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What is this book all about?

 Introduction to digital integrated circuits.
 CMOS devices and manufacturing technology. 

CMOS inverters and gates. Propagation delay, 
noise margins, and power dissipation. Sequential 
circuits. Arithmetic, interconnect, and memories. 
Programmable logic arrays. Design 
methodologies.

 What will you learn?
 Understanding, designing, and optimizing digital 

circuits with respect to different quality metrics: 
cost, speed, power dissipation, and reliability
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Digital Integrated Circuits

 Introduction: Issues in digital design

 The CMOS inverter

 Combinational logic structures

 Sequential logic gates

 Design methodologies

 Interconnect: R, L and C

 Timing

 Arithmetic building blocks

 Memories and array structures
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Introduction

Why is designing 

digital ICs different 

today than it was 

before?

Will it change in 

future?
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The First Computer

The Babbage
Difference Engine
(1832)

25,000 parts

cost: £17,470
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ENIAC - The first electronic computer (1946)
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The Transistor Revolution

First transistor

Bell Labs, 1948
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The First Integrated Circuits 

Bipolar logic

1960’s

ECL 3-input Gate

Motorola 1966
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Intel 4004 Micro-Processor

1971

1000 transistors

1 MHz operation
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Intel Pentium (IV) microprocessor
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Moore’s Law

In 1965, Gordon Moore noted that the 

number of transistors on a chip doubled 

every 18 to 24 months. 

He made a prediction that  

semiconductor technology will double its 

effectiveness every 18 months
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Moore’s Law
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Evolution in Complexity
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Moore’s law in Microprocessors
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2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 years

Courtesy, Intel
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Die Size Growth
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~7% growth per year

~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s Law

Courtesy, Intel
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Frequency
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Power Dissipation
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Lead Microprocessors power continues to increase

Courtesy, Intel
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Power will be a major problem
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Power delivery and dissipation will be prohibitive

Courtesy, Intel
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Power density
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Not Only Microprocessors

Digital Cellular Market

(Phones Shipped)

1996  1997 1998  1999  2000

Units 48M   86M  162M  260M  435M
Analog 

Baseband

Digital Baseband

(DSP + MCU)

Power

Management

Small 

Signal RF
Power

RF

(data from Texas Instruments)

Cell

Phone
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Challenges in Digital Design

“Microscopic Problems”
• Ultra-high speed design

• Interconnect

• Noise, Crosstalk

• Reliability, Manufacturability

• Power Dissipation

• Clock distribution.

Everything Looks a Little Different

“Macroscopic Issues”
• Time-to-Market

• Millions of Gates

• High-Level Abstractions

• Reuse & IP: Portability

• Predictability

• etc.

…and There’s a Lot of Them!

 DSM  1/DSM

?



EE141© Digital Integrated Circuits2nd Introduction
23

Productivity Trends
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Why Scaling?

 Technology shrinks by 0.7/generation

 With every generation can integrate 2x more 
functions per chip; chip cost does not increase 
significantly

 Cost of a function decreases by 2x

 But …
 How to design chips with more and more functions?

 Design engineering population does not double every 
two years…

 Hence, a need for more efficient design methods
 Exploit different levels of abstraction
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Design Abstraction Levels
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Design Metrics

How to evaluate performance of a 
digital circuit (gate, block, …)?

 Cost

 Reliability

 Scalability

 Speed (delay, operating frequency) 

 Power dissipation

 Energy to perform a function
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Cost of Integrated Circuits

 NRE (non-recurrent engineering) costs

 design time and effort, mask generation

 one-time cost factor

 Recurrent costs

 silicon processing, packaging, test

 proportional to volume

 proportional to chip area
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NRE Cost is Increasing
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Die Cost

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)
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Cost per Transistor
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Yield
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Defects
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Some Examples (1994)

Chip Metal 

layers

Line 

width

Wafer 

cost

Def./ 

cm2

Area 

mm2

Dies/

wafer

Yield Die 

cost

386DX 2 0.90 $900 1.0 43 360 71% $4

486 DX2 3 0.80 $1200 1.0 81 181 54% $12

Power PC 

601
4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417
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Reliability―

Noise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and ground
noise

v(t) VDD
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DC Operation

Voltage Transfer Characteristic

V(x)

V(y)

V
OH

VOL

VM

V
OH

VOL

f

V(y)=V(x)

Switching Threshold

Nominal Voltage Levels

VOH = f(VOL)

VOL = f(VOH)

VM = f(VM)
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Mapping between analog and digital signals
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Definition of Noise Margins

Noise margin high

Noise margin low

V
IH

V
IL

Undefined

Region

"1"

"0"

V
OH

V
OL

NMH

NML

Gate Output Gate Input



EE141© Digital Integrated Circuits2nd Introduction
38

Noise Budget

Allocates gross noise margin to 

expected sources of noise

Sources: supply noise, cross talk, 

interference, offset

Differentiate between fixed and 

proportional noise sources
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Key Reliability Properties

 Absolute noise margin values are deceptive

 a floating node is more easily disturbed than a 

node driven by a low impedance (in terms of 

voltage)

 Noise immunity is the more important metric –

the capability to suppress noise sources

 Key metrics: Noise transfer functions, Output 

impedance of the driver and input impedance of the 

receiver; 
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Regenerative Property

Regenerative Non-Regenerative
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Regenerative Property

A chain of inverters

v0 v1 v2 v3 v4 v5 v6

Simulated response
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Fan-in and Fan-out

N

Fan-out N Fan-in M

M
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The Ideal Gate

Ri = 

Ro = 0

Fanout = 

NMH = NML = VDD/2 
g = 

V in

V out
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An Old-time Inverter

NM H

V in (V)

V
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V M
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Delay Definitions
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Ring Oscillator

T = 2  tp  N
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A First-Order RC Network

vout

vin C

R

tp = ln (2) t = 0.69 RC

Important model – matches delay of inverter
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Power Dissipation

Instantaneous power: 

p(t) = v(t)i(t) = Vsupplyi(t)

Peak power: 

Ppeak = Vsupplyipeak

Average power: 

  
 


Tt

t

Tt

t supply
supply

ave dtti
T

V
dttp

T
P )(

1
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Energy and Energy-Delay

Power-Delay Product (PDP) =

E =  Energy per operation = Pav  tp

Energy-Delay Product (EDP) =

quality metric of gate  = E  tp
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A First-Order RC Network
Vdd

Vout

isupply

CL

E0->1 = CLVdd
2

PMOS

NETWORK

NMOS

A1

AN

NETWORK

E
0 1

P t dt

0

T

 V
dd

i
supply

t dt

0

T

 V
dd

C
L
dV
out

0

Vdd

 C
L

V
dd 2= = = =

E
cap

P
cap

t dt

0

T

 V
out
i
cap

t dt

0

T

 C
L
V
out

dV
out

0

Vdd


1

2
---C
L

V
dd
2

= = = =

vout

vin CL

R



EE141© Digital Integrated Circuits2nd Introduction
51

Summary

 Digital integrated circuits have come a long 
way and still have quite some potential left for 
the coming decades

 Some interesting challenges ahead
 Getting a clear perspective on the challenges and 

potential solutions is the purpose of this book

 Understanding the design metrics that govern 
digital design is crucial
 Cost, reliability, speed, power and energy 

dissipation


