It can be called either as a kernel from the host code, or used as a subkernel by
an enclosing kernel (which can itself be a reduction kernel).

A.4.1.3 Partial Reductions

A partial reduction is possible if the target stream has the same number of
dimensions as the source stream. This reduces size but not dimensionality. Each
dimension of the source must be: (a) no smaller than the corresponding
dimension of the target, and (b) an integer multiple of the corresponding
dimension of the target.

For example, assuming a reduction kernel called sum():

float s<100,200>;
float t<100>;
sum(s, t);
float u<100,50>;
sum(s, u);

Each element of t is generated by summing a 1x200 strip from s, and each
element of u is generated by summing a 1x4 strip from s.

A.4.2 Kernel-Specified Communication Patterns

Brook+ is based on a separation of communication and computation, with stream
operators defining communication patterns and kernels defining computation.
Some users find this too restrictive, so a mechanism has been provided to allow
kernels to specify their own communication patterns.

If a stream is bound to a kernel using array brackets rather than stream brackets,
the code inside the kernel can access any of the elements of the stream, not just
the single element to which the kernel is mapped. This is very similar to a C array
operation, except that the index is presented as a float2 (rather than 2 floats in
C).

For example:

kernel void gather_ex_1(float2 a<>, float b[100][100], out float c<>)
{

c = b[a];
}

A M D S T R E A M C O M P U T I N G

Kernels A-11
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Indices can be pulled directly from a stream, or computed as part of the kernel
operation:

kernel void indexing(float3 a<>, float b[100][100][100], out float c<>)
{

float3 d = some_function(a);
c = b[d];

}

A stream must be bound write-only or read-only. Read-write binding is not
permitted.

Note that specifying communication patterns inside kernels rather than using
stream operators can degrade performance.

A.4.3 Calling Other Code from Kernel Code

Kernels can call other functions defined in the same .br file or any files it
includes; however, there are restrictions.

• A top-level kernel must have a return type of void to be callable from host
code. Subkernels can return data of any non-stream type. A subkernel also
can be bound to streams propagated from its parent kernel.

• Subkernels are logically expanded inline, so recursion is not permitted.

• Kernels cannot call stream operators.

A.4.4 Restrictions on Kernel Code

Kernels can use both stream and non-stream parameters as inputs. Generally,
only streams can be used as outputs (but see reductions, below).

Within a kernel definition, the following restrictions apply:

• The goto, volatile, and static keywords are prohibited.

• All variables must be of automatic storage class (that is, declared on the
stack).

• Pointers are not supported.

• Recursion is not allowed.

• Precise exceptions are not supported.

• Any pointers passed into Brook+ code are required not to alias each other.

• Brook+ functions callable from C code are required to fully specify the sizes
of array arguments.

• Storage allocated by Brook+ code can not be accessed by external code
except during the lifetime of external functions called from that Brook+ code;
and streams are never accessible to non-Brook+ code.

A Brook+ project can be made up of both C/C++ and Brook+ source files, with
the Brook+ files having the extension .br. Within a Brook+ file, the following
restrictions apply:

A M D S T R E A M C O M P U T I N G

A-12 Standard Library Functions and Intrinsics
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

• Brook+ functions can not call functions declared in C files.

• Preprocessor directives are passed through to the host C++ compiler
untouched and uninterpreted.

A.5 Standard Library Functions and Intrinsics
The following is a listing and description of the kernel intrinsics.

indexof() The indexof operator is applied to a stream and returns a float (or
floatN) type containing the index of the element that the kernel
currently being mapped over.

This operator is not valid for reduction or gather streams.

abs(x) Absolute value of x.

acos(x) Inverse cosine of x.

asin(x) Inverse sine of x.

clamp(x,a,b) Clamps the supplied value to be between an upper and lower limit.
a < clamp(x) < b.

cos(x) Cosine of x.

cross(x,y) Cross product of the two vectors x and y.

dot(x,y) Dot product of the two vectors x and y.

exp(x) ex

floor(x) ⎣x⎦

fmod(x,y) Returns ƒ such that x = i * y + ƒ, where i is an integer, ƒ has the
same sign as x and ⎪ƒ⎪ < ⎪y⎪.

frac(x) Returns the fractional part of x.

isfinite(x) Returns true if x is finite, false (0) otherwise.

isinf(x) Returns true if x is infinite, false (0) otherwise.

isnan(x) Returns true if x is NaN, false (0) otherwise.

lerp(x,y,a) (1 – a)x + ay; 0 < a < 1

log(x) ln (x)

max(x,y) Returns the greater of x or y.

min(x,y) Returns the lesser of x or y.

normalize(x) Normalizes a vector, returning .

pow(x,y) xy

rsqrt(x)

round(x) Rounds x to the nearest integer by adding 0.5 and truncating.

x
x

1
x

A M D S T R E A M C O M P U T I N G

Standard Library Functions and Intrinsics A-13
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

sign(x) Returns the sign of x, if x is 0 then sign(x) is also 0.

sin(x) Sine of x.

sqrt √x

A M D S T R E A M C O M P U T I N G

A-14 Standard Library Functions and Intrinsics
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide B-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Appendix B
The AMD Compute
Abstraction Layer (CAL)
API Specification

The AMD Compute Abstraction Layer (CAL) provides a forward-compatible,
interface to the high-performance, floating-point, parallel processor arrays found
in AMD stream processors and CPUs.

The CAL API is designed so that:

• the computational model is processor independent.

• the user can easily switch from directing a computation from stream
processor to CPU or vice versa.

• it permits a dynamic load balancer to be written on top of CAL.

• CAL is a lightweight implementation that facilitates a compute platform such
as Brook+ to be developed on top of it.

CAL is supported on R6xx and newer generations of AMD stream processors
and all CPU processors. It runs on both 32-bit and 64-bit versions of Windows®
XP, Windows Vista®, and Linux®.

B.1 Programming Model
The CAL application executes on the CPU, driving one or more stream
processors. A stream processor is connected to two types of memory: local
(stream processor) and remote (system). Contexts on a stream processor can
read and write to both memory pools. Context reads and writes to local memory
are faster than those to remote memory. The master process also can read and
write to local and remote memory. Typically, the master process has higher read
and write speeds to the remote (system) memory of the stream processors. The
master process submits commands or jobs for execution on the multiple contexts
of a stream processor. The master process also can query the context for the
status of the completion of these tasks. Figure B.1 illustrates a CAL system.

A M D S T R E A M C O M P U T I N G

B-2 Programming Model
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure B.1 CAL System

A stream processor has a one or more SIMD engines. The computational
function (kernel) is executed on these arrays. Unlike CPUs, stream processors
contain a large array of SIMD processors. The inputs and outputs to the kernel
can be set up to reside either in the local or the remote memory. A kernel is
invoked by setting up one or more outputs and specifying a domain of execution1
for this output that must be computed. In the case of a stream processor having
multiple processors (such as a stream processor), a scheduler distributes the
workload to various SIMD engines on the stream processor.

The CAL abstraction divides commands into two key types: device and context.
A device is a physical stream processor visible to the CAL API. The device
commands primarily involve resource allocation (local or remote memory). A
context is a queue of commands that are sent to a stream processor. There can
be parallel queues for different parts of the stream processor. Resources are
created on stream processors and are mapped into contexts. Resources must be
mapped into a context to provide scoping and access control from within a
command queue. Each context represents a unique queue. Each queue operates
independently of each other. The context commands queue their actions in the
supplied context. The stream processor does not execute the commands until the
queue is flushed. Queue flushing occurs implicitly when the queue is full or
explicitly through CAL API calls.

Resources are accessible through multiple contexts on the same stream
processor and represent the same underlying memory (Figure B.2). Data sharing
across contexts is possible by mapping the same resource into multiple contexts.
Synchronization of multiple contexts is the client’s responsibility.

1. A specified rectangular region of the output buffer to which threads are mapped.

Master
Process

Local (SP)
Memory

Stream Processor1

Context
1

Context
n

Local (SP)
Memory

Context
1

Context
n

Stream Processor n

Remote (System, CPU) Memory

Command

Status

A M D S T R E A M C O M P U T I N G

Runtime B-3
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Figure B.2 Context Queues

B.2 Runtime
The CAL runtime comprises the system, stream processor management, context
management, memory management, program loader, computational component,
and synchronization component. The following subsections describe these.

B.2.1 System

The system component initializes and shuts down a CAL system. It also contains
methods to query the version of the CAL runtime. Section B.3.1, “System
Component,” describes the relevant API.

B.2.2 Device Management

A machine can have multiple processing units. Each of these is known as a
device. The device management component opens and closes a device; it also
queries the devices and their attributes. Section B.3.2, “Device Management,”
describes the relevant API.

B.2.3 Memory Management

The memory management component allocates and frees memory resources.
These can be local or remote to a processing device. Memory resources are not
directly addressed by contexts; instead, they create memory handles from a
memory resource for any specific context. This allows access to the same
memory resource by two memory contexts through two memory handles.

The API provides function calls to map the memory handles to CPU address
space for access by the master process.

Currently, shared remote resources across devices are not supported.

Section B.3.3, “Memory Management,” describes the relevant API.

Master
Process

Context
Commands

Device
Commands

Context
Parameter

Stream Processor
Alloc

Resource

Queue 0

Queue 1

Queue n

Context 0

Context 1

Context n

A M D S T R E A M C O M P U T I N G

B-4 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.2.4 Context Management

A device can have multiple contexts active at any time. This component creates
and destroys contexts on a particular device. Section B.3.4, “Context
Management,” describes the relevant API.

B.2.5 Program Loader

The program loader loads a CAL image onto a context of a device to generate
a module. An image is generated by compiling the source code into objects,
which are then linked into an image. It is possible to get handles to the entry
points and names used in the program from a loaded module. These entry point
and name handles are used to setting up a computation. Section B.3.5, “Loader,”
describes the relevant API.

