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Preface

About This Document
This document provides a basic description of the AMD Stream Computing 
environment and components. It describes the basic architecture of stream 
processors and provides useful performance tips. This document also provides 
a guide for programmers who want to use the AMD Stream SDK to accelerate 
their applications.

Audience
This document is intended for programmers. Programming guides for Brook+ and 
CAL are provided. It assumes prior experience in writing code for CPUs and 
basic understanding of threads. While a basic understanding of GPU 
architectures is useful, this document does not assume prior graphics knowledge.

Organization
This document begins with an overview of the AMD Stream Computing 
programming models, the stream processor hardware description, and a 
discussion of performance and optimization when programming for stream 
processors. Chapter 2 and Chapter 3 are programming guides for the Brook+ 
language and CAL platform, respectively. Appendix A and Appendix B are the 
specifications for the Brook+ language and the CAL platform, respectively. 
Appendix D lists the supported graphics cards with this version of the Stream 
Computing SDK. Appendix E provides an introduction to the terminology used in 
3D and shader programming. The last section of this book is a glossary of 
acronyms and terms.

Conventions
The following conventions are used in this document. 

mono-spaced font A filename, file path, or code.

* Any number of alphanumeric characters in the name of a code format, parameter, 
or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most 
value (in this case, 2).
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Related Documents
• AMD, R600 Technology, R600 Instruction Set Architecture, Sunnyvale, CA, 

est. pub. date 2007. This document includes the RV670 GPU instruction 
details.

• ISO/IEC 9899:TC2 - International Standard - Programming Languages - C

• Kernighan Brian W., and Ritchie, Dennis M., The C Programming Language, 
Prentice-Hall, Inc., Upper Saddle River, NJ, 1978.

• I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. 
Hanrahan, “Brook for GPUs: stream computing on graphics hardware,” ACM 
Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

• AMD Intermediate Language (IL) Compiler Reference Manual. Published by 
AMD.

• CAL Image. AMD’s Compute Abstraction Layer Program Binary Format 
Specification. Published by AMD.

• Buck, Ian; Foley, Tim; Horn, Daniel; Sugerman, Jeremy; Hanrahan, Pat; 
Houston, Mike; Fatahalian, Kayvon. “BrookGPU” 
http://graphics.stanford.edu/projects/brookgpu/ 

• Buck, Ian. “Brook Spec v0.2”. October 31, 2003.
http://merrimac.stanford.edu/brook/brookspec-05-20-03.pdf 

• OpenGL Programming Guide, at http://www.glprogramming.com/red/ 

• Microsoft DirectX Reference Website, at 
http://msdn.microsoft.com/archive/default.asp? 

url=/archive/en-
us/directx9_c_Summer_04/directx/graphics/reference/reference.asp

• GPGPU: http://www.gpgpu.org, and Stanford BrookGPU discussion forum
http://www.gpgpu.org/forums/

Contact Information
To submit questions or comments concerning this document, contact our 
technical documentation staff at: streamcomputing@amd.com.

For questions concerning AMD Stream products, please email: 
streamcomputing@amd.com.

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream computing. 
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For questions about developing with AMD Stream, please email: 
streamdeveloper@amd.com.

You can learn more about AMD Stream at: 
http://ati.amd.com/technology/streamcomputing.

We also have a growing community of AMD Stream users! Come visit us at the 
AMD Stream Developer Forum to find out what applications other users are trying 
on their AMD Stream products!

http://forums.amd.com/devforum/categories.cfm?catid=328
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Chapter 1
AMD Stream Computing Overview

AMD Stream Computing harnesses the tremendous processing power of GPUs 
(stream processors) for high-performance, data-parallel computing in a wide 
range of applications.1 The following is an overview of the AMD Stream 
Computing programming model, hardware, and performance.

1.1 The AMD Stream Computing Programming Model
The AMD Stream Computing Model includes a software stack and the AMD 
stream processors. Figure 1.1 illustrates the relationship of the AMD Stream 
Computing components.

Figure 1.1 AMD Stream Software Ecosystem

The AMD Stream Computing software stack provides end-users and developers 
with a complete, flexible suite of tools to leverage the processing power in AMD 
stream processors. AMD software embraces open-systems, open-platform 
standards. The AMD open platform strategy enables AMD technology partners 
to develop and provide third-party development tools. 

The software includes the following components:

• Compilers – like the Brook+ compiler with extensions for AMD devices.2

1. A stream is a collection of data elements of the same type that can be operated on in parallel.
2. See Chapter 2, “Brook+ Programming,” for using Brook+.

Libraries
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• Device Driver for stream processors – AMD Compute Abstraction Layer 
(CAL).1

• Performance Profiling Tools – GPU ShaderAnalyzer.

• Performance Libraries – ACML for optimized domain-specific algorithms.

The latest generation of AMD stream processors are programmed using the 
unified shader programming model. Programmable stream cores execute various 
user-developed programs, called stream kernels (or simply: kernels). These 
stream cores can execute non-graphics functions using a virtualized SIMD 
programming model operating on streams of data. In this programming model, 
known as stream computing, arrays of input data elements stored in memory are 
mapped onto a number of SIMD engines, which execute kernels to generate one 
or more outputs that are written back to output arrays in memory.

Each instance of a kernel running on a SIMD engine's thread processor is called 
a thread. A specified rectangular region of the output buffer to which threads are 
mapped is known as the domain of execution.

The stream processor schedules the array of threads onto a group of thread 
processors, until all threads have been processed. Subsequent kernels can then 
be executed, until the application completes. A simplified view of the AMD 
Stream Computing programming model and the mapping of threads to thread 
processors is shown in Figure 1.2 (also see Figure 1.9).

Figure 1.2 Simplified AMD Stream Computing Programming Model

1. When using CAL, it might not be necessary to use Brook+; instead, it is possible to use AMD IL. See 
Chapter 3, “AMD Compute Abstraction Layer (CAL) Programming Guide.”
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1.1.1 Pseudo Code Explanation of AMD Stream Computing

Another way to explain the AMD Stream Computing programming model is 
through pseudo code.

Matrix Sum – The following example sums two matrices.

The CPU code is:

void sum(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

float a0 = A[i][j];
float b0 = B[i][j];

C[i][j] = a0 + b0;
}

}
}

This code can be rewritten as to emphasize the data parallel operations:

float sum_kernel(int y, int x, float M0[], float M1[])
{

float a0 = M0[y][x];
float b0 = M1[y][x];

return a0 + b0;
}

void sum(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

C[i][j] = sum_kernel(i, j, A, B);
}

}
}

The CPU executes the code serially such that C[0][0] is calculated before 
C[0][1]. However, the elements of C can be calculated independently of each 
other in any order. On a multi-CPU-core processor, they can also be calculated 
in parallel. 

A multi-threaded version of the code might look like this:



A M D  S T R E A M  C O M P U T I N G

1-4 The AMD Stream Computing Programming Model
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.   

void sum(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

launch_thread{ C[i][j] = sum_kernel(i, j, A, B); }
}

}

sync_threads{}
}

Effectively, this is the AMD Stream Computing programming model. The function 
sum_kernel is the kernel written by the developer. The array C is the output 
stream and defines the domain of execution (n x m). Independent threads that 
run sum_kernel execute and write at every location in C. The hardware takes 
the place of the nested for-loop.

Figure 1.3 illustrates the process of a matrix sum execution in a stream 
processor. Since the stream processor can operate in parallel with the CPU, 
sync_threads is used to wait for the threads to complete before continuing. 
The CPU can perform other tasks while the stream processor is processing. 

High-level languages for AMD Stream Computing, such as Brook+, abstract the 
hardware details; no additional knowledge of stream processor hardware is 
required. The developer writes kernels to be executed on the stream processor, 
provides inputs and outputs, and defines the domains of execution.

Figure 1.3 Stream Processor Execution

A

C

B

X X X X
X X X X
X X X X
X X X X

X X X X
X X X X
X X X X
X X X X

Stream Processor: 
Virtual SIMD

Domain of Execution

float sum_kernel (int y, int x, Mo [], M1 [])
{
 float a0 = M0 [y] [x];
 float b0 = M1 [y] [x];
 return a0 + b0;
} Kernel
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Matrix Multiply  – This example multiplies two matrices (see Figure 1.4). This 
shows how some understanding of the hardware can improve performance.

Figure 1.4 Matrix Multiply (nxk) X (kxm) 

The CPU code is:

void matmult(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

float total = 0;
for(int c=0; c<k; c++)

total += A[i][c] * B[c][j];

C[i][j] = total;
}

}
}

The kernel that can be executed on the stream processor is shown in bold. The 
outer two for-loops represent the stream processor executing the kernel on the 
domain of execution of array C.

k

n

m

k

m

n

A   X   B  =  C
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Again, this code can be rewritten as to emphasize the data parallel operations:

float matmult_kernel(int y, int x, int k,
                     float M0[], float M1[])
{

float total = 0;
for(int c=0; c<k; c++)
{

total += M0[y][c] * M1[c][x];
}

return total;
}

void matmult(float A[], float B[], float C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m; j++)
{

launch_thread{C[i][j] = matmult_kernel(i, j, k, A, B);}
}

}

sync_threads{}
}

One feature of stream processors is that each thread processor can perform 
parallel operations. So far, the examples indicate scalar operations in the kernel. 
If the compiler detects parallelization within a kernel, it tries to optimize it. For 
example, a thread processor can execute multiple multiplies and adds 
simultaneously. To take advantage of the stream processor’s ability to perform 
multiple operations at the same time, the user can explicitly code in vector 
operations.
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The following implementation uses the float4 data type. This causes the thread 
processors to execute four operations at the same time:

float4 matmult_kernel( int y, int x, int k,
                      float4 M0[], float4 M1[])
{

float4 total = 0;
for(int c=0; c<k/4; c++)
{

total += M0[y][c] * M1[x][c];
}

return total;
}

void matmult(float4 A[], float4 B’[], float4 C[])
{

for(int i=0; i<n; i++)
{

for(int j=0; j<m/4; j++)
{

launch_thread{C[i][j] = matmult_kernel(j, i, k, A, B’);}
}

}

sync_threads{}
}

Several key changes in this code maximize performance. Since inputs and 
outputs are now float4 instead of float, the domain of execution dimensions 
decrease to (n x (m/4)); fewer threads are executed by the stream processor. 

Also, the addressing for one of the arrays in the kernel has changed. To support 
maximum usage of float4 operations, the second matrix, B, must be 
transposed to B’. The inner loop also decreases by a factor of four. The 
developer must decide if the extra step of transposing the input data is worth the 
cost.

If the input matrices are small, the transposition cost might not be offset by the 
performance gain in the kernel. If the matrices are large, the time to perform the 
transpose might be offset by the optimized kernel and yield a performance gain. 
If the input matrix sizes are variable, two separate code paths might be required 
for optimal performance.

The following sections explain how the stream processor executes kernels. It 
also teaches the developer how to optimize code for execution on the stream 
processor.
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1.1.2 Brook+ Open-Source Data-Parallel C Compiler 

Brook+ provides an explicit data-parallel C compiler using extensions to the 
standard ANSI C programming language. The Brook+ computational model, 
called streaming, goes beyond traditional, sequential programming languages by 
providing:

• Data Parallelism – Brook+ provides an intuitive mechanism for specifying 
single-instruction multiple-data (SIMD) operations.

• Arithmetic Intensity – the Brook+ interface encourages development of 
efficient algorithms by minimizing global communication and maximizing 
localized computation on stream processors.

The two key elements in the Brook+ language are:

• Stream – A collection of data elements of the same type that can be operated 
on in parallel. Streams are notated in angle brackets.

• Kernel – A parallel function that operates on every element of a domain of 
execution. Kernels are specified using the kernel keyword.

The following code shows a Brook+ kernel that adds two input streams and 
stores the results in an output stream. The kernel performs an implicit loop over 
each element in the output stream. 

kernel 
void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

As shown in Figure 1.5, the Brook+ software consists of: 

• brcc – a source-to-source meta-compiler that translates Brook+ programs 
(.br files) into device-dependent kernels embedded in valid C++ source 
code. The generated C++ source includes the CPU code and the stream 
processor device code, both of which are later linked into the executable. 

• brt – a runtime library that executes a kernel invoked from the CPU code in 
the application. Brook+ includes various runtimes for CPUs and stream 
processors; you can select the execution model at application run-time. The 
CPU runtime serves as a good debugging tool when developing stream 
kernels. 
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Figure 1.5 Brook+ Language Elements

AMD has enhanced brcc to produce the virtual ISA, called the AMD IL (for 
intermediate language). AMD also has enhanced the brt with a backend 
optimized for AMD stream processors using the CAL driver (see Section 1.1.3, 
“AMD Compute Abstraction Layer (CAL),” page 1-9). 

1.1.3 AMD Compute Abstraction Layer (CAL)

The AMD Compute Abstraction Layer (CAL) is a device driver library that 
provides a forward-compatible interface to AMD stream processors (see 
Figure 1.6). CAL lets software developers interact with the stream processor 
cores at the lowest-level for optimized performance, while maintaining forward 
compatibility. CAL provides:

• Device Specific Code Generation 

• Device Management

• Resource Management

• Kernel Loading and Execution

• Multi-device support

• Interoperability with 3D Graphics APIs
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Figure 1.6 CAL Functionality 

CAL includes a set of C routines and data types that allow higher-level software 
tools to control hardware memory buffers (device-level streams) and stream 
processor programs (device-level kernels). The CAL runtime accepts kernels 
written in AMD IL and generates optimized code for the target architecture. It also 
provides access to device-specific features.

1.1.4 GPU ShaderAnalyzer

The GPU ShaderAnalyzer is a performance-profiling tool developers can use to 
develop and profile stream kernels. It can be downloaded for free from the AMD 
developer web pages, 
http://ati.amd.com/technology/streamcomputing/sdkdownload.html. 

Features provided by the GPU ShaderAnalyzer include:

• Quick syntax checking of programs written in Brook+.

• Online kernel compilation to generate the equivalent AMD IL and the 
processor-specific ISA assembly. The generated assembly can be modified 
manually and used in a CAL application.

• Performance characterization of arithmetic, memory, and flow-control 
instructions. 

The GPU ShaderAnalyzer has a simple graphical user interface. Figure 1.7 
shows an example kernel, that was written in Brook+ and is converted to AMD 
IL. The generated AMD IL can be sent to the CAL runtime compiler for object 
code generation and subsequent execution.
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Figure 1.7 GSA User Interface Example

Note that:

• The input program can be edited directly in the Source Code window on the 
top-left.

• The function name must be the name of the Brook+ kernel.

• The target compiler must be set to Brook+ in the HLSL Compiler section.

• The output program type can be set using the Format selection tab in the 
Object Code section. 

1.1.5 AMD Core Math Library  (ACML)

The ACML includes a collection of commonly used mathematical software 
routines. It is optimized for AMD platforms and provides a quick path to high-
performance development.

The ACML includes implementations of:

• Full Basic Linear Algebra Subroutines (BLAS)

• Linear Algebra Package (LAPACK) routines

• Fast Fourier Transform (FFT) routines
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• Math transcendental routines

• Random Number Generator routines

The ACML includes a stream processing backend for load balancing of 
computations between the CPU and stream processor depending upon the 
suitability of the task for a particular architecture.1 This is done at runtime.

1.2 Stream Processor Hardware Functionality
Figure 1.8 shows a simplified block diagram of a generalized stream processor.

Figure 1.8 Generalized Stream Processor Structure

1.2.1 The Stream Processor

Figure 1.9 is a simplified diagram of an AMD stream processor. Different stream 
processors have different characteristics (such as the number of SIMD engines), 
but follow a similar design pattern. 

Stream processors comprise groups of SIMD engines (see Figure 1.2). Each 
SIMD engine contains numerous thread processors, which are responsible for 
executing kernels, each operating on an independent data stream. Thread 
processors, in turn, contain numerous stream cores, which are the fundamental, 
programmable computational units, responsible for performing integer, single, 
precision floating point, double precision floating point, and transcendental 
operations. All thread processors within a SIMD engine execute the same 
instruction sequence; different SIMD engines can execute different instructions. 

1. The stream-accelerated version of the ACML is called ACML-GPU. The ACML-GPU uses the stream 
processor to accelerate ACML routines that can benefit from stream acceleration. The ACML-GPU 
currently provides stream-accelerated implementations of SGEMM and DGEMM.
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Figure 1.9 Simplified Block Diagram of the Stream Processor1

A thread processor is arranged as a five-way VLIW processor (see bottom of 
Figure 1.9). Up to five scalar operations can be co-issued in a very long 
instruction word (VLIW) instruction. Stream cores can execute single-precision 
floating point or integer operations. One of the five stream cores also can handle 
transcendental operations (sine, cosine, logarithm, etc.)2. Double-precision 
floating point operations are processed by connecting four of the stream cores 

1. As described later, much of this is transparent to the programmer.
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(excluding the transcendental core) to perform a single double-precision 
operation. The thread processor also contains one branch execution unit to 
handle branch instructions.

Different stream processors have different numbers of stream cores. For 
example, the ATI Radeon™ 3870 GPU (RV670) stream processor has four SIMD 
engines, each with 16 thread processors, and each thread processor contains 
five stream cores; this yields 320 physical stream cores. 

1.2.2 Thread Processing

All thread processors within a SIMD engine execute the same instruction for each 
cycle. To hide latencies due to memory accesses and stream core operations, 
multiple threads are interleaved; thus, in a thread processor, up to four threads 
can issue four VLIW instructions over four cycles. For example, on the ATI 
Radeon™ 3870 GPU (RV670) stream processor, the 16 thread processors 
execute the same instructions, with each thread processor processing four 
threads at a time; effectively, this appears as a 64-wide SIMD engine. The group 
of threads that are executed together is called a wavefront.

The size of wavefronts can differ on different stream processors. For example, 
the ATI Radeon™ HD 2600 and the ATI Radeon™ HD 2400 graphics cards each 
have fewer thread processors in each SIMD engine on their stream processors 
compared to the ATI Radeon™ 3870 GPU (RV670) stream processor; therefore, 
the wavefront sizes are 32 and 16 threads, respectively. The AMD FireStream™ 
9170 stream processor, which uses the RV670 stream processor, has a 
wavefront size of 64 threads.

SIMD engines operate independently of each other, so it is possible for each 
array to execute different instructions.

1.2.3 Flow Control

Flow control, such as branching, is done by combining all necessary paths as a 
wavefront. If threads within a wavefront diverge, all paths are executed serially. 
For example, if a thread contains a branch with two paths, the wavefront first 
executes one path, then the second path. The total time to execute the branch 
is the sum of each path time. An important point is that even if only one thread 
in a wavefront diverges, the rest of the threads in the wavefront execute the 
branch. The number of threads that must be executed during a branch is called 
the branch granularity. On AMD hardware, the branch granularity is the same as 
the wavefront granularity.

Example 1: If two branches, A and B, take the same amount of time t to execute 
over a wavefront, the total time of execution, if any thread diverges, is 2t.

Loops execute in a similar fashion, where the wavefront occupies a SIMD engine 
as long as there is at least one thread in the wavefront still being processed. 

2. For the actual operations, see the AMD Compute Abstraction Layer (CAL) Technology Intermediate 
Language (IL) Reference Manual.
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Thus, the total execution time for the wavefront is determined by the thread with 
the longest execution time.

Example 2: If t is the time it takes to execute a single iteration of a loop; and 
within a wavefront all threads execute the loop one time, except for a single 
thread that executes the loop 100 times, the time it takes to execute that entire 
wavefront is 100t.

1.2.4 Thread Creation

Wavefronts are composed of quads, which are groups of 2x2 threads in the 
domain. Quads are processed together. If there are non-active threads within a 
quad, the thread processors that would have been mapped to those threads are 
idle. The simplest example is a domain of execution of height or width one. In 
this case, since quads are not fully covered, the hardware is only half used 
because half the quad is empty.

Wavefront construction and order of thread execution are determined by the 
rasterization order of the domain of execution (see Figure 1.10). Rasterization is 
the process of mapping threads from the domain of execution to SIMD engines1.

Figure 1.10 Rasterization of Threads to SIMD Engines

1. Rasterization is a carryover from graphics terminology, where it refers to the process of 
turning geometry, such as triangles, into pixels.
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1.2.4.1  Rasterization

Rasterization follows a pre-set zig-zag-like pattern across the domain of 
execution. The exact pattern normally is not disclosed because it might change 
in subsequent stream processor generations. The pattern is based on multiples 
of 8x8 blocks (16 quads) within the domain, matching the size of a wavefront. 
For example, if the domain of execution is 16x16, the first 8x8 block maps to one 
wavefront and is executed in one SIMD engine. A second 8x8 block maps to 
another wavefront and is executed in another SIMD engine. This continues until 
all 8x8 blocks in the domain are mapped to SIMD engines. 

1.2.4.2  Thread Optimization

AMD hardware is designed to maximize the number of active threads in a 
wavefront. So, if there are partial 8x8 blocks, the stream processor tries to fill the 
rest of the wavefront from other blocks, but within the quad limitation. For 
example, if the domain is of height 2, the wavefront is constructed using blocks 
of height 2 and width 32. Thus, having domains that are a multiple of 8x8 is not 
necessary, but might be more efficient. 

This rasterization process is transparent to the user, but can affect memory 
access performance, as described in Section 1.2.5.1, “Memory Access,” page 1-
17.

1.2.5 Memory Architecture and Access

There are three memory domains for developing stream processor applications: 
host (CPU) memory, PCIe memory, local (stream processor) memory. 

Host (CPU) memory is used by applications. It is only available to the user’s 
applications; the GPU cannot access it. This is where the application’s data 
structures and program data reside.

PCIe memory is a section of host (CPU) memory set aside for PCIe use. It is 
accessible from the host program and the stream process and can be modified 
by both. Modifying this memory requires synchronization between the stream 
processor and CPU, usually with the calCtxIsEventDone API call. Brook+ 
makes this transparent.

Local (stream processor) memory is the GPU version of host memory. It is only 
accessible by the stream processor and cannot be accessed through the CPU.

There are three ways to copy data to stream processor memory:

• Implicitly through calResMap/calResUnmap. 

• Explicitly through calCtxMemCopy.

• Explicitly with a custom kernel that reads from PCIe memory and writes to 
stream processor memory.

The important consideration when using these interfaces is the amount of 
copying involved. In a program that does not handle memory transfers (such as 
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all of the samples), there is a two copy processes: between host and PCIe, and 
between PCIe and stream processor. This is why there is a huge performance 
difference between the system GFLOPS and the kernel GFLOPS.

With proper memory transfer management and the use of system pinned 
memory (host/CPU memory remapped to the PCIe memory space) through 
calCtxResCreate in the cal_ext.h, copying between host (CPU) memory and 
PCIe memory can be skipped. Note that this is not an easy API call to use and 
comes with many constraints, such as page boundary and memory alignment.

Double copying lowers the overall system memory bandwidth. Copies between 
host (CPU) memory and PCIe memory usually are in the hundreds of MBps; 
those between the PCIe memory and stream processor memory are in the GBps 
range. On-chip memory bandwidth is in the tens to hundred GBps range. In 
stream processor programming, pipeline executions and copies, or other 
techniques, to reduce these copy bottlenecks.

CAL resources used by Brook+ can be located in two of the three memory 
locations (PCIe memory, local stream processor memory).

To create a local (stream processor) memory space, use calResAllocLocal API 
function; to create a PCIe memory space, use the calResAllocRemote API 
function.

1.2.5.1  Memory Access

Accessing stream processor local memory typically is an order of magnitude 
faster than accessing remote (system or CPU) memory. However, stream cores 
(see Figure 1.8) do not directly access memory; instead, they issue memory 
requests through dedicated hardware units. When a thread tries to access 
memory, the thread is transferred to the appropriate fetch unit. The thread is then 
deactivated until the access unit finishes accessing memory. Meanwhile, other 
threads can be active within the SIMD engine, contributing to better performance. 
The data fetch units handle three basic types of memory operations: loads, 
stores, and streaming stores. Stream processors now can store writes to random 
memory locations using global buffers.

1.2.5.2  Global Buffer

The global buffer lets applications read from, and write to, arbitrary locations in 
input buffers and output buffers, respectively. When using a global buffer, 
memory-read and memory-write operations from the stream kernel are done 
using regular stream processor instructions with the global buffer used as the 
source or destination for the instruction. The programming interface is similar to 
load/store operations used with CPU programs, where the relative address in the 
read/write buffer is specified. 

1.2.5.3  Memory Loads

Memory loads are done by addressing the desired location in the input memory 
using the fetch unit. The fetch units can process either 1D or 2D addresses. 
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These addresses can be normalized or un-normalized. Normalized coordinates 
are between 0.0 and 1.0 (inclusive). For the fetch units to handle 2D addresses 
and normalized coordinates, pre-allocated memory segments must be bound to 
the fetch unit so that the correct memory address can be computed. For a single 
kernel invocation, up to 128 memory segments can be bound at once. The 
maximum number of 2D addresses is 8192x8192. When accessing a global 
buffer, of which only one can be bound at a time, addresses must be un-
normalized, 1D coordinates. Memory loads are usually cached, except for loads 
from a global buffer, which are not cached.

1.2.5.4  Memory Stores

When using a global buffer, each thread can write to an arbitrary location within 
the global buffer. Only one global buffer is allowed to be bound at a time for a 
particular kernel invocation. The same global buffer must be used for loads and 
stores. Global buffers use a linear memory layout. If consecutive addresses are 
written, the SIMD engine issues a burst write for more efficient memory access.

1.2.5.5  Streaming Stores

Kernels can perform streaming writes in up to eight separate memory segments. 
The streaming writes occur only once per kernel invocation: only one write is 
allowed per segment, and the write location is implicitly computed based on each 
thread's location in the domain of execution. For example, the thread at location 
<1,1> in the domain would write to location <1,1> in each bound memory 
segment. For these addresses to computed implicitly, the sizes of the bound 
memory segments must be the same and specified beforehand.

1.2.5.6  Memory Tiling

There are many possible physical memory layouts for data streams. AMD stream 
processors can access memory in a tiled or in a linear arrangement.

• Linear – A linear layout format arranges the data linearly in memory such 
that element addresses are sequential. This is the layout that is familiar to 
CPU programmers. This format must be used for global buffers.

• Tiled – A tiled layout format has a pre-defined sequence of element blocks 
arranged in sequential memory addresses (see Figure 1.11). Translating 
from user address space to the tiled arrangement is transparent to the user. 
Tiled memory layouts provide an optimized memory access pattern to make 
more efficient use of the RAM attached to the stream processor. This 
contributes to lower latency.



A M D  S T R E A M  C O M P U T I N G

Stream Processor Hardware Functionality 1-19
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.  

Figure 1.11 One Example of a Tiled Layout Format

1.2.6 Host-to-Stream Processor Communication

The following subsections discuss the communication between the host (CPU) 
and the stream processor. This includes an overview of the PCI Express® bus, 
processing API calls, and DMA transfers.

1.2.6.1  PCI Express Bus

Communication and data transfers between the system and the stream 
processor occur on the PCI Express® (PCIe®) channel. AMD Stream Computing 
cards use PCIe 2.0 x16 (second generation, 16 lanes). Generation 1 x16 has a 
theoretical maximum throughput of 4 GBps in each direction. Generation 2 x16 
doubles the throughput to 8 GBps in each direction. Actual transfer performance 
is CPU and chipset dependent.

Transfers from the system to the stream processor are done either by the 
command processor or by the DMA engine. The stream processor also can read 
and write system memory directly from the SIMD engine through kernel 
instructions over the PCIe® bus.

1.2.6.2  Processing API Calls: The Command Processor

The host application does not interact with the stream processor directly. A driver 
layer translates and issues commands to the hardware on behalf of the 
application.

Most commands to the stream processor are buffered in a command queue on 
the host side. The command queue is flushed to the stream processor, and the 
commands are processed by it, only when a kernel program is executed. 
Flushing sends the current state of the command queue to the stream processor. 
There is no guarantee as to when commands from the command queue are 
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executed, only that they are executed in order. Unless the stream processor is 
busy, commands are executed immediately.

