## Homework 3

## 1) CMOS Inverter

a) Use HSpice to plot the transfer characteristics (output vs. input) of a CMOS inverter with $(\mathrm{W} / \mathrm{L})_{\mathrm{n}}=2.4 \mu \mathrm{~m} / 1.2 \mu \mathrm{~m}$ and $(\mathrm{W} / \mathrm{L})_{\mathrm{p}}=6.0 \mu \mathrm{~m} / 1.2 \mu \mathrm{~m}$, respectively. Simulate your circuit for the two bipolar supply voltages of $\pm 1.5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$. For each case, deduce the voltage gain and the approximate linear output range.
b) Compute the voltage gain from a linear equivalent circuit and compare your results with the values deduced from HSpice simulations.
c) Load the inverter with a capacitor of 100 fF and simulate its response to a symmetrical pulsed input voltage with rail-to-rail voltage swing, a period of 50 ns and rise and fall times of 0.5 ns . Run your simulations for both $\pm 1.5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ supply rails and find the corresponding $10-90 \%$ rise and fall times of the output voltage.
d) Repeat the above simulations for an inverter with $(\mathrm{W} / \mathrm{L})_{\mathrm{n}}=1.2 \mu \mathrm{~m} / 0.6 \mu \mathrm{~m}$ and $(\mathrm{W} / \mathrm{L})_{\mathrm{p}}=3.0 \boldsymbol{\mu} \mathrm{~m} / 0.6 \boldsymbol{\mu} \mathrm{~m}$. Explain the differences.
2) Common-Drain Amplifier (Source Follower)

Design a common-drain amplifier that keeps the voltage gain close to unity and yields an output resistance of less than $5 \mathrm{k} \Omega$. Use a p-channel device as the active gain stage and establish the Q-point current $\mathrm{I}_{\mathrm{DQ}}$ by means of a current source. The latter will also be realized by a p-channel device. The supply rails are $\pm 2.5 \mathrm{~V}$.
a) Find the relationship between output resistance $r_{\text {out }}$ and bias current $\mathrm{I}_{\mathrm{DQ}}$.
b) Assume that the p-channel output stage features a $(\mathrm{W} / \mathrm{L})$ ratio of $30 \mu \mathrm{~m} / 1.2 \mu \mathrm{~m}$. What is the minimum value of the bias current $\mathrm{I}_{\mathrm{DQ}}$ that guarantees $\mathrm{r}_{\text {out }}$ to be less than $5 \mathrm{k} \Omega$ ?
c) Compute the voltage gain in the absence of a body effect.
d) How much voltage gain is lost (in \%) if you include the body effect?
e) Apply a sinusoidal input voltage of 1 V and use HSpice to confirm your theoretical results.
f) What is the maximum input voltage swing (peak-to-peak) your circuit can accommodate? Define the swing limit as the voltage that causes a total harmonic distortion in excess of $1 \%$. Use HSpice to find the answer and analyze the circuit both with and without a body effect.