B.2.6 Computation

This component sets up and executes a kernel on a context. This includes:

• setting up the memory for inputs and outputs,

• triggering a kernel.

This component also handles data movement by a context. The API provides
function calls for querying if a computational task or data movement task is done.
Section B.3.6, “Computation,” describes the relevant API.

B.3 Platform API
The following subsections describe the APIs of the CAL runtime components.

B.3.1 System Component

The following function calls are specific to the system component of the CAL
runtime.

calInit

Syntax CALresult calInit(void)

Description Initializes the CAL API for computation.

Results CAL_RESULT_ERROR Error.

CAL_RESULT_ALREADY CAL API has been initialized already.

CAL_RESULT_OK Success.

CAL_RESULT_NOT_INITIALZIED CAL API has not been initialized.

A M D S T R E A M C O M P U T I N G

Platform API B-5
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.3.2 Device Management

The following function calls are specific to the device management component of
the CAL runtime.

calShutdown

Syntax CALresult calShutdown(void)

Description Shuts down the CAL API. Must be paired with calInit. An application can
have any number of calInit - calShutdown pairs. Calling calShutdown
destroys any open context, frees allocated resources, and closes all open
devices.

Results CAL_RESULT_NOT_INITIALZIED Any CAL call outside a calInit -
calShutdown pair.

calGetVersion

Syntax CALresult calGetVersion(
CALuint* major,
CALuint* minor,
CALuint* imp)

Description Returns the major, minor, and implementation versions numbers of the CAL
API.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_PARAMETER Error. One or more parameters are
null.

calDeviceGetCount

Syntax CALresult calDeviceGetCount(CALuint* count)

Description Returns the numbers of processors available to the CAL API for use by
applications.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Error. Count is assigned a value of
zero.

A M D S T R E A M C O M P U T I N G

B-6 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calDeviceGetAttribs

Syntax CALresult calDeviceGetAttribs (
CALdeviceattribs* attribs,
CALuint ordinal)

Description Returns device-specific information about the processor in attribs. The
device is specified by ordinal, which must be in the range of zero to the
number of devices returned by calDeviceGetCount minus one. The device
does not have to be open to obtain information about it. The struct_size
field of the CALdeviceattribs structure must be filled out prior to calling
calDeviceGetInfo.

Results CAL_RESULT_OK Success, and attribs contains
information about the device.

CAL_RESULT_INVALID_PARAMETER Error if ordinal is not a valid device
number.

CAL_RESULT_ERROR Error if information about the device
cannot be obtained.

On error, the contents of attribs is
undefined. See CALdeviceattribs
for details on the CALdeviceattribs
structure.

calDeviceOpen

Syntax CALresult calDeviceOpen(
CALdevice* dev,
CALuint ordinal)

Description Opens a device indexed by ordinal. A device must be closed before it can
be opened again in the same application. Always pair this call with
calDeviceClose.

Results CAL_RESULT_OK Success, and dev is a valid handle to
the device.

CAL_RESULT_INVALID_PARAMETER Error if ordinal is not a valid device
number.

CAL_RESULT_ERROR Error if information about the device
cannot be opened.

On error, dev is zero.

A M D S T R E A M C O M P U T I N G

Platform API B-7
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calDeviceGetStatus

Syntax CALresult calDeviceGetStatus (
CALdevicestatus* status,
CALdevice dev)

Description Opens a device indexed by ordinal. A device must be closed before it can
be opened again in the same application. Always pair this call with
calDeviceClose.

Results CAL_RESULT_OK Success, and dev is a valid handle to
the device.

CAL_RESULT_INVALID_PARAMETER Error if ordinal is not a valid device
number.

CAL_RESULT_ERROR Error if information about the device
cannot be opened.

On error, dev is zero.

calDeviceClose

Syntax CALresult calDeviceClose(CALdevice dev)

Description Closes a device specified by the dev handle. When a device is closed, all
contexts created on the device are destroyed, and all resources on the
device are freed. Always pair this call with calDeviceOpen.

Results CAL_RESULT_OK Success: dev is a valid handle to the
device.

CAL_RESULT_ERROR The overall state is assumed to be as
if calDeviceClose was never called.

A M D S T R E A M C O M P U T I N G

B-8 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.3.3 Memory Management

The following function calls are specific to the memory management component
of the CAL runtime.

calResAllocLocal2D

Syntax CALresult calResAllocLocal2D(
CALresource* res,
CALdevice device,
CALuint width,
CALuint height,
CALformat format,
CALuint flags)

Description Allocates memory local to a stream processor. The device specifies the
stream processor to allocate the memory. This memory is structured as a
two-dimensional region of width and height with a format. The maximum
dimensions are available through the calDeviceGetInfo function.

The flags parameter is used to specify a basic level of use for the memory.
For local memory, the value must be zero unless the memory is used for
memory export. If the memory is used for memory export, then flags must
be CAL_RESALLOC_GLOBAL_BUFFER.

Results CAL_RESULT_OK Success, and res is a handle to the
memory resource.

CAL_RESULT_BAD_HANDLE Error if dev is not a valid device.

CAL_RESULT_ERROR Error if the memory can not be
allocated.

On error, res is zero.

A M D S T R E A M C O M P U T I N G

Platform API B-9
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calResAllocRemote2D

Syntax CALresult calResAllocRemote2D(
CALresource* res,
CALdevice* sharedDevices,
CALuint deviceCount,
CALuint width,
CALuint height,
CALformat format,
CALuint flags)

Description Allocates memory remote to deviceCount number of devices in the
sharedDevices array. The memory is system memory, remote to all stream
processors. This memory is structured as a two-dimensional region of width
and height with a format. The maximum dimensions are available through the
calDeviceGetInfo function.

The flags parameter specifies a basic level of use for the memory. For remote
memory, zero means the memory is allocated in uncached system memory,
CAL_RESALLOC_CACHEABLE forces the memory to be CPU cachable.

One benefit of devices being able to write to remote (system) memory is
performance. For example, with large computational kernels, it sometimes is
faster for the stream processor contexts to write directly to remote memory
than it is to do process them in two steps: stream processor context writing
to local memory, and copying data from stream processor local memory to
remote system memory.

Results CAL_RESULT_OK Success, and res is a handle to the
memory resource.

CAL_RESULT_BAD_HANDLE Error if any device in sharedDevices
is not valid.

CAL_RESULT_ERROR Error if the memory can not be
allocated.

On error, res is zero.

A M D S T R E A M C O M P U T I N G

B-10 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calResAllocLocal1D

Syntax CALresult calResAllocLocal1D(
CALresource* res,
CALdevice device,
CALuint width,
CALformat format,
CALuint flags)

Description Allocates memory local to a stream processor. The device to allocate the
memory is specified by device. This memory is structured as a one-
dimensional region of width with a format. The maximum dimensions are
available through the calDeviceGetInfo function.

The flags parameter is used to specify a basic level of use for the memory.
For local memory, the value must be zero unless the memory is used for
memory export. If the memory is used for memory export, flags must be
CAL_RESALLOC_GLOBAL_BUFFER.

Results CAL_RESULT_OK Success, and res is a handle to the
memory resource.

CAL_RESULT_BAD_HANDLE Error if dev is not a valid device.

CAL_RESULT_ERROR Error if the memory can not be
allocated.

On error, res is zero.

A M D S T R E A M C O M P U T I N G

Platform API B-11
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calResAllocRemote1D

Syntax CALresult calResAllocRemote1D(
CALresource* res,
CALdevice* sharedDevices,
CALuint deviceCount,
CALuint width,
CALformat format,
CALuint flags)

Description Allocates memory remote to deviceCount number of devices in the
sharedDevices array. The memory is system memory (remote to all
devices). It is structured as a one-dimensional region of width with a format.
The maximum dimensions are available through the calDeviceGetInfo
function.

The flags parameter specifies a basic level of use for the memory. For
remote memory, zero means the memory is allocated in uncached system
memory, CAL_RESALLOC_CACHEABLE forces the memory to be CPU-cachable.

One benefit of devices being able to write to remote (system) memory is
performance. For example, with large computational kernels, it sometimes is
faster for the stream processor contexts to write directly to remote memory
than it is to do process them in two steps: stream processor context writing
to local memory, and copying data from stream processor local memory to
remote system memory.

Results CAL_RESULT_OK Success, and res is a handle to the
memory resource.

CAL_RESULT_BAD_HANDLE Error if any device in sharedDevices
is not valid.

CAL_RESULT_ERROR Error if the memory can not be
allocated.

On error, res is zero.

calResFree

Syntax CALresult calResFree(CALresource res)

Description Releases the memory resources as specified by handle res.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle

CAL_RESULT_BUSY Error if the resource is in use by a
context.

On error, the state is as if calResFree
had never been called. Use
calCtxReleaseMem to release a
resource handle from a context.

A M D S T R E A M C O M P U T I N G

B-12 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calResMap

Syntax CALresult calResMap(
CALvoid** pPtr,
CALuint* pitch,
CALresource res,
CALuint flags)

Description Returns a CPU-accessible pointer to the specified resource res. The CPU
pointer address is returned in pPtr. For two-dimensional surfaces, the count,
in the number of elements across the width, is returned in pitch. The flags
field must be zero.

The CAL client must ensure the contents of the resource do not change; this
is done by ensuring that all outstanding kernel programs that affect the
resource are complete prior to mapping.

The calResMap function blocks the thread until the CPU-accessible pointer is
valid. For local surfaces, this can mean the implementation performs a copy
of a resource and waits until the copy is complete. For remote surfaces, a
pointer to the surface is returned without copying contents.

Results CAL_RESULT_OK Success, and a valid CPU pointer
returned in pPtr. Pitch is the number
of elements across for each line in a
two-dimensional image.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle

CAL_RESULT_ERROR Error if the surface can not be
mapped.

