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Throughput-Optimal Wireless Scheduling with
Regulated Inter-Service Times

Ruogu Li, Bin Li, and Atilla Eryilmaz

Abstract—Motivated by the low-jitter requirements of stream-
ing multi-media traffic, we focus on the development of schedul-
ing strategies under fading conditions that not only maximize
throughput performance but also provide regular inter-service
times to users. Since the service regularity of the traffic is
related to the higher-order statistics of the arrival process and
the policy operation, it is highly challenging to characterize and
analyze directly. We overcome this obstacle by introducing a new
quantity, namely the time-since-last-service, which has a unique
evolution different from a tradition queue. By combining it with
the queue-length in the weight, we propose a novel maximum-
weight type scheduling policy that is proven to be throughput-
optimal and also provides provable service regularity guarantees.
In particular, our algorithm can achieve a degree of service
regularity within a constant factor of a fundamental lower bound
we derive. This constant is independent of the higher-order
statistics of the arrival process and can be as low as two. Our
results, both analytical and numerical, exhibit significant service
regularity improvements over the traditional throughput-optimal
policies, which reveals the importance of incorporating the metric
of time-since-last-service into the scheduling policy for providing
regulated service.

I. INTRODUCTION

During the past years, there has been increasing deploy-
ment of a variety of real-time applications over the wireless
networks, especially streaming multi-media applications. Un-
like its non-real-time counterpart, the real-time traffic often
has various quality-of-service (QoS) requirements besides
throughput. Such requirements usually include end-to-end
delay constraints, packet delivery ratio requirements, and the
regularity of the inter-service times. Unlike the traditional
long-term mean throughput based requirements, these QoS
requirements often have a complex dependence on the higher-
order statistics of the arrival process as well as the system
operation. Thus, the canonical optimization-based approaches
that aim to optimize the throughput performance (e.g., [1], [2],
[3], [4], [5]) do not apply.

Recently, valuable efforts have been exerted in the design of
algorithms that improve various aspects of the QoS, especially
on the delay performance of the algorithms. For example,
some works focus on designing algorithms with low end-to-
end delay performance, such as [6], [7], [8]. Constant delay
bounds (e.g. [9]) and delivery ratio requirements for deadline-
constrained traffic (e.g. [10], [11], [12], [13]) are some of the
other QoS metrics considered in the literature.

However, to the authors’ best knowledge, service regularity
of the scheduling policies has not been theoretically studied.
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Yet, the service regularity is an important metric in serving
multi-media streaming applications that are subject to jitter re-
quirements. Such applications often have a constant playback
data rate, while the incoming flow may experience different
source of randomness as it traverses a network, such as the
arrival process, retransmissions, and the channel variations.
The traditional throughput-based schedulers can guarantee the
rate requirements under such stochastic characteristics of the
network. However, the service received by the user under these
schemes may have large variations in the inter-service times,
and hence disrupt the regularity of service they need.

With these motivations, in this work, we focus on the
development of scheduling policies that not only maximize
throughput performance but also provide regulated inter-
service times to users with heterogeneous arrival processes.
However, the inter-service time characteristics are difficult to
analyze directly due to: its complex dependence on the high-
order statistics of the arrival and service processes, and its
non-Markovian evolution. To overcome this, we need to find
new approaches to study the inter-service time behavior. Our
contributions in this work can be summarized as follows:

• We propose a new quantity (cf. Section II), namely the
time-since-last-service, that has a tight relationship with the
service regularity performance, and hence enables novel design
strategies. Yet, this new parameter has its unique evolution,
drastically different from a queue, which introduces new
challenges in its analysis.
•We develop a novel maximum-weight type scheduling policy
that combines the time-since-last-service parameter and the
queue-length in its weight measure (cf. Section III). Using
a non-traditional stochastic stability argument, we then show
that the proposed scheduling policy possesses the desirable
throughput optimality property (cf. Section IV-A).
• We derive upper and lower bounds on the service regularity
performance by utilizing a novel Lyapunov-drift-based argu-
ment, inspired by the approach in [14]. We further show that,
by properly scaling the design parameter in our policy, we
can guarantee a degree of service regularity within a constant
factor of our fundamental lower bound (cf. Section IV-B). This
constant is independent of the higher-order statistics of the
arrival process and can be as low as two under symmetric
arrival rates.
• We support our analytical results with extensive numerical
investigations (cf. Section V), which show significant per-
formance gains in the service regularity over the traditional
queue-length-based policies. Furthermore, the numerical in-
vestigations indicate that the service regularity performance of
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our policy actually approaches the lower bounds as the weight
of the time-since-last-service increases.