## SPICE BSIM3 VERSION 3.1 PARAMETERS

| .MODEL nf | fet NMOS ( |  |  | LEVEL | $=49$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| +VERSION | $=3.1$ | TNOM | $=27$ | TOX | $=1.39 \mathrm{E}-8$ |
| +XJ | $=1.5 \mathrm{E}-7$ | NCH | $=1.7 \mathrm{E} 17$ | VTH0 | $=0.6398186$ |
| +K1 | $=0.8857752$ | K2 | $=-0.0935679$ | K3 | $=22.1010569$ |
| +K3B | $=-7.6711263$ | w0 | $=1 \mathrm{E}-8$ | NLX | $=1 \mathrm{E}-9$ |
| +DVT0W | $=0$ | DVT1W | $=0$ | DVT2W | $=0$ |
| +DVT0 | $=2.7950058$ | DVT1 | $=0.4085592$ | DVT2 | $=-0.1237812$ |
| +U0 | $=453.2010286$ | UA | $=2.494433 \mathrm{E}-13$ | UB | $=1.488658 \mathrm{E}-18$ |
| +UC | $=2.022743 \mathrm{E}-11$ | VSAT | $=1.730467 \mathrm{E} 5$ | A0 | $=0.5543744$ |
| +AGS | $=0.1151449$ | B0 | $=2.792031 \mathrm{E}-6$ | B1 | $=5 \mathrm{E}-6$ |
| +KETA | $=-1.371458 \mathrm{E}-3$ | A1 | $=0$ | A2 | $=0.3560219$ |
| +RDSW | $=1.319508 \mathrm{E} 3$ | PRWG | $=0.0381943$ | PRWB | $=0.0141195$ |
| +WR | $=1$ | WINT | $=2.507126 \mathrm{E}-7$ | LINT | $=2.304464 \mathrm{E}-8$ |
| +XL | $=0$ | XW | $=0$ | DWG | $=-1.755808 \mathrm{E}-8$ |
| +DWB | $=4.946821 \mathrm{E}-8$ | VOFF | $=0$ | NFACTOR | $=0.7910748$ |
| +CIT | $=0$ | CDSC | $=2.4 \mathrm{E}-4$ | CDSCD | $=0$ |
| +CDSCB | $=0$ | ETA0 | $=0.0051332$ | ETAB | $=-1.252309 \mathrm{E}-3$ |
| +DSUB | $=0.1945608$ | PCLM | $=2.253484$ | PDIBLC1 | $=-1$ |
| +PDIBLC2 | $=2.440187 \mathrm{E}-3$ | PDIBLCB | $=-0.1294159$ | DROUT | $=0.6751288$ |
| +PSCBE1 | $=5.348212 \mathrm{E} 8$ | PSCBE2 | $=3.233314 \mathrm{E}-5$ | PVAG | $=0$ |
| +DELTA | $=0.01$ | RSH | $=80.3$ | MOBMOD | $=1$ |
| +PRT | $=0$ | UTE | $=-1.5$ | KT1 | $=-0.11$ |
| +KT1L | $=0$ | KT2 | $=0.022$ | UA1 | $=4.31 \mathrm{E}-9$ |
| +UB1 | $=-7.61 \mathrm{E}-18$ | UC1 | $=-5.6 \mathrm{E}-11$ | AT | $=3.3 \mathrm{E} 4$ |
| +WL | $=0$ | WLN | $=1$ | WW | $=0$ |
| +WWN | $=1$ | WWL | $=0$ | LL | $=0$ |
| +LLN | $=1$ | LW | 0 | LWN | $=1$ |
| +LWL | $=0$ | CAPMOD | $=2$ | XPART | $=0.5$ |
| +CGDO | $=2.12 \mathrm{E}-10$ | CGSO | $=2.12 \mathrm{E}-10$ | CGBO | $=1 \mathrm{E}-9$ |
| +CJ | $=4.279445 \mathrm{E}-4$ | PB | $=0.9616445$ | MJ | $=0.4374524$ |
| +CJSW | $=3.492439 \mathrm{E}-10$ | PBSW | $=0.1$ | MJSW | $=0.1245165$ |
| +CJSWG | $=1.64 \mathrm{E}-10$ | PBSWG | $=0.1$ | MJSWG | $=0.1245165$ |
| +CF | $=0$ | PVTH0 | $=0.0431719$ | PRDSW | $=-30.376525$ |
| $+\mathrm{PK} 2$ | $=-0.0350028$ | WKETA | $=-0.0230093$ | LKETA | $=2.090253 \mathrm{E}-3)$ |