Command queue elements include: 

• Kernel execution calls

• Kernels

• Constants

1.2.6.3  DMA Transfers

Direct Memory Access (DMA) memory transfers can be executed separately from 
the command queue using the DMA engine on the stream processor. DMA calls 
are executed immediately; and the order of DMA calls and command queue 
flushes is guaranteed. 

DMA transfers can occur asynchronously. This means that a DMA transfer is 
executed concurrently with other system or stream processor operations. 
However, data is not guaranteed to be ready until the DMA engine signals that 
the event or transfer is completed. The application can query the hardware for 
DMA event completion. If used carefully, DMA transfers are another source of 
parallelization.

The thread processors handle non-DMA memory transfers. 

1.2.7 Stream Processor Scheduling 

Stream processors are very efficient at running large numbers of threads in a 
manner transparent to the application. Each stream processor uses the large 
number of threads to hide memory access latencies by having the resource 
scheduler switch the active thread in a given thread processor whenever the 
current thread is waiting for a memory access to complete. This time multiplexing 
is also used to hide the latency of stream core operations resulting from 
pipelining. Hiding memory access latencies requires that each thread contain a 
large number of calculations.

Figure 1.12 shows the timing of a simplified execution of threads in a single 
thread processor. At time 0, the threads are queued and waiting for execution. 
In this example, only four threads (T0…T3) are scheduled for the processor. The 
hardware limit for the number of active threads is dependent on the resource 
usage (such as the number of active registers used) of the program being 
executed. An optimally programmed stream processor typically has thousands of 
active threads.
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Figure 1.12 Simplified Execution Of Threads On A Single Thread 
Processor

At runtime, thread T0 executes until cycle 20; at this time a stall occurs due to a 
memory fetch request. The scheduler then begins execution of the next thread, 
T1. Thread T1 executes until it stalls or completes. New threads execute, and 
the process continues until the available number of active threads is reached. 
The scheduler then returns to the first thread, T0.

If the data thread T0 is waiting for has returned from memory, T0 continues 
execution. In the example in Figure 1.12, the data is ready, so T0 continues. 
Since there were enough threads and stream core operations to cover the long 
memory latencies, the thread processor does not idle. This method of memory 
latency hiding helps the stream processor achieve maximum performance.

If the data for thread T0 is not ready, the thread processor waits until thread T0 
is ready to execute, even if there are other threads ready to execute, as 
demonstrated in Figure 1.13. 
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Figure 1.13 Thread Processor Stall Due to Data Dependency

The causes for this situation are discussed in the following sections.

1.3 Performance
This section discusses performance and optimization when programming for 
stream processors.

1.3.1 Analyzing Stream Processor Kernels

Kernels must be compiled to native hardware instructions. The AMD GPU 
ShaderAnalyzer (Figure 1.14) can provide the instruction set architecture (ISA) 
disassembly. This tool can show the instructions executed on the hardware, as 
well as the number of active registers used.

Looking at the ISA of an example program (see Figure 1.14), instructions are 
grouped into clauses. A clause is a set of sequential instructions that executes 
without pre-emption. There are three types of instructions: stream core, local 
memory fetch, and memory read/write. Clauses can only contain one type of 
instruction. Only one clause is loaded onto a SIMD engine or the local memory 
fetch units at a time; however, multiple clauses can be executed in parallel 
because each SIMD can run a different clause.

Figure 1.14 shows an implementation of matrix multiply using Brook+. The 
resulting ISA code contains eight clauses (00…07). Of these, 00, 02, 03, and 05 
are stream core clauses; 01 and 06 are branch clauses; 04 is a fetch clause; and 
07 is a memory write clause. There are seven stream core instructions and two 
fetch instructions.
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Figure 1.14 AMD GPU ShaderAnalyzer Output

1.3.2 Estimating Performance

Estimating the theoretical performance of a kernel running on a stream processor 
is important because it helps developers identify and remove performance 
bottlenecks.

The last section shows the components of the instructions of a kernel. This is 
needed for the theoretical estimates. The other information needed consists of:

• Number of stream cores

• Number of local memory fetch units

• Memory bus size

• Engine clock frequency

• Memory clock frequency

For the ATI Radeon™ 3870 GPU (RV670) stream processor, the number of 
thread processors that execute the VLIW instructions is 64. The memory bus size 
is 256 bits. The engine and memory clocks are dependent on the stream 
processor (see the technical specifications for a specific stream processor for the 
rates). A typical ATI Radeon™ HD 3870 graphics card, which uses the RV670 
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stream processor, has an engine clock of 775 MHz and a memory clock of 
1125 MHz.

A kernel with only stream core instructions has a theoretical performance of:

The number of threads is the size of the domain of execution. Taking the ATI 
Radeon™ 3870 GPU (RV670) stream processor as an example, a one stream 
core instruction kernel with a domain of two million threads theoretically executes 
in:

A kernel with only a single fetch instruction has a theoretical performance of:

Local memory fetch units operate on the engine clock; thus, the 3D engine speed 
was used in the calculation above.

Memory performance estimation is based on the total amount of data being read 
from, and written to, memory per thread: 

A simple copy kernel (one byte in and one byte out) with a domain of two million 
threads has a theoretical memory performance of:

All hardware units run in parallel. Thus, the theoretical performance is the worst 
case of the three estimates. In the example of a kernel with one stream core 
instruction, one fetch instruction, and one byte input and output, the theoretical 
runtime would be 0.16 ms. This kernel is considered fetch-bound because the 
local memory fetch units are the bottleneck.

Note that the theoretical performance serves only as a guide. As kernel 
complexity increases, the ability to model the hardware becomes more difficult. 
Also, the above memory performance model is based on ideal (sequential) 
memory access patterns. Section 1.3.3, “Additional Performance Factors,” 
explores additional factors which affect performance.

1.3.3 Additional Performance Factors

This section describes potential factors that can impact kernel performance on 
the stream processor.

(# threads) x (# VLIW stream core instructions/thread)

(stream core instructions / clk) x (3D engine clock)

(2M threads) x (1 stream core instruction/thread)

(64 stream core instructions / clk) x 775 MHz
= 0.04 ms

(# threads) x (# fetch instructions/thread)

(fetches / clk) x (3D engine clock)

2M x 1

16 x 775 MHz
=

= 0.16 ms

(# threads) x (in + out bits per thread)

(bus) x (memory clock)

(2M threads) x (16 bits)

(256 bits) x (1125 MHz x 2DDR)
= 0.056 ms
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1.3.3.1  Register Usage

The number of active wavefronts depends on the active register usage of a 
kernel. This can be determined from the ISA disassembly provided by the GPU 
ShaderAnalyzer or other tools. Compilers try to optimize for the best register use; 
however, manual optimizations often can yield better results. Optimizing register 
counts yields performance gains through better memory latency hiding. However, 
a stream-core-bound kernel is bound by the peak stream core performance, even 
if many threads are active simultaneously.

When too many active registers are used, the stream processor places excess 
registers into memory. If this happens, performance is significantly impacted.

1.3.3.2  Domain Size

Stream processors have deep pipelines and many parallel execution units. Thus, 
stream processors require a large number of threads to be executed for 
maximum efficiency. This, however, is highly application workload dependent. 

As mentioned in Section 1.2.2, “Thread Processing,” page 1-14, and 
Section 1.2.4, “Thread Creation,” page 1-15, threads are executed on the 
hardware in wavefronts and quads. It is recommended that, at a minimum, 
domains have a height or width of a multiple of two.

1.3.3.3  Stream Core to Fetch Instruction Ratio 

One often-cited kernel statistic is the stream core-to-fetch (instructions) ratio. As 
shown in Section 1.3.2, “Estimating Performance,” page 1-23, there must be 
enough stream core instructions to hide the fetch latencies. This consideration is 
not intended for initially developing kernel programs, but rather for cases where 
the performance of the kernel program is not as expected. This ratio is device-
specific.

1.3.3.4  Memory Fetch Instructions

Since there are normally significantly more stream core resources than memory 
fetch resources, it is important that the developer keep memory fetch instructions 
to a minimum. Every memory fetch instruction takes at least one cycle. If the 
kernel is designed to fetch from consecutive data locations, then vector fetches 
can make more efficient use of the fetch resources. For example, a kernel can 
issue a fetch for a float4 type in one cycle versus four separate float fetches in 
four cycles. Sometimes, the compiler consolidates fetches; however, if there is 
math involved in calculating addresses, the compiler might not be able to perform 
the optimization for the developer. One solution is to explicitly load data into 
registers as a first step (prefetching), rather than calling for fetches in the code 
as needed.

1.3.3.5  Thread Processor Use

Most developers are used to programming with scalar operations. The compiler 
attempts to parallelize kernels into VLIW instructions for the developer. However, 
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if instructions are highly dependent on each other, the VLIW might have low 
occupancy; then, the thread processors are under-used. One optimization is to 
vectorize not just fetches, but also threads. This is done by combining multiple 
threads into a single thread and writing out multiple results with a vector data 
type, such as float4.

Since threads can write out up to eight vector types, it is possible to do much 
more work per thread by vectorizing them. This not only minimizes the number 
of stream core operations, but also might reduce the number of memory fetches.

Further optimization is achieved by having data ready in registers, since reading 
from registers is faster than fetching data from the cache.

1.3.3.6  Memory Access Patterns

The hardware is optimized for sequential memory access within, and between, 
threads. This is due to the way the DRAM and the cache are set up. On a 
memory fetch, an entire cache line is returned, which accelerates the next fetch 
in the sequence. Also, tiled memory works with thread rasterization (discussed 
in Section 1.2.4, “Thread Creation,” page 1-15) to accelerate memory fetches 
and increase performance. This is because consecutively created threads are 
likely to have their fetches in the cache already, leading to less stalling in the 
thread processor.

When a stream is formatted with a linear layout, performance can be negatively 
affected. More cache lines might be fetched to service the reads than from a tiled 
format.

Random accesses into memory, and fetch patterns that consistently access the 
same memory bank and channel (all fetches going to the same physical memory 
chip), cause the greatest degradation in memory performance.

Since memory access patterns can throw off performance estimates, it is 
possible to isolate the stream core and fetch performance by reducing input 
stream sizes to just one element. This determines if a kernel is memory bound 
or not, since by reducing the input stream size, the input stream data remains in 
the cache. This technique only works on fetches that do not depend on a value 
written from the kernel. 

1.3.3.7  Command Processor

Since the command queue is flushed on every execution of a stream processor 
program, short kernels and small domains can cause many gaps to be inserted 
in the execution pipeline. 

Having too large of a command queue also can affect performance. The buffer 
in the command processor has a finite size. Thus, very large command queues 
must be repackaged into smaller queues. As a result, extra overhead can occur 
when handling very large command queues.
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1.3.3.8  Bus Transfers

Ideally, total stream processor time measures not only the kernel compute time, 
but also the transfer of data over the system bus between the host and the 
stream processor, or between multiple stream processors. Bus transfers are 
highly platform dependent, so running the application on another system 
sometimes can be the quickest attempt at optimization.

Another method for improving performance is to hide the data transfer time with 
other work. Since the stream processor can read and write data directly from host 
memory, for some applications it might be better to leave the input or output 
streams in host memory and avoid any explicit bus transfer steps.

Since DMA transfers are asynchronous, they can be hidden through other CPU 
or stream processor computations. This can be achieved by subdividing a large 
domain and transferring data for subsequent kernels during prior kernel 
executions. However, it is important to ensure that asynchronous transfers have 
completed before a kernel tries to use transferred data for computation.
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Chapter 2
Brook+ Programming

This chapter is for developers using the Brook+ language to develop applications 
for AMD stream processors. See Brook+ Language Specification for a complete 
development guide and language specification. Also, see Section 3.1, 
“Introduction,” page 3-1, for an introduction to the stream processor architecture.

This release of AMD Brook+ Software Development Kit includes a single install 
package (MSI). The user installing it must have administrative privileges. See the 
Brook+_Installation_Notes.pdf for prerequisites, installation procedures, and 
Visual Studio syntax highlighting information.

2.1 Runtime Options
Before running Brook+, note the following for Brook+.

• BRT_RUNTIME - This environment variable lets you target either the CPU 
backend (for easy kernel debugging) or the CAL backend (for running on the 
GPU). If this environment variable is not set, the default is the CAL backend.

– Set to cpu to target the CPU backend.

– Setting to cal to target the CAL backend.

• BRT_ADAPTER - This environment variable lets you target a specific GPU in a 
multi-GPU system. The first GPU is 0, the second GPU is 1, and the nth GPU 
is N-1. If this environment variable is not set, the default is 0 (the first GPU).

• BRT_PERMIT_READ_WRITE_ALIASING - This environment variable lets you bind, 
at runtime, a stream as both the input stream and output stream. This is not 
recommended when writing new code. For more information, see the 
installation notes for Brook+.

• BRT_LOG_FILE - This variable let you specify a filename (and its location) that 
contains internal diagnostic information. 

When running Brook+ under Linux, note the following.

• DISPLAY - Ensure this is set to 0.0 to point CAL at the local X Windows 
server. CAL accesses the GPU through the X Windows server on the local 
machine.

• Ensure your current login session has permission to access the local X 
Windows server. Do this by logging into the X Windows console locally. If you 
must access the machine remotely, ensure that your remote session has 
access rights to the local X Windows server.
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2.2 A Sample Application
Brook+ comes in two components: the compiler (brcc.exe) and the Brook+ 
runtime libraries. Building an application consists of:

1. Using the Brook+ compiler to compile the Brook+ source code into a C++ 
file. This contains the CPU and stream processor code.

2. Compiling the C++ file with the rest of the application and link it with the 
Brook+ runtime libraries. 

The following subsections detail writing, building, executing, debugging, and 
logging a sample application.

2.2.1 Writing

The following is an example Brook+ source code for sum.br that adds two 
streams and outputs to a third. Brook+ source files normally are given a .br 
extension.

Sum.br

#include <stdio.h>

kernel void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

int main(int argc, char** argv)
{

int i, j;
float a<10, 10>;
float b<10, 10>;
float c<10, 10>;

float input_a[10][10];
float input_b[10][10];
float input_c[10][10];
for(i=0; i<10; i++)
{

for(j=0; j<10; j++)
{

input_a[i][j] = (float) i;
input_b[i][j] = (float) j;

}
}

streamRead(a, input_a);
streamRead(b, input_b);

sum(a, b, c);

streamWrite(c, input_c);

for(i=0; i<10; i++)
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{
for(j=0; j<10; j++)
{

printf("%6.2f ", input_c[i][j]);
}
printf("\n");

}

return 0;
}

Brook+ code is very similar to C/C++. Note the following limitations. 

First, brcc functions like a C compiler; thus, programs must adhere to standard 
C constructions (for example: variables are declared at the beginning of code 
blocks). The Brook+ compiler has no built-in preprocessor. If the kernel code 
uses preprocessor directives, the Brook+ file must be processed by a 
preprocessor before it is passed to the Brook+ compiler. The Brook+ compiler 
reports a problem when there is a preprocessor directive inside the kernel code, 
but passes preprocessor directives in non-kernel code to the C++ compiler 
invoked in the second step of the compilation.

For more complex applications, carefully partition the C code and the Brook+ 
code into manageable, easily maintainable sections. So, instead of using main, 
a function can be declared there and called from a C/C++ source file.

2.2.1.1  Kernels

From the example on page 2-2:

kernel void sum(float a<>, float b<>, out float c<>)
{

c = a + b;
}

...

sum(a, b, c);
Kernels are functions that run on the stream processor. The kernel is invoked on 
every element of the stream. Kernels are executed by calling them, just as in C 
with the actual parameters. 

Kernels are written like C, but with some extensions and limitations (see the 
Brook+ Language Specification for a complete listing). In the following example, 
a and b are input streams, and c is the output stream. Streams use angle 
brackets. In this situation, the API automatically handles stream addressing.

2.2.1.2  Streams

From the example on page 2-2:

float a<10, 10>;
float b<10, 10>;
float c<10, 10>;
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Streams are created using angle brackets (rather than square brackets used for 
arrays in C/C++). The hardware natively supports only 1D arrays up to 8192 
elements, and 2D arrays up to 8192x8192 elements, where an element is the 
stream data type (for example: float4). Higher dimensions and larger sizes have 
limited support through address virtualization at compile time (possibly affecting 
the performance). For example, a 1D array can be virtualized to 64M 
(8192x8192) elements. See Section 2.2.2, “Building,” page 2-4, for enabling 
address virtualization; also see Section 4.1 of the Brook+ Language Specification 
for more details.

2.2.1.3  Handling Streams

From the example on page 2-2:

streamRead(a, input_a);
streamRead(b, input_b);
...
streamWrite(c, input_c);

Streams cannot be accessed directly by the application. Data must be copied 
between streams and memory using streamRead() and streamWrite().

2.2.2 Building

Use the following steps to build:

Step 1. Compile with brcc.exe, which can be found in 
<BROOKROOT>\sdk\bin\

brcc [-hkrbfilxaec] [-w level] [-o prefix] [-p shader ] <.br file>

-h Help (print this message).

-k Keep generated IL program (in <filename.il>).

-r Disable address virtualization.

-o Prefix prefix prepended to all output files.

-p Shader CPU or CAL (can specify multiple).

-s Tokenize into char list generated IL program.

-b Turn on bison debugging.

-f Turn on flex debugging.

-i Specify include directory for passing to external 
preprocessor.

-l Insert #line directives into generated code.

-w Specify warning level. Level can be 0, 1, 2, 3; 
the default is level 0 (valid only with -a flag).

-x Turn on warnings as errors (valid only with -a flag).

streamRead(stream *, void *); Copies data from memory to stream.
streamWrite(stream *, void *); Copies data from stream to memory.
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-a Disable strong type checking.

-e Adds extern C for non kernel function declarations.

-c Disable cached gather array feature.

In the example on page 2-2, use:

brcc.exe -o sum sum.br

This compiles the Brook+ file sum.br (see Figure 2.1) and generates a 
C++ file, sum.cpp, and a .h file. Note that the .cpp file is output with 
#line directives; in most cases, this lets you step through the 
corresponding .br file in a debugger.

Figure 2.1 Compiling a Brook+ File and Generating a C++ File

In Visual Studio, you can add the Brook+ compilation step as a custom 
build event for the Brook+ file. Right-click on the Brook+ file in the 
project, and select Properties.

In Command Line, add the compiler command. For Outputs, add the 
location of the generated C++ file. You then can add the generated C++ 
file to the project. Later Brook+ compiles overwrite the existing C++ file.

Brook+ header files are located in <BROOKROOT>\sdk\include.

3. Add brook.lib to Linker > Input > Additional Dependencies. This library can 
be found in <BROOKROOT>\sdk\lib\.

4. Compile the application with the generated C++ files.

To use a makefile, see <BROOKROOT>\samples\util\build for examples.
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2.2.3 Executing

If the installation was followed correctly and the build was successful, run the 
executable. If the application does not run, then at least one path has not been 
set.

2.2.4 Debugging

When debugging an application, debugging happens on the generated C++ 
source, not on the original Brook+ source. For a complete example, see 
Section 2.4, “Example of Generated C++ Code for sum.br,” page 2-11.

There is no hardware debugging of stream kernels (for example: 
__sum_cal_desc); it is not possible to step through the kernel code. The kernel 
inputs and outputs can be inspected (before a streamRead and after a 
streamWrite). Kernels can be written so that intermediate data can be output to 
streams and inspected.

Alternatively, kernels can be stepped through and debugged as usual using the 
CPU emulation mode (for example: __sum_cpu and __sum_cpu_inner). To 
enable CPU emulation, create and set the environment variable:

BRT_RUNTIME = cpu

To return to the CAL backend, either delete the environment variable or set it to:

BRT_RUNTIME = cal

2.3 Included Samples
The Brook+ folder contains sample applications that can be built using the 
included makefiles or the included Visual Studio solution file 
<BROOKROOT>\samples\samples.sln.

Release builds of the samples are pre-built and located in: 
<BROOKROOT>\samples\bin\.

2.3.1 Simple Matrix Multiply Example

This example is a standard matrix multiply. The code presented here is excerpted 
from the simple_matmult example found in the samples directory.

/////////////////////////////////////////////////////////////////////////!
//! C = A * B
//! \param Width The value for which the loop runs over the matrices
//! \param A Input matrix A(MxK)
//! \param B Input matrix B(KxN)
//! \param result Output matrix(MxN)
//!
///////////////////////////////////////////////////////////////////////
kernel void
simple_matmult(float Width, float A[][], float B[][], out float result<>)
{

// vPos - Position of the output matrix i.e. (x,y)
float2 vPos = indexof(result).xy;
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// index - coordinates of A & B from where the values are fetched
float4 index = float4(vPos.x, 0.0f, 0.0f, vPos.y);
// step - represents the step by which index is incremented
float4 step = float4(0.0f, 1.0f, 1.0f, 0.0f);

// accumulator - Accumulates the result of intermediate calculation
// between A & B
float accumulator = 0.0f;

// Running a loop which starts from
// (0,vPos.y) in A and (vPos.x,0) in B
// and increments the 'y' value of A and the 'x' value of B
// which basically implies that we're fetching values from
// the 'vPos.y'th row of A and 'vPox.x'th column of B
float i0 = Width;
while(i0 > 0)
{

// A[i][k] * B[k][j]
accumulator += A[index.zw]*B[index.xy];
index += step;
i0 = i0 - 1.0f;

}

// Writing the result back to the buffer
result = accumulator;

}
int main(int argc, char** argv)
{

float A<Height, Width>;
float B<Width, Height>;
float C<Height, Height>;
float* inputA;
float* inputB;
float* output;
…
streamRead(A, inputA);
streamRead(B, inputB);
…
simple_matmult((float)Width, A, B, C);
…
streamWrite(C, output);
…

}

Starting at main, three streams are created representing the input (A and B) 
matrices and the output matrix (streams are used to represent a matrix). Then, 
three corresponding memory buffers are declared (inputA, inputB, and inputC).

Next, streamRead() copies data from inputA to stream A, and data from inputB 
to stream B.

The line simple_matmult((float)Width, A, B, C); binds the kernel to the 
size parameter Width, the input streams A and B, and the output stream C; this 
also triggers execution of the kernel by the stream processor. In a simple matrix 
multiply operation, the kernel reads in one row vector from one matrix and a 
column vector from another matrix; it applies a dot product to the two vectors, 
and writes out the result. In the example above, the kernel is invoked at each 
data location in the output stream. The kernel: 

1. loops over the row of matrix A,

2. loops over the column of matrix B,

3. fetches a value from each matrix, and 
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4. accumulates the values.

A feature used by this kernel is vector data types (float2 and float4). Brook+ 
can support data types of up to four elements. Elements can also be accessed 
in any combination. This is also known as swizzling.

There is also a difference between the stream inputs in this kernel compared to 
those of the earlier sum kernel. Here, the inputs are passed in using square 
brackets, which means that the input streams are treated as a memory array, and 
data elements are addressed directly. This is also known as a gather stream. An 
important distinction between kernel code and C code is that gather streams 
must be accessed using vector types, instead of multiple square brackets. For 
example, A[x][y] is not allowed.

To determine which row/column the kernel must access, the output location to 
which the kernel is writing must be specified. This is done through the indexof() 
function, which returns an integer (x,y) position of the output domain.

In the while loop, column values are read from matrix A and multiplied against 
values from matrix B. The accumulator variable accumulates the resulting 
values.

Like the earlier sum example, the result is written without bracket operators. 
Brook+ automatically writes the data out to the correct location; in this case, the 
location found in indexof() of the output stream.

2.3.2 Optimized Matrix Multiply Example

A disadvantage to the above kernel is that the same data is reused by the kernel 
at separate output locations. For example, at neighboring output locations, the 
kernel is reusing the same row vector or column vector data. Generally, fetching 
data from memory is expensive relative to processing data inside the stream 
processor.

One optimization technique is to perform more computations in the kernel, so that 
the reads are aggregated. This is the kernel from the optimized matrix multiply 
sample.

kernel void
optimized_matmult(float loopVar0,

float4 A1[][], float4 A2[][], float4 A3[][], float4 A4[][],
float4 A5[][], float4 A6[][], float4 A7[][], float4 A8[][],
float4 B1[][], float4 B2[][], float4 B3[][], float4 B4[][],
out float4 C1<>, out float4 C2<>, out float4 C3<>,
out float4 C4<>, out float4 C5<>, out float4 C6<>,
out float4 C7<>, out float4 C8<>)

{
// vPos - Position of the output matrix i.e. (x,y)
float2 vPos = indexof(C1).xy;

// Setting four210
float4 four210 = float4(4.0f, 2.0f, 1.0f, 0.0f);

// index - coordinates of A & B from where the values are fetched
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float4 index = float4(vPos.x, vPos.y, four210.w, four210.w);

// Declaring and initializing accumulators
float4 accumulator1 = four210.wwww;
float4 accumulator2 = four210.wwww;
float4 accumulator3 = four210.wwww;
float4 accumulator4 = four210.wwww;
float4 accumulator5 = four210.wwww;
float4 accumulator6 = four210.wwww;
float4 accumulator7 = four210.wwww;
float4 accumulator8 = four210.wwww;

float i0 = loopVar0;

while(i0 > 0.0f)
{

// Fetching values from A
float4 A11 = A1[index.wy];
float4 A22 = A2[index.wy];
float4 A33 = A3[index.wy];
float4 A44 = A4[index.wy];
float4 A55 = A5[index.wy];
float4 A66 = A6[index.wy];
float4 A77 = A7[index.wy];
float4 A88 = A8[index.wy];

// Fetching values from B
float4 B11 = B1[index.xw];
float4 B22 = B2[index.xw];
float4 B33 = B3[index.xw];
float4 B44 = B4[index.xw];
accumulator1 += A11.xxxx * B11.xyzw + A11.yyyy * B22.xyzw +

A11.zzzz * B33.xyzw + A11.wwww * B44.xyzw;
accumulator2 += A22.xxxx * B11.xyzw + A22.yyyy * B22.xyzw +

A22.zzzz * B33.xyzw + A22.wwww * B44.xyzw;
accumulator3 += A33.xxxx * B11.xyzw + A33.yyyy * B22.xyzw +

A33.zzzz * B33.xyzw + A33.wwww * B44.xyzw;
accumulator4 += A44.xxxx * B11.xyzw + A44.yyyy * B22.xyzw +

A44.zzzz * B33.xyzw + A44.wwww * B44.xyzw;
accumulator5 += A55.xxxx * B11.xyzw + A55.yyyy * B22.xyzw +

A55.zzzz * B33.xyzw + A55.wwww * B44.xyzw;
accumulator6 += A66.xxxx * B11.xyzw + A66.yyyy * B22.xyzw +

A66.zzzz * B33.xyzw + A66.wwww * B44.xyzw;
accumulator7 += A77.xxxx * B11.xyzw + A77.yyyy * B22.xyzw +

A77.zzzz * B33.xyzw + A77.wwww * B44.xyzw;
accumulator8 += A88.xxxx * B11.xyzw + A88.yyyy * B22.xyzw +

A88.zzzz * B33.xyzw + A88.wwww * B44.xyzw;

index += four210.wwwz;
// Reducing iterator
i0 = i0 - 1.0f;

}

C1 = accumulator1;
C2 = accumulator2;
C3 = accumulator3;
C4 = accumulator4;
C5 = accumulator5;
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C6 = accumulator6;
C7 = accumulator7;
C8 = accumulator8;

}

This example optimizes the kernel by:

• Using input streams of vector data types. In this case, float4 is used so that 
every fetch retrieves four values simultaneously. 

• Writing to eight streams simultaneously from the kernel. Using the CAL 
backend, Brook+ supports up to eight outputs per kernel. Each invocation of 
this kernel calculates 4×8 = 32 output values. Aggregating the memory 
fetches per kernel significantly increases the efficiency of the stream 
processor.

• Separating the two input matrices into multiple slices. This decreases the 
number of calculations needed to determine the addresses. The same 
address used to fetch from different inputs representing the slices of the 
matrices.