CAL_RESULT_ALREADY Returned if the resource is already
mapped

On error, pPtr and pitch are zero.

calResUnmap

Syntax CALresult calResUnmap (CALresource res)

Description Releases the address returned in calResMap. All mapping resources are
released, and CPU pointers become invalid. This must be paired with
calResMap.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle

CAL_RESULT_ERROR The resource is not mapped, and
Unmap was called.

A M D S T R E A M C O M P U T I N G

Platform API B-13
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.3.4 Context Management

The following function calls are specific to the context management component
of the CAL runtime.

calCtxCreate

Syntax CALresult calCtxCreate(
CALcontext* ctx,
CALdevice dev)

Description Creates a context on the device specified by dev. Multiple contexts can be
created on a single device.

Results CAL_RESULT_OK Success, and ctx contains a handle
to the context.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle.

CAL_RESULT_ERROR A context can not be created.

On error, ctx is zero.

calCtxDestroy

Syntax CALresult calCtxDestroy(CALcontext ctx)

Description Destroys a context specified by the ctx handle. When a context is destroyed,
all currently executing kernels are completed, all modules are unloaded, and
all memory is released from the context.

Pair this call with calCtxCreate.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx is an invalid handle

CAL_RESULT_ERROR A context can not be created.

On error, ctx is zero.

A M D S T R E A M C O M P U T I N G

B-14 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calCtxGetMem

Syntax CALresult calCtxGetMem(
CALmem* mem,
CALcontext ctx,
CALresource res)

Description Maps a resource specified by res into the context specified by ctx. The
memory handle is returned in mem. The returned memory handle’s scope is
relative to the supplied context. If the supplied resource is a shared remote
resource, only contexts belonging to the “shared devices” argument during
creation have access to this resource.

Results CAL_RESULT_OK Success, and mem contains a handle
to the memory.

CAL_RESULT_BAD_HANDLE Error if ctx or res is an invalid handle

calCtxReleaseMem

Syntax CALresult calCtxReleaseMem(
CALcontext ctx,
CALmem mem)

Description Releases the memory handle specified by mem from the context specified by
ctx. The resource used to create the memory handle is updated with a
release notification.

Results CAL_RESULT_OK Success, and mem contains a handle
to the memory.

CAL_RESULT_BAD_HANDLE Error if ctx or mem is an invalid handle

calCtxSetMem

Syntax CALresult calCtxSetMem(
CALcontext ctx,
CALname name,
CALmem mem)

Description Associates memory with a symbol from a compiled kernel. The memory is
specified by mem. The symbol is specified by name. The context where the
association occurs is specified by ctx. To remove an association, call
calCtxSetMem with a null memory handle. The semantics of the kernel
symbol name dictate if the memory is used for input, output, constants, or
memory export.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx or mem is an invalid
handle.

A M D S T R E A M C O M P U T I N G

Platform API B-15
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.3.5 Loader

The following function calls are specific to the loader component of the CAL
runtime.

calModuleLoad

Syntax CALresult calModuleLoad(
CALmodule* module,
CALcontext ctx,
CALimage image)

Description Creates a module handle from a precompiled kernel binary image and loads
the image on the context specified by ctx. The handle for the module is
returned in module. See CAL Image. AMD’s Compute Abstraction Layer
Program Binary Format Specification for details on the format of CALimage.
Multiple images can be loaded concurrently.

The CALimage passed into calModuleLoad must conform to the CAL multi-
binary format, as specified in the CAL Image document. A multi-binary
consists of many different encodings of the same program. The loader
chooses the best match encoding to load. The order priority for the encoding
that is loaded is ISA, feature matching AMD IL, base AMD IL. All AMD IL
encodings go through load-time translation to the device-specific ISA prior to
being loaded.

Results CAL_RESULT_OK Success, and module is a valid
handle.

CAL_RESULT_BAD_HANDLE Error if ctx is an invalid handle.

CAL_RESULT_INVALID_PARAMETER Error if module pointer is null.

CAL_RESULT_ERROR Error if the binary is invalid or can not
be loaded.

calModuleUnload

Syntax CALresult calModuleUnload(
CALcontext ctx,
CALmodule module)

Description Unloads the module specified by the module handle from the context
specified by ctx. Unloading a module disassociates all CALname handles
from their assigned memory and destroys all CALname and CALfunc handles
associated with the module.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx or module is an invalid
handle.

A M D S T R E A M C O M P U T I N G

B-16 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calModuleGetEntry

Syntax CALresult calModuleGetEntry(
CALfunc* func,
CALcontext ctx,
CALmodule module,
const CALchar* procName)

Description Retrieves a function by name in a loaded module. The module parameter
specifies from which loaded module the function is retrieved. The name of
the function is specified by procName. The returned handle can be used to
execute the function using calCtxRunProgram.

Results CAL_RESULT_OK Success, and func is a valid handle
to the function entry point.

CAL_RESULT_BAD_HANDLE Error if ctx or module is an invalid
handle.

CAL_RESULT_ERROR Error if the function name is not found
in the module.

 On error, func is zero.

calModuleGetName

Syntax CALresult calModuleGetName(
CALname* name,
CALcontext ctx,
CALmodule module,
const CALchar* symbolName)

Description Retrieves a symbol by name in a loaded module. The module parameter
specifies from which loaded module to retrieve the symbol. The name of the
symbol is specified by symbolName. The returned handle can be used to
associate memory with the symbol using calCtxSetMem. The semantic use
for the name is determined by the use in the kernel program. Symbols can
be used for inputs, outputs, constants, and memory exports.

Results CAL_RESULT_OK Success, and name is a valid handle
to the symbol name.

CAL_RESULT_BAD_HANDLE Error if ctx or module is an invalid
handle.

CAL_RESULT_ERROR Error if the symbol name is not found
in the module.

 On error, name is zero.

A M D S T R E A M C O M P U T I N G

Platform API B-17
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.3.6 Computation

The following function calls are specific to the computation component of the CAL
runtime.

calImageRead

Syntax CALresult calImageRead(
CALimage* image,
const CALvoid* buffer,
CALuint size)

Description Creates a CALimage and populates it with information from the supplied
buffer.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Error.

calCtxRunProgram

Syntax CALresult calCtxRunProgram(
CALevent* event,
CALcontext ctx,
CALfunc func,
const CALdomain* rect)

Description Issues a program run task to invoke the computation of the kernel identified
by func within a region rect on the context ctx, and returns an associated
event token in event with this task.

The run program task is not scheduled for execution until
calCtxIsEventDone is called. Completion of the run program task can be
queried by the CAL client by calling calCtxIsEventDone within a loop.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx or func is an invalid
handle.

CAL_RESULT_ERROR Error if any of the symbols used by
func are invalid or if any of the
resources bound to the symbols are
mapped.

Use calCtxGetErrorString for
contextual information regarding any
errors.

A M D S T R E A M C O M P U T I N G

B-18 Platform API
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calCtxRunProgramGrid

Syntax calCtxRunProgramGrid(
CALevent* event,
CALcontext ctx,
CALprogramGrid* pProgramGrid)

Description Invokes the kernel over the specified domain. Issues a task to invoke the
computation of the kernel, identified by func, within a region domain on
the context ctx, and returns an associated event token in event with this
task. Completion of this event can be queried by the master process using
calIsEventDone.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Either func is not found in the currently
loaded module; or one or more of the inputs,
input references, outputs or constant buffers
associated with the kernel are not set up. For
extended contextual information of a
calCtxRunProgram failure, use the
calGetErrorString.

calCtxRunProgramGridArray

Syntax calCtxRunProgramGridArray(
CALevent* event,
CALcontext ctx,
CALprogramGridArray* pGridArray)

Description Invokes the kernel array over the specified domain(s). Invokes the
computation of the kernel arrays, identified by func, within a region
domain on the context ctx and returns an associated event token in
event with this task. Completion of this event can be queried by the
master process using calIsEventDone.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Either func is not found in the currently
loaded module; or one or more of the inputs,
input references, outputs or constant buffers
associated with the kernel are not set up. For
extended contextual information of a
calCtxRunProgram failure, use the
calGetErrorString.

A M D S T R E A M C O M P U T I N G

Platform API B-19
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calMemCopy

Syntax CALresult calMemCopy(
CALevent* event,
CALcontext ctx,
CALmem srcMem,
CALmem destMem,
CALuint flags)

Description Issues a task to copy data from a source memory handle to a destination
memory handle. An event is associated with this task and is returned in
event, and completion of this event can be queried by the master process
using calCtxIsEventDone. Data can be copied between memory handles
from:
• remote system memory to device local memory,
• remote system memory to remote system memory,
• device local memory to remote system memory,
• device local memory to same device local memory,
• device local memory to a different device local memory.

The memory is copied by the context ctx. It can be placed in a separate
queue or the primary calCtxRunProgram queue of context ctx.

Results CAL_RESULT_OK Success, and event contains the
event identifier that a client can poll to
query completeness.

CAL_RESULT_BAD_HANDLE Error if ctx, srcMem, or dstMem is an
invalid handle.

CAL_RESULT_ERROR Error if the source and destination
memory have different sizes or
formats.

On error, event is zero.

calCtxIsEventDone

Syntax CALresult calCtxIsEventDone(
CALcontext ctx,
CALevent event)

Description This function:

Schedules an event specified by event for execution.

Permits a CAL client to query if an event, specified by event, on the context,
ctx, has completed.

Results CAL_RESULT_OK The Run Program or Mem Copy
associated with the event identifier
has completed.

CAL_RESULT_PENDING Returned for events that have not
completed.

CAL_RESULT_BAD_HANDLE Error if ctx or event is an invalid
handle.