II. SYSTEM MODEL

We consider a time-slotted system in which N different
users compete for a common resource that is subject to time
variations. Each user receives externally generated packets
into its dedicated queue for service by the common server.
The arrival process for user i is composed of a sequence
of random variables Ai[t] that are independently and iden-
tically distributed (i.i.d.) over time with a fixed arrival rate
λi , E[Ai[t]]. The arrival processes for different users are
independently (not necessarily identically) distributed. We
also assume that all arrival processes have a finite support1

{0, 1, . . . , Amax}, i.e., P (Ai[t] ≤ Amax) = 1 for all user i
and time slot t.
Channel Fading Model: We assume the N users share a
common ON/OFF fading channel, whose state in time slot
t is denoted by C[t] ∈ {0, 1}. We assume the channel
condition is i.i.d. over time, and we use p , P (C[t] = 1)
to denote the probability that the channel is in its ON state.
We use this particular type of channel model to simplify our
analytical study of the problem. We would like to point out
that this simplified fading model is not restrictive: this type
of common fading channel for all users is typically used to
model the channel for the secondary users in the context
of cognitive radio network (see [15], [16] for examples),
where all secondary users within the interfering range of a
transmitting primary user must keep silent.
Queueing and Service of the Packets: The packets for user
i waiting to be served are placed into the queue Qi, and we
denote its length at the beginning of time slot t by Qi[t].
We assume that at any given time slot t, the node can only
schedule one of the users, and we use Si[t] ∈ {0, 1} to denote
the scheduling decision for user i at time slot t, where Si[t] =
1 represents user i is scheduled in time slot t, and

N∑
i=1

Si[t] = 1, ∀i, t.

When user i is scheduled in time slot t, and the channel is ON
for that slot, then ri of its packets will be served. We assume
ri > 0 is a fixed integer for each user i. When the channel is
OFF, nothing can be served. Thus, the evolution of the length
of Qi is given by

Qi[t+ 1] = (Qi[t] +Ai[t]− riSi[t]C[t])
+

= Qi[t] +Ai[t]− riSi[t]C[t] + Ui[t], ∀i, (1)

where Ui[t] , max(0, riSi[t]C[t]−Ai[t]−Qi[t]) denotes the
unused service by Qi in time slot t. For convenience, we use
Q,A,S and U to denote the N -dimensional vectors of the
queue-length, arrival, scheduling decision and unused service,
respectively.

We use the following definition for the stability of the
system:

1The assumption of finite support for (Ai[t])i is not critical for our results,
and can be relaxed to arrival processes with bounded moment generating
functions.

Fig. 1. The system model we use in the paper, where N users compete for
a shared server with a common fading channel for all users.

Definition 1 (Stability of the System): We say the system is
stable if the underlying Markov chain Q[t] is positive recur-
rent, and its corresponding stationary distribution, denoted by
Q , {Qi}i, has E[Qi] <∞ for each user i. �

When the system is stable, we use S and U to denote
the steady-state distribution of the scheduling vector and the
unused service vector, respectively.

If under some scheduling policy, the system is stable with
an arrival rate vector λ , {λi}i, then we say λ is supportable
by the system. We call the set of all supportable rate vector λ
the capacity region of the system. Under our system model,
the capacity region, denoted by Λ, is the following set:

Λ ,

{
λ :

N∑
i=1

λi
ri
< p

}
. (2)

Thus, for any arrival rate vector within the capacity region,
there exists a positive constant ε = p −

∑N
i=1 λi > 0, which

represents how close the arrival rate vector is to the boundary
of the capacity region. The capacity region can be interpreted
as the fraction of the busy period of the shared server cannot
exceed the probability that the channel is ON.

If a policy can support all arrival rates that lies within the
capacity region, then we call it throughput-optimal. We shall
see examples of scheduling policies that possess this property
in Section III.
Inter-Service Time Metric: In this work, we are interested in
providing regular service to users, which relates to the statistics
of the inter-service time. To that end, we use Ii[m] to denote
the time between the (m− 1)st and the mth service for user
i. It is determined by the evolution of Qi. Thus when the
system is in steady-state, the inter-service time has a steady-
state distribution, denoted as Ii. We write I = {Ii}i as the
N -dimensional vector of Ii.

We use the second moment of the inter-service time under
steady-state distribution, i.e., E[I

2

i ], as a measure of the
regularity of the service that user i receives. This metric
conveniently captures information about both the average
service rate that the user receives, and also the variance of
its inter-service time. As such, our results in this work can be
easily extended to characterize the variance of the inter-service
time, which we also uses as an alternative metric for service
regularity.

In this work, we are interested in the development
of throughput-optimal policies that achieve low values of∑N
i=1 E[I

2

i ] in steady-state, implying regular service. How-
ever, unlike queue-lengths with Markovian evolution, the
dynamics of inter-service times do not lend themselves to
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commonly used Markovian analysis methods. To overcome
this obstacle, we introduce the following related quantity,
namely the time-since-last-service, which has a much more
tractable form of evolution, and whose mean is tightly related
to E[I

2

i ] (cf. Lemma 1).
Time-Since-Last-Service (TSLS): For each user i, we use a
timer Ti to keep track of the time since it was lastly served,
i.e., it was scheduled and the channel was ON. By letting

τi[t] , max
τ={1,...,t}

{
Si[τ ]C[τ ] = 1, Si[τ + 1]C[τ + 1] =
· · · = Si[t− 1]C[t− 1] = 0

}
,

be the last time when user i was served before time slot t,
we can write Ti[t] = t− τi[t]− 1. By definition, each counter
Ti increases by 1 in each time slot, and drops to 0 whenever
user i is served. More precisely, the evolution of the counter
Ti can be written as

Ti[t+ 1] =

{
0 , if Si[t]C[t] = 1;
Ti[t] + 1 , if Si[t]C[t] = 0;

= 1{Si[t]C[t] = 0}(Ti[t] + 1), (3)

where 1{·} is the indicator function. We also concisely denote
the N -dimensional vector {Ti}i by T .