Figure 2.2 illustrates the optimized matrix multiplication.

Figure 2.2 Optimized Matrix Multiplication

During each iteration of the loop in this kernel implementation, an 8x4 sub-matrix 
is fetched from matrix A, and a 4x4 sub-matrix is fetched from matrix B. 
Multiplying these two sub-matrices results in an 8x4 sub-matrix. In the next 
iteration of the loop, the next 8x4 sub-matrix in the row is fetched from A, and 
the next 4x4 sub-matrix in the column is fetched from B. These matrices are 
multiplied and accumulated with the earlier results. The resulting 8x4 matrix is 
output to a stream.

8x4

A B

X
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2.4 Example of Generated C++ Code for sum.br 
////////////////////////////////////////////
// Generated by BRCC v0.1
// BRCC Compiled on: Nov  5 2007 16:24:44
////////////////////////////////////////////

#include <brook/brook.hpp>
#include <stdio.h>

namespace {
  using namespace ::brook::desc;
  static const gpu_kernel_desc __sum_cal_desc = gpu_kernel_desc()
    .technique( gpu_technique_desc()
        .pass( gpu_pass_desc(
            "il_ps_2_0\n"
            "dcl_cb cb0[1]\n"

"dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)\n
"
            "dcl_input_generic_interp(linear) v0.xy__\n"

"dcl_resource_id(1)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)\n
"

"dcl_input_generic_interp(linear) v1.xy__\n"
"sample_resource(0)_sampler(0) r0.x, v0.xy00\n"

            "sample_resource(1)_sampler(1) r1.x, v1.xy00\n"
            "mov r2.x, r0.xxxx\n"
            "mov r3.x, r1.xxxx\n"
            "call 0\n"
            "mov r4.x, r5.xxxx\n"
            "dcl_output_generic o0\n"
            "mov o0, r4.xxxx\n"
            "ret\n"
            "func 0\n"
            "add r6.x, r2.xxxx, r3.xxxx\n"
            "mov r7.x, r6.xxxx\n"
            "mov r5.x, r7.xxxx\n"
            "ret\n"
            "end\n"
            " \n"
            "##!!BRCC\n"
            "##narg:3\n"
            "##s:1:a\n"
            "##s:1:b\n"
            "##o:1:c\n"
            "##workspace:1024\n"
            "##!!multipleOutputInfo:0:1:\n"
            "##!!fullAddressTrans:0:\n"
            "##!!reductionFactor:0:\n"
            "")
            .sampler(1, 0)
            .sampler(2, 0)
            .interpolant(1, kStreamInterpolant_Position)
            .interpolant(2, kStreamInterpolant_Position)
            .output(3, 0)
      )
    );
  static const void* __sum_cal = &__sum_cal_desc;
}

static const char *__sum_ps30= NULL;
void  __sum_cpu_inner(const __BrtFloat1  &a,
                     const __BrtFloat1  &b,
                     __BrtFloat1  &c)
{
  c = a + b;
}
void  __sum_cpu(::brook::Kernel *__k, const std::vector<void *>&args)
{
  ::brook::StreamInterface *arg_a = 
(::brook::StreamInterface *) args[0];
  ::brook::StreamInterface *arg_b = 
(::brook::StreamInterface *) args[1];
  ::brook::StreamInterface *arg_c = 
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(::brook::StreamInterface *) args[2];
  
  do {
    Addressable <__BrtFloat1  > __out_arg_c((__BrtFloat1 *) __k->FetchElem(arg_c));

    __sum_cpu_inner (Addressable <__BrtFloat1 >((__BrtFloat1 *) __k->FetchElem(arg_a)), 
Addressable <__BrtFloat1 >((__BrtFloat1 *) __k->FetchElem(arg_b)), __out_arg_c);

    *reinterpret_cast<__BrtFloat1 *>(__out_arg_c.address) =
__out_arg_c.castToArg(*reinterpret_cast<__BrtFloat1 *> 
    (__out_arg_c.address));
  } while (__k->Continue());
}

void  sum (::brook::stream a,
::brook::stream b,
::brook::stream c) {

  static const void *__sum_fp[] = {
     "ps30", __sum_ps30,
     "cal", __sum_cal,
     "cpu", (void *) __sum_cpu,
     NULL, NULL };
  static ::brook::kernel  __k(__sum_fp);

  __k->PushStream(a);
  __k->PushStream(b);
  __k->PushOutput(c);
  __k->Map();

}

int  main(int  argc, char  **argv)
{
  int  i;
  int  j;
  ::brook::stream a(::brook::getStreamType(( float  *)0), 10 , 10,-1);
  ::brook::stream b(::brook::getStreamType(( float  *)0), 10 , 10,-1);
  ::brook::stream c(::brook::getStreamType(( float  *)0), 10 , 10,-1);
  float  input_a[10][10];
  float  input_b[10][10];
  float  input_c[10][10];

  for (i = 0; i < 10; i++)
  {
    for (j = 0; j < 10; j++)
    {
      input_a[i][j] = (float ) (i);
      input_b[i][j] = (float ) (j);
    }

  }

  streamRead(a, input_a);
  streamRead(b, input_b);
  sum(a, b, c);
  streamWrite(c, input_c);
  for (i = 0; i < 10; i++)
  {
    for (j = 0; j < 10; j++)
    {
      printf("%6.2f ", input_c[i][j]);
    }

    printf("\n");
  }

  return 0;
}
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2.5 Building Brook+
Both the release and debug builds of the Brook+ compiler and runtime libraries 
come pre-built; however, they also can be built using the provided source.

The path to the pre-built SDK (binary, library, and headers) is:

<BROOKROOT>\sdk\

On Windows systems, Brook+ can be built either from the command line or 
inside Visual Studio. Either way requires a full install of Cygwin 
(www.cygwin.com).

2.5.1 Visual Studio

You can build the brcc and the Brook+ runtime using the included Visual Studio 
solution file, which is located at:

<BROOKROOT>\platform\brook.sln

The configuration for getting the Debug or the Release executable is available 
through the Configuration pull-down menu.

The default output directories of builds using Visual Studio are:

brcc.exe: <BROOKROOT>\platform\brcc\bin\xp_x86_32
brook.lib: <BROOKROOT>\platform\runtime\lib\xp_x86_32

Files in the SDK tree are not replaced with the new builds. If make is installed, in 
<BROOKROOT>\platform:

• run make updatesdk to copy the debug to the SDK tree,

• or run make udpatesdk RELEASE=1 to copy the release builds to the SDK 
tree.

2.5.2 Command Line

The Brook+ tools can be built from the command line or through a Cygwin shell.

1. The Visual Studio compiler (cl.exe) and linker (link.exe) must be in the 
path. Default location is:

C:\Program Files\Microsoft Visual Studio 8\VC\bin

Note that in the path, the Visual Studio link.exe must come before the 
Cygwin link.exe.

2. Run make at <BROOKROOT>\platform\ for a debug build and run make 
RELEASE=1 for a release build.

Unlike the Visual Studio builds, the SDK tree is rebuilt and overwritten with the 
new Brook+ builds.

To clean the build, use make clean for debug builds and make clean RELEASE=1 
for release builds.
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2.6 The Brook+ Runtime API
The most significant change in Brook+ 1.3beta is a completely rewritten runtime 
engine. In addition to improvements in performance and stability, there is a new 
C++ API available for developers looking for a lower-level and more flexible way 
to access the GPU.

2.6.1 Differences Between the C++ API and the Previous Programming Model

Differences between this and the previous programming model include:

• dynamic stream management

• error handling

• execution domain control

• compatibility with C++ code

The following subsections discuss these differences.

2.6.1.1  Dynamic Stream Management

Brook, BrookGPU, and the legacy version of Brook+ use a statically allocated 
stream graph and prohibit streams that are bound for simultaneous read and 
write. At the C++ API level, there are no such restrictions: streams are proxies 
for GPU memory and can be dynamically allocated and passed between 
functions like any other C++ object.

2.6.1.2  Error Handling

Errors are now trapped by the runtime and communicated back to the client. As 
GPU-side errors can be asynchronous relative to host-side control flow, the error 
is not passed directly back to the host; instead, it is associated with a stream and 
propagated through the stream graph. The application checks the final output 
stream to find out if an error occurred in the process.

2.6.1.3  Execution Domain Control

When using a scatter stream as an output, it is not useful to enforce a simple 
one-to-one mapping between the layout of the output stream and the layout of 
the execution domain (the “virtual SIMD array” that runs the kernels). 

We now provide an extensible and optional mechanism to supply additional 
parameters to a kernel invocation.

2.6.1.4  Compatibility With C++ code

Kernel code is still restricted to a subset of C, but moving all other code outside 
the .br file means that developers can write their application in C++.
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2.6.2 Choosing a Programming Model

We recommend that new projects use the C++ API rather than the legacy model. 
The only reasons for using the legacy Brook interface are:

• for compatibility with other Brook implementations, or

• to benefit from potential compiler improvements, or

• the project is very small and/or simple. 

Example

Consider this code fragment:

kernel sum(double a<>, double b<>, out double c<>)
{
    c = a + b;
}

void vector_add(double *in_a, double *in_b, double *out, unsigned 
int length)
{
    double s1<length>, s2<length>, s3<length>;

    streamRead(s1, in_a);
    streamRead(s2, in_b);

    sum (s1, s2, s3);

    streamWrite(s3, out);
}

Several limitations of the legacy model are exposed:

• Not all hardware has support for doubles; but there is no way of handling 
this. See page D-1 for a list of devices that support this feature.

• If there is not enough memory to allocate any of the streams, the program 
terminates.

• Data can only be passed around by host-side code in host-side memory, 
potentially requiring multiple extra copies. 

Using the new API, this code looks like:

kernel sum(double a<>, double b<>, out double c<>)
{
    c = a + b;
}

Stream<double> *vector_add(double *in_a, double *in_b, unsigned int 
length)
{
    Stream<double> s1(1, length);

Stream<double> s2(1, length);
    Stream<double> *s3 = new Stream<double>(1, length);
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    s1.read(in_a);
    s2.read(in_b);

 sum(s1, s2, s3);

    if (s3->error())
        {

delete s3;
return NULL;

        }
    return s3;
}

Note that kernel definitions have not changed from the 1.2 format. All the 
differences are on the host side. Looking at the changes line by line, we have:

• The vector_add function now returns a pointer to a stream.

• The three streams (s1, s2, s3) are allocated as C++ objects using a 
templated constructor.

• streamRead() and streamWrite() are now methods of the Stream<> class.

• Stream objects now track errors instead of aborting. (For more details on the 
error handling mechanism, see Section 2.7.1, “Public Methods,” page 2-16).

• Streams can be passed around by host-side code, removing the need for 
redundant copies.

2.7 Stream Management (Stream.h)
The classes and functions in this file provide a mechanism for creating and 
managing streams. At this level of abstraction, a stream effectively is a proxy 
object for a remote array and some error-tracking information. (Other stream 
semantics are part of the Brook+ language definition and are not enforced by the 
runtime.)

Backend-specific details are not visible at this level.

2.7.1 Public Methods

The Stream class exposes the following public methods.

Stream::Stream(unsigned short rank, unsigned int* dimensions)

where:

rank  Number of dimensions in the stream.1

dimensions Upper bound of each dimension. (Array indices run from 0 to
dimensions[n]-1 as in conventional C code).

1. This is similar to, but not exactly the same as, “rank” in the mathematical sense.
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Use this standard constructor when the application code creates a stream. The 
underlying representation is determined by the backend being used and is 
transparent to the client.

If creation fails, the stream error state is set to BR_ERROR_DECLARATION.

Examples:

unsigned int n = 10000; // 1D double
Stream<double> s(1, &n);

unsigned int dims[2] = {1024, 1024}; // 2D float
Stream<float> *s = new Stream<float>(2, dims);

explicit Stream::Stream(StreamImpl* streamImpl)

where:

streamImpl is the pointer to underlying stream implementation.

This is intended only for internal API use. It wraps a backend-specific stream 
implementation in a generic Stream container.

void Stream::read(const void* ptr)

Copies data from a host-side pointer to the memory associated with a 
stream. It is equivalent to streamRead() in the legacy API. For the CAL 
backend, this includes a copy over the PCI Express bus; however, transfer 
speed has been improved greatly compared to the legacy implementation.

Note that the runtime does not check that ptr points to a sufficiently large 
area of memory. This is the programmer’s responsibility. 

void Stream::write(void* ptr) const

Copies data from the memory associated with a stream to a host-side 
pointer. This is equivalent to streamWrite() in the legacy API.

This is a synchronous call and blocks any return to the caller until all data 
has been written to the host. (For the CAL backend, this includes a copy over 
the PCI Express bus; however, transfer speed has been improved greatly 
compared to the legacy implementation.

Note that the runtime does not check that ptr points to a sufficiently large 
area of memory, this is the user's responsibility.

Stream<T> Stream::domain(unsigned int* start, unsigned int* end) 
const

Extract a sub-region of interest from the Stream lying between the start and 
end positions in the stream. The routine returns another stream that 
corresponds to the selected region.

The new stream is treated as a sub-region within the original stream; 
however, unlike the legacy API, modifications to the child are not guaranteed 
to be immediately reflected in the parent. Instead, changes can be 
propagated at any point between them occurring in the child and the child's 
destructor being called. (A change made in the child can become visible in 
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the parent at any point between it first happening and the child ceasing to 
exist.)

BRerror Stream::error()

This checks if an error occurred during processing of this stream or any of 
the streams from which it was computed. Returns an error code (enum) for 
first error that occurred, or BR_NO_ERROR if no error occurred. 

The error state is cleared when the error() routine is called.

Error Codes: 

enum BRerror
{
    BR_NO_ERROR = 0,            // No error. All’s well
    BR_ERROR_DECLARATION,       // Error in Stream Declaration
    BR_ERROR_READ,              // Error during Stream::read
    BR_ERROR_WRITE,             // Error during Stream::write
    BR_ERROR_KERNEL,            // Error during Kernel Invocation
    BR_ERROR_DOMAIN,            // Error in domain operator
    BR_ERROR_INVALID_PARAMATER, // An invalid parameter was passed
    BR_ERROR_NOT_SUPPORTED      // Feature not supported in brook+ 

 //or in the underlying hardware
};

const char* Stream::errorLog();

Returns NULL-terminated char string with log messages. Unlike the error() 
call, which records only the first error that occurred, errorLog() accumulates 
a list of all errors from the first onward.

Any error that occurs on a stream is propagated inside the Brook+ data flow 
pipeline to tag other streams as being in an error state. For example, if an 
input stream used in a kernel invocation contains an error, the subsequent 
output stream also is flagged as erroneous. As host and runtime code are 
potentially asynchronous, it is not practical to check for errors after every 
stream-related routine invocation. Whenever an error occurs, the stream 
class appends that error to an internal error log. The Stream::errorLog() 
lets you read this error log in the form of a C string.

Example

Here is an example that illustrates the usage of this interface.

int copy(const void *inputPtr, void *outputPtr, unsigned int 
dims[2])
{

Stream<float> X(2, dims), Y(2, dims);

// Initialize X
X.read(inputPtr);

// Invoke the kernel
copy(X, Y);

// Copy Y back
Y.write(outputPtr);
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if(Y.error())
{

std::cerr >> "Error in Stream Y" >> Y.errorLog() >> std::endl;
return -1;

}
}

operator Stream::StreamImpl*() const

Intended only for internal API use. Returns a pointer to the backend-specific 
stream implementation inside a generic stream container.

Stream::~Stream()

Destroys the proxy object. Actual deallocation of the underlying resources 
might not happen immediately as some backends use a lazy allocation 
strategy to improve performance.

2.7.2 Public Data

None.

2.7.3 Compatibility

A preprocessor macro, USE_OLD_API, is defined at the top of this file and used 
to enable/disable support for certain legacy API functions.

When this flag is enabled, the following additional functions and methods are 
available:

Stream<T> domain(int start, int end) const;
Stream<T> domain(int2 start, int2 end) const;
Stream<T> domain(int3 start, int3 end) const;
Stream<T> domain(int4 start, int4 end) const;
Stream<T> execDomain(int numThreads) const;

template<class T>
void streamRead(brook::Stream<T> stream, void* ptr);

template<class T>
void streamWrite(brook::Stream<T> stream, void* ptr);

These work as they did in the legacy Brook+ API.

2.7.4 Backend Performance

The current implementation supports two backends: CPU emulation and GPU via 
CAL. The 1.3_beta CAL backend offers significantly better performance 
compared to both the CPU backend and the 1.2_beta CAL implementation.
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2.8 Kernel Management
Invoking kernels in Brook+ is usually as simple as calling a C function with the 
same name and arguments as the kernel defined by the application in the .br 
file. Generally, the runtime handles all the mapping and device management 
transparently, but in some situations the user might require direct control of 
backend-specific features. To enable this, we provide a lower-level kernel 
interface API, as described below.

For each kernel, brcc generates an overloaded C++ operator for the KernelInterface 
that provides a mechanism for overriding some or all of the defaults. 

The current CAL implementation lets the user override the domain of execution 
of the kernel launch. This is extremely useful for cases where the execution 
domain is not uniquely defined by the kernel parameters (for example: when 
using scatter outputs).

class KernelInterface 
{ 
public:

  // Constructor and Destructor

  KernelInterface();
  ~KernelInterface();

  // Methods to control domain of execution

  void domainOffset(uint4 offset);
  void domainSize(uint4 size);
};

Example:

The following kernel performs random access writes to a scatter stream by using 
indices from another stream index.

kernel void
scatter(float index<>, float a<>, out float b[])
{

b[index] = a;
}

To set the domain of execution parameters and launch the kernel:

scatter.domainOffset(offset);
scatter.domainSize(size);
scatter(index, a, b);

2.9 Scatter/Gather Interface Changes
In addition to the KernelInterface feature described above, the new API provides 
an improved alternative to the indexof() intrinsic, instance().
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Unlike indexof(), instance() always integers not floats, and is always a four-
element vector (zero-padded where appropriate). This makes for much simpler 
code, as shown below.

kernel void 
simple_matmult_indexof(float Width, float A[][], float B[][], out 
float C<>) 
{
   float2 pos = indexof(C).xy;
   float4 ind = float4(pos.x, .0f, .0f, pos.y);
   float4 step = float4(.0f, 1.0f, 1.0f, 0.0f);
   float prod = 0.0f, i0 = 0.0f;

   for(i0 = 0.0f; i0 < Width; i0 += 1.0f)
   {
        prod += A[ind.zw] * B[ind.xy];
        ind += step;
    }

    // Writing the result back to the buffer
    C = prod;
}

kernel void 
simple_matmult_instance(uint Width, float A[][], float B[][], out 
float C<>) 
{
   uint4 pos = instance();

   float prod = 0.0f;
   uint i0 = 0;

   for(i0 = 0; i0 < Width; i0++)
   {
        prod += A[pos.y][i0] * B[i0][pos.x];
        index += step;
   }

    // Writing the result back to the buffer
    C = prod;
}

2.10 Converting Code to Use the New C++ API
The C++ API is recommended for all future code because it offers greater 
flexibility and access to more features than the legacy Brook+ API. The following 
example explains how to convert existing legacy code to use the new API. This 
example translates the Binary Search sample application supplied in the SDK.
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Table 1 provides a side-by-side comparison of the kernel code as used in the 
legacy interface and the new API. For clarity, large sections of code are omitted. 

In summary, very little has changed between the two versions. There have been 
minor cleanups, but kernel code remains essentially unchanged.

Table 1 Kernel Code Comparison: Legacy vs New API

Legacy New API

kernel void binary_search(float searchValue<>, float 
array[], out float index<>, float arraySize, float 
lgWidth) {
 
  float i;

  float numIter = lgWidth;  
  float stride;
  float compareValue, dir;

  float idx = stride = floor((arraySize * 0.5f) + 
0.5f);

  index = 0.0f;

  for (i = 0.0f; i < (numIter); i += 1.0f) {
    stride = floor((stride * 0.5f) + 0.5f);
    compareValue = array[idx];
    dir = (searchValue <= compareValue) ? -1.0f : 
1.0f;
    idx = idx + dir * stride;
  }
    
  // last iteration has stride fixed at 1
  compareValue = array[idx];
  idx = idx + ((searchValue <= compareValue) ? -1.0f : 
1.0f);

  // last pass check 
  compareValue = array[idx];
  idx = idx + ((searchValue <= compareValue) ? 0.0f : 
1.0f);
  if (idx < 0.0f)
  {
      idx = 0.0f;
  }

  // if we've found the value, write the array index 
into the output, otherwise, write -1
  compareValue = array[idx];
  idx = (searchValue == compareValue) ? idx : -1.0f;
  
  index = idx;
}

kernel void binary_search(float searchValue<>, float 
array[], out float index<>, float arraySize, int 
lgWidth)
{
    float stride;
    float compareValue, dir;

    float idx = stride = floor((arraySize * 0.5f) + 
0.5f);

    int i;
    for (i = 0; i < lgWidth; ++i)
    {
        stride = floor((stride * 0.5f) + 0.5f);
        compareValue = array[idx];
        dir = (searchValue <= compareValue) ? -1.0f : 
1.0f;
        idx = idx + dir * stride;
    }

    compareValue = array[idx];
    idx = idx + ((searchValue <= compareValue) ? -1.0f 
: 1.0f);

    // last pass check 
    compareValue = array[idx];
    idx = idx + ((searchValue <= compareValue) ? 0.0f 
: 1.0f);
    if (idx < 0.0f)
    {
      idx = 0.0f;
    }

    // if we've found the value, write the array index 
into the output, otherwise, write -1
    compareValue = array[idx];
    idx = (searchValue == compareValue) ? idx : -1.0f;

    index = idx;
}
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Table 2 provides a side-by-side comparison of the host code as used in the 
legacy interface and the new API. 

As can be seen from Table 2, the host-side code has changed considerably. 

At a project structure level, host code and kernel code now are in different files. 
The kernel code lives in .br files as before, but the host-side code is in regular 
C++ source files. The Brook+ compiler, brcc, compiles Brook+ source to a header 
file (here brookgenfiles/binary_search.h) containing all the internal definitions and 
bindings required by the C++ runtime. This file must be included by the host-side 
source file.

Table 2 Host Code Comparison: Legacy vs New API

Legacy New API

int main(int argc, char** argv)
{
    unsigned int     i   = 0;
    unsigned int lgWidth = 0;
    float*  array        = NULL;
    float*  searchValues = NULL;
    float*  indices[2]   = { NULL };
    unsigned int Length, Searches;

    {
        float   searchValueStream<Searches>;
        float   indicesStream<Searches>;
        float   arrayStream<Length>;

// Record GPU Total Time 
        Start(0);

        for (i = 0; i < cmd.Iterations; ++i)
{

      // Copy searchable data and search keys 
to streams

    streamRead(arrayStream, array);
    streamRead(searchValueStream, 

searchValues);

    // Execute parallel binary search
    binary_search(searchValueStream, 

arrayStream, 
indicesStream, (float)(Length), (float)lgWidth); 

    // Copy results from stream
    streamWrite(indicesStream, indices[0]);
}

    }
}

#include "brookgenfiles/binary_search.h"

int BinarySearch::run()
{
    unsigned int retVal = 0;

    // Brook code block
    {
        unsigned int arrayDim[] = {_length};
        unsigned int searchDim[] = {_width};

        ::brook::Stream<float> searchValueStream(1, 
searchDim);
        ::brook::Stream<float> indicesStream(1, 
searchDim);
        ::brook::Stream<float> arrayStream(1, 
arrayDim);

        for (unsigned int i = 0; i < info-
>Iterations; ++i)
        {
            // Copy searchable data and search keys 
to streams
            arrayStream.read(_array);
            searchValueStream.read(_searchValues);

            // Execute parallel binary search
            binary_search(searchValueStream, 
arrayStream, 
                            indicesStream, 
(float)(_length), _lgWidth); 

            // Copy results from stream
            indicesStream.write(_indices[0]);
            
            //Handle errors if occured
            if(indicesStream.error())
            {
                std::cout << "Error occured" << 
std::endl;
                std::cout << indicesStream.errorLog() 
<< std::endl;
                retVal = -1;
            }
        }

        timer->Stop();
    }
    return retVal;
}
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Also note that the stream definitions have changed. Legacy-mode stream 
definitions are static and use extended syntax. C++ API definitions are 
conventional object instantiations, meaning that they can have their addresses 
taken and passed between functions, as with any other object. Reading from, 
and writing to, streams now is a method of the Stream class.

Finally, streams now maintain an error status that can be queried by the host to 
check if a computation (or string of computations, since errors propagate 
between streams) completed correctly.



A M D  S T R E A M  C O M P U T I N G

AMD Stream Computing User Guide 3-1
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 3
AMD Compute Abstraction Layer 
(CAL) Programming Guide

3.1 Introduction
The AMD Compute Abstraction Layer (CAL) provides an easy-to-use, forward-
compatible interface to the high-performance, floating-point, parallel processor 
arrays found in AMD stream processors. CAL, part of AMD’s Stream Computing 
Software stack (see Figure 1.1), abstracts the hardware details of the AMD 
stream processor. It provides the following features:

• Device management

• Resource management

• Code generation

• Kernel loading and execution

CAL provides a device driver library that allows applications to interact with the 
stream cores at the lowest-level for optimized performance, while maintaining 
forward compatibility.

Note: For developers beginning to develop stream computing software for 
stream processors, AMD recommends becoming familiar with the 
basic concepts of stream processor programming by looking at the 
Brook+ software. (Brook+ is a higher-level language that is easier 
to use, but does not provide all the functionality that CAL does.) 

Brook+ provides an easy-to-use, high-level interface for stream computing, 
including a CAL-based runtime backend that is optimized for AMD stream 
processors. The CAL API is ideal for performance-sensitive developers because 
it minimizes software overhead and provides full-control over hardware-specific 
features that might not be available with higher-level tools.

The following subsections provide an overview of the CAL system architecture, 
stream processor architecture, and the execution model that it provides to the 
application. For information on prerequisites and installation procedures, see the 
CAL_Installation_Notes.pdf. 

3.1.1 CAL System Architecture

A typical CAL application includes two parts: 

• a program running on the host CPU (written in C/C++), the application, and
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• a program running on the stream processor, the kernel (written in a high-level 
language, such as AMD IL).

The CAL API comprises one or more stream processors connected to one or 
more CPUs by a high-speed bus. The CPU runs the CAL and controls the stream 
processor by sending commands using the CAL API. The stream processor runs 
the kernel specified by the application. The stream processor device driver 
program (CAL) runs on the host CPU.

Figure 3.1 is a block diagram of the various CAL system components and their 
interaction. Both the CPU and stream processor are in close proximity to their 
local memory subsystems. In this figure:

• Local memory subsystem – the CAL local memory. This is the memory 
subsystem attached to each stream processor. (From the perspective of 
CAL, the Stream Processor is local, and the CPU is remote.)

• System memory – the single memory subsystem attached to all CPUs.

CPUs can read from, and write to, the system memory directly; however, stream 
processors can read from, and write to:

• their own local stream processor memory using their fast memory 
interconnects, as well as 

• system memory using PCIe.

Figure 3.1 CAL System Architecture

The CAL runtime allows managing multiple stream processors directly from the 
host application. This lets applications divide computational tasks among multiple 
parallel execution units and scale the application in terms of computational 
performance and available resources. With CAL, applications control the task of 
partitioning the problem and scheduling among different stream processors (see 
Section 3.7, “Advanced Topics.”)
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3.1.1.1  CAL Device

The CAL API exposes the stream processors as a Single Instruction, Multiple 
Data (SIMD) array of computational processors. These processors execute the 
loaded kernel. The kernel reads the input data from one or more input resources, 
performs computations, and writes the results to one or more output resources 
(see Figure 3.2). The parallel computation is invoked by setting up one or more 
outputs and specifying a domain of execution for this output. The device has a 
scheduler that distributes the workload to the SIMD processors.