A M D S T R E A M C O M P U T I N G

B-20 Extensions
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.3.7 Error Reporting

Error reporting is encoded in the return code of nearly every platform function
call. The CAL API can provide contextual information about an error.

B.4 Extensions
The CAL API supports extensions to the core. Extensions are optional, and a
CAL client can query their support. The extension mechanism provides future
functionality and improvement without changing the overall ABI of the CAL
libraries. Likewise, not all extensions are available on all platforms.

B.4.1 Extension Functions

The following is a description of the extension functions.

calCtxFlush

Syntax CALresult calCtxFlush (CALcontext ctx)

Description Flushes all the queues on the supplied context ctx. Calling calCtxFlush
causes all queued commands to be submitted to the device.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Error.

calGetErrorString

Syntax const CALchar* calGetErrorString(void);

Description Returns a contextual string regarding the nature of the an error returned by
a CAL API call. The error string represents global state to the CAL runtime.
The error state is updated on every call to the CAL API. The error string is
returned by the function call and is null terminated.

calExtSupported

Syntax CALresult calExtSupported (CALextid extid)

Description Queries if an extension is supported by the implementation. The list of
extensions is listed in Structures, on page B-26.

Results CAL_RESULT_OK Extension is supported.

CAL_RESULT_NOT_SUPPORTED Extension is not supported.

A M D S T R E A M C O M P U T I N G

Extensions B-21
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.4.2 Interoperability Extensions

B.4.2.1 Direct3D 9 API

The following function calls are part of the Direct3D 9 API extension.

calExtGetVersion

Syntax CALresult calExtGetVersion(
CALuint* major,
CALuint* minor,
CALextid extid)

Description Returns the version number of a supported extension. The format of the
version number is in major.minor form. The list of extensions is listed in
Section B.5.2, “Structures.”

Results CAL_RESULT_OK Success, and major and minor
contain the returned values.

CAL_RESULT_NOT_SUPPORTED Extension is not supported.

calExtGetProc

Syntax CALresult calExtGetProc(
CALextproc* proc,
CALextid extid,
const CALchar* procname)

Description Returns a pointer to the function for the specified extension. The extension
to the query is specified by the extid parameter. The name of the function
to get a pointer to is specified by procname. The list of extensions is listed in
Structures, on page B-26. The list of functions is in Section B.5, “CAL
API Types,” page 26.

Results CAL_RESULT_OK Success, and proc contains a pointer
to the function.

CAL_RESULT_NOT_SUPPORTED Error if either the extid is not valid or
the function name was not found.

On error, proc is null.

calD3D9Associate

Syntax CALresult calD3D9Associate(CALdevice dev,
IDirect3DDevice9* d3dDevice)

Description Initializes the CAL to Direct3D 9 interoperability, associating the CALdevice
dev with the IDirect3DDevice9 d3dDevice.This function must be called
before any other Direct3D 9 interoperability calls are made.

Results CAL_RESULT_ERROR Interoperability not possible.

CAL_RESULT_OK Success.

A M D S T R E A M C O M P U T I N G

B-22 Extensions
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.4.2.2 Direct3D 10 API

The following function calls are part of the Direct3D 10 API extension.

calD3D9MapSurface

Syntax CALresult calD3D9MapSurface(CALresource* res, CALdevice dev,
 IDirect3DSurface9* surf,
 HANDLE shareHandle)

Description Maps the memory associated with IDirect3DSurface9 surf into the returned
CALresource res. This function call can be used to map surfaces that are
part of textures, render targets, or off-screen surfaces. The surface must
have been created in the D3DPOOL_DEFAULT pool. Use only non-mipmapped
textures with calD3D9MapSurface. The CAL resource format matches the
D3DFORMAT.

Once a resource has been created with calD3D9MapSurface, it can be used
like any other CALresource. Before releasing the IDirect3DSurface9, the
resource must be freed with calResFree.

shareHandle must be the pSharedHandle value returned when the surface
or texture was created.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Indicates that surf cannot be mapped
on dev.

calD3D10Associate

Syntax CALresult calD3D10Associate(CALDevice dev,
ID3D10Device* d3dDevice)

Description Initializes the CAL Direct3D 10 interoperability, associating the CALdevice
dev with the ID3D10Device d3dDevice. This function must be called before
any other Direct3D 10 interoperability calls are made.

Results CAL_RESULT_ERROR Interoperability not possible.

CAL_RESULT_OK Success.

A M D S T R E A M C O M P U T I N G

Extensions B-23
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.4.3 Counters

The following are descriptions of the counter functions.

calD3D10MapResource

Syntax CALresult calD3D10MapResource(CALresource* res, CALdevice dev,
 ID3D10Resource* d3dres,
 HANDLE shareHandle)

Description Maps the memory associated with d3dres into a CALresource, returned in
res. The resource must have been created with the
D3D10_RESOURCE_MISC_SHARED flag.

Once a resource has been created with calD3D10MapResource, it can be
used like any other CALresource. Before releasing the ID3D10Resource, the
resource must be freed with calResFree.

shareHandle must be obtained by getting an IDXGI resource interface from
the D3D resource. The sharehandle then can be retrieved with
IDXGI::GetSharedHandle.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Indicates that surf cannot be
mapped on dev.

calCtxCreateCounter

Syntax CALresult calCtxCreateCounter(
CALcounter* counter,
CALcontext ctx,
CALcountertype type)

Description Create a counter object. The counter is created on the specified context ctx
and is of type type. Supported counters are:

CAL_COUNTER_IDLE Percentage of time the stream
processor is idle between Begin/End
delimiters.

CAL_COUNTER_INPUT_CACHE_HIT_RATE Percentage of input memory requests
that hit the cache.

Counter activity is bracketed by a Begin/End pair. All activity to be considered
must be between calCtxBeginCounter and calCtxEndCounter. Any number
of calCtxRunProgram calls can exist between the Begin and End calls.

Results CAL_RESULT_OK Success, and a handle to the counter
is returned in counter.

CAL_RESULT_BAD_HANDLE Error if ctx is an invalid handle.

A M D S T R E A M C O M P U T I N G

B-24 Extensions
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calCtxDestroyCounter

Syntax CALresult calCtxDestroyCounter(
CALcontext ctx,
CALcounter counter)

Description Destroys a created counter object. The counter to destroy is specified by
counter on the context specified by ctx. If a counter is destroyed between
calCtxBeginCounter and calCtxEndCounter, CAL_RESULT_BUSY is returned.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if called between Begin and
End.

calCtxBeginCounter

Syntax CALresult calCtxBeginCounter(
CALcontext ctx,
CALcounter counter)

Description Initiates counting on the specified counter. Counters can be started only in a
context. The counter is specified by counter. The context to start the counter
on is specified by ctx.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if either ctx or counter is an
invalid handle.

CAL_RESULT_ALREADY Error if calCtxBeginCounter has
been called on the same counter
without ever calling
calCtxEndCounter.

On error, the state is as if
calCtxBeginCounter had not been
called.

A M D S T R E A M C O M P U T I N G

Extensions B-25
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calCtxEndCounter

Syntax CALresult calCtxEndCounter(
CALcontext ctx,
CALcounter)

Description Ends counting on the specified counter. A counter can be ended only in the
same context in which it was started. Counters can be ended once they are
started by calCtxBeginCounter.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if either ctx or counter is an
invalid handle.

CAL_RESULT_ERROR Error if calCtxEndCounter is
called without having called
calCtxBeginCounter.

On error, the CAL API behaves as if
calCtxEndCounter had not been
called.

calCtxGetCounter

Syntax CALresult calCtxGetCounter(
CALfloat* result,
CALcontext ctx,
CALcounter counter)

Description Retrieves the results of a counter. The value of the results is a floating point
number between 0.0 and 1.0 whose meaning is shown in the description for
calCtxCreateCounter, on page B-23. The results of a counter might not
be available immediately. The counter results can be polled for availability, or
the last calCtxRunProgram returned event can be polled for availability.

Results CAL_RESULT_OK Success, and result contains the
result of the counter.

CAL_RESULT_BAD_HANDLE Error if either ctx or counter is an
invalid handle.

CAL_RESULT_PENDING Counter results are not available.

On error, result is 0.0.

A M D S T R E A M C O M P U T I N G

B-26 CAL API Types
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

B.5 CAL API Types
The following subsections detail the enums and structs for the CAL API.

B.5.1 Enums

CALcountertype

enum CALcountertype
{

CAL_COUNTER_IDLE,
CAL_COUNTER_INPUT_CACHE_HIT_RATE

};

CALextid

enum CALextid
{

CAL_EXT_D3D9 = 0x1001, /* CAL/D3D9 interaction extension */
CAL_EXT_OPENGL = 0x1002, /* CAL/OpenGL interaction extension */
CAL_EXT_D3D10 = 0x1003, /* CAL/D3D10 interaction extension */
CAL_EXT_COUNTERS = 0x1004, /* CAL counter extension */

};

B.5.2 Structures

CALdeviceattribs

struct CALdeviceattribs
{

CALuint struct_size; /* client filled out size of CALdeviceattribs struct */
CALtarget target; /* asic identifier */
CALuint physicalRAM; /* amount of local GPU RAM in megabytes */
CALuint uncachedRemoteRAM; /* amount of uncached remote GPU memory in megabytes */
CALuint cachedRemoteRAM; /* amount of cached remote GPU memory in megabytes */
CALuint engineClock; /* GPU device clock rate in megahertz */
CALuint memoryClock; /* GPU memory clock rate in megahertz */

};

CALdevicestatus

struct CALdevicestatus
{

CALuint struct_size; /* client filled out size of struct */
CALuint availLocalRAM; /* available local RAM in megabytes */
CALuint availUncachedRemoteRAM; /* available uncached remote memory in megabytes */
CALuint availcachedRemoteRAM; /* available cached remote memory in megabytes */

};

B.6 Function Calls in Alphabetic Order
Table B.1 lists all function calls in alphabetic order, including the group to which
each one belongs and the page that contains its complete description.