It can be seen from (3) that the evolution of Ti[t] differs sig-
nificantly from that of a traditional queue (also see Fig. 2). In
particular, unlike the slowly evolving nature of queue-lengths,
the Ti[t] is incremented until user i receives service at which
time it drops to zero. In our design, we will consider policies
that not only use Q[t] to achieve throughput-optimality, but
also include T [t] to improve service regularity. However,
as we shall see in Section IV-A, the involvement of T [t]
with its unique dynamics makes traditional Foster-Lyapunov
arguments inapplicable, and necessitates the development of a
novel approach to establish the stability of the proposed policy.

The evolution of Ti is tightly related to the inter-service time
Ii, where Ii is the time between two consecutive instances
when Ti hits zero, as shown in Fig. 2. In fact, we have the
following lemma relating the two in steady-state.

Fig. 2. A sample trajectory of Ii[m] and Ti[t], where the red curve shows
the evolution of Ti[t].

Lemma 1: For any stationary and ergodic policy with T
and I describing its steady-state TSLS and inter-service times,
respectively, we have

E[T i] =
1

2

(
1

E[Ii]
E[I

2

i ]− 1

)
, (4)

for each user i. �
Proof: The detailed proof is provided in [17].

Lemma 1 reveals the connection between the second mo-
ment of the inter-service time Ii and the mean of the TSLS T i
in steady-state. This can be intuitively seen in Fig. 2, where the
area of each “triangle” under the trajectory of Ti[t] is roughly

1
2I

2
i . We will utilize this useful relationship to investigate the

second moment behavior of the inter-service time by studying
the evolution of Ti[t].
Objective: Given the above model, in this work, we aim to
design a scheduling policy that is not only throughput-optimal,
but also yields provably good characteristics in the service
regularity as measured through the second moment of the inter-
service time.

We achieve this dual objective by developing a parametric
class of schedulers (cf. Section III-B) that utilize a combina-
tion ofQ[t] and T [t] in its decisions. Our policy is shown to be
throughput-optimal (cf. Section IV-A) through non-traditional
arguments, and guarantees a constant ratio (as a function of
the arrival rates) in its service regularity with respect to a
fundamental lower bound (cf. Section IV-B).

III. POLICY DESIGN FOR REGULATED SERVICE

In this section, we first (cf. Section III-A) recall two baseline
scheduling policies each with a favorable characteristic in
either its throughput or service regularity performance. We
then (cf. Section III-B) propose our Regulated Throughput-
Optimal policy which will later (cf. Section IV) be shown to
possess the advantages of both.

A. Baseline Schedulers

In this subsection, we describe two well-known schedul-
ing policies, namely the Maximum Weight (MW) policy
and the Round Robin (RR) policy, that will be used as a
baseline for our policy. We selected these policies, since the
MW policy possesses the throughput-optimality-characteristics
without any guarantees on service regularity, and the RR
policy provides regular service to the users without guarantees
on system stability.

Definition 2 (MW Policy): Under our model, the Maximum
Weight (MW) policy schedules the user iMW [t] with the
maximum queue-length, i.e., it chooses

iMW [t] ∈ argmax
1≤i≤N

(Qi[t]) ,

and sets SiMW [t] = 1. �
The MW policy is known to be throughput-optimal (e.g.,

[1], [5], [18], [19]), i.e., it stabilizes the network for any
arrival rate vector λ that lies within the capacity region Λ.
In our setup, the MW policy can be expected to have close-
to-lower-bound average delay performance ([20]). It has also
been shown to have heavy-traffic optimality (see [21], [14]), in
the sense that the expected steady-state queue-length coincides
with the lower-bound under heavy-traffic conditions.

However, despite its throughput optimality and a number of
favorable properties on the delay performance, the MW policy
may result in poor performance in terms of service regularity.
This can be observed when the MW policy serves a set of
flows with heterogeneous arrival statistics. In Fig. 3, the blue
line shows a scenario where the ith user has a Bernoulli arrival
with rate 2−i for i ∈ {1, . . . , 8}. In this case, we observe that
the variance of the inter-service time increases exponentially
as the arrival rate of the user reduces. The red curve illustrates
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a different scenario where all 8 users have the same mean, but
increasing variances (i.e., burstiness) in their arrivals, where
we observe that the user with more bursty arrivals suffers from
higher variance in its inter-service time.
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Fig. 3. The variance of the inter-service under the MW policy for users
with different arrival processes. The users with smaller rates or more bursty
arrivals suffer from high variance.

Next, we turn to the definition of the round-robin policy that
schedules the users in turn and periodically. In our model, its
operation can be described as follows.

Definition 3 (RR Policy): Under our model, the Round-
Robin (RR) policy schedules the user iRR[t] with the max-
imum time-since-last-service, i.e., it chooses

iRR[t] = argmax
1≤i≤N

(Ti[t]) ,

and sets SiRR [t] = 1. �
The RR policy, thus, serves the users in a fixed order

whenever the channel is ON. As such, it provides highly
regular service to the users. In fact, it will be revealed in
Section IV-B that it minimizes our service regularity metric∑N
i=1 E[T i] under our channel model. However, unlike the

MW policy, the RR policy does not possess the throughput
optimality property. In fact, it can only stabilize the queues
for arrival rates satisfying λi

ri
< p

N for each user i.

B. The Regulated Throughput-Optimal (RTO) Policy

As discussed above, the MW policy is throughput-optimal,
and the RR policy has favorable service regularity perfor-
mance, and can both be written in the same maximization
form with different quantities as weights. Inspired by these two
policies, we propose the following parametrized policy which
is later revealed to possess the characteristics of throughput
optimality and service regularity.