| .MODEL pf | fet PMOS ( |  |  | LEVEL | $=49$ |
| +VERSION | $=3.1$ | TNOM | $=27$ | TOX | $=1.39 \mathrm{E}-8$ |
| +XJ | $=1.5 \mathrm{E}-7$ | NCH | $=1.7 \mathrm{E} 17$ | VTH0 | $=-0.9488171$ |
| +K1 | $=0.5429357$ | K2 | $=9.433657 \mathrm{E}-3$ | K3 | $=3.2656684$ |
| +K3B | $=-0.8567156$ | W0 | $=1 \mathrm{E}-8$ | NLX | $=1.48542 \mathrm{E}-8$ |
| +DVT0W | $=0$ | DVT1W | $=0$ | DVT2W | $=0$ |
| +DVT0 | $=2.530444$ | DVT1 | $=0.5291909$ | DVT2 | $=-0.1040273$ |
| +U0 | $=220.9301068$ | UA | $=3.049951 \mathrm{E}-9$ | UB | $=1 \mathrm{E}-21$ |
| +UC | $=-5.63429 \mathrm{E}-11$ | VSAT | $=2 \mathrm{E} 5$ | A0 | $=0.9085767$ |
| +AGS | $=0.1506017$ | B0 | $=9.121548 \mathrm{E}-7$ | B1 | $=5 \mathrm{E}-6$ |
| +KETA | $=-2.819843 \mathrm{E}-3$ | A1 | $=0$ | A2 | $=0.3$ |
| +RDSW | $=3 \mathrm{E} 3$ | PRWG | $=-0.0464229$ | PRWB | $=-0.0398483$ |
| +WR | $=1$ | WINT | $=2.90101 \mathrm{E}-7$ | LINT | $=4.254314 \mathrm{E}-8$ |
| +XL | $=0$ | XW | $=0$ | DWG | $=-2.169468 \mathrm{E}-8$ |
| +DWB | $=1.788287 \mathrm{E}-8$ | VOFF | $=-0.0659109$ | NFACTOR | $=0.8188201$ |
| +CIT | $=0$ | CDSC | $=2.4 \mathrm{E}-4$ | CDSCD | $=0$ |
| +CDSCB | $=0$ | ETAO | $=1.380153 \mathrm{E}-3$ | ETAB | $=-0.0429727$ |
| +DSUB | $=0.7658995$ | PCLM | $=2.0797597$ | PDIBLC1 | $=0.1113965$ |
| +PDIBLC2 | $=4.521707 \mathrm{E}-3$ | PDIBLCB | $=-0.0437905$ | DROUT | $=0.3065171$ |
| +PSCBE1 | $=1.25116 \mathrm{E} 10$ | PSCBE2 | $=1.227353 \mathrm{E}-9$ | PVAG | $=8.477076 \mathrm{E}-6$ |
| +DELTA | $=0.01$ | RSH | $=104.9$ | MOBMOD | $=1$ |
| +PRT | $=0$ | UTE | $=-1.5$ | KT1 | $=-0.11$ |
| +KT1L | $=0$ | KT2 | $=0.022$ | UA1 | $=4.31 \mathrm{E}-9$ |
| +UB1 | $=-7.61 \mathrm{E}-18$ | UC1 | $=-5.6 \mathrm{E}-11$ | AT | $=3.3 \mathrm{E} 4$ |
| +WL | $=0$ | WLN | $=1$ | WW | $=0$ |
| +WWN | $=1$ | WWL | $=0$ | LL | $=0$ |
| +LLN | $=1$ | LW | $=0$ | LWN | $=1$ |
| +LWL | $=0$ | CAPMOD | $=2$ | XPART | $=0.5$ |
| +CGDO | $=2.25 \mathrm{E}-10$ | CGSO | $=2.25 \mathrm{E}-10$ | CGBO | $=1 \mathrm{E}-9$ |
| +CJ | $=7.308538 \mathrm{E}-4$ | PB | $=0.9416073$ | MJ | $=0.4948413$ |
| +CJSW | $=2.852637 \mathrm{E}-10$ | PBSW | $=0.99$ | MJSW | $=0.3001719$ |
| +CJSWG | $=6.4 \mathrm{E}-11$ | PBSWG | $=0.99$ | MJSWG | $=0.3001719$ |
| +CF | $=0$ | PVTH0 | $=5.98016 \mathrm{E}-3$ | PRDSW | $=14.8598424$ |
| +PK2 | $=3.73981 \mathrm{E}-3$ | WKETA | $=4.127712 \mathrm{E}-3$ | LKETA | $=-2.567864 \mathrm{E}-3)$ |