A M D S T R E A M C O M P U T I N G

Function Calls in Alphabetic Order B-27
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Table B.1 Function Calls in Alphabetic Order

Function Group Described on Page

calCtxBeginCounter Counters B-24
calCtxCreate Context Management B-13
calCtxCreateCounter Counters B-23
calCtxDestroy Context Management B-13
calCtxDestroyCounter Counters B-24
calCtxEndCounter Counters B-25
calCtxFlush Computation B-20
calCtxGetCounter Counters B-25
calCtxGetMem Context Management B-14
calCtxIsEventDone Computation B-19
calCtxReleaseMem Context Management B-14
calCtxRunProgram Computation B-17
calCtxRunProgramGrid Computation B-18
calCtxRunProgramGridArray Computation B-18
calCtxSetMem Context Management B-14
calDeviceClose Device Management B-7
calDeviceGetAttribs Device Management B-6
calDeviceGetCount Device Management B-5
calDeviceGetStatus Device Management B-7
calDeviceOpen Device Management B-6
calExtGetProc Core Functions B-21
calExtGetVersion Core Functions B-21
calExtSupported Core Functions B-20
calGetErrorString Error Reporting B-20
calGetVersion System Component B-5
calImageRead Loader B-17
calInit System Component B-4
calMemCopy Computation B-19
calModuleGetEntry Loader B-16
calModuleGetName Loader B-16
calModuleLoad Loader B-15
calModuleUnload Loader B-15
calResAllocLocal1D Memory Management B-10
calResAllocLocal2D Memory Management B-8
calResAllocRemote1D Memory Management B-11
calResAllocRemote2D Memory Management B-9
calResFree Memory Management B-11

A M D S T R E A M C O M P U T I N G

B-28 Function Calls in Alphabetic Order
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

calResMap Memory Management B-12
calResUnmap Memory Management B-12
calShutdown System Component B-5

Table B.1 Function Calls in Alphabetic Order

Function Group Described on Page

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide C-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Appendix C
BRCC Semantic Checks

The Brook+ compiler, brcc, performs a number of semantic checks on both
kernel and non-kernel code before processing and passing the results to the
back-end compilers. Some of these checks are similar to those done by
conventional C compilers; some are in addition to those required by the C
standard.

Checks that cause warnings can be disabled using command-line options.

The following additional checks are classified as “strong type checking” and can
be disabled by adding -a to the command line.

• implicit conversion rules

• explicit conversion rules

• vector literals

• the indexof() and instance() operators

• function calls

• function definitions

C.1 Type Qualifiers
Table C.1 lists and provides information about the type qualifiers.

Table C.1 Type Qualifiers

C.2 Storage Classes
Table C.2 lists and provides information about the storage classes.

Qualifiers Non-Kernel Code Inside Kernel As Kernel Parameter

Const Valid Valid Invalid

Volatile Valid Invalid Invalid

Restrict Valid Invalid Invalid

Out Invalid Invalid Valid

A M D S T R E A M C O M P U T I N G

C-2 Implicit Conversion Rules
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Table C.2 Storage Classes

The auto and register keywords are ignored by brcc and removed from
declarations.

C.3 Implicit Conversion Rules
By default, Brook+ does not allow implicit conversion between types. It requires
that the types of all variables in an expression match in base type and in vector
size. This is unlike C, which generally allows implicit promotion from a type to a
wider type. This behavior is intentional; however, it can be disabled by turning off
strong type checks (adding -a to the command line).

When implicit conversions are enabled, the conversion rules for conventional C-
style scalar types are the same as C99.

The conversion rules is that if two vectors have the same component types but
different sizes, the result has the type of the larger vector. For example:

 float2 a = float2 (2.0f, 2.0f);
 float2 b = float2 (2.0f, 2.0f);
 float4 d = float4 (2.0f, 2.0f, 2.0f, 2.0f);

 int4 c = int4 (2, 3, 4, 5);

 b = c + a + a; //! c is implicitly converted into float2

 d = d + a; //! a is implicitly converted into float4

Table C.3 lists the expression types and the type to which each can be promoted.

Table C.3 Promotion of Expression Type

C.4 Explicit Conversion Rules
When explicitly casting an expression to a different type, the component counts
of the casting type and the expression type must be equal.

Storage Class Non-Kernel Code Inside Kernel As Kernel Parameter

extern Valid Invalid Invalid

static Valid Invalid Invalid

auto Valid Valid Invalid

registers Valid Valid Invalid

Expression Type Can Be Promoted To

int unsigned int, float, double

unsigned int float, double

float double

A M D S T R E A M C O M P U T I N G

Vector Swizzle C-3
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

C.5 Vector Swizzle
When performing a vector swizzle operation during an assignment, the R-value
vector can contain duplicate components, but the L-Value vector cannot.

The result type is appropriate for two swizzle operator. For example:

 float4 a = float4(1.0f, 0.0f, 1.0f, 0.0f)
 float4 b = float4(1.0f, 0.0f, 1.0f, 0.0f)
 float2 c = float2(1.0f, 0.0f)
 a = b.xxzw;
 a.xx = c; //! Illegal
 c.z = a.z //! Illegal

 type of c.z is float
 type of a.zz is float2

C.6 Vector Literals
When constructing a vector from literals, the component types must match the
constructor element type. Examples are:

a. float4 a = float4(1.0f, 0.0f, 1.0f, 0.0f) // OK

b. float2 b = float2(1.0f, 0.0f) // OK

c. float4 a = float4(0.0f, 0.0f, 0.0f, 0.0) // Illegal – last component
 is a double

C.7 indexof() and instance() Semantics
The indexof() operator always returns a float4 value and can be applied only
to streams or scatter targets, not gather targets or local variables.

The instance() operator always returns an int4 value.

C.8 Constant Buffer Support and Array Declarations
Where the underlying hardware permits, a gather array becomes a constant
buffer under the following conditions:

• The size of all dimensions is specified.

• The total number of elements is ≤ 4096.

• The maximum number of constant buffers allowed is 10.

For example:

kernel void cb1(float b, float a[5][5], float aa<>, out float c<>)

If any of these conditions is not satisfied, the gather array is not converted.

A M D S T R E A M C O M P U T I N G

C-4 Semantics of Conditional Expressions
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Either all or none of the dimensions must be specified, and the sizes must be
integer constants. If some, but not all, are specified, brcc issues an error
message.

Constant buffers can be disabled by adding the –c flag to the command line.

C.9 Semantics of Conditional Expressions
Brcc gives a warning if a conditional expression is a vector type.

C.10 Function Call Semantics
The function must be defined before being used. The brcc checks that the
number and types of parameters match between definition and invocation.

Table C.4 lists and provides information about function calls.

Table C.4 Function Call Definitions

Note that scatter kernels can be called only from non-kernel code.

C.11 Function Definition Semantics
The standard C-style rules apply to function definitions:

• Parameter names may not be duplicated.

• The function return type must match the type of the value actually returned.

C.12 Operators
Table C.5 lists the operators and the parameters types on which each can
operate.

Formal Parameter Type Permitted Actual Parameter Types Notes

constant constant, input stream, output stream, local
variable, and any array element

input stream constant, input stream, output stream, local
variable, and any array element

gather array gather array Must match
dimensions.

A M D S T R E A M C O M P U T I N G

Index Expression Semantics C-5
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Table C.5 Operators and Parameter Types

C.13 Index Expression Semantics
Non C-style (legacy mode) and C-style indexing is allowed for all types of array.

Brcc gives a warning for non C-style indexing.

C.14 Summary of Command-Line Options Affecting Semantic Checks
Table C.6 lists and briefly describes the command-line options for semantic
checks.

Table C.6 Semantic Check Command-Line Options

If strong type checking is enabled, all warnings with a level greater than 1 become errors,

and the –w and –x flags are disabled.

Operator Operates On

Add (+) Scalar and vectors of int, unsigned int, float, and double.

Subtract (-) Scalar and vectors of int, unsigned int, float, and double.

Multiply (*) Scalar and vectors of int, unsigned int, float, and double.

Divide (/) Scalar and vectors of int, unsigned int, float, and double.

Remainder (%) Scalar and vectors of int and unsigned int.

Unary negate (-) Scalar and vectors of int, unsigned int, float, and double.

Post- and pre-increment and
decrement (-- and ++)

Scalar and vectors of int, unsigned int, float, and double.

Relation operators (<, ≤, >, ≥,
==, and !=)

Scalar and vectors of int and unsigned int.

Bitwise operators (&&, |, ^, ~,
<<, >>)

Scalar and vectors of int, unsigned int, float, and double.

Logical operators (&& and ||) Scalar and vectors of int and unsigned int.

Logical unary operator (!) Scalar and vectors of int and unsigned int.

Ternary selection operator
(?:)

All valid expressions are allowed.

sizeof operators Currently not supported.

Option Description

-a Disables strong type checking.

-c Disables constant buffers.

-wN Sets warning level (0, 1, 2, 3).

-x All warnings are to be treated as errors.

A M D S T R E A M C O M P U T I N G

C-6 Summary of Command-Line Options Affecting Semantic Checks
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide D-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Appendix D
Supported Devices

The devices supported by the current version of the Stream Computing software
are:

• ATI Radeon™ HD 2000+ Series

• ATI Radeon™ HD 3870 graphics card

• ATI Radeon™ HD 4850 graphics card

• ATI Radeon™ HD 4870 graphics card

• ATI FireGL™ V7700 3D graphics accelerator

• AMD FireStream™ 9170 stream processor

• AMD FireStream™ 9250 stream processor

The following matrix indicates which devicdes support certain stream computing
features.