Definition 4 (Regulated Throughput-Optimal (RTO) Policy):
In each time slot t,
• Weight Calculation: For each user i, compute its weight:

wi[t] = αiQi[t] + γβiTi[t], i = 1, . . . , N

where αi > 0, βi ≥ 0 and γ ≥ 0 are fixed control
parameters.

• Scheduling: The scheduler chooses the user i∗[t] with
the maximum weight for transmission, i.e., select

i∗[t] ∈ argmax
1≤i≤N

(wi[t]),

set Si∗ [t] = 1 and Si[t] = 0 for all i 6= i∗[t].
• Queue Evolution: Each user i updates its queue-length
Qi[t] as in (1).

• Timer Evolution: The timer Ti[t] associated with each
user i updates its value as in (3). �

We note that there are three sets of control parameters in the
RTO policy and they affect different behaviors of the policy.
Yet, it will be revealed later that none of them affects its
throughput optimality.

The parameters αi are weighing factors for the queue-
lengths, where a larger αi will result in a smaller average
queue-length. Some examples of possible choices of αi can
be let they be all equal, where the resulting average queue-
length will be roughly the same for each user, or let αi = 1

ri
for each user, under which the average queueing delay will be
roughly equal for all users.

The parameters βi weigh Ti[t] differently for each user i,
with γ being a common scaling factor for all users. It will be
revealed in Section IV-B that with proper choice of βi, we can
derive the upper bound for the service regularity performance,
and the scaling factor γ can reduce the second moment of the
inter-service time as it increases.

Also note that when γ = 0, our policy coincides with the
MW policy. When γ > 0, with the addition of Ti[t] terms
in the weight of each user, it is clear that our policy may
schedule a user with no packets waiting. Despite of this,
we can still show that our policy possesses the throughput
optimality property.

IV. PERFORMANCE ANALYSIS

In this section, we study the performance of our proposed
RTO policy analytically. We first show that our policy is
throughput-optimal, and hence attains a steady-state distribu-
tion. This, then, enables us to study the second moment of
the inter-service time under the steady-state distribution of the
system using the novel Lyapunov type approach developed
in [14]. In particular, we derive explicit lower and upper
bounds on the service regularity as a function of system and
design parameters. These investigations reveal that the service
regularity performance of our RTO policy can be guaranteed
to remain within a constant factor of the lower bound. This
ratio is expressed as a function of the arrival processes and
the design parameters, and can be as low as 2.

A. Throughput Optimality

As discussed in Section III-B, our policy may schedule
a user that has not enough packets waiting in its queue,
and potentially wastes some service even if there are other
users in the system with enough packets to send. Hence it is
not immediately clear that whether our policy is throughput-
optimal.

We study the stability of the system under a fixed support-
able arrival rate vector using a Lyapunov drift argument by
looking at the behavior of the total normalized queue-length
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defined by QΣ[t] ,
∑N
i=1

Qi[t]
ri

. Based on the queue evolution
given by (1), its evolution can be written as

QΣ[t+ 1]

{
= QΣ[t] +AΣ[t]− C[t] if Qi∗ [t] ≥ ri∗
≤ QΣ[t] +AΣ[t] if Qi∗ [t] < ri∗

, (5)

where AΣ ,
∑N
i=1

Ai[t]
ri

is the normalized total arrival rate,
and Qi∗ [t] denotes the queue-length of the selected user at
time slot t. The two different conditions on the right hand
side of (5) correspond to the cases where no service is wasted
(the upper equation), and the service is (partially) wasted (the
lower equation). We first prove the following lemma which is
critical in the establishing of the throughput optimality.

Lemma 2: If Qi∗ [t] < ri∗ for any time slot t, then we have

E [QΣ[t]1{Qi∗ [t] < ri∗}] ≤ B1(γ), (6)

where B1(γ) is a finite constant (derived explicitly in the
proof in terms of the system parameters) that is independent
of the chosen user i∗[t], and scales linearly with the control
parameter γ. �

Proof: The detailed proof is provided in Appendix A.
Lemma 2 reveals the important fact that whenever the

service is wasted due to choosing a user with too few packets
in its queue, the expected total normalized queue-length at that
time slot is bounded by a constant. Utilizing this lemma, we
have the following proposition:

Proposition 1: For any arrival rate vector λ ∈ Λ, our
policy stabilizes the system in the sense that the Markov chain
(Q[t],T [t]) is positive recurrent, with

lim sup
K→∞

1

K

K−1∑
t=0

E[QΣ[t]] ≤ B1(γ) +B2

ε
.

where B2 is some finite constant related to the second moment
of the arrival processes, channel statistics and the design
parameters. �

Proof: The detailed proof is provided in Appendix B.
Proposition 1 establishes the throughput optimality of the

RTO policy, thus Qi[t] and Ti[t] will converge in distribution
to Q

∗
i and T

∗
i , which attain steady-state distribution under

our policy. Proposition 1 also gives an upper bound for
the expected total queue-length under the steady-state, which
increases linearly with the control parameter γ. It will be
revealed later that γ controls the tradeoff between the average
total queue-length, and the service regularity performance.