Figure 3.2 CAL Device and Memory

Since the stream processor can access both local device memory and remote 
memory, inputs and outputs to the kernel can reside in either memory subsystem. 
Data can be moved across different memory systems by the CPU, stream 
processor, or the DMA engine. Additional inputs to the kernel, such as constants, 
can be specified. Constants typically are transferred from remote memory to local 
memory before the kernel is invoked on the device.

3.1.1.2  Stream Processor Architecture

The AMD stream processor has a parallel micro-architecture for computer 
graphics and general-purpose parallel computing applications. Any data-intensive 
application that can be mapped to one or more kernels and the input/output 
resource can run on the AMD stream processor.

Figure 3.3 shows a block diagram of the AMD stream processor and other 
components of a CAL application. 
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Figure 3.3 AMD Stream Processor Architecture

• The command processor reads and initiates commands that the host CPU 
has sent to the stream processor for execution. The command processor 
notifies the host when the commands are completed.

• The stream processor array is organized as a set of SIMD engines, each 
independent of the others, that operate in parallel on data streams. The 
SIMD pipelines can process data or transfer data to and from memory.

• The memory controller has direct access to all local memory and host-
specified areas of system memory. To satisfy read/write requests, the 
memory controller performs the functions of a direct-memory access (DMA) 
controller.

• The stream processor has various caches for data and instructions between 
the memory controller and the stream processor array.

Kernels are controlled by host commands sent to the stream processors’ 
command processor. These commands typically:

• specify the data domain on which the stream processor operates,

• invalidate and flush caches on the stream processor,

• set up internal base-addresses and other configuration registers,

• request the stream processor to begin execution of a kernel. 
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The command processor requests a SIMD engine to execute a kernel by passing 
it an identifier pair (x, y) and the location in memory of the kernel code. The SIMD 
pipeline then loads instructions and data from memory, begins execution, and 
continues until the end of the kernel.

Conceptually, each SIMD pipeline maintains a separate interface to memory, 
consisting of index pairs and a field identifying the type of request (kernel 
instruction, floating-point constant, integer constant, input read, or output write)1. 
The index pairs for inputs, outputs, and constants are specified by the requesting 
stream processor instructions from the hardware-maintained kernel state in the 
pipelines.

The stream processor memory is high-speed DRAM connected to the SIMD 
engines using a high-speed proprietary interconnect. A host application (running 
on the CPU) cannot write to stream processor local memory directly, but it can 
command the stream processor to copy data from system (CPU) memory to 
stream processor memory, or vice versa.

3.1.2 CAL Programming Model

CAL provides access to the AMD stream processor by offering the runtime and 
code generation services detailed in the following subsections.

3.1.2.1  Run Time Services

The CAL runtime library, amdcalrt, can load and execute the binary image 
generated by the compiler. The runtime implements:

• Device Management: CAL runtime identifies all valid CAL devices on the 
system. It lets the application query individual device parameters and 
establish a connection to the device for further operations.

• Resource Management: CAL runtime handles the management of all 
resources, including memory pools available on the system. Memory can be 
allocated on device local and remote memory subsystems. Data buffers can 
be efficiently moved between subsystems using DMA transfers.

• Kernel Loading and Execution: CAL runtime manages the device state and 
lets applications set various parameters required for the kernel execution. It 
provides mechanisms for loading binary images on devices as modules, 
executing these modules, and synchronizing the execution with the 
application process.

3.1.2.2  Code Generation Services

The CAL compiler, which is distributed as a separate library (amdcalcl) with the 
CAL SDK, is responsible for the stream processor-specific code generation. The 
CAL compiler accepts a stream kernel written in one of the supported interfaces 
and generates the object code for the specified device architecture. The resulting 

1. Boolean and double constants are not supported.
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CAL object and binary image can be loaded directly on a CAL device for 
execution (see Figure 3.4).

Figure 3.4 CAL Code Generation

The CAL API allows developing stream kernels directly using:

• Device-specific Instruction Set Architecture.

• Pseudo-Assembly languages like AMD’s Intermediate Language (IL).

The kernel can be developed in a device-independent manner using the AMD IL. 
It also is possible to program in a C-like high-level language, such as Brook+. 
See Appendix B, “The AMD Compute Abstraction Layer (CAL) API Specification” 
for more information on such tools.

3.1.3 CAL Software Distribution

The distribution software bundle consists of the CAL SDK, which includes 
platform-specific binaries, header files, sample code, and documentation. This 
document assumes that the reader has installed the CAL SDK.

On Windows®, CAL files are installed in the %SystemDrive%\Program 
Files\AMD\AMD CAL x.x.x directory, where xxx refers to the software version 
currently installed. The following sections refer to the installation location of the 
CAL SDK as $(CALROOT) and use UNIX-style filepaths for relative paths to 
specific components.
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The SDK contains the following components –

The samples included in the SDK contain simple example programs that illustrate 
specific CAL features, as well as tutorial programs under 
$(CALROOT)/samples/tutorial. The reader should build and run some of the 
sample programs to ensure that the system is configured properly and software 
is installed correctly for CAL development. See the release notes for detailed 
instructions on the software installation and system configuration.

3.2 CAL Application Programming Interface
The CAL API contains a few C function calls and simple data types used for data 
specification and processing on the device. The complete list of all functions, 
along with their C declarations, are in Appendix B, “The AMD Compute 
Abstraction Layer (CAL) API Specification”. Note the following conventions 
regarding the CAL API:

• All CAL runtime functions use the prefix cal. All CAL compiler functions use 
the prefix calcl.

• All CAL utilities use the prefix calut.

• All CAL extensions use the prefix calext.

• All CAL data types are prefixed with CAL. The data types are either typedefs 
to built-in C types, or enums.

• CAL functions return a status code, CALresult. This can be used to check 
for any internal or usage error within the function. (The exception is 
disassemble functions, which use calcldisassemble[image|object].) On 
success, all functions return CAL_RESULT_OK. The calGetErrorString 
function provides more information about the error in a human readable 
string.

• CAL uses opaque handles for internal data structures like CALdevice and 
CALresource. 

The following sections provide more information about the two main components 
of the API: the CAL runtime, and the CAL compiler. The complete list of CAL 
compiler and runtime function calls is in Appendix B, “The AMD Compute 
Abstraction Layer (CAL) API Specification”.

Component Installation Location

Header files $(CALROOT)/include

Libraries and DLLs (Windows only) $(CALROOT)/lib

Documentation $(CALROOT)/doc

Sample applications $(CALROOT)/samples

Binaries for sample applications $(CALROOT)/bin

Development Tools and Utilities $(CALROOT)/tools, $(CALROOT)/utilities
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3.2.1 CAL Runtime

The CAL runtime comprises: 

• System initialization and query 

• Device management

• Context management

• Memory management, 

• Program loading

• Program execution

This section covers the first four bulleted items. The last two components, 
program loading and program execution, are covered in Section 3.2.3, “Kernel 
Execution,” page 3-16.

3.2.1.1  Linux Runtime Options

Note the following for CAL when running under Linux.

• DISPLAY - Ensure this is set to 0.0 to point CAL at the local X Windows 
server. CAL accesses the GPU through the X Windows server on the local 
machine.

• Ensure your current login session has permission to access the local X 
Windows server. Do this by logging into the X Windows console locally. If you 
must access the machine remotely, ensure that your remote session has 
access rights to the local X Windows server.

3.2.1.2  System Initialization and Query

The CAL runtime provides mechanisms for initializing, and shutting down, a CAL 
system. It also contains methods to query the version of the CAL runtime. 

The first CAL routine to be invoked from an application is calInit. It initializes 
the CAL API and identifies all valid CAL devices on the system. Invoking any 
other CAL function prior to calInit results in an error code, CAL_RESULT_ERROR. 
If calInit has already been invoked, the routine returns CAL_RESULT_ALREADY. 
Similarly, calShutdown must be called before the application exits for the 
application to shutdown properly. Invoking another CAL routine after 
calShutdown results in a CAL_RESULT_NOT_INITIALIZED error.

Query the CAL version on the system with the calGetVersion routine. It 
provides the major and minor version numbers of the CAL release, as well as 
the implementation instance of the supplied version number.

3.2.1.3  Device Management

The CAL runtime supports managing multiple devices in the system. The CAL 
API identifies each device in the system with a unique numeric identifier in the 
range [0..N-1], where N is the number of CAL-supported devices on the 
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system. To find the number of stream processors in the system use the 
calDeviceGetCount routine (see the FindNumDevices tutorial program). For 
further information on each device, use the calDeviceGetInfo routine. It returns 
information on the specific device, including the device type and maximum valid 
dimensions of 1D and 2D buffer resources that can be allocated on this device.

Before any operations can be done on a given CAL device, the application must 
open a dedicated connection to the device using the calDeviceOpen routine. 
Similarly, the device must be closed before the application exits using the 
calDeviceClose routine (see the OpenCloseDevice tutorial program).

The calDeviceOpen routine accepts the numeric identifier for the stream 
processor that must be opened; when it is open, the routine returns a pointer to 
the device.

The following code uses these routines.

// Initialize CAL system for computation
if(calInit() != CAL_RESULT_OK) ERROR_OCCURRED();

// Query and print the runtime version that is loaded
CALuint version[3];
calGetVersion(&version[0], &version[1], &version[2]);
fprintf(stderr, “CAL Runtime version %d.%d.%d\n”,

version[0], version[1], version[2]);

// Query the number of devices on the system
CALuint numDevices = 0;
if(calDeviceGetCount(&numDevices) != CAL_RESULT_OK) ERROR_OCCURRED();

// Get the information on the 0th device
CALdeviceinfo info;
if(calDeviceGetInfo(&info, 0) != CAL_RESULT_OK) ERROR_OCCURRED();

switch(info.target)
{

case CAL_TARGET_600:
fprintf(stdout, "Device Type = GPU R600\n");
break;

case CAL_TARGET_670:
fprintf(stdout, "Device Type = GPU RV670\n");
break;

}

// Opening the 0th device
CALdevice device = 0;
if(calDeviceOpen(&device, 0) != CAL_RESULT_OK) ERROR_OCCURRED();

// Use the device
// ……………

// Closing the device
calDeviceClose(device);

// Shutting down CAL
if(calShutdown() != CAL_RESULT_OK) ERROR_OCCURRED();
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The calDeviceGetInfo routine provides basic information. For more detailed 
information about the device, use the calDeviceGetAttribs routine. It returns a 
C struct of type CALdeviceattribs with fields of information on the stream 
processor ASIC type, available local and remote RAM sizes, and stream 
processor clock speed. Note, however, that setting struct.struct_size to the 
size of CALdeviceattribs must be done before calling calDeviceGetAttribs.

3.2.1.4  Context Management

To execute a kernel on a CAL device, the application must have a valid CAL 
context on that device (see the CreateContext tutorial program). A CAL context 
is an abstraction representing all the device states that affect the execution of a 
CAL kernel. A CAL device can have multiple contexts, but the same context 
cannot be shared by more than one CAL device. For multi-threaded applications, 
each CPU thread must use a separate CAL context for communicating with the 
CAL device (see Figure 3.5; also, see Section 3.7, “Advanced Topics,” for more 
information). 

Figure 3.5 Context Management for Multi-Threaded Applications

A CAL context can be created on the specified device using the calCtxCreate 
routine. Similarly, a context can be deleted using the calCtxDestroy routine.

// Create context on the device
CALContext ctx;
if(calCtxCreate(&ctx, device) != CAL_RESULT_OK) ERROR_OCCURRED(); 
// Destroy the context
if(calCtxDestroy(ctx) != CAL_RESULT_OK) ERROR_OCCURRED();

3.2.1.5  Memory Management

All CAL devices have access to local and remote memory subsystems through 
CAL kernels running on the device. These discrete memory subsystems are 
known collectively as memory pools. In the case of stream processors, local 
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memory corresponds to the high-speed video memory located on the graphics 
board. Remote memory corresponds to memory that is not local to the given 
device but still visible to a set of devices (see Figure 3.6). To find the total size 
of each memory pool available to a given device, use the calDeviceGetAttribs 
routine.

Figure 3.6 Local and Remote Memory

The most common case of remote memory that is accessible from the stream 
processors is the system memory. In this case, the stream kernel accesses 
memory over the PCIe bus. This access usually is slower and incurs a higher 
latency compared to local memory. Performance is dependent on the 
characteristics and architectural topology of the host RAM, processor, and the 
PCIe controller on the system.

The following steps allocate, initialize and use memory buffers in a CAL kernel:

• Allocate memory resources with desired parameters and memory subsystem.

• Map input and constant resources to application address space, and initialize 
contents on the host.

• Provide each resource with context-specific memory handles.

• Bind memory handles to corresponding parameter names in the kernel.

3.2.1.6  Resources

In CAL, all physical memory blocks allocated by the application for use in stream 
kernels are referred to as resources. These blocks can be allocated as one-
dimensional or as two-dimensional arrays of data. The data type and format for 
each element in the array must be specified at the time of resource allocation 
(see the CreateResource tutorial program).
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• 8-, 16-, and 32-bit, signed and unsigned integer types with 1, 2, and 4 
components per element, as well as 

• 32- and 64-bit floating point types with 1, 2, and 4 components per element. 

The formats are specified using the CALformat enumerated type. The enums use 
the naming syntax CAL_FORMAT_type_n, where type is the data type and n is the 
number of components per element. For example, CAL_FORMAT_UBYTE_4 
represents an element with four 4 8-bit unsigned integer values per element. 

Note: 4-component 64-bit floating point types are not supported with this 
version of the CAL release.

Memory can be allocated locally (stream processor memory) or remotely (system 
memory). In the case of remote allocation, the CAL API lets the application 
control the list of devices that can access the resource directly. Remote memory 
can serve as a mechanism for sharing memory resources between multiple 
devices. This prevents the application from having to create multiple copies of 
the data.

Local resources can be allocated using the calResAllocLocalnD routines, where 
n is the dimension of the array. Currently, n can be only 1 or 2. The routine 
requires the application to pass the CALDevice on which the resource is allocated 
along with other parameters such as width, height, format, etc. Similarly, remote 
resources are allocated using the calResAllocRemotenD routines and require the 
list of CAL devices that can share the remote resource. The allocated resource 
is visible only to these devices. On successful completion of the allocation, the 
CAL API returns a pointer to the newly allocated CALResource. To deallocate a 
resource, use the calResFree routine.

The following code allocates a 2D resource of 32-bit floating point values on the 
specified CAL device.

// Allocate 2D array of FLOAT_1 data
CALresource resLocal = 0;
if(calResAllocLocal2D(&resLocal, device, width, height,

CAL_FORMAT_FLOAT_1, 0) != CAL_RESULT_OK)
ERROR_OCCURRED();

// Do the computations
// ……………

// De-allocate the resource
if(calResFree(resLocal) != CAL_RESULT_OK) ERROR_OCCURRED();

CAL memory is used as inputs, outputs, or constants to CAL kernels. For inputs 
and constants, first initialize the contents of the memory buffer from the host 
application. One way to do this is to map the memory to the application’s address 
space using the calResMap routine. The routine returns a host-side memory 
pointer that the application can dereference; the application then initializes the 
buffer. The routine also returns the pitch of the data buffer, which must be 
considered when dereferencing this data. The pitch corresponds to the number 
of elements in each row of the resource. This usually is equal to, or greater than, 



A M D  S T R E A M  C O M P U T I N G

CAL Application Programming Interface 3-13
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.  

the width specified in the allocation routine. The size of the memory buffer 
allocated is given by:

Allocated Buffer Size = Pitch * Height * Number of components *
Size of data type

The following code demonstrates how to use calResMap to initialize the resource 
allocated above.

// Map the memory handle to CPU pointer
float *dataPtr = NULL;
CALuint pitch = 0;
if(calResMap((CALVoid **)&dataPtr, &pitch, resLocal, 0) !=

CAL_RESULT_OK) ERROR_OCCURRED();

// Initialize the data values
for(int i = 0; i < height; i++)
{

// Note the use of the pitch returned by calResMap to properly
// offset into the memory pointer
float* tmp = &dataPtr[i * pitch];

for (int j = 0; j < width; j++)
{

// At this place depending on the format (1,2,4) we can
// specify relevant values i.e.
// For FLOAT_1, we should initialize temp[j]
// For FLOAt_2, we should initialize temp[2*j] & temp[2*j + 1]
// For FLOAT_4, we should initialize temp[4*j], temp[4*j + 1],
// temp[4*j + 2] & temp[4*j + 3]

tmp[j] = (float)(i * width + j);
}

}

// Unmap the memory handle
if(calResUnmap(resLocal) != CAL_RESULT_OK) ERROR_OCCURRED();

Note that a mapped resource cannot be used in a CAL kernel; the resource must 
be unmapped using calResUnmap before being used as shown above.

3.2.1.7  Memory Handles

Once a resource has been allocated, it must be bound to a given CAL context 
before being used in a CAL kernel. CAL resources are not context-specific. 
Hence, they first must be mapped to the given context’s address space before 
being addressed by that context. This is done using the calCtxGetMem routine. 
When this is done, the routine returns a context-specific memory handle to the 
resource. This handle can be used for subsequent operations, such as reading 
from, and writing to, the resource. Once the memory handle is no longer needed, 
the handle can be released using the calCtxReleaseMem routine.

// Map the given resource to a new memory handle for this context
CALmem memLocal = 0;
if(calCtxGetMem(&memLocal, ctx, resLocal) != CAL_RESULT_OK)

ERROR_OCCURRED();
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// Use the memory handle
// ………………

// Release the resource to context mapping
if(calCtxReleaseMem(ctx, memLocal) != CAL_RESULT_OK) 
ERROR_OCCURRED();

The SetupData routine in the basic tutorial program implements the steps 
required to allocate, initialize, and use memory buffers in a kernel. The last step 
of binding memory handles to kernel names and parameter names is explained 
in Section 3.2.3, “Kernel Execution.”

3.2.2 CAL Compiler

The CAL compiler provides a high-level runtime interface for compiling stream 
kernels written in one of the supported programming interfaces. The compiler can 
be invoked either at runtime or offline. Invoking them at runtime typically happens 
during kernel development when the developer constantly modifies the kernel 
and tests the output results. Invoking the offline compiler is suitable for 
production-class applications, including kernels that have already been 
developed and are loaded and invoked only at runtime. This mechanism prevents 
the overhead of compiling the kernel each time the application is executed.

AMD provides other useful tools that can be used for fast and easy development 
of efficient stream kernels. See Appendix B, “The AMD Compute Abstraction 
Layer (CAL) API Specification” and Section 1.1.4, “GPU ShaderAnalyzer,” 
page 1-10, for more information. 

3.2.2.1  Compilation and Linking

The CAL compiler accepts the kernel in one of the supported programming 
interfaces and generates a binary object specific to a given target CAL device 
using calclCompile (see the CompileProgram tutorial program). The routine 
requires the application to specify, as arguments, the interface type and the 
target device architecture for the resulting binary object, along with the C-style 
string for the stream kernel. Once compiled, the object must be linked into a 
binary image using calclLink, which generates this image. The binary object 
and image are returned as the handles CALobject and CALimage, respectively.

Note the following guidelines for the CAL compiler API:

• Only the AMD IL and the stream processor-specific Instruction Set 
Architecture (ISA) are supported as the runtime programming interfaces by 
calclCompile.

• The target device architecture supported includes AMD stream processors 
listed under the CALtarget enumerated type.

The following code shows the use of the CAL compiler API for querying the 
compiler version, compiling a minimal AMD IL kernel and linking the resulting 
object into the final binary image. Note the use of the calclFreeObject and 
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calclFreeImage routines for deallocating the memory allocated by the CAL 
compiler for the program object and binary image.

// Kernel string
const char ilKernel[] =
"il_ps_2_0 \n"
// other instructions
"ret_dyn \n"
"end \n";

// Query and print the compiler version that is loaded
CALuint version[3];
calclGetVersion(&version[0], &version[1], &version[2]);
fprintf(stderr, "CAL Compiler version %d.%d.%d\n",

version[0], version[1], version[2]);

// Compile the IL kernel
CALobject object = NULL;
if(calclCompile(&object, CAL_LANGUAGE_IL, ilKernel, CAL_TARGET_670) !=

CAL_RESULT_OK))
ERROR_OCCURRED();

// Link the objects into CAL image
CALimage image = NULL;
if(calclLink (&image, &object, 1) != CAL_RESULT_OK))

ERROR_OCCURRED();

// Use the CAL runtime API to load and run the kernel
// ……………

// Free the object
calclFreeObject(object);

// Free the image
calclFreeImage(image);

3.2.2.2  Stream Processor ISA

The CAL compiler compiles and optimizes the input AMD IL pseudo-assembly to 
generate the stream processor-specific ISA. The developer can use the AMD IL 
or the stream processor ISA for developing the kernel. Figure 3.7 illustrates the 
sequence of steps used during the compilation process. In the latter case, 
calclAssembleObject is used to create the CALObject from the stream 
processor ISA. Note that this routine performs no optimizations, and the resulting 
binary is a direct mapping of the specified stream processor ISA. When using the 
AMD IL, the conversion from AMD IL to the stream processor ISA is done 
internally by the CAL compiler. This process is transparent to the application. 
However, reviewing and understanding the stream processor ISA can be 
extremely useful for program debugging and performance profiling purposes. To 
get the stream processor ISA for a given CALimage, use the 
calclDisassembleImage routine; for CAL objects, use 
calclDisassembleObject.



A M D  S T R E A M  C O M P U T I N G

3-16 CAL Application Programming Interface
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.   

Figure 3.7 Kernel Compilation Sequence

3.2.2.3  High Level Kernel Languages

High-level kernel languages, such as Brook+, provide advantages during kernel 
development such as ease of development, code readability, maintainability, and 
reuse. AMD-specific interfaces such as AMD IL provide access to lower-level 
features in the device, permitting improved features and performance tuning. To 
facilitate leveraging the advantages of each programming interface, AMD 
provides offline tools that aid with high-level kernel development while providing 
low-level control by exposing the AMD IL and the stream processor ISA. For 
example, developers can use Brook+ to develop their kernels, then generate the 
equivalent AMD IL using offline tools provided by AMD (see Appendix B, “The 
AMD Compute Abstraction Layer (CAL) API Specification,” and Section 1.1.4, 
“GPU ShaderAnalyzer,” page 1-10). The generated AMD IL kernel then can be 
passed to the CAL compiler, with any required modifications, for generating the 
binary image.

3.2.3 Kernel Execution

Once the application has initialized the various components (including the device, 
memory buffers and program binary), it is ready to execute the kernel on the 
device. Kernel execution on a CAL device consists of the following high level 
steps: module loading, parameter binding and kernel invocation (see the basic 
tutorial program).

3.2.3.1  Module Loading

Once a CAL image has been linked, it must be loaded as an executable module 
by the CAL runtime using the calModuleLoad routine. For execution, the runtime 
must specify the entry point within the module. This can be queried using the 
function name in the original kernel string. Currently, the function name is always 
set to main. The following code is an example of loading an executable module.

AMD IL Stream Processor ISA

Psuedo-Assembly
Programming Interface

Device-Specific
Assembly

il_ps_2_0
dcl_output_generic o0
mov o0, v0.xyxx
ret_dyn
end

00 ALU: ADDR(32) CNT(4) KCACHE0(CB0:0-15) 
      0  x: MOV  R0.x,  KC0[0].x      
         y: MOV  R0.y,  KC0[0].y      
         z: MOV  R0.z,  KC0[0].z      
         w: MOV  R0.w,  KC0[0].w      
01 EXP_DONE: PIX0, R0
END_OF_PROGRAM

CALObject object;
calclCompile(&object,
   CAL_LANGUAGE_IL, 
   ilProgram, 
   CAL_TARGET_670);

CALObject object;
calclAssembleObject(&object,
   CAL_PROGRAM_TYPE_PS, 
   isaProgram, 
   CAL_TARGET_670);
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// Load CAL image as a runtime module for this context
CALmodule module = 0;
if(calModuleLoad(&module, ctx, image) != CAL_RESULT_OK) 

ERROR_OCCURRED();

// Query the entry point in the module for the function “main”
CALfunc entry = 0;
if(calModuleGetEntry(&entry, ctx, module, "main") != CAL_RESULT_OK)

ERROR_OCCURRED();

3.2.3.2  Parameter Binding

The CAL runtime API also provides an interface to set up various parameters 
(inputs and outputs) required by the CAL API for proper execution. CAL identifies 
each parameter in the module by its variable name in the original kernel string. 
These variables are AMD IL-style names for inputs (i#), outputs (o#), and 
constant buffers (cb#), as shown in the following code. The runtime provides a 
routine, calModuleGetName, that allows retrieving a handle from each of the 
variables in the module as CALname. Here, x#[ ] is for the scratch buffer, g[ ] 
is for the global buffer, i# is for the input buffer, and o# is for the output buffer. 
These parameter name handles subsequently can be bound to specific memory 
handles using calCtxSetMem, then used by the CAL kernel at runtime. The 
following code is an example of binding parameters.

// Query the variable names for input 0 and output 0
CALname input = 0, output = 0;
if(calModuleGetName(&input, ctx, module, "i0") != CAL_RESULT_OK ||

calModuleGetName(&output, ctx, module, "o0") != CAL_RESULT_OK)
ERROR_OCCURRED();

CALmem inputMem = 0, outputMem = 0;

// Bind resources to memory handles for this context
// ……………

// Bind the parameters to memory handles
if(calCtxSetMem(ctx, input, inputMem) != CAL_RESULT_OK ||

calCtxSetMem(ctx, output, outputMem) != CAL_RESULT_OK)
ERROR_OCCURRED();

3.2.3.3  Kernel Invocation

Kernels are executed over a rectangular region of the output buffer called the 
domain of execution. The kernel is launched using the calCtxRunProgram 
routine, which specifies the context, entry point, and domain of execution. The 
routine returns an event identifier for this invocation. The calCtxRunProgram 
routine is a non-blocking routine and returns immediately. The application thread 
calling this routine is free to execute other tasks while the computation is being 
done on the CAL device. Alternatively, the application thread can use a busy-wait 
loop to keep polling on the completion of the event by using the 
calCtxIsEventDone routine. The following code is an example of invoking a 
kernel.
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// Setup the domain for execution
CALdomain domain = {0, 0, width, height};

// Event ID corresponding to the kernel invocation
CALevent event = 0;

// Launch the CAL kernel on the given domain
if(calCtxRunProgram(&event, ctx, entry, &domain) != CAL_RESULT_OK)

ERROR_OCCURRED();

// Wait on the event for kernel completion
while(calCtxIsEventDone(ctx, event) == CAL_RESULT_PENDING);

When the above loop returns, the stream kernel has finished execution, and the 
output memory can be dereferenced (using calResMap) to access the output 
results. Note the following:

• The domain (domain of execution) is a subset of the output buffer. The 
stream processor creates a separate thread for each (x,y) location in the 
domain of execution.

• For improved performance, calCtxRunProgram does not immediately 
dispatch the program for execution on the stream processor. To force the 
dispatch, the application must call calCtxIsEventDone and calCtxFlush on 
the corresponding event.

3.3 HelloCAL Application
This section provides a simple example that combines the concepts covered in 
previous sections in the form of a HelloCAL application. This program 
demonstrates the following components:

• Initializing CAL

• Compiling and loading a stream kernel

• Opening a connection to a CAL device

• Allocating memory

• Specifying kernel parameters including inputs, outputs, and constants

• Executing the CAL kernel

HelloCAL uses a CAL kernel written in AMD IL; this shows the actions taken 
when running a CAL application. The kernel reads from one input, multiplies the 
resulting value by a constant, and writes to one output. In vector notation, the 
computation can be represented as:

Out(1:N) = In(1:N) * constant;
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3.3.1 Code Walkthrough

This section analyzes the major blocks of code in HelloCAL. The code provided 
in this section is a complete application. The reader can copy the code examples 
into a separate C++ file to compile and run it.

3.3.1.1  Basic Infrastructural Code

The following code contains the basic infrastructural code, including headers 
used by the application. Note that cal.h and calcl.h are shipped as part of the 
standard CAL headers. Building HelloCAL requires the amdcalrt and amdcalcl 
libraries.