Card
Double

Precision
Global
Buffer

Compute
Kernel

HD 2000+ Series No No No

HD 3870 Yes Yes No

HD 4850 Yes Yes Yes

HD 4870 Yes Yes Yes

AFireGL™ V7700 3D Yes Yes No

FireStream™ 9170 Yes Yes No

FireStream™ 9250 Yes Yes Yes

A M D S T R E A M C O M P U T I N G

D-2
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

A M D S T R E A M C O M P U T I N G

AMD Stream Computing User Guide E-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Appendix E
Introduction to 3D Graphics and
Shader Terminology

The following descriptions provide an introductory explanation of some concepts
and terminology used in stream computing. These descriptions try, by
simplification, to make stream computing terminology understandable to CPU
programmers. Stream computing is derived from 3D graphics programming; thus,
some understanding of GPU programming is useful.

E.1 Shaders
Shader programs are what define the programmers view of a GPU. The notion
of a shader or a shader program originated from the concept of adding realistic
lighting to a 3D object as a final step before displaying the image on the screen.
Imagine an array of pixels in an X-Y grid. A program loop iterates over each X-
Y location, reading each pixel, modifying it based on some algorithmic light
source, and then writing the modified pixel to the final frame buffer that is used
to refresh the screen.

Defining the problem in this way allows for some extreme optimizations if simple
rules are followed.

1. The input buffer can only be read from, not written to.

2. During the shading step, the output buffer can only be written to, not read
from. (It can be read later as the image is being displayed.)

3. Each loop iteration only generates a single pixel as its output.

These rules eliminate dependencies between successive iterations of the loop.
This allows specialized hardware to eliminate the loop setup and iteration
mechanisms, as well as execute every iteration of the loop simultaneously (or
with the available parallel hardware).

E.2 Domain of Execution
During the processing of a shader the domain of execution is merely the
specification of the X-Y output grid being computed. The domain of execution
could be a entire frame or some portion of it at the programmer’s discretion.

E.3 Geometry and Vertices
Traditional 3D processing starts with the geometry processing step. A a collection
of vertices (x,y,z coordinates) in sequence define small (relatively) triangles in the

A M D S T R E A M C O M P U T I N G

E-2 Geometry and Vertices
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

3D space. Each 3D object is a mesh of such triangles (or polygons). Triangles
are used because 3 points in space are the minimum required to define a
surface. For example, an object like a flat rectangular table top can be made up
of 2 adjacent triangles, 4 vertices in total that share two vertices.

A vertex shader program can alter the coordinates and/or properties of a vertex
using approximately the same rules that allows for parallelism in a pixel shader
program. Each vertex requires the 3 coordinate values X, Y and Z to define its
position in space (plus a 4th “W” component which is normally set to 1.0). These
four floating point values are stored in a 4-wide structure which can be defined
as a vec4. Transformations of these vec4 arrays are done using 4x4 matrices.
These details are only important because of the fact that the GPU hardware is
highly optimized at performing these types of operations on this size of data.
Arranging your data in a similar way is not required but can give you a large
performance advantage.

Additionally, per pixel data is stored in a vec4 format as RGBA as red, green,
blue and alpha components, where the alpha represents a transparency from 0.0
to 1.0. Various low-level GPU instructions may refer to data in registers or
variables using a nomenclature, such as var.xyzw or var.rgba. In both cases the
variable var is assumed to be of the type vec4 with the first 32-bit floating point
value indicated interchangeably by x or r, the second element y or g, etc.

A M D S T R E A M C O M P U T I N G

Glossary-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Glossary of Terms

Term Description

* Any number of alphanumeric characters in the name of a microcode format, microcode
parameter, or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

ABI Application Binary Interface.

ACML AMD Core Math Library. Includes implementations of the full BLAS and LAPACK rou-
tines, FFT, Math transcendental and Random Number Generator routines, stream
processing backend for load balancing of computations between the CPU and stream
processor.

AL Loop register. A 3-element vector (x, y and z) used to count iterations of a loop.

ALU Arithmetic Logic Unit. Responsible for arithmetic operations like addition, subtraction,
multiplication, division, and bit manipulation on integer and floating point values. In
stream computing, these are known as stream cores.

AMD Stream™ SDK A complete software development suite from AMD for developing applications for AMD
Stream Processors. Currently, AMD Stream SDK includes Brook+ and CAL.

AR Address register.

aTid Absolute thread id. It is the ordinal count of all threads being executed (in a draw call).

b A bit, as in 1Mb for one megabit, or lsb for least-significant bit.

B A byte, as in 1MB for one megabyte, or LSB for least-significant byte.

BLAS Basic Linear Algebra Subroutines.

branch granularity The number of threads executed during a branch. For AMD, branch granularity is equal
to wavefront granularity.

brcc Source-to-source meta-compiler that translates Brook programs (.br files) into device-
dependent kernels embedded in valid C++ source code that includes CPU code and
stream processor device code, which later are linked into the executable.

A M D S T R E A M C O M P U T I N G

Glossary-2
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

Brook+ A high-level language derived from C which allows developers to write their applications
at an abstract level without having to worry about the exact details of the hardware.
This enables the developer to focus on the algorithm and not the individual instructions
run on the stream processor. Brook+ is an enhancement of Brook, which is an open
source project out of Stanford. Brook+ adds additional features available on AMD
Stream Processors and provides a CAL backend.

brt The Brook runtime library that executes pre-compiled kernel routines invoked from the
CPU code in the application.

burst mode The limited write combining ability. See write combining.

byte Eight bits.

cache A read-only or write-only on-chip or off-chip storage space.

CAL Compute Abstraction Layer. A device-driver library that provides a forward-compatible
interface to AMD stream processor devices. This lower-level API gives users direct con-
trol over the hardware: they can directly open devices, allocate memory resources,
transfer data and initiate kernel execution. CAL also provides a JIT compiler for AMD IL.

channel An element in a vector.

clause A group of instructions that are of the same type (all stream core, all fetch, etc.) exe-
cuted as a group. A clause is part of a CAL program written using the stream processor
ISA. Executed without pre-emption.

clause size The total number of slots required for an stream core clause.

clause temporaries Temporary values stored at GPR that do not need to be preserved past the end of a
clause.

clear To write a bit-value of 0. Compare “set”.

command A value written by the host processor directly to the stream processor. The commands
contain information that is not typically part of an application program, such as setting
configuration registers, specifying the data domain on which to operate, and initiating
the start of data processing.

command processor A logic block in the R600 that receives host commands (see Figure 1.4), interprets
them, and performs the operations they indicate.

component An element in a vector.

compute shader Similar to a pixel shader, but exposes data sharing and synchronization.

constant buffer Off-chip memory that contains constants. A constant buffer can hold up to 1024 4-ele-
ment vectors. There are fifteen constant buffers, referenced as cb0 to cb14. An
immediate constant buffer is similar to a constant buffer. However, an immediate con-
stant buffer is defined within a kernel using special instructions. There are fifteen
immediate constant buffers, referenced as icb0 to icb14.

constant cache A constant cache is a hardware object (off-chip memory) used to hold data that remains
unchanged for the duration of a kernel (constants). “Constant cache” is a general term
used to describe constant registers, constant buffers or immediate constant buffers.

constant registers On-chip registers that contain constants. The registers are organized as four 32-bit ele-
ments of a vector. There are 256 such registers, each one 128-bits wide.

context A representation of the state of a CAL device.

core clock See engine clock. The clock at which the stream processor stream core runs.

Term Description

A M D S T R E A M C O M P U T I N G

Glossary-3
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

CPU Central Processing Unit. Also called host. Responsible for executing the operating sys-
tem and the main part of the application. The CPU provides data and instructions to
the stream processor.

CRs Constant registers. There are 512 CRs, each one 128 bits wide, organized as four 32-
bit values.

CS Compute shader. A new shader type for R7xx, analogous to VS/PS/GS/ES

CTM Close-to-Metal.
A thin, HW/SW interface layer. This was the predecessor of the AMD CAL.

DC Data Copy Shader.

device A device is an entire AMD stream processor.

DMA Direct-memory access. Also called DMA engine. Responsible for independently trans-
ferring data to, and from, the stream processor’s local memory. This allows other
computations to occur in parallel, increasing overall system performance.

domain of execution A specified rectangular region of the output buffer to which threads are mapped.

DPP Data-Parallel Processor.

element (1) A 32-bit piece of data in a “vector”. (2) A 32-bit piece of data in an array. (3) One
of four data items in a 4-component register.

engine clock The clock driving the stream core and memory fetch units on the stream processor
stream processor core.

enum(7) A seven-bit field that specifies an enumerated set of decimal values (in this case, a set
of up to 27 values). The valid values can begin at a value greater than, or equal to,
zero; and the number of valid values can be less than, or equal to, the maximum sup-
ported by the field.

event A token sent through a pipeline that can be used to enforce synchronization, flush
caches, and report status back to the host application.

export To write data from GPRs to an output buffer (scratch, ring, stream, frame or global
buffer, or to a register), or to read data from an input buffer (a “scratch buffer” or “ring
buffer”) to GPRs. The term “export” is a partial misnomer because it performs both input
and output functions. Prior to exporting, an allocation operation must be performed to
reserve space in the associated buffer.

FFT Fast Fourier Transform.

flag A bit that is modified by a CF or stream core operation and that can affect subsequent
operations.

FLOP Floating Point Operation.

frame A single two-dimensional screenful of data, or the storage space required for it.

frame buffer Off-chip memory that stores a frame.

FS Fetch subroutine. A global program for fetching vertex data. It can be called by a “vertex
shader” (VS), and it runs in the same thread context as the vertex program, and thus
is treated for execution purposes as part of the vertex program. The FS provides driver
independence between the process of fetching data required by a VS, and the VS itself.
This includes having a semantic connection between the outputs of the fetch process
and the inputs of the VS.