Note that our policy coincides with the MW policy when
γ = 0, and the upper bound given above also coincides
with that of the MW policy which can be derived via the
traditional Foster-Lyapunov type of argument. The connection
between the RTO and the RR policy will be revealed in the
next subsection, where we study the behavior of the second
moment of the inter-service time.

B. Second Moment of the Inter-Service Time

Having established the throughput optimality of the RTO
policy, in this section, we utilize it to derive bounds on the
expected value of TΣ ,

∑N
i=1 T i, which is related to the

second moment of the inter-service time by Lemma 1. We
assume the parameter γ > 0 throughout this subsection.

1) Lower Bound on the Mean of TSLS: Here, we first derive
a lower bound based on a Lyapunov drift argument inspired by
the technique used in [14], which is more generally applicable
and easier to extend. Then we study the operation of the RR
policy under our channel model and show it is optimal in the
sense of minimizing E[TΣ]. The latter yields a tighter lower
bound, however it relies on the particular channel fading model
we are using in this work, and is difficult to extend to a more
general setup where each user has independent fading channel.

To study the lower bound of the second moment of the
inter-service time by the Lyapunov drift argument, we look
at a class of policies, called Π, that can guarantee that the
Markov chain (Q[t],T [t]) is positive recurrent. Note that our
proposed policy, as well as the MW policy, falls into this
class by Proposition 1. For such class of policies, we have
the following lemma:

Lemma 3: For any policy π ∈ Π, we have

E
[
T
π

Σ

]
≥ N(N − p)

2p
, (7)

where T
π

Σ ,
∑N
i=1 T

π

i attains the steady-state distribution
under policy π. �

Proof Sketch: To prove Lemma 3, we investigate the
Lyapunov function given by VT (Q[t],T [t]) =

∑N
i=1 T

2
i [t].

and use the fact that its mean drift is zero under the steady-
state operation of π. The detailed proof is provided in [17].

We then study the performance of the RR policy under our
model, which intuitively has the best service regularity when
the channel is always ON, since in that case, it serves each user
with a fixed inter-service time. In the following proposition,
we establish a better lower bound for E[TΣ] by showing the
optimality of the RR policy and analyzing its performance.

Proposition 2: Under our model where all users shares a
common fading channel, the RR policy minimizes E[TΣ] over
all policies. More precisely, it yields

E[T
RR

Σ ] =
N(N + 1− 2p)

2p
, (8)

where T
RR

Σ is the steady-state distribution of the total TSLS
for all users under RR policy. �

Proof Sketch: The optimality of the RR policy is estab-
lished by a sample-path argument. We first look at the case
where channel is always in its ON state. In this scenario, the
idea is that starting from any initial state of T [1], for any policy
π0, we can construct another policy π1, such that π1 agrees
with the RR policy in the first time slot, and couples with
policy π0 in all subsequent time slots such that π1 has a TΣ[t]
value no larger than policy π0 for all t. Repeat this construction
recursively we get our sample path optimality result for the
RR policy. Since no policy can do anything when the channel
is OFF, the above result holds for the common fading channel
with general p values.

To calculate the value of E[TΣ], we argue that the TSLS
vector TRR under RR policy is always a permutation of {τ −
1, 2τ − 1, . . . , Nτ − 1} when the channel is ON, where τ is
the geometric random variable denoting the number of time



6

slots between two consecutive ON state of the channel. Take
expectation and we get the desired result.

The detailed proof is provided in [17].
Note that N(N−p)

2p ≤ N(N+1−2p)
2p , where the equality holds

when p = 1. Since the RR policy minimizes E[TΣ], the lower
bound provided in Proposition 2 is tighter than the one in
Lemma 3. However, the approach used in deriving the lower
bound in Lemma 3 is more generally applicable to different
channel fading model, while the above proof only works under
the particular channel fading model used in this work.

We also would like to point out that the RR policy is not
throughput-optimal. Thus, for an arrival rate vector λ that
can not be supported by the RR policy, we do not expect a
throughput-optimal policy to approach the above lower bound
when serving it. However, for the arrival rate vectors that can
be supported by the RR policy, we shall see in our numerical
results that the performance of our policy can approach this
lower bound when we increase the scaling parameter γ.

2) Upper Bound on the Mean of TSLS: Now we derive
the performance upper bound for our policy using the same
technique as in the derivation of Lemma 3. Recall that our
policy is throughput-optimal by Proposition 1, thus for all
λ ∈ Λ, the Markov chain (Q[t],T [t]) is positive recurrent.
We established the following upper bound for our policy:

Proposition 3: Under the steady-state operation of our pol-
icy, we have

N∑
i=1

λiβi
ri

E[T
∗
i ] ≤

p− ε
2γp

(
N∑
i=1

E
[
αiA

2
i

ri

]
+ p

)

+
(p− ε)
p

N∑
i=1

(βi + pβiE[S
∗
i ]),

where S
∗
i represents the limiting random variables of the

scheduling decisions achieved in steady-state under our RTO
policy. Under the particular choice of αi = 1

ri
, βi = λi

ri
, the

above equation gives the following upper bound for the total
expected TSLS:

E[T
∗
Σ] ≤ p− ε

2γp

(
N∑
i=1

E
[
A2
i

r2
i

]
+ p

)

+
(p− ε)
p

N∑
i=1

(
ri
λi

+
pri
λi

E[S
∗
i ]). (9)

If we further assume that the arrival rates are symmetric, i.e.,
λi

ri
= p−ε

N for each user i, then (9) can be rewritten as

E[T
∗
Σ] ≤ N

2γp

(
N∑
i=1

E[A2
i ] + p

)
+
N(N − p)

p
. (10)

�
Proof Sketch: To derive the upper bound, we study the

drift of the Lyapunov function given by VQ(Q[t],T [t]) =
1
2

∑N
i=1

αi

ri
Q2
i [t], and utilizing the fact that its mean drift is

zero under steady-state operation. We also need to use the
fact that our policy schedules the user i∗[t] at time slot t such
that αiQi[t] + γβiTi[t] is maximized. The detailed proof is
provided in [17].