///////////////////////////////////////////////////////////////////
//! Header files
///////////////////////////////////////////////////////////////////
#include "cal.h"
#include "calcl.h"
#include <string>

The reader must have a basic understanding of AMD IL. The AMD IL 
Programmer’s Manual provides a detailed specification on the AMD IL interface.

3.3.1.2  Defining the Stream Kernel

The following code defines the stream kernel written in AMD IL. 

This stream kernel:

• Looks up the 0’th input buffer via the 0’th sampler, using 
sample_resource(n)_sampler(m) instruction. The current fragment’s 
position, v0.xy, is the index into the input buffer. It stores the resulting value 
in temporary register r0.

• Multiplies the value in r0 with the constant cb0[0], and writes the resulting 
value to output buffer o0.

//////////////////////////////////////////////////////////////////////////
//! Device Kernel to be executed on the GPU
//////////////////////////////////////////////////////////////////////////
//! IL Kernel
std::string kernelIL =
"il_ps_2_0\n"
"dcl_input_position_interp(linear_noperspective) vWinCoord0.xy__\n"
"dcl_output_generic o0\n"
"dcl_cb cb0[1]\n"
"dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fm
tw(float)\n"
"sample_resource(0)_sampler(0) r0, vWinCoord0.xyxx\n"
"mul o0, r0, cb0[0]\n"
"end\n";

};
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3.3.1.3  Application Code

The following code contains the actual application code that initializes CAL, 
queries the number of devices on the given system, and opens a connection to 
the 0’th CAL device. The application then creates a CAL context on this device.

///////////////////////////////////////////////////////////////////
//! Main function
///////////////////////////////////////////////////////////////////
int main(int argc, char** argv)
{

// Initializing CAL
calInit();
//--------------------------------------------------------------
// Querying and opening device
//--------------------------------------------------------------
// Finding number of devices
CALuint numDevices = 0;
calDeviceGetCount(&numDevices);

// Opening device
CALdevice device = 0;
calDeviceOpen(&device, 0);

// Querying device info
CALdeviceinfo info;
calDeviceGetInfo(&info, 0);

// Creating context w.r.t. to opened device
CALcontext ctx = 0;

calCtxCreate(&ctx, device);

3.3.1.4  Compile the Stream Kernel and Link Generated Object

The following code compiles the stream kernel using the calcl compiler; it then 
links the generated object files into a CALimage. Note that the stream kernel is 
being compiled for the AMD device queried to be present on the system using 
the calDeviceGetInfo routine. Also note that the calclLink routine can be 
used to link multiple object files into a single binary image.

//-----------------------------------------------------------------
// Compiling Device Kernel
//-----------------------------------------------------------------
CALobject obj = NULL;
CALimage image = NULL;
CALlanguage lang = CAL_LANGUAGE_IL;
std::string kernel = kernelIL;
std::string kernelType = "IL";

if (calclCompile(&obj, lang, kernel.c_str(), info.target) != 
CAL_RESULT_OK)

{
fprintf(stdout, "Kernel compilation failed. Exiting.\n");
return 1;

}

if (calclLink(&image, &obj, 1) != CAL_RESULT_OK)
{

fprintf(stdout, "Kernel linking failed. Exiting.\n");
return 1;

}
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3.3.1.5  Allocate Memory

The following code allocates memory for various buffers to be used by the CAL 
API. Note that:

• All memory buffers in the application are allocated locally to the opened CAL 
device. In the case of stream processors, this memory corresponds to stream 
processor memory.

• The input and output buffers contain one-element float values. CAL also 
allows elements with one, two, and four data values per element arranged in 
an interleaved manner. For example, CAL_FORMAT_FLOAT4 stores four floating 
point values per element in the buffer. This can be extremely useful in certain 
algorithms since it allows reading multiple values using a single read 
instruction.

• The resources must be mapped to CPU memory handles before they can be 
referenced in the application. The pitch of the buffer must be considered 
while dereferencing the data pointer.

• Any constants required by the kernel can be passed as a one-dimensional 
array of data values. This array must be allocated, mapped, and initialized 
similar to the way input buffers are handled. In the following code, the 
constant buffer is allocated in remote memory.

//-------------------------------------------------------------------------
// Allocating and initializing resources
//-------------------------------------------------------------------------
// Input and output resources
CALresource inputRes = 0;
CALresource outputRes = 0;

calResAllocLocal2D(&inputRes, device, 256, 256, CAL_FORMAT_FLOAT_1, 0);
calResAllocLocal2D(&outputRes, device, 256, 256, CAL_FORMAT_FLOAT_1, 0);

// Constant resource
CALresource constRes = 0;
calResAllocRemote1D(&constRes, &device, 1, 1, CAL_FORMAT_FLOAT_4, 0);

// Setup input buffer – map resource to CPU, initialize values, unmap resource
float* fdata = NULL;
CALuint pitch = 0;
CALmem inputMem = 0;

// Mapping resource to CPU
calResMap((CALvoid**)&fdata, &pitch, inputRes, 0);
for (int i = 0; i < 256; ++i)
{

float* tmp = &fdata[i * pitch];
for (int j = 0; j < 256; ++j)
{

tmp[j] = (float)(i * pitch + j);
}

}
calResUnmap(inputRes);

// Setup const buffer – map resource to CPU, initialize values, unmap resource
float* constPtr = NULL;
CALuint constPitch = 0;
CALmem constMem = 0;
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calResMap((CALvoid**)&constPtr, &constPitch, constRes, 0);
constPtr[0] = 0.5f, constPtr[1] = 0.0f;
constPtr[2] = 0.0f; constPtr[3] = 0.0f;
calResUnmap(constRes);

// Mapping output resource to CPU and initializing values
void* data = NULL;

// Getting memory handle from resources
CALmem outputMem = 0;
calResMap(&data, &pitch, outputRes, 0);
memset(data, 0, pitch * 256 * sizeof(float));
calResUnmap(outputRes);

// Get memory handles for various resources
calCtxGetMem(&constMem, ctx, constRes);
calCtxGetMem(&outputMem, ctx, outputRes);
calCtxGetMem(&inputMem, ctx, inputRes);

3.3.1.6  Preparing the Stream Kernel for Execution

The following code prepares the stream kernel for execution. The CAL image is 
first loaded into a CALmodule. Subsequently, the names for various parameters 
used in the stream kernel, including the input, output, and constant buffers, are 
queried from the module. The names are then bound to appropriate memory 
handles corresponding to these parameters. Finally, the kernel’s domain of 
execution is set up. In this case, the domain is the same as the dimensions of 
the output buffer. This is the most commonly used scenario, even though CAL 
allows specifying domains that are subsets of the output buffers. Note that all the 
settings mentioned above are collectively called the kernel state and are 
associated with the current CAL context.

//-----------------------------------------------------------------
// Loading module and setting domain
//-----------------------------------------------------------------

// Creating module using compiled image
CALmodule module = 0;
calModuleLoad(&module, ctx, image);

// Defining symbols in module
CALfunc func = 0;
CALname inName = 0, outName = 0, constName = 0;

// Defining entry point for the module
calModuleGetEntry(&func, ctx, module, "main");
calModuleGetName(&inName, ctx, module, "i0");
calModuleGetName(&outName, ctx, module, "o0");
calModuleGetName(&constName, ctx, module, "cb0");

// Setting input and output buffers
// used in the kernel
calCtxSetMem(ctx, inName, inputMem);
calCtxSetMem(ctx, outName, outputMem);
calCtxSetMem(ctx, constName, constMem);

// Setting domain
CALdomain domain = {0, 0, 256, 256};
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3.3.1.7  Kernel Execution

Once the above state has been set, the stream kernel can be launched using the 
calCtxRunProgram routine. The function main in the stream kernel is queried 
from the module and specified as the entry point during kernel launch. The 
calCtxRunProgram function returns an event identifier, CALevent, for the current 
kernel launch. This identifier can determine if the event has completed. Note that 
if a certain state setting required by the kernel is not set up before launching the 
kernel, the calCtxRunProgram call fails.

//-----------------------------------------------------------------
// Executing kernel and waiting for kernel to terminate
//-----------------------------------------------------------------

// Event to check completion of the kernel
CALevent e = 0;
calCtxRunProgram(&e, ctx, func, &domain);

// Checking whether the execution of the kernel is complete or not
while (calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

// Reading output from output resources
calResMap((CALvoid**)&fdata, &pitch, outputRes, 0);
for (int i = 0; i < 8; ++i)
{

float* tmp = &fdata[i * pitch];
for(int j = 0; j < 8; ++j)
{

printf("%f ", tmp[j]);
}
printf("\n");

}
calResUnmap(outputRes);

When the calCtxIsEventDone loop ends, the stream kernel has finished 
execution. The output memory can be dereferenced (using calMemResMap) to 
access the results in system memory. 

3.3.1.8  De-Allocation and Releasing Connections

After the kernel execution, de-allocate the various resources, and release the 
connections to the device and corresponding contexts to exit the application 
cleanly. The following code demonstrates this process. Resource de-allocation 
includes:

• unbinding of memory handles (setting handle identifier as 0 in 
calCtxSetMem), 

• releasing memory handles (calCtxReleaseMem), and 

• de-allocating resources (calResFree). 

Devices and contexts can be released by destroying the context 
(calCtxDestroy) and closing the device (calDeviceClose).
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//-----------------------------------------------------------------
// Cleaning up
//-----------------------------------------------------------------

// Unloading the module
calModuleUnload(ctx, module);

// Freeing compiled kernel binary
calclFreeImage(image);
calclFreeObject(obj);

// Releasing resource from context
calCtxReleaseMem(ctx, inputMem);
calCtxReleaseMem(ctx, constMem);
calCtxReleaseMem(ctx, outputMem);

// Deallocating resources
calResFree(outputRes);
calResFree(constRes);
calResFree(inputRes);

// Destroying context
calCtxDestroy(ctx);
// Closing device
calDeviceClose(device);

// Shutting down CAL
calShutdown();

return 0;
}

Remember that calShutdown must be the last CAL routine to be called by the 
application.

3.4 Performance Optimizations
A main objective of CAL is to facilitate high-performance computing by leveraging 
the power of AMD Stream Processors. It is important to understand the 
performance characteristics of these devices to achieve the expected 
performance. The following subsections provide information for developers to 
fine-tune the performance of their CAL applications.

3.4.1 Arithmetic Computations

Modern computational devices are extremely fast at arithmetic computations due 
to the large number of stream cores. This is true for floating point and integer 
arithmetic operations. For example, the peak floating point computation capability 
of a device is given by:

Peak GPU FLOPs = Number of FP stream cores * FLOPS per stream core unit

The AMD RV670 stream processor has 320 stream cores. Each of these is 
capable of executing one MAD (multiply and add) instruction per clock cycle. If 
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the clock rate on the stream cores is 800 MHz, the FLOPs per stream core are 
given by:

FLOPS per Stream Core = Clock rate * Number of FP Ops per clock
= 800 * 106 * 2
= 1.6 GigaFLOPS

Thus, the cumulative FLOPS of the stream processor is given by:

Peak GPU FLOPS = 320 * 1.6 = 512 GigaFLOPS

The stream processor is extremely powerful at stream core computations. The 
CAL compiler optimizes the input AMD IL so the stream cores are used 
efficiently. The compiler also removes unnecessary computations in the kernel 
and optimizes the use of processor resources like temporary registers. Note that 
no optimizations are done if the kernel is written in the device ISA.

3.4.2 Memory Considerations

Stream kernels access memory for reading from inputs and writing to outputs. 
Getting the maximum performance from a CAL kernel usually means optimizing 
the memory access characteristics of the kernel. The following subsections 
discuss these considerations.

3.4.2.1  Local and Remote Resources

Accessing local memory from the device is typically more efficient due to the low-
latency, high-bandwidth interconnect between the device and local memory. To 
minimize the effect on performance, memory intensive kernels can:

• Copy the input data buffers to local memory.

• Execute the stream kernel by reading from local inputs and writing to local 
outputs.

• Copy the outputs to application’s address space in system memory.

3.4.2.2  Cached Remote Resources

A typical CAL application initializes input data in system memory. In some cases, 
the data must be processed by the CPU before being sent to the stream 
processor for further processing. This processing requires the CPU to read from, 
and write to, system memory. Here, it might be more efficient to request CAL to 
allocate this remote (CPU) memory from cached system memory for faster 
processing of data from the CPU. This can be done by specifying the 
CAL_RESALLOC_CACHEABLE flag to calResAllocRemote* routines, as shown in the 
following code.
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// Allocate cached 2D remote resource
CALresource cachedRes = 0;
if(calResAllocRemote2D(&cachedRes, &device, 1, width, height,

CAL_FORMAT_FLOAT_4, CAL_RESALLOC_CACHEABLE != CAL_RESULT_OK)
{

fprintf(stdout, "Cached resources not available on device 
%u\n", 

device);
return -1;

}

When using cached system memory, note that:

• By default, the memory allocated by CAL is uncached system memory if the 
flag passed to calResAllocRemote* is zero.

• Uncached memory typically gives better performance for memory operations 
that do not use the CPU; for example, DMA (direct memory access) 
operations used to transfer data from system memory to stream processor 
local memory, and vice-versa. Note that accessing uncached memory from 
the CPU degrades performance.

• The application must verify the value returned by calResAllocRemote* to 
see if the allocation succeeded before using the CAL resource. When 
requesting cached system memory, calResAllocRemote* fails and returns a 
NULL resource handle when:

– The host system on which the application is running does not support 
cached system memory.

– The amount of cached system memory requested is not available. The 
maximum size of cached memory available to an application typically is 
limited by the underlying operating system. The exact value can be 
queried using the calDeviceGetAttribs routine. The value is stored as 
cachedRemoteRAM under CALdeviceattribs.

3.4.2.3  Direct Memory Access (DMA)

Direct memory access (DMA) allows devices attached to the host sub-system to 
access system memory directly, independent of the CPU (see the 
DownloadReadback tutorial program). Depending on the available system 
interconnect between the system memory and the stream processor, using DMA 
can help improved data transfer rates when moving data between the system 
memory and stream processor local memory. As seen in Figure 3.3, the AMD 
stream processor contains a dedicated DMA unit for these operations. This DMA 
unit can run asynchronously from the rest of the stream processor, allowing 
parallel data transfers when the SIMD engine is busy running a previous stream 
kernel.

Applications can request a DMA transfer from CAL using the calMemCopy routine 
when copying data buffers between remote (system) and local (stream 
processor) memory, as shown in the following code.
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int
copyData(CALcontext ctx, CALmem input, CALmem output)
{

// Initiate the DMA transfer – input is a remote resource
// and output is a device local resource
CALevent e;
CALresult r = calMemCopy(&e, ctx, input, output, 0);
if (r != CAL_RESULT_OK)
{

fprintf(stdout, "Error occurred in calMemCopy\n");
return -1;

}

// Potentially do other stuff except for dereferencing input or
// output resources
// ……………

// If the routine did not return any error, wait for the DMA 
// to finish
if (r == CAL_RESULT_OK)

{
while (calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

}

3.4.3 Asynchronous Operations

The calCtxRunProgram and calMemCopy routines are non-blocking and return 
immediately. Both return a CALevent that can be polled using 
calCtxIsEventDone to check for routine completion. Since these routines are 
executed on dedicated hardware units on the stream processor, namely the DMA 
unit and the Stream Processor array, the application thread is free to perform 
other operations on the CPU in parallel.

For example, consider an application that must perform CPU computations in the 
application thread and also run another kernel on the stream processor. The 
following code shows one way of doing this.

// Launch GPU kernel
CALevent e;
if(calCtxRunProgram(&e, ctx, func, &rect) != CAL_RESULT_OK)

fprintf(stderr, "Error in run kernel\n");

// Wait for the GPU kernel to finish
while(calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

// Perform CPU operations _after_ the GPU kernel is complete
performCPUOperations();

// Map the output resource to application data pointer
calResMap((CALvoid**)&fdata, &pitch, outputRes, 0);
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The following code implements the same operations as above, but probably 
finishes more quickly since it executes the CPU operations in parallel with the 
stream kernel.

// Launch GPU kernel
CALevent e;
if(calCtxRunProgram(&e, ctx, func, &rect) != CAL_RESULT_OK)

fprintf(stderr, "Error in run kernel\n");

// Force a dispatch of the kernel to the device
calCtxIsEventDone(ctx, e);

// Perform CPU operations _in parallel_ with the GPU kernel 
execution
performCPUOperations();

// Wait for the GPU kernel to finish
while(calCtxIsEventDone(ctx, e) == CAL_RESULT_PENDING);

// Map the output resource to application data pointer
calResMap((CALvoid**)&fdata, &pitch, outputRes, 0);

Note that the above code assumes that the CPU operations in 
performCPUOperations() do not use, or depend upon, any of the output values 
computed in the stream kernel. If calResMap is called before the 
calCtxIsEventDone loop, the above code might generate incorrect results. The 
same logic mentioned above can be applied for all combinations of DMA 
transfers, stream kernel execution, and CPU computations.

When using the CAL API, the application must correctly synchronize operations 
between the stream processor, DMA engine, and CPU. The above example 
shows how developers can use the CAL API to improve application performance 
with a proper understanding of the data dependencies in the application and the 
underlying system’s architecture.

These DMA transfers can be asynchronous. The DMA engine executes each 
transfer separately from the command queue. DMA calls are executed 
immediately; and the order of DMA calls and command queue flushes is 
guaranteed.

DMA transfer execute concurrently with other system or stream processor 
operations; however, data is not guaranteed to be ready until the DMA engine 
signals that the event or transfer is completed. The application can query the 
hardware for DMA event completion. DMA transfers can be another source of 
parallelization.

3.5 Tutorial Application
This section uses a very common problem in Linear Algebra, matrix 
multiplication, as an illustration for developing a CAL stream kernel and 
optimizing it to get the best possible performance from the CAL device. It 
implements multiplication of two 2-dimensional matrices using CAL; it then 
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demonstrates performance optimizations to achieve an order-of-magnitude 
performance improvement.

3.5.1 Problem Description

If A is an m-by-k matrix, and B is an k-by-n matrix, their product is an m x n matrix 
denoted by AB. The elements of the product matrix AB are given by:

for each pair (i, j) in 1 ≤ i ≤ m and 1 ≤ j ≤ k. Figure 3.8 shows this operation 
for a single element in the output matrix C.

Figure 3.8 Multiplication of Two Matrices

3.5.2 Basic Implementation

It is easy to see from Figure 3.8 that the complete operation involves mkn 
multiplications and mkn additions. Thus, the complexity of the algorithm is O(n3). 
Notice that the computation of each element in the output matrix requires k 
values to be read, each from matrices A and B, followed by 2k scalar operations 
(k additions and k multiplications). 

The following code contains the pseudo-code for the basic matrix-matrix 
multiplication algorithm that can be implemented on a CAL device.

//////////////////////////////////////////////////////////////
// (i,j) is the index of the current element being processed
//////////////////////////////////////////////////////////////
input A; // Input matrix (m, k) in size
input B; // Input matrix (k, n) in size
output C; // Output matrix (m, n) in size

void main()
{

// Initialize the element to zero
C[i,j] = 0.0;

(AB)ij Σ airbrj = ai1b1j + ai2b2j + ... + aikbkj=
k

r=1

C(m,n)B(k,n)

Read k
values

A(m,k)

Read k
values

Write 1
 value

2k scalar

X =
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// Iterate over i'th row in matrix A and j’th column in matrix B
// to compute the value of C[i,j]
for (p=0; p<k; p++)

C[i,j] += A[i,p] * B[p,j];
}

The output domain is the output buffer C, which is m-by-n in size. The same code 
is executed for each element in this domain to compute, and write to, individual 
elements in the output matrix. 

The performance of the above algorithm is not optimal because of the poor cache 
hit ratio while accessing the elements in input matrices. The stream kernel 
accesses elements along a given column (j) of matrix B for each element in the 
output matrix. Assuming that memory in the input buffers is arranged in row-
major order, and assuming that the size of each cache block is smaller than the 
row size, n, successive memory reads from matrix B come from different cache 
blocks. Further assuming that matrix B is bigger than the size of the cache, each 
memory read might result in a cache miss. Usually, however, some data reuse 
occurs since adjacent elements in the matrix are processed by the other element 
processors in the device. Also, on stream processors, the internal memory layout 
uses tiling, which further improves the data reuse.

3.5.3 Optimized Implementation

One commonly used algorithm for improving the cache hit ratio performs the 
following operations:

• Divide the input and output matrices into sub-matrices.

• Compute the product matrix one block at a time, by multiplying blocks from 
the input matrices.

It has been shown that the matrix multiplication operation can also be written in 
blocked form by dividing matrix A in MxK blocks and matrix B in KxN blocks. The 
resulting matrix, C, has MxN blocks. Figure 3.9 shows this decomposition. 
Elements of output matrix C are computed block-by-block, by multiplying blocks 
from matrices A and B given by the following equation.
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Figure 3.9 Blocked Matrix Multiplication

The modified block multiplication algorithm results in much better cache hits 
compared to the original algorithm. To understand this better, assume:

• the size of the sub-blocks in matrices A and B are chosen to be the same 
as the size of a cache block, s, used by the device

• the stream processor has separate caches for memory read and write 
operations, 

• the total size of the read cache is ≥ 4s (the size of 4 cache blocks.) 

Now, for a given block in output matrix C, there is only one cache miss per block. 
Subsequent memory reads are serviced from the cache.

The following code shows the pseudo-code for the modified block algorithm. This 
implementation adds further optimizations to the general block algorithm 
discussed above.

//////////////////////////////////////////////////////////////
// (i,j) is the index of the current fragment
//////////////////////////////////////////////////////////////
input A00, A01, A10, A11; // Input matrices (m/4, k/4) in size, 4-values per element
input B00, B01, B10, B11; // Input matrices (k/4, n/4) in size, 4-values per element
output C00, C01, C10, C11;// Output matrices (m/4, n/4) in size, 4-values per element

main() {

// Initialize the elements to zero
C00[i,j] = C01[i,j] = C10[i,j] = C00[i,j] = 0;

// Iterate over i'th row in matrix A and j’th column in matrix B
// to compute the values of C00[i,j], C01[i,j], C10[i,j] and C11[i,j]
for (p = 0; p < k/4; p++)
{

C00[i,j].xyzw += A00[i,p].xxzz * B00[p,j].xyxy + A10[i,p].yyww * B01[p,j].zwzw;
C10[i,j].xyzw += A00[i,p].xxzz * B10[p,j].xyxy + A10[i,p].yyww * B11[p,j].zwzw;
C01[i,j].xyzw += A01[i,p].xxzz * B00[p,j].xyxy + A11[i,p].yyww * B01[p,j].zwzw;
C11[i,j].xyzw += A01[i,p].xxzz * B10[p,j].xyxy + A11[i,p].yyww * B11[p,j].zwzw;

}
}
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Note the following important points about the stream kernel in the above 
implementation:

• It processes all four blocks in output matrix C within the computational loop.

• It leverages the superscalar floating units available on the SIMD engine by 
packing the input matrices so that each element in the input and output 
matrices contains four values.

– The size of each matrix block now becomes 1/16th of the original matrix 
size (divided into 4 blocks with 4 values per element).

– The number of output values computed and written by each stream 
kernel is 16.

– To get the correct result, the input data must be preprocessed so that 
each four-component element in the input matrices contain a 2x2 micro-
tile of data values from the original matrix (see Figure 3.10).

– The matrix multiplication done inside the loop computes a 2x2 micro-tile 
in the output matrix and writes it as a four-component element. Thus, the 
output data also must be post-processed to re-arrange the data in the 
correct order.

Figure 3.10 Micro-Tiled Blocked Matrix Multiplication

If the conditions specified earlier in this section hold true, the above algorithm 
gives near optimal performance with close to 100% cache hit ratio. However, in 
actual implementations, the total working set for each block multiplication might 
not fit in the cache. The reads cause cache misses, reducing the performance of 
the operation.

Note that the exact blocked decomposition scheme (values for M, N and K 
mentioned above) used in the implementation depend on the capabilities of the 
underlying stream processor architecture. For a stream processor that has a 
maximum of eight output buffers, the maximum number of tiles in the 
decomposed matrix is limited to 8x1. The best-performing algorithm that ships 
with the CAL SDK uses M = 8, K = 4, N = 8. With the four-component packing, 
it performs multiplication of 8x1 four-component blocks for matrix A with 4x1 four-
component blocks of matrix B to compute 8x1 four-component blocks of matrix C.
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3.6 CAL/Direct3D Interoperability
CAL features extensions providing interoperability with Direct3D 9 and 
Direct3D 10 on Windows Vista®. When interoperability is used, Direct3D memory 
allocations can be used as inputs to, or outputs of, CAL kernels. The application 
must synchronize accesses of the memory from the CAL and Direct3D APIs. This 
can be done by using calCtxIsEventDone and Direct3D queries. 

To use the interoperability, first the appropriate calD3DAssociate call must be 
made. This associates a CAL device to the corresponding Direct3D device. Once 
the devices have been associated, use the calD3DMap functions to create a 
CALresource from a Direct3D object. The CALresources returned from these 
calls can be used like any other CAL resource. When the application is finished 
using the allocation, it can be freed with the standard calResFree call. The 
CALresource must be freed before the Direct3D object is released.

Section B.4.2, “Interoperability Extensions,” page B-21, provides details of the 
interoperability extensions. 

3.7 Advanced Topics
This section covers some advanced topics for developers who want to add new 
features to CAL applications or use specific features in certain AMD processors.

3.7.1 Thread-Safety

Most computationally expensive applications use multiple CPU threads to 
improve application performance and/or responsiveness. This typically is done by 
using techniques like task partitioning and pipelining in conjunction with 
asynchronous parallel execution on multiple processing units. In general, the CAL 
API is not re-entrant; that is, if more than one thread is active within a CAL 
function, the function invocation is not thread-safe. To invoke the same CAL 
function from multiple threads, the application must serialize access to these 
functions using synchronization primitives such as locks. The calCtx* functions 
are the exception to this rule. These functions are inherently thread safe if each 
thread uses a separate context. Such a model permits actions on a given context 
to be completely asynchronous from those on other contexts by using separate 
threads. 

When using the CAL API in multi-threaded applications:

• CAL Compiler routines are not thread-safe. Applications invoking compiler 
routines from multiple threads must do proper synchronization to serialize the 
invocation of these routines.

• CAL Runtime routines that are either context-specific or device-specific are 
thread-safe. All other CAL runtime routines are not thread-safe.

• If the same context is shared among multiple threads, invocation of the 
calCtx* functions must be serialized by the application.
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3.7.2 Multiple Stream Processors

Modern PC architecture allows deploying multiple PCIe devices on a system. 
CAL allows applications to improve performance by leveraging the computational 
power of multiple stream processor units that might be available on the system. 
Multiple devices can run in parallel by using separate threads managing each of 
the stream processors using one context per device1. CAL detects all available 
stream processors on the system during initialization in calInit. Subsequently, 
applications can query the number of devices on the system using 
calDeviceGetCount and then implement task partitioning and scheduling on the 
available devices. 

Figure 3.11 shows a simple application control flow for an application using two 
stream processors. In this example, the main application thread sets up the 
application data and compiles the various CAL stream kernels. It then creates 
two CPU threads from the host application: one for managing each stream 
processor. Each of these threads internally open a CAL device, create a context 
on this device, and then run stream kernels. This scheme allows each of the 
devices to run in parallel, asynchronous to each other. The actual data or task 
partitioning algorithm used to load-balance the work-load between the devices is 
dependent on the application.

Note that CAL compiler routines are not thread safe; thus, they are called from 
the application thread. If the application must call compiler routines from the 
compute threads, it must enforce serial execution using appropriate 
synchronization primitives. Also, the term Stream Processor Compute Thread in 
Figure 3.11 is used for application-created threads that are created on the CPU 
and are used to manage the communication with individual stream processors. 
Do not confuse the term with the actual computational threads that run on the 
stream processor.

