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What is this book all about?

 Introduction to digital integrated circuits.
 CMOS devices and manufacturing technology. 

CMOS inverters and gates. Propagation delay, 
noise margins, and power dissipation. Sequential 
circuits. Arithmetic, interconnect, and memories. 
Programmable logic arrays. Design 
methodologies.

 What will you learn?
 Understanding, designing, and optimizing digital 

circuits with respect to different quality metrics: 
cost, speed, power dissipation, and reliability
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Digital Integrated Circuits

 Introduction: Issues in digital design

 The CMOS inverter

 Combinational logic structures

 Sequential logic gates

 Design methodologies

 Interconnect: R, L and C

 Timing

 Arithmetic building blocks

 Memories and array structures
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Introduction

Why is designing 

digital ICs different 

today than it was 

before?

Will it change in 

future?



EE141© Digital Integrated Circuits2nd Introduction
5

The First Computer

The Babbage
Difference Engine
(1832)

25,000 parts

cost: £17,470
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ENIAC - The first electronic computer (1946)
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The Transistor Revolution

First transistor

Bell Labs, 1948
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The First Integrated Circuits 

Bipolar logic

1960’s

ECL 3-input Gate

Motorola 1966
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Intel 4004 Micro-Processor

1971

1000 transistors

1 MHz operation
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Intel Pentium (IV) microprocessor
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Moore’s Law

In 1965, Gordon Moore noted that the 

number of transistors on a chip doubled 

every 18 to 24 months. 

He made a prediction that  

semiconductor technology will double its 

effectiveness every 18 months
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Moore’s Law
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Evolution in Complexity
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Moore’s law in Microprocessors
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2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 years

Courtesy, Intel
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Die Size Growth
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~7% growth per year

~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s Law

Courtesy, Intel
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Frequency
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Power Dissipation
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Lead Microprocessors power continues to increase

Courtesy, Intel
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Power will be a major problem
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Power delivery and dissipation will be prohibitive

Courtesy, Intel
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Power density
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Not Only Microprocessors

Digital Cellular Market

(Phones Shipped)

1996  1997 1998  1999  2000

Units 48M   86M  162M  260M  435M
Analog 

Baseband

Digital Baseband

(DSP + MCU)

Power

Management

Small 

Signal RF
Power

RF

(data from Texas Instruments)

Cell

Phone
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Challenges in Digital Design

“Microscopic Problems”
• Ultra-high speed design

• Interconnect

• Noise, Crosstalk

• Reliability, Manufacturability

• Power Dissipation

• Clock distribution.

Everything Looks a Little Different

“Macroscopic Issues”
• Time-to-Market

• Millions of Gates

• High-Level Abstractions

• Reuse & IP: Portability

• Predictability

• etc.

…and There’s a Lot of Them!

 DSM  1/DSM

?
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Productivity Trends
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Why Scaling?

 Technology shrinks by 0.7/generation

 With every generation can integrate 2x more 
functions per chip; chip cost does not increase 
significantly

 Cost of a function decreases by 2x

 But …
 How to design chips with more and more functions?

 Design engineering population does not double every 
two years…

 Hence, a need for more efficient design methods
 Exploit different levels of abstraction
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Design Abstraction Levels
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Design Metrics

How to evaluate performance of a 
digital circuit (gate, block, …)?

 Cost

 Reliability

 Scalability

 Speed (delay, operating frequency) 

 Power dissipation

 Energy to perform a function
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Cost of Integrated Circuits

 NRE (non-recurrent engineering) costs

 design time and effort, mask generation

 one-time cost factor

 Recurrent costs

 silicon processing, packaging, test

 proportional to volume

 proportional to chip area
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NRE Cost is Increasing
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Die Cost

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)
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Cost per Transistor
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Yield
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Defects
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Some Examples (1994)

Chip Metal 

layers

Line 

width

Wafer 

cost

Def./ 

cm2

Area 

mm2

Dies/

wafer

Yield Die 

cost

386DX 2 0.90 $900 1.0 43 360 71% $4

486 DX2 3 0.80 $1200 1.0 81 181 54% $12

Power PC 

601
4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417
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Reliability―

Noise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and ground
noise

v(t) VDD
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DC Operation

Voltage Transfer Characteristic

V(x)

V(y)

V
OH

VOL

VM

V
OH

VOL

f

V(y)=V(x)

Switching Threshold

Nominal Voltage Levels

VOH = f(VOL)

VOL = f(VOH)

VM = f(VM)
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Mapping between analog and digital signals
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Definition of Noise Margins

Noise margin high

Noise margin low

V
IH

V
IL

Undefined

Region

"1"

"0"

V
OH

V
OL

NMH

NML

Gate Output Gate Input
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Noise Budget

Allocates gross noise margin to 

expected sources of noise

Sources: supply noise, cross talk, 

interference, offset

Differentiate between fixed and 

proportional noise sources
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Key Reliability Properties

 Absolute noise margin values are deceptive

 a floating node is more easily disturbed than a 

node driven by a low impedance (in terms of 

voltage)

 Noise immunity is the more important metric –

the capability to suppress noise sources

 Key metrics: Noise transfer functions, Output 

impedance of the driver and input impedance of the 

receiver; 
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Regenerative Property

Regenerative Non-Regenerative
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Regenerative Property

A chain of inverters

v0 v1 v2 v3 v4 v5 v6

Simulated response
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Fan-in and Fan-out

N

Fan-out N Fan-in M

M
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The Ideal Gate

Ri = 

Ro = 0

Fanout = 

NMH = NML = VDD/2 
g = 

V in

V out
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An Old-time Inverter

NM H

V in (V)

V
out
(V)
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V M
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Delay Definitions
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Ring Oscillator

T = 2  tp  N
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A First-Order RC Network

vout

vin C

R

tp = ln (2) t = 0.69 RC

Important model – matches delay of inverter
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Power Dissipation

Instantaneous power: 

p(t) = v(t)i(t) = Vsupplyi(t)

Peak power: 

Ppeak = Vsupplyipeak

Average power: 

  
 


Tt

t

Tt

t supply
supply

ave dtti
T

V
dttp

T
P )(

1
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Energy and Energy-Delay

Power-Delay Product (PDP) =

E =  Energy per operation = Pav  tp

Energy-Delay Product (EDP) =

quality metric of gate  = E  tp
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A First-Order RC Network
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Summary

 Digital integrated circuits have come a long 
way and still have quite some potential left for 
the coming decades

 Some interesting challenges ahead
 Getting a clear perspective on the challenges and 

potential solutions is the purpose of this book

 Understanding the design metrics that govern 
digital design is crucial
 Cost, reliability, speed, power and energy 

dissipation