Note that the first term of the right hand side of (9) captures
various random effects in the network: the burstiness of the
arrival processes (which is captured by the second moment)
and the channel variations. Under our policy these effects
diminish as the scaling factor γ goes to infinity. Hence,
together with Proposition 1 in Section IV-A, Proposition 3
reveals a tradeoff: when increasing γ, the upper bound on
the total queue-length increases linearly with γ, but the upper
bound for E[TΣ] decreases.

As γ goes to infinity, the upper bound for the symmetric
arrival rate case given in (10) becomes N(N−p)

p , which is
always within twice the value of the lower bound derived
in Proposition 2. In the more general case, the upper bound
converges to a constant that is determined by the arrival rates
as γ goes to infinity. Moreover, we shall see in the numerical
results presented in Section V-B that as γ increases, E[TΣ]
actually converges to the lower bound shown in Proposition 2
under the symmetric arrival rate scenario.

3) Service Regularity Bounds under Symmetric Arrival
Rates: Combining the results obtained in Proposition 2 and
3, together with the relationship between E[T i] and E[I

2

i ]
established in Lemma 1, we can explicitly express the upper
and lower bounds for

∑N
i=1 E[I

2

i ].
Note that since the arrival rate vector is supportable, under

the steady-state operation we have 1
E[Ii]

= µi, where µi is the
fraction of time that user i is scheduled. The system is stable,
hence µi ≥ λi

ri
= p−ε

N for all user i, which further implies
µi ≤ p−ε

N + ε for all users since
∑N
i=1 µi = 1. Substitute the

above relationships into (4) yields

N∑
i=1

E[T i] ≤
p+ (N − 1)ε

2N

N∑
i=1

E[I
2

i ]−
N

2

N∑
i=1

E[T i] ≥
p− ε
2N

N∑
i=1

E[I
2

i ]−
N

2

under symmetric arrival rates. By substituting the above upper
and lower bounds into (8) and (10) respectively, we have

N2(N + 1− p)
p2 + p(N − 1)ε

≤
N∑
i=1

E[I
2

i ]

≤ N2

γp(p− ε)

(
N∑
i=1

E[A2
i ] + p

)
+

2N3 −N2p

p(p− ε)
.

As γ goes to infinity, the upper bound converges to a constant
factor with respect to the lower bound, similar to the upper
bound on E[T i] discussed above. Moreover, as we shall see in
our numerical investigations, that our policy performs much
better than the upper bound, giving a close-to-lower-bound
performance when γ increases.

V. NUMERICAL RESULTS

In this section, we provide simulation results for our pro-
posed RTO policy and compare its performance to the baseline
policies and bounds. In addition to investigating the throughput
(cf. Section V-A) and service regularity (cf. Section V-B)
performances of our policy, we also look at the service rate
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distribution (cf. Section V-C) among the users to reveal one of
the reasons why our policy has better service regularity than
the MW policy. In all of our simulations, we assume p = 0.8,
ri = 1 and αi = 1 for all users, unless otherwise specified.

A. Throughput Performance

To illustrate the throughput performance, we use a set of
flows and let their total rate increase to the boundary of the
capacity region. In Fig. 4, we compare the total queue-length
under the MW policy, as well as our policy with different γ
values.

0.797 0.7975 0.798 0.7985 0.799 0.7995 0.8
0

5000

10000

15000

Total Arrival Rate

E
[Q

Σ
]

 

 

MW Policy (γ=0)
γ=1
γ=2
γ=3

Fig. 4. The total queue-length of MW policy and our policy with different
γ values.

It can be observed in Fig. 4 that the total queue-length
remains finite for all arrival rates that lies within the capacity
region given by

∑N
i=1

λi

ri
< p = 0.8, which confirms that our

policy is indeed throughput-optimal. It also can be observed
that the total queue-length of our policy increases with the
parameter γ. This is expected since as γ increases, it becomes
more likely for the RTO policy to choose a queue with
less packet to serve, potentially wasting some service while
improving the service regularity, as we shall see next.

B. Service Regularity Performance

In this subsection, we investigate the service regularity per-
formance of our RTO policy, as well as illustrate the tradeoff
between the total queue-length and the service regularity. We
presents our results in two scenarios, namely the symmetric
arrival rates, and the asymmetric ones. We choose the scaling
parameter γ to be the powers of 2, ranging from 2−7 to 27.
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Fig. 5. The lower bound and the relationship between the expected total
queue-length and the expected total TSLS value for (a) symmetric arrival
rates with different burstiness and (b) asymmetric arrival rates.

1) Symmetric Arrival Rates: To investigate the service
regularity performance of our policy, we run the simulation
with a set of 4 users with symmetric arrival rates, with ε = 1

16 .
All users have different arrival distributions such that their
second moment is different from each other.