1. Note that the application determines whether to use a separate host CPU thread per stream proces-
sor context, or if a single host thread manages several different stream processor contexts. 
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Figure 3.11 CAL Application using Multiple Stream Processors

3.7.3 Using the Global Buffer in CAL

The global buffer lets applications read from, and write to, arbitrary locations in 
input buffers and output buffers, respectively (see the scatter_IL and 
gather_IL sample programs in the $(CALROOT)/samples/languages/IL 
directory). To use global buffers, the application must perform two main 
modifications to a CAL application: 

• request the CAL runtime to allocate global buffers when allocating resources 
using CAL_RESALLOC_GLOBAL_BUFFER, and 

• specify the output (input) position for the output (input) value to be written to 
(read from) the global output (input) buffer.

3.7.3.1  Global Buffer Allocation

A global buffer can be allocated using the CAL runtime API: simply pass the 
CAL_RESALLOC_GLOBAL_BUFFER flag while allocating CAL resources. Global 
buffers can be allocated as local (stream processor) and as remote (system) 
memory. The following code shows this:

Application
Thread

Stream Processor
ComputeThread 0

calDeviceOpen(&dev0, 0)
calCtxCreate(&ctx0, dev0)

calDeviceOpen(&dev1, 1)
calCtxCreate(&ctx1, dev1)

Setup program, inputs,
outputs, constants

calCtxRunProgram(&ctx0,..)
calCtxIsEventDone(ctx0,..)

Setup program, inputs,
outputs, constants

calCtxRunProgram(&ctx1,..)
calCtxIsEventDone(ctx1,..)

Done?
No

Yes
Done?

No

Yes
calCtxDestroy(ctx0)
calDeviceClose(dev0)

calCtxDestroy(ctx1)
calDeviceClose(dev1)

calclCompile(...)
calclLink(...) Stream Processor

ComputeThread 0
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CALresource remoteGlobalRes = 0, localGlobalRes = 0;
CALformat format = CAL_FORMAT_FLOAT_1;
CALresallocflags flag = CAL_RESALLOC_GLOBAL_BUFFER;

// Allocate 2D global remote resource
calResAllocRemote2D(&remoteGlobalRes, &device, 1, width, height,

format, flag);
if(!remoteGlobalRes)
{

fprintf(stdout, "Global remote resource not available on device \n");
return -1;

}

// Allocate 2D global local resource
calResAllocLocal2D(&localGlobalRes, device, width, height, format, flag);
if(!localGlobalRes)
{

fprintf(stdout, "Global local resource not available on device \n");
return -1;

}

The rest of the mechanism for binding the resources to CPU pointers, CAL 
context-specific memory handles, and stream kernel inputs and outputs remain 
the same as normal CAL data buffers.

Note: Global (Linear) buffers are always padded to a 64-element bound-
ary; however, the memexport instruction is not constrained by this, 
and the program can write into the pad area. During mapping, when 
copying from local to remote storage, data written to the pad area 
is not copied (it is lost).

The hardware output paths are different when a buffer is attached 
as an export buffer rather than an output buffer.

Ensure that the global buffer has a width that is a multiple of 64 
elements. 

When entering a width that is not multiple of 64  and using the glo-
bal buffer, calResAllocLocal2D returns a warning. Users also can 
query the error message for this warning.

3.7.3.2  Accessing the Global Buffer From a Stream Kernel

The following AMD IL kernel reads data from an input buffer and uses this value 
as an address to write into the global output buffer. The value written is the 
position in the domain corresponding to the current instance of the stream kernel.



A M D  S T R E A M  C O M P U T I N G

Advanced Topics 3-37
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.  

"il_ps_2_0\n"

// Declarations for inputs and outputs
"dcl_input_position_interp(linear_noperspective) v0\n"
"dcl_output_generic o0\n"
"dcl_cb cb0[1]\n"
"dcl_resource_id(0)_type(2d,unnorm)_fmtx(float)_fmty(float)_fmtz(float)_fmtw(float)\n"

// Read from (x,y)
"sample_resource(0)_sampler(0) r0, vWinCoord0.xyxx\n"

// Compute output address by computing offset in global buffer
"mad r0.x, r0.y, cb0[0].x, r0.x\n"

// Convert address from float to integer
"ftoi r1.x, r0.x\n"

// Output current position to output address in the global buffer
"mov g[r1.x], vWinCoord0.xy\n"

"ret_dyn\n"
"end\n";

Note that in this code:

• The global buffer is accessed using the global memory register, g[address].

• The address passed to the global buffer must be a scalar integer value. The 
address can be a literal constant (for example, g[2]) or a temporary register 
(r1.x in the above example).

3.7.4 Double Precision Arithmetic

Double precision arithmetic allows applications to minimize computational 
inaccuracies that can result due to the use of single-precision arithmetic. Support 
for double precision is a crucial factor for certain applications, including 
engineering analysis, scientific simulations, etc. The AMD IL provides special 
instructions that allow applications to perform computations using 64-bit double 
precision in the stream processor (see the DoublePrecision tutorial program, 
located in $CALROOT\samples\tutorial\). Typically, double precision 
instructions are simply specified by prefixing the single-precision floating point 
instructions with d (for example, the double precision counterpart for the add 
instruction is dadd). For a complete reference on AMD IL syntax, as well as a list 
of double precision instructions, see the AMD Intermediate Language (IL) 
Compiler Reference Manual.

Assume temporary 32-bit registers. To represent 64-bit arithmetic values, two 
register components are used. The f2d and d2f instructions can convert from 
single-precision to double-precision and back. The following AMD IL kernel 
snippet converts two 32-bit floating values to 64-bit double precision and 
multiplies the values using 64-bit instructions. (Note that using conversion 
functions that are not in the range specified in Section 6.3 of the AMD Compute 
Abstraction Layer (CAL) Intermediate Language (IL) Reference Manual can 
result in the degradation of accuracy.)
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//Convert to double precision values
"f2d r1.xy, r0.x\n"
"f2d r1.zw, r0.y\n"

// Perform double precision multiplication
"dmul r2.zw, r1.zw, r1.xy\n"

The dmul instruction performs a single double-precision multiplication using two 
components of the source and destination registers. Note that the following 
operation for double-precision multiplication also performs a single scalar 
multiplication operation and not a vector multiplication, as might be expected.

// The following operation is the same as dmul r2.xy, r1.xy, r1.xy
dmul r2, r1, r1
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Appendix A 
Brook+ Specification

This chapter describes the Brook+ language as implemented for AMD stream 
processors. Brook+ provides a rapid prototyping tool for developers of high-
performance applications to test ideas on stream processor, multi-stream-
processors, or multi-core CPU platforms.

A.1 The Structure of a Brook+ Program
Conventional C code describes a single thread of execution. Although extensions 
exist at the library level to manipulate threads and processes, the language 
specification (including the standard library) does not address parallelism.

Brook+ is an extension of C that supports an explicit model of parallelism. As 
explained below, it is based on a graph consisting of nodes that manipulate data 
and arcs that indicate the flow of data through the system (see Figure A.1 and 
Figure A.2). (Note that this assumes a much more regular and bounded flow of 
data than is the case for a traditional dataflow machine.)

A node can either restructure data or perform computations, but not both. Nodes 
that restructure data are called stream operators; nodes that perform 
computations are known as kernels. Both are independent processes that share 
a state only with that part of the system to which they are explicitly connected. 
A node starts when the program containing it starts; it executes whenever input 
data and output buffers are available; it ends when its parent program has 
completed execution.

An arc, known as a stream1 in Brook+, connects two nodes. It does not provide 
any storage; instead, it maps the output of one node to the input(s) of one or 
more other nodes. (Implementations are permitted to introduce intermediate 
storage for streams, and often do, so long as this storage is transparent to the 
code.)

Brook+ also provides iterators that linearly interpolate values across a stream. 
These are like kernels that take no inputs and compute a trivial function of the 
stream indexes.

1. Streams provide connectivity between processing stages. A stream is a reference to an N-dimension-
al array of identically-typed primitive elements (a container with a coordinate space); however, it has 
more restricted access semantics than do conventional arrays. These restrictions permit optimization 
of both storage requirements and computation locality, providing higher performance for those algo-
rithms that this model can accommodate.
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The symbols shown in Figure A.1 represent the basic building blocks described 
above. 

Figure A.1 Symbols for Brook+ Building Blocks

The simple illustration in Figure A.2 gives a context for these symbols. It 
represents a multiply-accumulate operation applied to a 10x20 grid of points.

Figure A.2 Simple Streamed Multiply-Add

A.2 Primitive Data Types
These types can be used as primitive elements.  

These primitive types can be aggregated using struct sub-scripting to generate 
more complex types of stream elements.

Kernel

Stream Operator

Stream, bound for
sequential access

Stream, bound for
random access reads
(gather mode)

Stream, bound for
random access writes
(scatter mode)

streamRead

streamRead

streamRead

d=a*b

e=c+d streamWrite

a<10,20>

d<10,20>

b<10,20>

c<10,20>

e<10,20>

int 32-bit integer, signed by default
float 32-bit floating point

double 
64-bit floating point; this can have a 
maximum of two elements
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For example:

struct five_floats
{

float4 a;
float b;

};

is a valid Brook+ data type.

Brook+ provides built-in short vector types for float, double, and int; this lets 
code be tuned explicitly for commonly available short-SIMD machines. Here, 
short vector means 2 to 4 elements long. The names of these types are built from 
the name of their base type, with the size appended as a suffix (for example: 
“float3”, and “int2”). These short-vector forms also can be used as primitive 
elements.

Access to the fields of a short vector type is through structure member syntax, 
as in standard C code. For example, the float short vectors have the following 
equivalence:

float2 = struct {floatx; floaty}
float3 = struct {floatx; floaty; floatz}
float4 = struct {floatx; floaty; floatz; floatw}

When an operator is applied to operands of a short vector type, it is equivalent 
to applying the operator to each field individually. For example:

float2 a, b, c;
c = a + b;

is equivalent to:

float2 a, b, c;
c.x = a.x + b.x;
c.y = a.y + b.y;

Relational Operators on Short Vectors

Relational operators on short vectors in conditional expressions assume an x 
component as the conditional expression. When using the output of a relational 
operator as the input to a conditional expression, only the x component of the 
value is considered. If your application requires full component-wise conditional 
expressions, you must operate on each component individually.

When you perform an operation on short vectors, the expected behavior is that:

float4 a,b
float4 c;
c = a + b;

is the same as:

c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
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c.w = a.w + b.w;

However, for relational operators, such as a < b, the following code illustrates 
the difference:

d = a < b ? a : b is the same as:

bool4 c;
c.x = a.x < b.x;
c.y = a.y < b.y;
c.z = a.z < b.z;
c.w = a.w < b.w;

d.x = c.x ? a.x : b.x;
d.y = c.x ? a.y : b.y;
d.z = c.x ? a.z : b.z;

A.3 Streams and Stream Operators
This section describes the function of streams, the syntax for stream 
declarations, and how to use stream operators. 

A.3.1 Streams

Streams provide connectivity between processing stages. A stream is a reference 
to an N-dimensional array of identically-typed primitive elements (a container with 
a coordinate space); however, it has more restricted access semantics than do 
conventional arrays. These restrictions permit optimization of both storage 
requirements and computation locality, providing higher performance for those 
algorithms that this model can accommodate.

Logically, streams do not cause storage to be allocated; however, 
implementations often allocate large amounts of intermediate storage to contain 
the data flowing around the system in streams.

As with C arrays, all dimensions but the left-most (slowest changing) must have 
explicitly specified bounds. The uppermost dimension can be specified implicitly.

A.3.2 Stream Declarations

The syntax for specifying a stream is similar to other C variable or type 
declarations, except that angle brackets are used to mark the type/variable as a 
stream and to delineate the stream dimensions. For example:

float a<>; 1D, unspecified length containing float elements.

int c<100>; 1D, 100 int elements long.

int d<100,200,300>; 3D, 100x200x300 int elements in size.

double e<,100>; 2D, unspecified length but 100 double elements wide.
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Unspecified lengths are permitted only for declarations that form part of formal 
parameters1, all other declarations must specify all sizes explicitly. All dimensions 
must be integer expressions. 

The elements of a stream cannot be accessed from regular C code; they are 
visible only to kernels and stream operators. (See Section A.3.3.1, “I/O Stream 
Operators,” page A-5, for more details.)

Streams can contain aggregates of primitive elements, but aggregates of streams 
are not permitted.

The current implementation supports streams containing up to 223 elements.

A.3.3 Stream Operators

A stream operator looks like a function call and either:

• remaps a stream, or presents a remapped view of a stream, without 
changing data at the element level, or

• provides an I/O mechanism between the streaming world of the Brook+ code 
and the enclosing host environment.

A.3.3.1  I/O Stream Operators

The following describes copying data to, and from, host (CPU) memory. For 
information about memory architecture and accessing, see Section 1.2.5, 
“Memory Architecture and Access,” page 1-16.

Copying Data from Host (CPU) Memory – 

When reading a stream, it is copied twice: first, from the host (CPU) memory to 
the PCIe memory, then to the local (stream processor) memory. 

The code:

streamRead(destination_stream, source_array)

copies the elements of source_array to destination_stream.

The number of dimensions, size, and element types must match; otherwise, the 
behavior is undefined.

A streamRead operation includes the following order of CAL function calls.

1. calResMap maps the memory resource to the stream.

2. memcopy copies the data from the data pointer to the stream resource.

3. calResUnmap unmaps the memory resource.

4. calMemCopy copies the memory to the graphics device. This is required only 
if the resource was allocated as remote.

1. Formal parameters are the names given in the function definition; this is distinct from actual param-
eters, which are the values passed to the function.
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Copying Data to Host (CPU) Memory – 

When writing a stream, it is copied twice: first from local (stream processor) 
memory to the PCIe memory, then to the main host (CPU) memory. The code:

streamWrite(source_stream, destination_array) 

copies elements from source_stream to destination_array.

The number of dimensions, size, and element types must match; otherwise, the 
behavior is undefined.

A streamWrite operation includes the CAL function calls listed above in the 
following order.

1. calMemCopy copies the memory to the graphics device. This is required only 
if the resource was allocated as remote.

1. calResMap maps the memory resource to the stream.

2. memcopy copies the data from the data pointer to the stream resource.

3. calResUnmap unmaps the memory resource.

A.3.3.2  Implicit Insertion of Stream Operators

If a kernel is bound to a stream the size of which is different from that specified 
in the kernel's formal parameter, Brook+ Beta-1 automatically inserts an implicit 
stream operator that rescales the stream to match. The following examples 
illustrate this. 

The first example is an instance of downscaling from a larger stream to a smaller 
one.

#include <stdio.h>

kernel void copy(float a<>, out float b<>)
{
    b = a;
}

int main(int argc, char **argv)
{
    float src<10>;
    float dst<5>;
    float s[10];
    float d[5];
    int i;

    for (i = 0; i < 10; i++)
    {
        s[i] = (float)i;
    }

    streamRead(src, s);
    copy(src, dst);
    streamWrite(dst, d);
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    for (i = 0; i < 10; i++)
    {
        printf("%4.1f ", s[i]);
        if (i < 5)
        {
            printf("%4.1f", d[i]);
        }
        puts("");
    }
}

Here, the source stream is twice the size of the destination stream; so the kernel 
downscales during the copy process by skipping every second element in the 
input. The result of running this example is:

0.0  0.0
1.0  2.0
2.0  4.0
3.0  6.0
4.0  8.0
5.0
6.0
7.0
8.0
9.0

Upscaling is similar:

#include <stdio.h>
kernel void copy(float a<>, out float b<>)
{
    b = a;
}
int main(int argc, char **argv)
{
    float src<5>;
    float dst<10>;
    float s[5];
    float d[10];
    int i;
    for (i = 0; i < 5; i++)
    {
        s[i] = (float)i;
    }
    streamRead(src, s);
    copy(src, dst);
    streamWrite(dst, d);
    for (i = 0; i < 10; i++)
    {
        if (i < 5)
        {
            printf("%4.1f ", s[i]);
        }
        else
        {
            printf("     ");
        }
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        printf("%4.1f\n", d[i]);
    }
}

Here, the situation is reversed, and the kernel upscales the input stream by 
replicating each element. The result is:

 0.0  0.0
 1.0  0.0
 2.0  1.0
 3.0  1.0
 4.0  2.0
      2.0
      3.0
      3.0
      4.0
      4.0

A.4 Kernels
Kernels are the part of the streaming model used to define computation. The 
most basic form is simply mapped over input data and produces one output item 
for each input tuple. Subsequent extensions of the basic model provide random-
access functionality, variable output counts, and reduction/accumulation 
operations. 

A.4.1 Kernel Types

There are two kernel types: basic and reduction. The following subsections 
provide information about each.

A.4.1.1  The Basic Kernel

The simplest type of kernel takes an element from the same location in each 
input stream, computes a function of it, then writes it to the corresponding 
location in the output stream. This is repeated for every element.

void kernel mad(float a<>, float b<>, float c, out float d<>)
{

d = a * b + c;
}

The input streams must all be of the same size for this operation to be 
meaningful (however, see Section A.3.3.2, “Implicit Insertion of Stream 
Operators,” page A-6). When the sizes can be determined at compile-time, 
implementations are required to check correctness. When the stream sizes 
cannot be determined at compile-time, provide a compile-time option to enable 
or disable runtime checking.

The current implementation supports binding 128 inputs and 8 outputs to a single 
kernel.
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A.4.1.2  Reduction Kernels

Reductions are kernels that decrease the dimensionality of a stream by folding 
along one axis using an associative and commutative binary operation. The 
requirement that the operation be associative and commutative means that the 
result is independent of evaluation order, modulo, any issues due to limited 
floating point precision.

Brook+ provides two mechanisms for specifying reductions: reduction variables 
and reduction functions.

A reduction variable is specified as part of a kernel and operated on using any 
of the C assignment operators that satisfies the associativity and commutativity 
requirements; that is: +=, *=, |=, and ^=.

Reduction variables can be any of the primitive types specified above.

For example:

void kernel sum(float a<>, reduce float b)
{

b += a;
}

Reduction variables do not necessarily have to be updated for every kernel 
invocation.

For example:

void kernel cond_sum(float a<>, reduce float c)
{

if (a > 10.0)
{

c += a;
}

}

Provide the correct identities (0 for addition, 1 for multiplication, ∞ for max, etc.) 
as part of the invocation of the reduction.

In addition to the associative assignment operators listed above, the programmer 
also can specify a reduction function that is guaranteed to meet the same 
requirements. (This is not checked by the compiler). A reduction function is 
marked by prefixing the function definition and the reduction variable with the 
reduce keyword1.

1. Currently, prefixing the variable is sufficient to mark the kernel as a reduce kernel.
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For example:

reduce void max_reduce(double a, reduce double b)
{

if (a > b)
b = a;

}

reduce void min_reduce(double a, reduce double b)
{

if (a < b)
b = a;

}

It can be called either as a kernel from the host code, or used as a subkernel by 
an enclosing kernel (which can itself be a reduction kernel).

A.4.1.3  Partial Reductions

A partial reduction is possible if the target stream has the same number of 
dimensions as the source stream. This reduces size but not dimensionality. Each 
dimension of the source must be: (a) no smaller than the corresponding 
dimension of the target, and (b) an integer multiple of the corresponding 
dimension of the target.

For example, assuming a reduction kernel called sum():

float s<100,200>;
float t<100>;
sum(s, t);
float u<100,50>;
sum(s, u);

Each element of t is generated by summing a 1x200 strip from s, and each 
element of u is generated by summing a 1x4 strip from s.

A.4.2 Kernel-Specified Communication Patterns

Brook+ is based on a separation of communication and computation, with stream 
operators defining communication patterns and kernels defining computation. 
Some users find this too restrictive, so a mechanism has been provided to allow 
kernels to specify their own communication patterns.

If a stream is bound to a kernel using array brackets rather than stream brackets, 
the code inside the kernel can access any of the elements of the stream, not just 
the single element to which the kernel is mapped. This is very similar to a C array 
operation, except that the index is presented as a float2 (rather than 2 floats in 
C).

For example:

kernel void gather_ex_1(float2 a<>, float b[100][100], out float c<>)
{

c = b[a];
}
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Indices can be pulled directly from a stream, or computed as part of the kernel 
operation:

kernel void indexing(float3 a<>, float b[100][100][100], out float c<>)
{

float3 d = some_function(a);
c = b[d];

}

A stream must be bound write-only or read-only. Read-write binding is not 
permitted.

Note that specifying communication patterns inside kernels rather than using 
stream operators can degrade performance.

A.4.3 Calling Other Code from Kernel Code

Kernels can call other functions defined in the same .br file or any files it 
includes; however, there are restrictions.

• A top-level kernel must have a return type of void to be callable from host 
code. Subkernels can return data of any non-stream type. A subkernel also 
can be bound to streams propagated from its parent kernel.

• Subkernels are logically expanded inline, so recursion is not permitted.

• Kernels cannot call stream operators.

A.4.4 Restrictions on Kernel Code

Kernels can use both stream and non-stream parameters as inputs. Generally, 
only streams can be used as outputs (but see reductions, below).

Within a kernel definition, the following restrictions apply:

• The goto, volatile, and static keywords are prohibited.

• All variables must be of automatic storage class (that is, declared on the 
stack).

• Pointers are not supported.

• Recursion is not allowed.

• Precise exceptions are not supported.

• Any pointers passed into Brook+ code are required not to alias each other.

• Brook+ functions callable from C code are required to fully specify the sizes 
of array arguments.

• Storage allocated by Brook+ code can not be accessed by external code 
except during the lifetime of external functions called from that Brook+ code; 
and streams are never accessible to non-Brook+ code.

A Brook+ project can be made up of both C/C++ and Brook+ source files, with 
the Brook+ files having the extension .br. Within a Brook+ file, the following 
restrictions apply:
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• Brook+ functions can not call functions declared in C files.

• Preprocessor directives are passed through to the host C++ compiler 
untouched and uninterpreted.

A.5 Standard Library Functions and Intrinsics
The following is a listing and description of the kernel intrinsics.

indexof() The indexof operator is applied to a stream and returns a float (or 
floatN) type containing the index of the element that the kernel 
currently being mapped over.

This operator is not valid for reduction or gather streams.

abs(x) Absolute value of x.

acos(x) Inverse cosine of x.

asin(x) Inverse sine of x.

clamp(x,a,b) Clamps the supplied value to be between an upper and lower limit. 
a < clamp(x) < b.

cos(x) Cosine of x.

cross(x,y) Cross product of the two vectors x and y.

dot(x,y) Dot product of the two vectors x and y.

exp(x) ex

floor(x) ⎣x⎦

fmod(x,y) Returns ƒ such that x = i * y + ƒ, where i is an integer, ƒ has the 
same sign as x and ⎪ƒ⎪ < ⎪y⎪.

frac(x) Returns the fractional part of x.

isfinite(x) Returns true if x is finite, false (0) otherwise.

isinf(x) Returns true if x is infinite, false (0) otherwise.

isnan(x) Returns true if x is NaN, false (0) otherwise.

lerp(x,y,a) (1 – a)x + ay; 0 < a < 1

log(x) ln (x)

max(x,y) Returns the greater of x or y.

min(x,y) Returns the lesser of x or y.

normalize(x) Normalizes a vector, returning .

pow(x,y) xy

rsqrt(x) 

round(x) Rounds x to the nearest integer by adding 0.5 and truncating.

x
x
-----

1
x

-------
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sign(x) Returns the sign of x, if x is 0 then sign(x) is also 0.

sin(x) Sine of x.

sqrt √x
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Appendix B 
The AMD Compute 
Abstraction Layer (CAL) 
API Specification

The AMD Compute Abstraction Layer (CAL) provides a forward-compatible, 
interface to the high-performance, floating-point, parallel processor arrays found 
in AMD stream processors and CPUs.

The CAL API is designed so that:

• the computational model is processor independent.

• the user can easily switch from directing a computation from stream 
processor to CPU or vice versa. 

• it permits a dynamic load balancer to be written on top of CAL. 

• CAL is a lightweight implementation that facilitates a compute platform such 
as Brook+ to be developed on top of it.

CAL is supported on R6xx and newer generations of AMD stream processors 
and all CPU processors. It runs on both 32-bit and 64-bit versions of Windows® 
XP, Windows Vista®, and Linux®.

B.1 Programming Model
The CAL application executes on the CPU, driving one or more stream 
processors. A stream processor is connected to two types of memory: local 
(stream processor) and remote (system). Contexts on a stream processor can 
read and write to both memory pools. Context reads and writes to local memory 
are faster than those to remote memory. The master process also can read and 
write to local and remote memory. Typically, the master process has higher read 
and write speeds to the remote (system) memory of the stream processors. The 
master process submits commands or jobs for execution on the multiple contexts 
of a stream processor. The master process also can query the context for the 
status of the completion of these tasks. Figure B.1 illustrates a CAL system.
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Figure B.1 CAL System

A stream processor has a one or more SIMD engines. The computational 
function (kernel) is executed on these arrays. Unlike CPUs, stream processors 
contain a large array of SIMD processors. The inputs and outputs to the kernel 
can be set up to reside either in the local or the remote memory. A kernel is 
invoked by setting up one or more outputs and specifying a domain of execution1 
for this output that must be computed. In the case of a stream processor having 
multiple processors (such as a stream processor), a scheduler distributes the 
workload to various SIMD engines on the stream processor. 

The CAL abstraction divides commands into two key types: device and context. 
A device is a physical stream processor visible to the CAL API. The device 
commands primarily involve resource allocation (local or remote memory). A 
context is a queue of commands that are sent to a stream processor. There can 
be parallel queues for different parts of the stream processor. Resources are 
created on stream processors and are mapped into contexts. Resources must be 
mapped into a context to provide scoping and access control from within a 
command queue. Each context represents a unique queue. Each queue operates 
independently of each other. The context commands queue their actions in the 
supplied context. The stream processor does not execute the commands until the 
queue is flushed. Queue flushing occurs implicitly when the queue is full or 
explicitly through CAL API calls.

Resources are accessible through multiple contexts on the same stream 
processor and represent the same underlying memory (Figure B.2). Data sharing 
across contexts is possible by mapping the same resource into multiple contexts. 
Synchronization of multiple contexts is the client’s responsibility. 

1. A specified rectangular region of the output buffer to which threads are mapped. 
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Figure B.2 Context Queues

B.2 Runtime
The CAL runtime comprises the system, stream processor management, context 
management, memory management, program loader, computational component, 
and synchronization component. The following subsections describe these.

B.2.1 System

The system component initializes and shuts down a CAL system. It also contains 
methods to query the version of the CAL runtime. Section B.3.1, “System 
Component,” describes the relevant API.

B.2.2 Device Management

A machine can have multiple processing units. Each of these is known as a 
device. The device management component opens and closes a device; it also 
queries the devices and their attributes. Section B.3.2, “Device Management,” 
describes the relevant API.

B.2.3 Memory Management

The memory management component allocates and frees memory resources. 
These can be local or remote to a processing device. Memory resources are not 
directly addressed by contexts; instead, they create memory handles from a 
memory resource for any specific context. This allows access to the same 
memory resource by two memory contexts through two memory handles.

The API provides function calls to map the memory handles to CPU address 
space for access by the master process.

Currently, shared remote resources across devices are not supported.

Section B.3.3, “Memory Management,” describes the relevant API.
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B.2.4 Context Management

A device can have multiple contexts active at any time. This component creates 
and destroys contexts on a particular device. Section B.3.4, “Context 
Management,” describes the relevant API.

B.2.5 Program Loader

The program loader loads a CAL image onto a context of a device to generate 
a module. An image is generated by compiling the source code into objects, 
which are then linked into an image. It is possible to get handles to the entry 
points and names used in the program from a loaded module. These entry point 
and name handles are used to setting up a computation. Section B.3.5, “Loader,” 
describes the relevant API.

B.2.6 Computation

This component sets up and executes a kernel on a context. This includes:

• setting up the memory for inputs and outputs,

• triggering a kernel. 

This component also handles data movement by a context. The API provides 
function calls for querying if a computational task or data movement task is done. 
Section B.3.6, “Computation,” describes the relevant API.