Term Description

A M D S T R E A M C O M P U T I N G

Glossary-4
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

function A subprogram called by the main program or another function within an AMD IL stream.
Functions are delineated by FUNC and ENDFUNC.

gather Reading from arbitrary memory locations by a thread.

gather stream Input streams are treated as a memory array, and data elements are
addressed directly.

global buffer Memory space containing the arbitrary address locations to which uncached kernel out-
puts are written. Can be read either cached or uncached. When read in uncached
mode, it is known as mem-import. Allows applications the flexibility to read from and
write to arbitrary locations in input buffers and output buffers, respectively.

GPGPU General-purpose stream processor. A stream processor that performs general-purpose
calculations.

GPR General-purpose register. GPRs hold vectors of either four 32-bit IEEE floating-point,
or four 8-, 16-, or 32-bit signed or unsigned integer or two 64-bit IEEE double precision
data elements (values). These registers can be indexed, and consist of an on-chip part
and an off-chip part, called the “scratch buffer,” in memory.

GPU Graphics Processing Unit. An integrated circuit that renders and displays graphical
images on a monitor. Also called Graphics Hardware, Stream Processor, and Data Par-
allel Processor.

GPU engine clock
frequency

Also called 3D engine speed.

GS Geometry Shader.

GSA GPU ShaderAnalyzer. A performance profiling tool for developing, debugging, and pro-
filing stream kernels using high-level stream computing languages.

HAL Hardware Abstraction Layer.

host Also called CPU.

iff If and only if.

IL Intermediate Language. In this manual, the AMD version: AMD IL. A pseudo-assembly
language that can be used to describe kernels for stream processors. AMD IL is
designed for efficient generalization of stream processor instructions so that programs
can run on a variety of platforms without having to be rewritten for each platform.

in flight A thread currently being processed.

instruction A computing function specified by the code field of an IL_OpCode token. Compare
“opcode”, “operation”, and “instruction packet”.

instruction packet A group of tokens starting with an IL_OpCode token that represent a single AMD IL
instruction.

int(2) A 2-bit field that specifies an integer value.

ISA Instruction Set Architecture. The complete specification of the interface between com-
puter programs and the underlying computer hardware.

kernel A small, user-developed program that is run repeatedly on a stream of data. A parallel
function that operates on every element of input streams. A device program is one type
of kernel. Unless otherwise specified, an AMD stream processor program is a kernel
composed of a main program and zero or more functions. Also called Shader Program.
This is not to be confused with an OS kernel, which controls hardware.

Term Description

A M D S T R E A M C O M P U T I N G

Glossary-5
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

LAPACK Linear Algebra Package.

LERP Linear Interpolation.

local memory fetch
units

Dedicated hardware that a) processes fetch instructions, b) requests data from the
memory controller, and c) loads registers with data returned from the cache. They are
run at stream processor stream core or engine clock speeds. Formerly called texture
units.

LOD Level Of Detail.

loop index A register initialized by software and incremented by hardware on each iteration of a
loop.

lsb Least-significant bit.

LSB Least-significant byte.

MAD Multiply-Add. A fused instruction that both multiplies and adds.

mask (1) To prevent from being seen or acted upon. (2) A field of bits used for a control
purpose.

MBZ Must be zero.

mem-export An AMD IL term random writes to the global buffer.

mem-import Uncached reads from the global buffer.

memory clock The clock driving the memory chips on the stream processor.

MIMD Multiple Instruction Multiple Data.
– Multiple SIMD units operating in parallel (Multi-Processor System)
– Distributed or shared memory

MRT Multiple Render Target. One of multiple areas of local stream processor memory, such
as a “frame buffer”, to which a graphics pipeline writes data.

MSAA Multi-Sample Anti-Aliasing.

msb Most-significant bit.

MSB Most-significant byte.

normalized A numeric value in the range [a, b] that has been converted to a range of 0.0 to 1.0
using the formula: normalized value = value/ (b–a+ 1)

opcode The numeric value of the code field of an “instruction”. For example, the opcode for the
CMOV instruction is decimal 16 (10h).

opcode token A 32-bit value that describes the operation of an instruction.

operation The function performed by an “instruction”.

PaC Parameter Cache.

PCI Express A high-speed computer expansion card interface used by modern graphics cards,
stream processors and other peripherals needing high data transfer rates. Unlike pre-
vious expansion interfaces, PCI Express is structured around point-to-point links. Also
called PCIe.

PoC Position Cache.

Term Description

A M D S T R E A M C O M P U T I N G

Glossary-6
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

pre-emption The act of temporarily interrupting a task being carried out on a computer system, with-
out requiring its cooperation, with the intention of resuming the task at a later time.

processor Unless otherwise stated, the AMD Stream Processor and AMD Data Parallel Processor.

program Unless otherwise specified, a program is a set of instructions that can run on the AMD
Stream Processor/AMD Data Parallel Processor. A device program is a type of kernel.

PS Pixel Shader.

quad Group of 2x2 threads in the domain. Always processed together.

rasterization The process of mapping threads from the domain of execution to the SIMD engine. This
term is a carryover from graphics, where it refers to the process of turning geometry,
such as triangles, into pixels.

rasterization order The order of the thread mapping generated by rasterization.

RB Ring Buffer.

register A 128-bit address mapped memory space consisting of four 32-bit components.

relative Referencing with a displacement (also called offset) from an index register or the loop
index, rather than from the base address of a program (the first control flow [CF]
instruction).

render backend unit The hardware units in a stream processor stream processor core responsible for writing
the results of a kernel to output streams by writing the results to an output cache and
transferring the cache data to memory.

resource A block of memory used for input to, or output from, a kernel.

ring buffer An on-chip buffer that indexes itself automatically in a circle.

Rsvd Reserved.

sampler A structure that contains information necessary to access data in a resource. Also
called Fetch Unit.

SC Shader Compiler.

scalar A single data element, unlike a vector which contains a set of two or more data
elements.

scatter Writes (by uncached memory) to arbitrary locations.

scatter write Kernel outputs to arbitrary address locations. Must be uncached. Must be made to a
memory space known as the global buffer.

scratch buffer A variable-sized space in off-chip-memory that stores some of the “GPRs”.

set To write a bit-value of 1. Compare “clear”.

shader processor Also called thread processor.

shader program User developed program. Also called kernel.

SIMD Single instruction multiple data.
– Each SIMD receives independent stream core instructions.
– Each SIMD applies the instructions to multiple data elements.

SIMD Engine A collection of thread processors, each of which executes the same instruction per
cycle.

Term Description

A M D S T R E A M C O M P U T I N G

Glossary-7
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

SIMD pipeline A hardware block consisting of five stream cores, one stream core instruction decoder
and issuer, one stream core constant fetcher, and support logic. All parts of a SIMD
pipeline receive the same instruction and operate on different data elements.

Simultaneous
Instruction Issue

Input, output, fetch, stream core, and control flow per SIMD engine.

SPU Shader processing unit.

stage A sampler and resource pair.

stream A collection of data elements of the same type that can be operated on in parallel.

stream buffer A variable-sized space in off-chip memory that stores an instruction stream. It is an out-
put-only buffer, configured by the host processor. It does not store inputs from off-chip
memory to the processor.

stream core The fundamental, programmable computational units, responsible for perform-
ing integer, single, precision floating point, double precision floating point, and
transcendental operations. They execute VLIW instructions for a particular thread.
Each stream processor stream core handles a single instruction within the VLIW
instruction.

stream operator A node that can restructure data.

stream processor A parallel processor capable of executing multiple threads of a kernel in order to pro-
cess streams of data.

swizzling To copy or move any element in a source vector to any element-position in a destination
vector. Accessing elements in any combination.

thread One invocation of a kernel corresponding to a single element in the domain of
execution.

thread group It contains one or more thread blocks. Threads in the same thread-group but different
thread-blocks might communicate to each through global per-stream processor shared
memory. This is a concept mainly for global data share (GDS) which is not discussed
in this note.

thread processor The hardware units in a SIMD engine responsible for executing the threads of a kernel.
It executes the same instruction per cycle. Each thread processor contains multiple
stream cores. Also called shader processor.

thread-block A group of threads which might communicate to each other through local per SIMD
shared memory. It can contain one or more wavefronts (the last wavefront can be a
partial wavefront). A thread-block (i.e. all its wavefronts) can only run on one SIMD
engine. However, multiple thread blocks can share a SIMD engine, if there are enough
resources to fit them in.

Tid Thread id within a thread block. An integer number from 0 to Num_threads_per_block-1

token A 32-bit value that represents an independent part of a stream or instruction.

uncached read/write
unit

The hardware units in a stream processor responsible for handling uncached read or
write requests from local memory on the stream processor.

vector (1) A set of up to four related values of the same data type, each of which is an ele-
ment. For example, a vector with four elements is known as a “4-vector” and a vector
with three elements is known as a “3-vector”. (2) See “AR”.

Term Description

A M D S T R E A M C O M P U T I N G

Glossary-8
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.

VLIW design Very Long Instruction Word.
– Co-issued up to 6 operations (5 stream cores + 1 FC)
– 1.25 Machine Scalar operation per clock for each of 64 data elements
– Independent scalar source and destination addressing

wavefront Group of threads executed together on a single SIMD engine. Composed of quads. A
full wavefront contains 64 threads; a wavefront with fewer than 64 threads is called a
partial wavefront.

write combining Combining several smaller writes to memory into a single larger write to minimize any
overhead associated with write commands.