Fig. 5(a) shows the relationship between the expected total
queue-length and the expected total TSLS value for 2 different
set of arrivals with different second moments. The tradeoff
between the service regularity and the total queue-length can
be clearly seen: as γ increases, the service regularity improves
while the total queue-length also increases. It can be observed
that in both cases, the simulated values converge to the lower
bound achieved by the RR policy with relatively small γ
values.

2) Asymmetric Arrival Rates: In this setup, we have 4 flows
with rates 12

40 , 9
40 , 6

40 and 3
40 , respectively, and the parameter

βi for user i is chosen to be 1
λi

. Since this arrival rate is
outside the stability region of the RR policy, we do not expect
our RTO policy to converge to the lower bound provided by it.
Indeed, it can be observed in Fig. 5(b) that under both set of
the arrival processes, the total expected TSLS value converges
to a point that is larger than the lower bound.

We can also observe the effect of the inclusion of the
TSLS on the service regularity under the asymmetric arrival
rates scenario. Even with very small γ values (e.g., 2−7), our
RTO policy significantly improves the service regularity, while
introducing negligible increase in the total queue-length.

C. Distribution of Services among the Users

In this subsection, we study the distribution of the services
among the users under non-fading conditions to illustrate one
of the reasons why our policy outperforms MW policy in
terms of service regularity. We consider a set of 8 users with
symmetric arrival rates. Yet, all users have different arrival
distributions, with the arrival of the ith user being either 2i−1

with probability 1−ε
2i−1N or 0. Thus the second moment of the

arrival process for user i is 2i−1(1−ε)
N .
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Fig. 6. (a) The service rate distribution among different users. (b) E[I2i ]
values for individual users.

Fig. 6(a) illustrates the service rate distribution among
different users in the system. The MW policy, which guar-
antees only stability, allocates roughly the same service rate
(≈ 1

8 ) to each user, since the arrival rates are symmetric. Our
policy intelligently adapts to the second moment of the arrival
processes, and allocates more service to the users with higher
second moment, while maintaining the stability of the system.
This particular service rate distribution leads to the increasing
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in the total queue-length which is revealed by the queue-length
upper bound given in Proposition 1, and also illustrated in the
previous simulation results.

We also examine the expected second moment of the inter-
service time for each individual user, which is shown in
Fig. 6(b). As a result of the service rate distribution shown
in Fig. 6(a), the users with higher second moment of the
arrival process suffer in the performance of service regularity
under the MW policy. Under our policy, the E[I

2

i ] value
becomes close to each other and much smaller than that of the
MW policy for all users, indicating a better service regularity
for each user. This performance improves further when we
increase the value of γ. It can be also observed that the MW
policy has a much higher value (note the logarithmic scale on
the y axis) of

∑N
i=1 E[I

2

i ] than our policy.

VI. CONCLUSION

In this work, we investigated the problem of designing a
scheduling policy that is both throughput-optimal and pos-
sesses favorable service regularity characteristics. We intro-
duced a new parameter of time-since-last-service, and pro-
posed a novel scheduling policy that combines this parameter
with the queue-lengths in its weight. After establishing the
throughput optimality of our policy, we showed that it also
has provable service regularity performance. In particular,
the service regularity of our policy can be guaranteed to
remain within a constant factor distance of a fundamental
lower bound. We explicitly expressed this constant factor as a
function of the mean arrival rates and the system parameters.
We performed extensive numerical studies to illustrate the
significant gains achieved by our policy over the traditional
queue-length-based policies. Our results show the significance
of utilizing the time-since-last-service in improving the service
regularity performance of throughput-optimal policies.

In our future work, we will extend the analysis of our
promising policy to more general channel fading and network
models. Another interesting direction is the study of the heavy-
traffic characteristics of this class of policies.
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APPENDIX A
PROOF OF LEMMA 2

Recall that our policy schedules the user i∗[t] =
argmaxi(αiQi[t] + γβiTi[t]) at each time slot t. Hence, if
Qi∗ [t] < ri∗ , the following inequality holds:

αiQi[t] ≤ αiQi[t] + γβiTi[t]

≤ αi∗Qi∗ [t] + γβi∗Ti∗ [t] ≤ αi∗ri∗ + γβi∗Ti∗ [t],

for all i 6= i∗[t]. Consequently, we have

QΣ[t] =

N∑
i=1

Qi[t]

ri
≤

N∑
i=1

αi∗ri∗ + γβi∗Ti∗ [t]

αiri

≤ N maxi(αiri)

mini(αiri)
+

Nγβmax
min(αiri)

Ti∗ [t],

where βmax = maxi(βi). Thus, we can write the following
expectation:

E [QΣ[t]1{Qi∗ [t] < ri∗}]

≤E
[
Nγβmax
min(αiri)

Ti∗ [t]1{Qi∗ [t] < ri∗}
]

+
N maxi(αiri)

mini(αiri)

=
Nγβmax
min(αiri)

∞∑
m=1

mP (Ti∗ [t] = m,Qi∗ [t] < ri∗) +B0, (11)

where B0 , N maxi(αiri)/mini(αiri).
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By the definition of Ti∗ [t], Ti∗ [t] = m is equivalent to say
that user i has not been served in the past m time-slots. Thus,
we have the following relationship between the events:

{Ti∗ [t] = m,Qi∗ [t] = 0}

=

{
Si∗ [t−m]C[t−m] = · · · = Si∗ [t− 1]C[t− 1] = 0,
Qi∗ [t] < ri∗

}
(a)
=

{
Si∗ [t−m]C[t−m] = · · · = Si∗ [t− 1]C[t− 1] = 0,

Qi∗ [t] < ri∗ ,
∑t−1
k=t−mAi∗ [k] < ri∗

}
⊆

{
t−1∑

k=t−m

Ai∗ [k] ≤ rmax

}
, (12)

where rmax , maxi(ri), and (a) holds due to the nature of
the queue evolution, that if there has been no service during
the past m slots while Qi∗ [t] < ri∗ , then it must imply that
the total arrivals during these m slots is less than ri∗ . As a
consequence of (12), we have

P{Ti∗ [t] = m,Qi∗ [t] < ri∗} ≤ P

{
t−1∑

k=t−m

Ai∗ [k] ≤ rmax

}
.

We can then bound the above probability by using a large
deviation argument. Let 0 < a < mini λi be a constant.
Choose and fix an M large enough such that for each i, we
have rmax

M −λi ≤ −a. Then for m > M , the following holds:

P

{
t−1∑

k=t−m

Ai∗ [k] ≤ rmax

}

≤ P

{
1

m

t−1∑
k=t−m

Ai∗ [k]− λi∗ ≤ a

}
≤ e−mIi∗ (a) ≤ e−mImin(a), (13)

where Ii(a) is the rate function for user i, given by

Ii(a) = sup
θ

(
θa− logE

[
eθAi

])
,

and Imin(a) = mini Ii(a). Note that under our i.i.d and finite
support assumption of the arrival process for each user, the
rate function Ii(a) is well defined for each user i.

Substitute (13) into (11), we get

E [QΣ1{Qi∗ [t] < ri∗}]

≤ Nγβmax
min(αiri)

M∑
m=1

mP (Ti∗ [t] = m,Qi∗ [t] < ri∗) (14)

+
Nγβmax
min(αiri)

∞∑
m=M+1

me−mImin(a) +B0 (15)

≤ B1(γ),

where (14) is a finite sum of finite terms for all user i, and (15)
is finite due to the fact that

∑∞
m=1mx

m = x
(1−x)2 , ∀|x| < 1.

APPENDIX B
PROOF OF PROPOSITION 1

We look at the Lyapunov function defined by

W (Q[t],T [t]) ,
1

2
Q2

Σ[t],

and study its mean drift given by

4W (Q[t],T [t])

=E [W (Q[t+ 1],T [t+ 1])−W (Q[t],T [t])|Q[t],T [t]]

=E
[Q2

Σ[t+ 1]−Q2
Σ[t]

2
1{Qi∗ [t] < ri∗}|Q[t],T [t]

]
(16)

+ E
[Q2

Σ[t+ 1]−Q2
Σ[t]

2
1{Qi∗ [t] ≥ ri∗}|Q[t],T [t]

]
(17)

By substitute (5) into (16), and omit the time index t for
brevity, we have

(16) = E
[
(QΣAΣ +

1

2
A2

Σ)1{Qi∗ < ri∗}
∣∣∣∣Q,T ]

≤ QΣ(1− ε)1{Qi∗ < ri∗}+
N2A2

max

2r2
min

, (18)

where the last inequality above holds because we assume the
arrival process is supportable and has a finite support, thus
E[AΣ] =

∑N
i=1

λi

ri
= p− ε, and E[A2

Σ] ≤ N2A2
max

r2min
. Similarly,

we can write (17) as:

(17) =E
[
(QΣ(AΣ − C) +

1

2
(AΣ − C)2)1{Qi∗ ≥ ri∗}

∣∣∣∣Q,T ]
(a)

≤ − εQΣ1{Qi∗ ≥ ri∗}+
N2A2

max

2r2
min

+
p

2

=− εQΣ(1− 1{Qi∗ < ri∗}) +
N2A2

max

2r2
min

+
p

2

=− εQΣ + εQΣ1{Qi∗ < ri∗}+
N2A2

max

2r2
min

+
p

2
, (19)

where (a) holds because the channel condition C[t] is indepen-
dent of (Q[t],T [t]), thus it can be pulled out of the expectation
directly.

Combine (18) and (19), we get

4W (Q[t],T [t]) ≤ QΣ[t]1{Qi∗ [t] < ri∗} − εQΣ[t] +B2,

where B2 =
N2A2

max

r2min
+ p

2 is a finite constant. Taking expec-
tation over (Q[t],T [t]) on both sides yields:

1

2
E
[
Q2

Σ[t+ 1]−Q2
Σ[t]
]

≤ E [QΣ[t]1{Qi∗ [t] < ri∗}]− εE[QΣ[t]] +B2

(a)

≤ −εE[QΣ[t]] +B1(γ) +B2,

where (a) holds due to Lemma 2. Sum the above expectation
of the drift over t = 0 through K − 1, we get

E
[
Q2

Σ[K]−Q2
Σ[0]

]
2

≤ −ε
K−1∑
t=0

E[QΣ[t]] +K (B1(γ) +B2) ,

which can be simplified to

ε

K

K−1∑
t=0

E[QΣ[t]] ≤
E
[
Q2

Σ[0]
]

2K
+B1(γ) +B2.

Take the limit as K goes to infinity yields:

lim sup
K→∞

1

K

K−1∑
t=0

E[QΣ[t]] ≤ B1(γ) +B2

ε
.