B.3 Platform API
The following subsections describe the APIs of the CAL runtime components.

B.3.1 System Component

The following function calls are specific to the system component of the CAL 
runtime.

calInit

Syntax CALresult calInit(void)

Description Initializes the CAL API for computation. 

Results CAL_RESULT_ERROR Error.

CAL_RESULT_ALREADY CAL API has been initialized already.

CAL_RESULT_OK Success.

CAL_RESULT_NOT_INITIALZIED CAL API has not been initialized.
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B.3.2 Device Management

The following function calls are specific to the device management component of 
the CAL runtime.

calShutdown

Syntax CALresult calShutdown(void)

Description Shuts down the CAL API. Must be paired with calInit. An application can 
have any number of calInit - calShutdown pairs. Calling calShutdown 
destroys any open context, frees allocated resources, and closes all open 
devices. 

Results CAL_RESULT_NOT_INITIALZIED Any CAL call outside a calInit - 
calShutdown pair.

calGetVersion

Syntax CALresult calGetVersion(
CALuint* major, 
CALuint* minor, 
CALuint* imp)

Description Returns the major, minor, and implementation versions numbers of the CAL 
API.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_PARAMETER Error. One or more parameters are 
null.

calDeviceGetCount

Syntax CALresult calDeviceGetCount(CALuint* count)

Description Returns the numbers of processors available to the CAL API for use by 
applications.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Error. Count is assigned a value of 
zero.
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calDeviceGetAttribs

Syntax CALresult calDeviceGetAttribs (
CALdeviceattribs* attribs, 
CALuint ordinal)

Description Returns device-specific information about the processor in attribs. The 
device is specified by ordinal, which must be in the range of zero to the 
number of devices returned by calDeviceGetCount minus one. The device 
does not have to be open to obtain information about it. The struct_size 
field of the CALdeviceattribs structure must be filled out prior to calling 
calDeviceGetInfo.

Results CAL_RESULT_OK Success, and attribs contains 
information about the device.

CAL_RESULT_INVALID_PARAMETER Error if ordinal is not a valid device 
number.

CAL_RESULT_ERROR Error if information about the device 
cannot be obtained.

On error, the contents of attribs is 
undefined. See CALdeviceattribs 
for details on the CALdeviceattribs 
structure.

calDeviceOpen

Syntax CALresult calDeviceOpen(
CALdevice* dev, 
CALuint ordinal) 

Description Opens a device indexed by ordinal. A device must be closed before it can 
be opened again in the same application. Always pair this call with 
calDeviceClose.

Results CAL_RESULT_OK Success, and dev is a valid handle to 
the device.

CAL_RESULT_INVALID_PARAMETER Error if ordinal is not a valid device 
number.

CAL_RESULT_ERROR Error if information about the device 
cannot be opened.

On error, dev is zero.
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calDeviceGetStatus

Syntax CALresult calDeviceGetStatus (
CALdevicestatus* status, 
CALdevice dev)

Description Opens a device indexed by ordinal. A device must be closed before it can 
be opened again in the same application. Always pair this call with 
calDeviceClose.

Results CAL_RESULT_OK Success, and dev is a valid handle to 
the device.

CAL_RESULT_INVALID_PARAMETER Error if ordinal is not a valid device 
number.

CAL_RESULT_ERROR Error if information about the device 
cannot be opened.

On error, dev is zero.

calDeviceClose

Syntax CALresult calDeviceClose(CALdevice dev)

Description Closes a device specified by the dev handle. When a device is closed, all 
contexts created on the device are destroyed, and all resources on the 
device are freed. Always pair this call with calDeviceOpen.

Results CAL_RESULT_OK Success: dev is a valid handle to the 
device.

CAL_RESULT_ERROR The overall state is assumed to be as 
if calDeviceClose was never called.
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B.3.3 Memory Management

The following function calls are specific to the memory management component 
of the CAL runtime. 

calResAllocLocal2D

Syntax CALresult calResAllocLocal2D(
CALresource* res,
CALdevice device,
CALuint width,
CALuint height,
CALformat format,
CALuint flags)

Description Allocates memory local to a stream processor. The device specifies the 
stream processor to allocate the memory. This memory is structured as a 
two-dimensional region of width and height with a format. The maximum 
dimensions are available through the calDeviceGetInfo function.

The flags parameter is used to specify a basic level of use for the memory. 
For local memory, the value must be zero unless the memory is used for 
memory export. If the memory is used for memory export, then flags must 
be CAL_RESALLOC_GLOBAL_BUFFER.

Results CAL_RESULT_OK Success, and res is a handle to the 
memory resource.

CAL_RESULT_BAD_HANDLE Error if dev is not a valid device.

CAL_RESULT_ERROR Error if the memory can not be 
allocated.

On error, res is zero.
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calResAllocRemote2D

Syntax CALresult calResAllocRemote2D(
CALresource* res,
CALdevice* sharedDevices,
CALuint deviceCount,
CALuint width,
CALuint height,
CALformat format,
CALuint flags)

Description Allocates memory remote to deviceCount number of devices in the 
sharedDevices array. The memory is system memory, remote to all stream 
processors. This memory is structured as a two-dimensional region of width 
and height with a format. The maximum dimensions are available through the 
calDeviceGetInfo function. 

The flags parameter specifies a basic level of use for the memory. For remote 
memory, zero means the memory is allocated in uncached system memory, 
CAL_RESALLOC_CACHEABLE forces the memory to be CPU cachable.

One benefit of devices being able to write to remote (system) memory is 
performance. For example, with large computational kernels, it sometimes is 
faster for the stream processor contexts to write directly to remote memory 
than it is to do process them in two steps: stream processor context writing 
to local memory, and copying data from stream processor local memory to 
remote system memory. 

Results CAL_RESULT_OK Success, and res is a handle to the 
memory resource.

CAL_RESULT_BAD_HANDLE Error if any device in sharedDevices 
is not valid.

CAL_RESULT_ERROR Error if the memory can not be 
allocated.

On error, res is zero.
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calResAllocLocal1D

Syntax CALresult calResAllocLocal1D(
CALresource* res,
CALdevice device,
CALuint width,
CALformat format,
CALuint flags)

Description Allocates memory local to a stream processor. The device to allocate the 
memory is specified by device. This memory is structured as a one-
dimensional region of width with a format. The maximum dimensions are 
available through the calDeviceGetInfo function.

The flags parameter is used to specify a basic level of use for the memory. 
For local memory, the value must be zero unless the memory is used for 
memory export. If the memory is used for memory export, flags must be 
CAL_RESALLOC_GLOBAL_BUFFER.

Results CAL_RESULT_OK Success, and res is a handle to the 
memory resource.

CAL_RESULT_BAD_HANDLE Error if dev is not a valid device.

CAL_RESULT_ERROR Error if the memory can not be 
allocated.

On error, res is zero.
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calResAllocRemote1D

Syntax CALresult calResAllocRemote1D(
CALresource* res,
CALdevice* sharedDevices,
CALuint deviceCount,
CALuint width,
CALformat format,
CALuint flags)

Description Allocates memory remote to deviceCount number of devices in the 
sharedDevices array. The memory is system memory (remote to all 
devices). It is structured as a one-dimensional region of width with a format. 
The maximum dimensions are available through the calDeviceGetInfo 
function.

The flags parameter specifies a basic level of use for the memory. For 
remote memory, zero means the memory is allocated in uncached system 
memory, CAL_RESALLOC_CACHEABLE forces the memory to be CPU-cachable.

One benefit of devices being able to write to remote (system) memory is 
performance. For example, with large computational kernels, it sometimes is 
faster for the stream processor contexts to write directly to remote memory 
than it is to do process them in two steps: stream processor context writing 
to local memory, and copying data from stream processor local memory to 
remote system memory. 

Results CAL_RESULT_OK Success, and res is a handle to the 
memory resource.

CAL_RESULT_BAD_HANDLE Error if any device in sharedDevices 
is not valid.

CAL_RESULT_ERROR Error if the memory can not be 
allocated.

On error, res is zero.

calResFree

Syntax CALresult calResFree(CALresource res)

Description Releases the memory resources as specified by handle res.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle

CAL_RESULT_BUSY Error if the resource is in use by a 
context.

On error, the state is as if calResFree 
had never been called. Use 
calCtxReleaseMem to release a 
resource handle from a context.
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calResMap

Syntax CALresult calResMap(
CALvoid** pPtr,
CALuint* pitch,
CALresource res,
CALuint flags)

Description Returns a CPU-accessible pointer to the specified resource res. The CPU 
pointer address is returned in pPtr. For two-dimensional surfaces, the count, 
in the number of elements across the width, is returned in pitch. The flags 
field must be zero.

The CAL client must ensure the contents of the resource do not change; this 
is done by ensuring that all outstanding kernel programs that affect the 
resource are complete prior to mapping.

The calResMap function blocks the thread until the CPU-accessible pointer is 
valid. For local surfaces, this can mean the implementation performs a copy 
of a resource and waits until the copy is complete. For remote surfaces, a 
pointer to the surface is returned without copying contents.

Results CAL_RESULT_OK Success, and a valid CPU pointer 
returned in pPtr. Pitch is the number 
of elements across for each line in a 
two-dimensional image.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle

CAL_RESULT_ERROR Error if the surface can not be 
mapped.

CAL_RESULT_ALREADY Returned if the resource is already 
mapped

On error, pPtr and pitch are zero.

calResUnmap

Syntax CALresult calResUnmap (CALresource res)

Description Releases the address returned in calResMap. All mapping resources are 
released, and CPU pointers become invalid. This must be paired with 
calResMap.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle

CAL_RESULT_ERROR The resource is not mapped, and 
Unmap was called.
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B.3.4 Context Management

The following function calls are specific to the context management component 
of the CAL runtime.

calCtxCreate

Syntax CALresult calCtxCreate(
CALcontext* ctx, 
CALdevice dev)

Description Creates a context on the device specified by dev. Multiple contexts can be 
created on a single device.

Results CAL_RESULT_OK Success, and ctx contains a handle 
to the context.

CAL_RESULT_BAD_HANDLE Error if res is an invalid handle.

CAL_RESULT_ERROR A context can not be created.

On error, ctx is zero.

calCtxDestroy

Syntax CALresult calCtxDestroy(CALcontext ctx)

Description Destroys a context specified by the ctx handle. When a context is destroyed, 
all currently executing kernels are completed, all modules are unloaded, and 
all memory is released from the context.

Pair this call with calCtxCreate.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx is an invalid handle

CAL_RESULT_ERROR A context can not be created.

On error, ctx is zero.
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calCtxGetMem

Syntax CALresult calCtxGetMem(
CALmem* mem, 
CALcontext ctx, 
CALresource res)

Description Maps a resource specified by res into the context specified by ctx. The 
memory handle is returned in mem. The returned memory handle’s scope is 
relative to the supplied context. If the supplied resource is a shared remote 
resource, only contexts belonging to the “shared devices” argument during 
creation have access to this resource.

Results CAL_RESULT_OK Success, and mem contains a handle 
to the memory.

CAL_RESULT_BAD_HANDLE Error if ctx or res is an invalid handle

calCtxReleaseMem

Syntax CALresult calCtxReleaseMem(
CALcontext ctx, 
CALmem mem)

Description Releases the memory handle specified by mem from the context specified by 
ctx. The resource used to create the memory handle is updated with a 
release notification.

Results CAL_RESULT_OK Success, and mem contains a handle 
to the memory.

CAL_RESULT_BAD_HANDLE Error if ctx or mem is an invalid handle

calCtxSetMem

Syntax CALresult calCtxSetMem(
CALcontext ctx, 
CALname name, 
CALmem mem)

Description Associates memory with a symbol from a compiled kernel. The memory is 
specified by mem. The symbol is specified by name. The context where the 
association occurs is specified by ctx. To remove an association, call 
calCtxSetMem with a null memory handle. The semantics of the kernel 
symbol name dictate if the memory is used for input, output, constants, or 
memory export.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx or mem is an invalid 
handle.
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B.3.5 Loader

The following function calls are specific to the loader component of the CAL 
runtime.

calModuleLoad

Syntax CALresult calModuleLoad(
CALmodule* module,
CALcontext ctx,
CALimage image)

Description Creates a module handle from a precompiled kernel binary image and loads 
the image on the context specified by ctx. The handle for the module is 
returned in module. See CAL Image. AMD’s Compute Abstraction Layer 
Program Binary Format Specification for details on the format of CALimage. 
Multiple images can be loaded concurrently.

The CALimage passed into calModuleLoad must conform to the CAL multi-
binary format, as specified in the CAL Image document. A multi-binary 
consists of many different encodings of the same program. The loader 
chooses the best match encoding to load. The order priority for the encoding 
that is loaded is ISA, feature matching AMD IL, base AMD IL. All AMD IL 
encodings go through load-time translation to the device-specific ISA prior to 
being loaded.

Results CAL_RESULT_OK Success, and module is a valid 
handle.

CAL_RESULT_BAD_HANDLE Error if ctx is an invalid handle.

CAL_RESULT_INVALID_PARAMETER Error if module pointer is null.

CAL_RESULT_ERROR Error if the binary is invalid or can not 
be loaded.

calModuleUnload

Syntax CALresult calModuleUnload(
CALcontext ctx, 
CALmodule module)

Description Unloads the module specified by the module handle from the context 
specified by ctx. Unloading a module disassociates all CALname handles 
from their assigned memory and destroys all CALname and CALfunc handles 
associated with the module.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx or module is an invalid 
handle.
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calModuleGetEntry

Syntax CALresult calModuleGetEntry(
CALfunc* func,
CALcontext ctx,
CALmodule module,
const CALchar* procName)

Description Retrieves a function by name in a loaded module. The module parameter 
specifies from which loaded module the function is retrieved. The name of 
the function is specified by procName. The returned handle can be used to 
execute the function using calCtxRunProgram.

Results CAL_RESULT_OK Success, and func is a valid handle 
to the function entry point.

CAL_RESULT_BAD_HANDLE Error if ctx or module is an invalid 
handle.

CAL_RESULT_ERROR Error if the function name is not found 
in the module.

 On error, func is zero.

calModuleGetName

Syntax CALresult calModuleGetName(
CALname* name,
CALcontext ctx,
CALmodule module,
const CALchar* symbolName)

Description Retrieves a symbol by name in a loaded module. The module parameter 
specifies from which loaded module to retrieve the symbol. The name of the 
symbol is specified by symbolName. The returned handle can be used to 
associate memory with the symbol using calCtxSetMem. The semantic use 
for the name is determined by the use in the kernel program. Symbols can 
be used for inputs, outputs, constants, and memory exports.

Results CAL_RESULT_OK Success, and name is a valid handle 
to the symbol name.

CAL_RESULT_BAD_HANDLE Error if ctx or module is an invalid 
handle.

CAL_RESULT_ERROR Error if the symbol name is not found 
in the module.

 On error, name is zero.
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B.3.6 Computation

The following function calls are specific to the computation component of the CAL 
runtime.

calImageRead

Syntax CALresult calImageRead(
CALimage* image,
const CALvoid* buffer,
CALuint size)

Description Creates a CALimage and populates it with information from the supplied 
buffer.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Error.

calCtxRunProgram

Syntax CALresult calCtxRunProgram(
CALevent* event, 
CALcontext ctx,
CALfunc func,
const CALdomain* rect)

Description Issues a program run task to invoke the computation of the kernel identified 
by func within a region rect on the context ctx, and returns an associated 
event token in event with this task.

The run program task is not scheduled for execution until 
calCtxIsEventDone is called. Completion of the run program task can be 
queried by the CAL client by calling calCtxIsEventDone within a loop.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if ctx or func is an invalid 
handle.

CAL_RESULT_ERROR Error if any of the symbols used by 
func are invalid or if any of the 
resources bound to the symbols are 
mapped.

Use calCtxGetErrorString for 
contextual information regarding any 
errors.
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calCtxRunProgramGrid

Syntax calCtxRunProgramGrid(
CALevent* event, 
CALcontext ctx, 
CALprogramGrid* pProgramGrid)

Description Invokes the kernel over the specified domain. Issues a task to invoke the 
computation of the kernel, identified by func, within a region domain on 
the context ctx, and returns an associated event token in event with this 
task. Completion of this event can be queried by the master process using 
calIsEventDone.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Either func is not found in the currently 
loaded module; or one or more of the inputs, 
input references, outputs or constant buffers 
associated with the kernel are not set up. For 
extended contextual information of a 
calCtxRunProgram failure, use the 
calGetErrorString.

calCtxRunProgramGridArray

Syntax calCtxRunProgramGridArray(
CALevent* event, 
CALcontext ctx, 
CALprogramGridArray* pGridArray)

Description Invokes the kernel array over the specified domain(s). Invokes the 
computation of the kernel arrays, identified by func, within a region 
domain on the context ctx and returns an associated event token in 
event with this task. Completion of this event can be queried by the 
master process using calIsEventDone.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Either func is not found in the currently 
loaded module; or one or more of the inputs, 
input references, outputs or constant buffers 
associated with the kernel are not set up. For 
extended contextual information of a 
calCtxRunProgram failure, use the 
calGetErrorString.
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calMemCopy

Syntax CALresult calMemCopy(
CALevent* event,
CALcontext ctx,
CALmem srcMem,
CALmem destMem,
CALuint flags)

Description Issues a task to copy data from a source memory handle to a destination 
memory handle. An event is associated with this task and is returned in 
event, and completion of this event can be queried by the master process 
using calCtxIsEventDone. Data can be copied between memory handles 
from:
• remote system memory to device local memory,
• remote system memory to remote system memory,
• device local memory to remote system memory,
• device local memory to same device local memory,
• device local memory to a different device local memory. 

The memory is copied by the context ctx. It can be placed in a separate 
queue or the primary calCtxRunProgram queue of context ctx.

Results CAL_RESULT_OK Success, and event contains the 
event identifier that a client can poll to 
query completeness.

CAL_RESULT_BAD_HANDLE Error if ctx, srcMem, or dstMem is an 
invalid handle.

CAL_RESULT_ERROR Error if the source and destination 
memory have different sizes or 
formats.

On error, event is zero.

calCtxIsEventDone

Syntax CALresult calCtxIsEventDone(
CALcontext ctx, 
CALevent event)

Description This function:

Schedules an event specified by event for execution. 

Permits a CAL client to query if an event, specified by event, on the context, 
ctx, has completed.

Results CAL_RESULT_OK The Run Program or Mem Copy 
associated with the event identifier 
has completed.

CAL_RESULT_PENDING Returned for events that have not 
completed.

CAL_RESULT_BAD_HANDLE Error if ctx or event is an invalid 
handle.
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B.3.7 Error Reporting

Error reporting is encoded in the return code of nearly every platform function 
call. The CAL API can provide contextual information about an error.

B.4 Extensions
The CAL API supports extensions to the core. Extensions are optional, and a 
CAL client can query their support. The extension mechanism provides future 
functionality and improvement without changing the overall ABI of the CAL 
libraries. Likewise, not all extensions are available on all platforms.

B.4.1 Extension Functions

The following is a description of the extension functions.

calCtxFlush

Syntax CALresult calCtxFlush (CALcontext ctx)

Description Flushes all the queues on the supplied context ctx. Calling calCtxFlush 
causes all queued commands to be submitted to the device.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Error.

calGetErrorString

Syntax const CALchar* calGetErrorString(void);

Description Returns a contextual string regarding the nature of the an error returned by 
a CAL API call. The error string represents global state to the CAL runtime. 
The error state is updated on every call to the CAL API. The error string is 
returned by the function call and is null terminated.

calExtSupported

Syntax CALresult calExtSupported (CALextid extid)

Description Queries if an extension is supported by the implementation. The list of 
extensions is listed in Structures, on page B-26.

Results CAL_RESULT_OK Extension is supported.

CAL_RESULT_NOT_SUPPORTED Extension is not supported.
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B.4.2 Interoperability Extensions

B.4.2.1  Direct3D 9 API

The following function calls are part of the Direct3D 9 API extension.

calExtGetVersion

Syntax CALresult calExtGetVersion(
CALuint* major, 
CALuint* minor, 
CALextid extid)

Description Returns the version number of a supported extension. The format of the 
version number is in major.minor form. The list of extensions is listed in 
Section B.5.2, “Structures.”

Results CAL_RESULT_OK Success, and major and minor 
contain the returned values.

CAL_RESULT_NOT_SUPPORTED Extension is not supported.

calExtGetProc

Syntax CALresult calExtGetProc(
CALextproc* proc,
CALextid extid,
const CALchar* procname)

Description Returns a pointer to the function for the specified extension. The extension 
to the query is specified by the extid parameter. The name of the function 
to get a pointer to is specified by procname. The list of extensions is listed in 
Structures, on page B-26. The list of functions is in Section B.5, “CAL 
API Types,” page 26.

Results CAL_RESULT_OK Success, and proc contains a pointer 
to the function.

CAL_RESULT_NOT_SUPPORTED Error if either the extid is not valid or 
the function name was not found.

On error, proc is null.

calD3D9Associate

Syntax CALresult calD3D9Associate(CALdevice dev, 
IDirect3DDevice9* d3dDevice)

Description Initializes the CAL to Direct3D 9 interoperability, associating the CALdevice 
dev with the IDirect3DDevice9 d3dDevice.This function must be called 
before any other Direct3D 9 interoperability calls are made.

Results CAL_RESULT_ERROR Interoperability not possible.

CAL_RESULT_OK Success.
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B.4.2.2  Direct3D 10 API

The following function calls are part of the Direct3D 10 API extension.

calD3D9MapSurface

Syntax CALresult calD3D9MapSurface(CALresource* res, CALdevice dev,
                            IDirect3DSurface9* surf,
                            HANDLE shareHandle)

Description Maps the memory associated with IDirect3DSurface9 surf into the returned 
CALresource res. This function call can be used to map surfaces that are 
part of textures, render targets, or off-screen surfaces. The surface must 
have been created in the D3DPOOL_DEFAULT pool. Use only non-mipmapped 
textures with calD3D9MapSurface. The CAL resource format matches the 
D3DFORMAT.

Once a resource has been created with calD3D9MapSurface, it can be used 
like any other CALresource. Before releasing the IDirect3DSurface9, the 
resource must be freed with calResFree.

shareHandle must be the pSharedHandle value returned when the surface 
or texture was created.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Indicates that surf cannot be mapped 
on dev.

calD3D10Associate

Syntax CALresult calD3D10Associate(CALDevice dev, 
ID3D10Device* d3dDevice)

Description  Initializes the CAL Direct3D 10 interoperability, associating the CALdevice 
dev with the ID3D10Device d3dDevice. This function must be called before 
any other Direct3D 10 interoperability calls are made.

Results CAL_RESULT_ERROR Interoperability not possible.

CAL_RESULT_OK Success.
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B.4.3 Counters

The following are descriptions of the counter functions.

calD3D10MapResource

Syntax CALresult calD3D10MapResource(CALresource* res, CALdevice dev,
                              ID3D10Resource* d3dres,
                              HANDLE shareHandle)

Description Maps the memory associated with d3dres into a CALresource, returned in 
res. The resource must have been created with the 
D3D10_RESOURCE_MISC_SHARED flag.

Once a resource has been created with calD3D10MapResource, it can be 
used like any other CALresource. Before releasing the ID3D10Resource, the 
resource must be freed with calResFree.

shareHandle must be obtained by getting an IDXGI resource interface from 
the D3D resource. The sharehandle then can be retrieved with 
IDXGI::GetSharedHandle.

Results CAL_RESULT_OK Success.

CAL_RESULT_ERROR Indicates that surf cannot be 
mapped on dev.

calCtxCreateCounter

Syntax CALresult calCtxCreateCounter(
CALcounter* counter,
CALcontext ctx,
CALcountertype type)

Description Create a counter object. The counter is created on the specified context ctx 
and is of type type. Supported counters are:

CAL_COUNTER_IDLE Percentage of time the stream 
processor is idle between Begin/End 
delimiters.

CAL_COUNTER_INPUT_CACHE_HIT_RATE Percentage of input memory requests 
that hit the cache.

Counter activity is bracketed by a Begin/End pair. All activity to be considered 
must be between calCtxBeginCounter and calCtxEndCounter. Any number 
of calCtxRunProgram calls can exist between the Begin and End calls.

Results CAL_RESULT_OK Success, and a handle to the counter 
is returned in counter.

CAL_RESULT_BAD_HANDLE Error if ctx is an invalid handle.
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calCtxDestroyCounter

Syntax CALresult calCtxDestroyCounter(
CALcontext ctx, 
CALcounter counter)

Description Destroys a created counter object. The counter to destroy is specified by 
counter on the context specified by ctx. If a counter is destroyed between 
calCtxBeginCounter and calCtxEndCounter, CAL_RESULT_BUSY is returned.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if called between Begin and 
End.

calCtxBeginCounter

Syntax CALresult calCtxBeginCounter(
CALcontext ctx, 
CALcounter counter)

Description Initiates counting on the specified counter. Counters can be started only in a 
context. The counter is specified by counter. The context to start the counter 
on is specified by ctx.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if either ctx or counter is an 
invalid handle.

CAL_RESULT_ALREADY Error if calCtxBeginCounter has 
been called on the same counter 
without ever calling 
calCtxEndCounter.

On error, the state is as if 
calCtxBeginCounter had not been 
called.
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calCtxEndCounter

Syntax CALresult calCtxEndCounter(
CALcontext ctx, 
CALcounter)

Description Ends counting on the specified counter. A counter can be ended only in the 
same context in which it was started. Counters can be ended once they are 
started by calCtxBeginCounter.

Results CAL_RESULT_OK Success.

CAL_RESULT_BAD_HANDLE Error if either ctx or counter is an 
invalid handle.

CAL_RESULT_ERROR Error if calCtxEndCounter is 
called without having called 
calCtxBeginCounter.

On error, the CAL API behaves as if 
calCtxEndCounter had not been 
called.

calCtxGetCounter

Syntax CALresult calCtxGetCounter(
CALfloat* result,
CALcontext ctx,
CALcounter counter)

Description Retrieves the results of a counter. The value of the results is a floating point 
number between 0.0 and 1.0 whose meaning is shown in the description for 
calCtxCreateCounter, on page B-23. The results of a counter might not 
be available immediately. The counter results can be polled for availability, or 
the last calCtxRunProgram returned event can be polled for availability.

Results CAL_RESULT_OK Success, and result contains the 
result of the counter.

CAL_RESULT_BAD_HANDLE Error if either ctx or counter is an 
invalid handle.

CAL_RESULT_PENDING Counter results are not available.

On error, result is 0.0.
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B.5 CAL API Types
The following subsections detail the enums and structs for the CAL API.

B.5.1 Enums

CALcountertype

enum CALcountertype
{

CAL_COUNTER_IDLE,
CAL_COUNTER_INPUT_CACHE_HIT_RATE

};

CALextid

enum CALextid
{

CAL_EXT_D3D9 = 0x1001, /* CAL/D3D9 interaction extension */
CAL_EXT_OPENGL = 0x1002, /* CAL/OpenGL interaction extension */
CAL_EXT_D3D10 = 0x1003, /* CAL/D3D10 interaction extension */
CAL_EXT_COUNTERS = 0x1004, /* CAL counter extension */

};

B.5.2 Structures

CALdeviceattribs

struct CALdeviceattribs
{

CALuint struct_size; /* client filled out size of CALdeviceattribs struct */
CALtarget target; /* asic identifier */
CALuint physicalRAM; /* amount of local GPU RAM in megabytes */
CALuint uncachedRemoteRAM; /* amount of uncached remote GPU memory in megabytes */
CALuint cachedRemoteRAM; /* amount of cached remote GPU memory in megabytes */
CALuint engineClock; /* GPU device clock rate in megahertz */
CALuint memoryClock; /* GPU memory clock rate in megahertz */

};

CALdevicestatus

struct CALdevicestatus
{

CALuint struct_size; /* client filled out size of struct */
CALuint availLocalRAM; /* available local RAM in megabytes */
CALuint availUncachedRemoteRAM; /* available uncached remote memory in megabytes */
CALuint availcachedRemoteRAM; /* available cached remote memory in megabytes */

};

B.6 Function Calls in Alphabetic Order
Table B.1 lists all function calls in alphabetic order, including the group to which 
each one belongs and the page that contains its complete description.