Term Description

	AMD Stream Computing
	Preface
	About This Document
	Audience
	Organization
	Conventions
	Related Documents
	Contact Information

	Contents
	Chapter 1 AMD Stream Computing Overview
	1.1 The AMD Stream Computing Programming Model
	Figure 1.1 AMD Stream Software Ecosystem
	Figure 1.2 Simplified AMD Stream Computing Programming Model
	1.1.1 Pseudo Code Explanation of AMD Stream Computing
	Figure 1.3 Stream Processor Execution
	Figure 1.4 Matrix Multiply (nxk) X (kxm)

	1.1.2 Brook+ Open-Source Data-Parallel C Compiler
	Figure 1.5 Brook+ Language Elements

	1.1.3 AMD Compute Abstraction Layer (CAL)
	Figure 1.6 CAL Functionality

	1.1.4 GPU ShaderAnalyzer
	Figure 1.7 GSA User Interface Example

	1.1.5 AMD Core Math Library (ACML)

	1.2 Stream Processor Hardware Functionality
	Figure 1.8 Generalized Stream Processor Structure
	1.2.1 The Stream Processor
	Figure 1.9 Simplified Block Diagram of the Stream Processor

	1.2.2 Thread Processing
	1.2.3 Flow Control
	1.2.4 Thread Creation
	Figure 1.10 Rasterization of Threads to SIMD Engines
	1.2.4.1 Rasterization
	1.2.4.2 Thread Optimization

	1.2.5 Memory Architecture and Access
	1.2.5.1 Memory Access
	1.2.5.2 Global Buffer
	1.2.5.3 Memory Loads
	1.2.5.4 Memory Stores
	1.2.5.5 Streaming Stores
	1.2.5.6 Memory Tiling
	Figure 1.11 One Example of a Tiled Layout Format

	1.2.6 Host-to-Stream Processor Communication
	1.2.6.1 PCI Express Bus
	1.2.6.2 Processing API Calls: The Command Processor
	1.2.6.3 DMA Transfers

	1.2.7 Stream Processor Scheduling
	Figure 1.12 Simplified Execution Of Threads On A Single Thread Processor
	Figure 1.13 Thread Processor Stall Due to Data Dependency

	1.3 Performance
	1.3.1 Analyzing Stream Processor Kernels
	Figure 1.14 AMD GPU ShaderAnalyzer Output

	1.3.2 Estimating Performance
	1.3.3 Additional Performance Factors
	1.3.3.1 Register Usage
	1.3.3.2 Domain Size
	1.3.3.3 Stream Core to Fetch Instruction Ratio
	1.3.3.4 Memory Fetch Instructions
	1.3.3.5 Thread Processor Use
	1.3.3.6 Memory Access Patterns
	1.3.3.7 Command Processor
	1.3.3.8 Bus Transfers

	Chapter 2 Brook+ Programming
	2.1 Runtime Options
	2.2 A Sample Application
	2.2.1 Writing
	2.2.1.1 Kernels
	2.2.1.2 Streams
	2.2.1.3 Handling Streams

	2.2.2 Building
	Figure 2.1 Compiling a Brook+ File and Generating a C++ File

	2.2.3 Executing
	2.2.4 Debugging

	2.3 Included Samples
	2.3.1 Simple Matrix Multiply Example
	2.3.2 Optimized Matrix Multiply Example
	Figure 2.2 Optimized Matrix Multiplication

	2.4 Example of Generated C++ Code for sum.br
	2.5 Building Brook+
	2.5.1 Visual Studio
	2.5.2 Command Line

	2.6 The Brook+ Runtime API
	2.6.1 Differences Between the C++ API and the Previous Programming Model
	2.6.1.1 Dynamic Stream Management
	2.6.1.2 Error Handling
	2.6.1.3 Execution Domain Control
	2.6.1.4 Compatibility With C++ code

	2.6.2 Choosing a Programming Model

	2.7 Stream Management (Stream.h)
	2.7.1 Public Methods
	2.7.2 Public Data
	2.7.3 Compatibility
	2.7.4 Backend Performance

	2.8 Kernel Management
	2.9 Scatter/Gather Interface Changes
	2.10 Converting Code to Use the New C++ API
	Table 1 Kernel Code Comparison: Legacy vs New API
	Table 2 Host Code Comparison: Legacy vs New API

	Chapter 3 AMD Compute Abstraction Layer (CAL) Programming Guide
	3.1 Introduction
	3.1.1 CAL System Architecture
	Figure 3.1 CAL System Architecture
	3.1.1.1 CAL Device
	Figure 3.2 CAL Device and Memory

	3.1.1.2 Stream Processor Architecture
	Figure 3.3 AMD Stream Processor Architecture

	3.1.2 CAL Programming Model
	3.1.2.1 Run Time Services
	3.1.2.2 Code Generation Services
	Figure 3.4 CAL Code Generation

	3.1.3 CAL Software Distribution

	3.2 CAL Application Programming Interface
	3.2.1 CAL Runtime
	3.2.1.1 Linux Runtime Options
	3.2.1.2 System Initialization and Query
	3.2.1.3 Device Management
	3.2.1.4 Context Management
	Figure 3.5 Context Management for Multi-Threaded Applications

	3.2.1.5 Memory Management
	Figure 3.6 Local and Remote Memory

	3.2.1.6 Resources
	3.2.1.7 Memory Handles

	3.2.2 CAL Compiler
	3.2.2.1 Compilation and Linking
	3.2.2.2 Stream Processor ISA
	Figure 3.7 Kernel Compilation Sequence

	3.2.2.3 High Level Kernel Languages

	3.2.3 Kernel Execution
	3.2.3.1 Module Loading
	3.2.3.2 Parameter Binding
	3.2.3.3 Kernel Invocation

	3.3 HelloCAL Application
	3.3.1 Code Walkthrough
	3.3.1.1 Basic Infrastructural Code
	3.3.1.2 Defining the Stream Kernel
	3.3.1.3 Application Code
	3.3.1.4 Compile the Stream Kernel and Link Generated Object
	3.3.1.5 Allocate Memory
	3.3.1.6 Preparing the Stream Kernel for Execution
	3.3.1.7 Kernel Execution
	3.3.1.8 De-Allocation and Releasing Connections

	3.4 Performance Optimizations
	3.4.1 Arithmetic Computations
	3.4.2 Memory Considerations
	3.4.2.1 Local and Remote Resources
	3.4.2.2 Cached Remote Resources
	3.4.2.3 Direct Memory Access (DMA)

	3.4.3 Asynchronous Operations

	3.5 Tutorial Application
	3.5.1 Problem Description
	Figure 3.8 Multiplication of Two Matrices

	3.5.2 Basic Implementation
	3.5.3 Optimized Implementation
	Figure 3.9 Blocked Matrix Multiplication
	Figure 3.10 Micro-Tiled Blocked Matrix Multiplication

	3.6 CAL/Direct3D Interoperability
	3.7 Advanced Topics
	3.7.1 Thread-Safety
	3.7.2 Multiple Stream Processors
	Figure 3.11 CAL Application using Multiple Stream Processors

	3.7.3 Using the Global Buffer in CAL
	3.7.3.1 Global Buffer Allocation
	3.7.3.2 Accessing the Global Buffer From a Stream Kernel

	3.7.4 Double Precision Arithmetic

	Appendix A Brook+ Specification
	A.1 The Structure of a Brook+ Program
	Figure A.1 Symbols for Brook+ Building Blocks
	Figure A.2 Simple Streamed Multiply-Add

	A.2 Primitive Data Types
	A.3 Streams and Stream Operators
	A.3.1 Streams
	A.3.2 Stream Declarations
	A.3.3 Stream Operators
	A.3.3.1 I/O Stream Operators
	A.3.3.2 Implicit Insertion of Stream Operators

	A.4 Kernels
	A.4.1 Kernel Types
	A.4.1.1 The Basic Kernel
	A.4.1.2 Reduction Kernels
	A.4.1.3 Partial Reductions

	A.4.2 Kernel-Specified Communication Patterns
	A.4.3 Calling Other Code from Kernel Code
	A.4.4 Restrictions on Kernel Code

	A.5 Standard Library Functions and Intrinsics

	Appendix B The AMD Compute Abstraction Layer (CAL) API Specification
	B.1 Programming Model
	Figure B.1 CAL System
	Figure B.2 Context Queues

	B.2 Runtime
	B.2.1 System
	B.2.2 Device Management
	B.2.3 Memory Management
	B.2.4 Context Management
	B.2.5 Program Loader
	B.2.6 Computation

	B.3 Platform API
	B.3.1 System Component
	B.3.2 Device Management
	B.3.3 Memory Management
	B.3.4 Context Management
	B.3.5 Loader
	B.3.6 Computation
	B.3.7 Error Reporting

	B.4 Extensions
	B.4.1 Extension Functions
	B.4.2 Interoperability Extensions
	B.4.2.1 Direct3D 9 API
	B.4.2.2 Direct3D 10 API

	B.4.3 Counters

	B.5 CAL API Types
	B.5.1 Enums
	B.5.2 Structures

	B.6 Function Calls in Alphabetic Order
	Table B.1 Function Calls in Alphabetic Order

	Appendix C BRCC Semantic Checks
	C.1 Type Qualifiers
	Table C.1 Type Qualifiers

	C.2 Storage Classes
	Table C.2 Storage Classes

	C.3 Implicit Conversion Rules
	Table C.3 Promotion of Expression Type

	C.4 Explicit Conversion Rules
	C.5 Vector Swizzle
	C.6 Vector Literals
	C.7 indexof() and instance() Semantics
	C.8 Constant Buffer Support and Array Declarations
	C.9 Semantics of Conditional Expressions
	C.10 Function Call Semantics
	Table C.4 Function Call Definitions

	C.11 Function Definition Semantics
	C.12 Operators
	Table C.5 Operators and Parameter Types

	C.13 Index Expression Semantics
	C.14 Summary of Command-Line Options Affecting Semantic Checks
	Table C.6 Semantic Check Command-Line Options

	Appendix D Supported Devices
	Appendix E Introduction to 3D Graphics and Shader Terminology
	E.1 Shaders
	E.2 Domain of Execution
	E.3 Geometry and Vertices

	Glossary of Terms