A M D  S T R E A M  C O M P U T I N G

Function Calls in Alphabetic Order B-27
Copyright © 2007, 2008 Advanced Micro Devices, Inc. All rights reserved.  

Table B.1 Function Calls in Alphabetic Order

Function Group Described on Page

calCtxBeginCounter Counters B-24
calCtxCreate Context Management B-13
calCtxCreateCounter Counters B-23
calCtxDestroy Context Management B-13
calCtxDestroyCounter Counters B-24
calCtxEndCounter Counters B-25
calCtxFlush Computation B-20
calCtxGetCounter Counters B-25
calCtxGetMem Context Management B-14
calCtxIsEventDone Computation B-19
calCtxReleaseMem Context Management B-14
calCtxRunProgram Computation B-17
calCtxRunProgramGrid Computation B-18
calCtxRunProgramGridArray Computation B-18
calCtxSetMem Context Management B-14
calDeviceClose Device Management B-7
calDeviceGetAttribs Device Management B-6
calDeviceGetCount Device Management B-5
calDeviceGetStatus Device Management B-7
calDeviceOpen Device Management B-6
calExtGetProc Core Functions B-21
calExtGetVersion Core Functions B-21
calExtSupported Core Functions B-20
calGetErrorString Error Reporting B-20
calGetVersion System Component B-5
calImageRead Loader B-17
calInit System Component B-4
calMemCopy Computation B-19
calModuleGetEntry Loader B-16
calModuleGetName Loader B-16
calModuleLoad Loader B-15
calModuleUnload Loader B-15
calResAllocLocal1D Memory Management B-10
calResAllocLocal2D Memory Management B-8
calResAllocRemote1D Memory Management B-11
calResAllocRemote2D Memory Management B-9
calResFree Memory Management B-11
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calResMap Memory Management B-12
calResUnmap Memory Management B-12
calShutdown System Component B-5

Table B.1 Function Calls in Alphabetic Order

Function Group Described on Page
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Appendix C 
BRCC Semantic Checks

The Brook+ compiler, brcc, performs a number of semantic checks on both 
kernel and non-kernel code before processing and passing the results to the 
back-end compilers. Some of these checks are similar to those done by 
conventional C compilers; some are in addition to those required by the C 
standard.

Checks that cause warnings can be disabled using command-line options.

The following additional checks are classified as “strong type checking” and can 
be disabled by adding -a to the command line.

• implicit conversion rules

• explicit conversion rules

• vector literals

• the indexof() and instance() operators

• function calls

• function definitions

C.1 Type Qualifiers
Table C.1 lists and provides information about the type qualifiers.

Table C.1 Type Qualifiers

C.2 Storage Classes
Table C.2 lists and provides information about the storage classes.

Qualifiers Non-Kernel Code Inside Kernel As Kernel Parameter

Const Valid Valid Invalid

Volatile Valid Invalid Invalid

Restrict Valid Invalid Invalid

Out Invalid Invalid Valid
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Table C.2 Storage Classes

The auto and register keywords are ignored by brcc and removed from 
declarations.

C.3 Implicit Conversion Rules
By default, Brook+ does not allow implicit conversion between types. It requires 
that the types of all variables in an expression match in base type and in vector 
size. This is unlike C, which generally allows implicit promotion from a type to a 
wider type. This behavior is intentional; however, it can be disabled by turning off 
strong type checks (adding -a to the command line).

When implicit conversions are enabled, the conversion rules for conventional C-
style scalar types are the same as C99. 

The conversion rules is that if two vectors have the same component types but 
different sizes, the result has the type of the larger vector. For example:

 float2 a = float2 (2.0f, 2.0f);
     float2 b = float2 (2.0f, 2.0f);
     float4 d = float4 (2.0f, 2.0f, 2.0f, 2.0f);

     int4 c = int4 (2, 3, 4, 5);

     b = c + a + a; //! c is implicitly converted into float2

     d = d + a; //! a is implicitly converted into float4

Table C.3 lists the expression types and the type to which each can be promoted.

Table C.3 Promotion of Expression Type

C.4 Explicit Conversion Rules
When explicitly casting an expression to a different type, the component counts 
of the casting type and the expression type must be equal.

Storage Class Non-Kernel Code Inside Kernel As Kernel Parameter

extern Valid Invalid Invalid

static Valid Invalid Invalid

auto Valid Valid Invalid

registers Valid Valid Invalid

Expression Type Can Be Promoted To

int unsigned int, float, double

unsigned int float, double

float double
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C.5 Vector Swizzle
When performing a vector swizzle operation during an assignment, the R-value 
vector can contain duplicate components, but the L-Value vector cannot.

The result type is appropriate for two swizzle operator. For example:

 float4 a = float4(1.0f, 0.0f, 1.0f, 0.0f)
       float4 b = float4(1.0f, 0.0f, 1.0f, 0.0f)
       float2 c = float2(1.0f, 0.0f)
       a  =  b.xxzw;
       a.xx = c; //! Illegal 
       c.z = a.z //! Illegal

       type of c.z is float 
       type of  a.zz is float2

C.6 Vector Literals
When constructing a vector from literals, the component types must match the 
constructor element type. Examples are:

a. float4 a = float4(1.0f, 0.0f, 1.0f, 0.0f)  // OK 

b. float2 b = float2(1.0f, 0.0f) // OK 

c. float4 a = float4(0.0f, 0.0f, 0.0f, 0.0) // Illegal – last component
 is a double 

C.7 indexof() and instance() Semantics
The indexof() operator always returns a float4 value and can be applied only 
to streams or scatter targets, not gather targets or local variables.

The instance() operator always returns an int4 value.

C.8 Constant Buffer Support and Array Declarations
Where the underlying hardware permits, a gather array becomes a constant 
buffer under the following conditions:

• The size of all dimensions is specified.

• The total number of elements is ≤ 4096.

• The maximum number of constant buffers allowed is 10.

For example:

kernel void cb1(float b, float a[5][5], float aa<>, out float c<>)

If any of these conditions is not satisfied, the gather array is not converted.
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Either all or none of the dimensions must be specified, and the sizes must be 
integer constants. If some, but not all, are specified, brcc issues an error 
message.

Constant buffers can be disabled by adding the –c flag to the command line. 

C.9 Semantics of Conditional Expressions
Brcc gives a warning if a conditional expression is a vector type.

C.10 Function Call Semantics
The function must be defined before being used. The brcc checks that the 
number and types of parameters match between definition and invocation.

Table C.4 lists and provides information about function calls.

Table C.4 Function Call Definitions

Note that scatter kernels can be called only from non-kernel code.

C.11 Function Definition Semantics
The standard C-style rules apply to function definitions:

• Parameter names may not be duplicated.

• The function return type must match the type of the value actually returned.

C.12 Operators
Table C.5 lists the operators and the parameters types on which each can 
operate.

Formal Parameter Type Permitted Actual Parameter Types Notes

constant constant, input stream, output stream, local 
variable, and any array element

input stream constant, input stream, output stream, local 
variable, and any array element

gather array gather array Must match 
dimensions.
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Table C.5 Operators and Parameter Types

C.13 Index Expression Semantics
Non C-style (legacy mode) and C-style indexing is allowed for all types of array.

Brcc gives a warning for non C-style indexing. 

C.14 Summary of Command-Line Options Affecting Semantic Checks
Table C.6 lists and briefly describes the command-line options for semantic 
checks.

Table C.6 Semantic Check Command-Line Options

If strong type checking is enabled, all warnings with a level greater than 1 become errors,

and the –w and –x flags are disabled.

Operator Operates On

Add (+) Scalar and vectors of int, unsigned int, float, and double.

Subtract (-) Scalar and vectors of int, unsigned int, float, and double.

Multiply (*) Scalar and vectors of int, unsigned int, float, and double.

Divide (/) Scalar and vectors of int, unsigned int, float, and double.

Remainder (%) Scalar and vectors of int and unsigned int.

Unary negate (-) Scalar and vectors of int, unsigned int, float, and double.

Post- and pre-increment and 
decrement (-- and ++)

Scalar and vectors of int, unsigned int, float, and double.

Relation operators (<, ≤, >, ≥, 
==, and !=)

Scalar and vectors of int and unsigned int.

Bitwise operators (&&, |, ^, ~, 
<<, >>)

Scalar and vectors of int, unsigned int, float, and double.

Logical operators (&& and ||) Scalar and vectors of int and unsigned int.

Logical unary operator (!) Scalar and vectors of int and unsigned int.

Ternary selection operator 
(?:)

All valid expressions are allowed.

sizeof operators Currently not supported.

Option Description

-a Disables strong type checking.

-c Disables constant buffers.

-wN Sets warning  level (0, 1, 2, 3).

-x All warnings are to be treated as errors.
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Appendix D 
Supported Devices

The devices supported by the current version of the Stream Computing software 
are:

• ATI Radeon™ HD 2000+ Series

• ATI Radeon™ HD 3870 graphics card

• ATI Radeon™ HD 4850 graphics card

• ATI Radeon™ HD 4870 graphics card

• ATI FireGL™ V7700 3D graphics accelerator

• AMD FireStream™ 9170 stream processor

• AMD FireStream™ 9250 stream processor

The following matrix indicates which devicdes support certain stream computing 
features.

Card
Double 

Precision
Global 
Buffer

Compute 
Kernel

HD 2000+ Series No No No

HD 3870 Yes Yes No

HD 4850 Yes Yes Yes

HD 4870 Yes Yes Yes

AFireGL™ V7700 3D Yes Yes No

FireStream™ 9170 Yes Yes No

FireStream™ 9250 Yes Yes Yes
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Appendix E 
Introduction to 3D Graphics and 
Shader Terminology

The following descriptions provide an introductory explanation of some concepts 
and terminology used in stream computing. These descriptions try, by 
simplification, to make stream computing terminology understandable to CPU 
programmers. Stream computing is derived from 3D graphics programming; thus, 
some understanding of GPU programming is useful. 

E.1 Shaders
Shader programs are what define the programmers view of a GPU. The notion 
of a shader or a shader program originated from the concept of adding realistic 
lighting to a 3D object as a final step before displaying the image on the screen. 
Imagine an array of pixels in an X-Y grid. A program loop iterates over each X-
Y location, reading each pixel, modifying it based on some algorithmic light 
source, and then writing the modified pixel to the final frame buffer that is used 
to refresh the screen.

Defining the problem in this way allows for some extreme optimizations if simple 
rules are followed.

1. The input buffer can only be read from, not written to. 

2. During the shading step, the output buffer can only be written to, not read 
from. (It can be read later as the image is being displayed.) 

3. Each loop iteration only generates a single pixel as its output.

These rules eliminate dependencies between successive iterations of the loop. 
This allows specialized hardware to eliminate the loop setup and iteration 
mechanisms, as well as execute every iteration of the loop simultaneously (or 
with the available parallel hardware).

E.2 Domain of Execution
During the processing of a shader the domain of execution is merely the 
specification of the X-Y output grid being computed. The domain of execution 
could be a entire frame or some portion of it at the programmer’s discretion.

E.3 Geometry and Vertices
Traditional 3D processing starts with the geometry processing step. A a collection 
of vertices (x,y,z coordinates) in sequence define small (relatively) triangles in the 
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3D space. Each 3D object is a mesh of such triangles (or polygons). Triangles 
are used because 3 points in space are the minimum required to define a 
surface. For example, an object like a flat rectangular table top can be made up 
of 2 adjacent triangles, 4 vertices in total that share two vertices.

A vertex shader program can alter the coordinates and/or properties of a vertex 
using approximately the same rules that allows for parallelism in a pixel shader 
program. Each vertex requires the 3 coordinate values X, Y and Z to define its 
position in space (plus a 4th “W” component which is normally set to 1.0). These 
four floating point values are stored in a 4-wide structure which can be defined 
as a vec4. Transformations of these vec4 arrays are done using 4x4 matrices. 
These details are only important because of the fact that the GPU hardware is 
highly optimized at performing these types of operations on this size of data. 
Arranging your data in a similar way is not required but can give you a large 
performance advantage.

Additionally, per pixel data is stored in a vec4 format as RGBA as red, green, 
blue and alpha components, where the alpha represents a transparency from 0.0 
to 1.0. Various low-level GPU instructions may refer to data in registers or 
variables using a nomenclature, such as var.xyzw or var.rgba. In both cases the 
variable var is assumed to be of the type vec4 with the first 32-bit floating point 
value indicated interchangeably by x or r, the second element y or g, etc.
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Glossary of Terms

Term Description

* Any number of alphanumeric characters in the name of a microcode format, microcode 
parameter, or instruction.

< > Angle brackets denote streams.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most 
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0 A single-precision (32-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

ABI Application Binary Interface.

ACML AMD Core Math Library. Includes implementations of the full BLAS and LAPACK rou-
tines, FFT, Math transcendental and Random Number Generator routines, stream 
processing backend for load balancing of computations between the CPU and stream 
processor. 

AL Loop register. A 3-element vector (x, y and z) used to count iterations of a loop.

ALU Arithmetic Logic Unit. Responsible for arithmetic operations like addition, subtraction, 
multiplication, division, and bit manipulation on integer and floating point values. In 
stream computing, these are known as stream cores.

AMD Stream™ SDK A complete software development suite from AMD for developing applications for AMD 
Stream Processors. Currently, AMD Stream SDK includes Brook+ and CAL.

AR Address register.

aTid Absolute thread id. It is the ordinal count of all threads being executed (in a draw call).

b A bit, as in 1Mb for one megabit, or lsb for least-significant bit.

B A byte, as in 1MB for one megabyte, or LSB for least-significant byte.

BLAS Basic Linear Algebra Subroutines.

branch granularity The number of threads executed during a branch. For AMD, branch granularity is equal 
to wavefront granularity.

brcc Source-to-source meta-compiler that translates Brook programs (.br files) into device-
dependent kernels embedded in valid C++ source code that includes CPU code and 
stream processor device code, which later are linked into the executable.
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Brook+ A high-level language derived from C which allows developers to write their applications 
at an abstract level without having to worry about the exact details of the hardware. 
This enables the developer to focus on the algorithm and not the individual instructions 
run on the stream processor. Brook+ is an enhancement of Brook, which is an open 
source project out of Stanford. Brook+ adds additional features available on AMD 
Stream Processors and provides a CAL backend.

brt The Brook runtime library that executes pre-compiled kernel routines invoked from the 
CPU code in the application.

burst mode The limited write combining ability. See write combining.

byte Eight bits.

cache A read-only or write-only on-chip or off-chip storage space. 

CAL Compute Abstraction Layer. A device-driver library that provides a forward-compatible 
interface to AMD stream processor devices. This lower-level API gives users direct con-
trol over the hardware: they can directly open devices, allocate memory resources, 
transfer data and initiate kernel execution. CAL also provides a JIT compiler for AMD IL.

channel An element in a vector.

clause A group of instructions that are of the same type (all stream core, all fetch, etc.) exe-
cuted as a group. A clause is part of a CAL program written using the stream processor 
ISA. Executed without pre-emption.

clause size The total number of slots required for an stream core clause. 

clause temporaries Temporary values stored at GPR that do not need to be preserved past the end of a 
clause. 

clear To write a bit-value of 0. Compare “set”.

command A value written by the host processor directly to the stream processor. The commands 
contain information that is not typically part of an application program, such as setting 
configuration registers, specifying the data domain on which to operate, and initiating 
the start of data processing. 

command processor A logic block in the R600 that receives host commands (see Figure 1.4), interprets 
them, and performs the operations they indicate. 

component An element in a vector.

compute shader Similar to a pixel shader, but exposes data sharing and synchronization.

constant buffer Off-chip memory that contains constants. A constant buffer can hold up to 1024 4-ele-
ment vectors. There are fifteen constant buffers, referenced as cb0 to cb14. An 
immediate constant buffer is similar to a constant buffer. However, an immediate con-
stant buffer is defined within a kernel using special instructions. There are fifteen 
immediate constant buffers, referenced as icb0 to icb14.

constant cache A constant cache is a hardware object (off-chip memory) used to hold data that remains 
unchanged for the duration of a kernel (constants). “Constant cache” is a general term 
used to describe constant registers, constant buffers or immediate constant buffers.

constant registers On-chip registers that contain constants. The registers are organized as four 32-bit ele-
ments of a vector. There are 256 such registers, each one 128-bits wide.

context A representation of the state of a CAL device.

core clock See engine clock. The clock at which the stream processor stream core runs.

Term Description
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CPU Central Processing Unit. Also called host. Responsible for executing the operating sys-
tem and the main part of the application. The CPU provides data and instructions to 
the stream processor.

CRs Constant registers. There are 512 CRs, each one 128 bits wide, organized as four 32-
bit values.

CS Compute shader. A new shader type for R7xx, analogous to VS/PS/GS/ES

CTM Close-to-Metal. 
A thin, HW/SW interface layer. This was the predecessor of the AMD CAL.

DC Data Copy Shader.

device A device is an entire AMD stream processor. 

DMA Direct-memory access. Also called DMA engine. Responsible for independently trans-
ferring data to, and from, the stream processor’s local memory. This allows other 
computations to occur in parallel, increasing overall system performance.

domain of execution A specified rectangular region of the output buffer to which threads are mapped. 

DPP Data-Parallel Processor.

element (1) A 32-bit piece of data in a “vector”. (2) A 32-bit piece of data in an array. (3) One 
of four data items in a 4-component register.

engine clock The clock driving the stream core and memory fetch units on the stream processor 
stream processor core.

enum(7) A seven-bit field that specifies an enumerated set of decimal values (in this case, a set 
of up to 27 values). The valid values can begin at a value greater than, or equal to, 
zero; and the number of valid values can be less than, or equal to, the maximum sup-
ported by the field.

event A token sent through a pipeline that can be used to enforce synchronization, flush 
caches, and report status back to the host application. 

export To write data from GPRs to an output buffer (scratch, ring, stream, frame or global 
buffer, or to a register), or to read data from an input buffer (a “scratch buffer” or “ring 
buffer”) to GPRs. The term “export” is a partial misnomer because it performs both input 
and output functions. Prior to exporting, an allocation operation must be performed to 
reserve space in the associated buffer.

FFT Fast Fourier Transform.

flag A bit that is modified by a CF or stream core operation and that can affect subsequent 
operations.

FLOP Floating Point Operation.

frame A single two-dimensional screenful of data, or the storage space required for it. 

frame buffer Off-chip memory that stores a frame.

FS Fetch subroutine. A global program for fetching vertex data. It can be called by a “vertex 
shader” (VS), and it runs in the same thread context as the vertex program, and thus 
is treated for execution purposes as part of the vertex program. The FS provides driver 
independence between the process of fetching data required by a VS, and the VS itself. 
This includes having a semantic connection between the outputs of the fetch process 
and the inputs of the VS. 

Term Description
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function A subprogram called by the main program or another function within an AMD IL stream. 
Functions are delineated by FUNC and ENDFUNC.

gather Reading from arbitrary memory locations by a thread.

gather stream Input streams are treated as a memory array, and data elements are 
addressed directly.

global buffer Memory space containing the arbitrary address locations to which uncached kernel out-
puts are written. Can be read either cached or uncached. When read in uncached 
mode, it is known as mem-import. Allows applications the flexibility to read from and 
write to arbitrary locations in input buffers and output buffers, respectively.

GPGPU General-purpose stream processor. A stream processor that performs general-purpose 
calculations.

GPR General-purpose register. GPRs hold vectors of either four 32-bit IEEE floating-point, 
or four 8-, 16-, or 32-bit signed or unsigned integer or two 64-bit IEEE double precision 
data elements (values). These registers can be indexed, and consist of an on-chip part 
and an off-chip part, called the “scratch buffer,” in memory.

GPU Graphics Processing Unit. An integrated circuit that renders and displays graphical 
images on a monitor. Also called Graphics Hardware, Stream Processor, and Data Par-
allel Processor.

GPU engine clock 
frequency

Also called 3D engine speed.

GS Geometry Shader.

GSA GPU ShaderAnalyzer. A performance profiling tool for developing, debugging, and pro-
filing stream kernels using high-level stream computing languages.

HAL  Hardware Abstraction Layer.

host Also called CPU. 

iff If and only if.

IL Intermediate Language. In this manual, the AMD version: AMD IL. A pseudo-assembly 
language that can be used to describe kernels for stream processors. AMD IL is 
designed for efficient generalization of stream processor instructions so that programs 
can run on a variety of platforms without having to be rewritten for each platform.

in flight A thread currently being processed.

instruction A computing function specified by the code field of an IL_OpCode token. Compare 
“opcode”, “operation”, and “instruction packet”.

instruction packet A group of tokens starting with an IL_OpCode token that represent a single AMD IL 
instruction.

int(2) A 2-bit field that specifies an integer value.

ISA Instruction Set Architecture. The complete specification of the interface between com-
puter programs and the underlying computer hardware.

kernel A small, user-developed program that is run repeatedly on a stream of data. A parallel 
function that operates on every element of input streams. A device program is one type 
of kernel. Unless otherwise specified, an AMD stream processor program is a kernel 
composed of a main program and zero or more functions. Also called Shader Program. 
This is not to be confused with an OS kernel, which controls hardware.

Term Description
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LAPACK Linear Algebra Package.

LERP Linear Interpolation.

local memory fetch 
units

Dedicated hardware that a) processes fetch instructions, b) requests data from the 
memory controller, and c) loads registers with data returned from the cache. They are 
run at stream processor stream core or engine clock speeds. Formerly called texture 
units.

LOD Level Of Detail.

loop index A register initialized by software and incremented by hardware on each iteration of a 
loop.

lsb Least-significant bit.

LSB Least-significant byte.

MAD Multiply-Add. A fused instruction that both multiplies and adds.

mask (1) To prevent from being seen or acted upon. (2) A field of bits used for a control 
purpose.

MBZ Must be zero.

mem-export An AMD IL term random writes to the global buffer. 

mem-import Uncached reads from the global buffer.

memory clock The clock driving the memory chips on the stream processor.

MIMD Multiple Instruction Multiple Data.
– Multiple SIMD units operating in parallel (Multi-Processor System) 
– Distributed or shared memory

MRT Multiple Render Target. One of multiple areas of local stream processor memory, such 
as a “frame buffer”, to which a graphics pipeline writes data. 

MSAA  Multi-Sample Anti-Aliasing.

msb Most-significant bit.

MSB Most-significant byte.

normalized A numeric value in the range [a, b] that has been converted to a range of 0.0 to 1.0 
using the formula:   normalized value = value/ (b–a+ 1)

opcode The numeric value of the code field of an “instruction”. For example, the opcode for the 
CMOV instruction is decimal 16 (10h).

opcode token A 32-bit value that describes the operation of an instruction.

operation The function performed by an “instruction”.

PaC Parameter Cache.

PCI Express A high-speed computer expansion card interface used by modern graphics cards, 
stream processors and other peripherals needing high data transfer rates. Unlike pre-
vious expansion interfaces, PCI Express is structured around point-to-point links. Also 
called PCIe.

PoC Position Cache.

Term Description
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pre-emption The act of temporarily interrupting a task being carried out on a computer system, with-
out requiring its cooperation, with the intention of resuming the task at a later time.

processor Unless otherwise stated, the AMD Stream Processor and AMD Data Parallel Processor.

program Unless otherwise specified, a program is a set of instructions that can run on the AMD 
Stream Processor/AMD Data Parallel Processor. A device program is a type of kernel. 

PS Pixel Shader.

quad Group of 2x2 threads in the domain. Always processed together.

rasterization The process of mapping threads from the domain of execution to the SIMD engine. This 
term is a carryover from graphics, where it refers to the process of turning geometry, 
such as triangles, into pixels.

rasterization order The order of the thread mapping generated by rasterization.

RB Ring Buffer.

register A 128-bit address mapped memory space consisting of four 32-bit components.

relative Referencing with a displacement (also called offset) from an index register or the loop 
index, rather than from the base address of a program (the first control flow [CF] 
instruction).

render backend unit The hardware units in a stream processor stream processor core responsible for writing 
the results of a kernel to output streams by writing the results to an output cache and 
transferring the cache data to memory.

resource A block of memory used for input to, or output from, a kernel.

ring buffer An on-chip buffer that indexes itself automatically in a circle.

Rsvd Reserved.

sampler A structure that contains information necessary to access data in a resource. Also 
called Fetch Unit.

SC Shader Compiler.

scalar A single data element, unlike a vector which contains a set of two or more data 
elements.

scatter Writes (by uncached memory) to arbitrary locations.

scatter write Kernel outputs to arbitrary address locations. Must be uncached. Must be made to a 
memory space known as the global buffer. 

scratch buffer A variable-sized space in off-chip-memory that stores some of the “GPRs”.

set To write a bit-value of 1. Compare “clear”.

shader processor Also called thread processor.

shader program User developed program. Also called kernel.

SIMD Single instruction multiple data.
– Each SIMD receives independent stream core instructions.
– Each SIMD applies the instructions to multiple data elements.

SIMD Engine A collection of thread processors, each of which executes the same instruction per 
cycle.

Term Description
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SIMD pipeline A hardware block consisting of five stream cores, one stream core instruction decoder 
and issuer, one stream core constant fetcher, and support logic. All parts of a SIMD 
pipeline receive the same instruction and operate on different data elements. 

Simultaneous 
Instruction Issue

Input, output, fetch, stream core, and control flow per SIMD engine.

SPU Shader processing unit.

stage A sampler and resource pair.

stream A collection of data elements of the same type that can be operated on in parallel.

stream buffer A variable-sized space in off-chip memory that stores an instruction stream. It is an out-
put-only buffer, configured by the host processor. It does not store inputs from off-chip 
memory to the processor.

stream core The fundamental, programmable computational units, responsible for perform-
ing integer, single, precision floating point, double precision floating point, and 
transcendental operations. They execute VLIW instructions for a particular thread. 
Each stream processor stream core handles a single instruction within the VLIW 
instruction.

stream operator A node that can restructure data.

stream processor A parallel processor capable of executing multiple threads of a kernel in order to pro-
cess streams of data.

swizzling To copy or move any element in a source vector to any element-position in a destination 
vector. Accessing elements in any combination.

thread One invocation of a kernel corresponding to a single element in the domain of 
execution.

thread group It contains one or more thread blocks. Threads in the same thread-group but different 
thread-blocks might communicate to each through global per-stream processor shared 
memory. This is a concept mainly for global data share (GDS) which is not discussed 
in this note.

thread processor The hardware units in a SIMD engine responsible for executing the threads of a kernel. 
It executes the same instruction per cycle. Each thread processor contains multiple 
stream cores. Also called shader processor. 

thread-block A group of threads which might communicate to each other through local per SIMD 
shared memory. It can contain one or more wavefronts (the last wavefront can be a 
partial wavefront). A thread-block (i.e. all its wavefronts) can only run on one SIMD 
engine. However, multiple thread blocks can share a SIMD engine, if there are enough 
resources to fit them in. 

Tid Thread id within a thread block. An integer number from 0 to Num_threads_per_block-1

token A 32-bit value that represents an independent part of a stream or instruction.

uncached read/write 
unit

The hardware units in a stream processor responsible for handling uncached read or 
write requests from local memory on the stream processor.

vector (1) A set of up to four related values of the same data type, each of which is an ele-
ment. For example, a vector with four elements is known as a “4-vector” and a vector 
with three elements is known as a “3-vector”. (2) See “AR”.

Term Description
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VLIW design Very Long Instruction Word.
– Co-issued up to 6 operations (5 stream cores + 1 FC)
– 1.25 Machine Scalar operation per clock for each of 64 data elements
– Independent scalar source and destination addressing

wavefront Group of threads executed together on a single SIMD engine. Composed of quads. A 
full wavefront contains 64 threads; a wavefront with fewer than 64 threads is called a 
partial wavefront.

write combining Combining several smaller writes to memory into a single larger write to minimize any 
overhead associated with write commands.

Term Description
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