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Abstract—Motivated by the regular service requirements of
video applications for improving Quality-of-Experience (QoE) of
users, we consider the design of scheduling strategies in multi-
hop wireless networks that not only maximize system throughput
but also provide regular inter-service times for all links. Since the
service regularity of links is related to the higher-order statistics
of the arrival process and the policy operation, it is challenging
to characterize and analyze directly. We overcome this obstacle
by introducing a new quantity, namely the time-since-last-service
(TSLS), which tracks the time since the last service. By combining
it with the queue-length in the weight, we propose a novel
maximum-weight type scheduling policy, called Regular Service
Guarantee (RSG) Algorithm. The unique evolution of the TSLS
counter poses significant challenges for the analysis of the RSG
Algorithm.

To tackle these challenges, we first propose a novel Lyapunov
function to show the throughput optimality of the RSG Algorithm.
Then, we prove that the RSG Algorithm can provide service reg-
ularity guarantees by using the Lyapunov-drift based analysis of
the steady-state behavior of the stochastic processes. In particular,
our algorithm can achieve a degree of service regularity within a
factor of a fundamental lower bound we derive. This factor is a
function of the system statistics and design parameters and can be
as low as two in some special networks. Our results, both analytical
and numerical, exhibit significant service regularity improvements
over the traditional throughput-optimal policies, which reveals the
importance of incorporating the metric of time-since-last-service
into the scheduling policy for providing regulated service.

Index Terms—Wireless scheduling, throughput-optimality, ser-
vice regularity, Quality-of-Experience (QoE), real-time traffic.

I. INTRODUCTION

During the past years, there has been increasing deployment
of a variety of real-time applications over the wireless net-
works, especially streaming multi-media applications. Unlike
its non-real-time counterpart, the real-time traffic often has
various quality-of-service (QoS) requirements besides through-
put. Such requirements usually include end-to-end delay con-
straints, packet delivery ratio requirements, and the regularity
of the inter-service times. Unlike the traditional long-term mean
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throughput based requirements, these QoS requirements often
have a complex dependence on the higher-order statistics of
the arrival process as well as the system operation. Thus, the
canonical optimization-based approaches that aim to optimize
the throughput performance (e.g., [24], [4], [15], [20], [16]) do
not apply.

Recently, valuable efforts have been exerted in the design of
algorithms that improve various aspects of the QoS, especially
on the delay performance of the algorithms. For example,
some works focus on designing algorithms with low end-to-
end delay performance, such as [1], [28], [26]. Constant delay
bounds (e.g. [18]) and delivery ratio requirements for deadline-
constrained traffic (e.g. [7], [8], [9], [10], [12]) are some of the
other QoS metrics considered in the literature.

However, these QoS metrics do not fully characterize the
Quality-of-Experience (QoE) of users in video applications in
wireless networks. To see it, we can envision the network
scenario where each individual user wants to download its
video from the base station, as shown in Fig. 1. Each mobile
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Fig. 1: Cellular network with a single base station and L users

user would like to receive the data from the base station
regularly. Indeed, the QoE of users is highly related to the
average Perceived Video Quality (PVQ) across the sequence
of scenes forming the video, where the PVQ traditionally is a
local quality measure associated with a particular scene or a
short period of time. In [27], [11], the authors point out that
the variance in PVQ leads to the worse QoE than the constant
quality video with even smaller average PVQ. Yet, both the
time-varying nature of wireless channels and the scheduling
policy significantly affect the variance of the received data
of each mobile user. Traditional scheduling policies aiming to
maximize the system throughput or minimize the delay at the



base station side do not take users’ experience into account and
thus lead to the high variance of the received data of users.
This motivates us to reduce variability of arrivals to the
mobile users, which can be achieved by providing regulated
inter-service times for the arriving flows at the base station
end. However, the inter-service time characteristics are difficult
to analyze directly due to: its complex dependence on the high-
order statistics of the arrival and service processes, and its
non-Markovian evolution. To overcome this, we need to find
new approaches to study the inter-service time behavior. To the
best of our knowledge, this is the first work that rigorously
studies the service regularity of the scheduling policies. Our
contributions in this work can be summarized as follows:
e We introduce a new quantity (cf. Section II), namely the
time-since-last-service, that has a tight relationship with the
service regularity performance, and hence enables novel design
strategies. Yet, this new parameter has its unique evolution,
drastically different from a queue, which poses new challenges
for its analysis.
e We develop a novel maximum-weight type scheduling policy
that combines the time-since-last-service parameter and the
queue-length in its weight measure (cf. Section III). Then,
we show that the proposed scheduling policy possesses the
desirable throughput optimality property by using a novel
Lyapunov function.
e We derive lower and upper bounds on the service regularity
performance (cf. Section IV) by utilizing a novel Lyapunov-
drift-based argument, inspired by the approach in [3]. We
further show that, by properly scaling the design parameter
in our policy, we can guarantee a degree of service regularity
within a factor of our fundamental lower bound. This factor is
a function of the system statistics and design parameters and
can be as low as two under symmetric arrival rates in some
special networks.
e We support our analytical results with extensive numerical
investigations (cf. Section V), which show significant per-
formance gains in the service regularity over the traditional
throughput-optimal policies. Furthermore, the numerical inves-
tigations indicate that the service regularity performance of our
policy actually approaches the lower bounds as the weight of
the time-since-last-service increases in some special networks.
This work significantly extends our earlier work [14] in
several key aspects: (1) we conduct novel analyses that extend
both throughput optimality and service regularity guarantee
results to general multi-hop fading networks; (2) we show
the existence of all moments of the system state under our
proposed algorithm, which establishes the foundation to utilize
the Lyapunov-drift based analysis of the steady-state behavior
of stochastic processes; (3) we conduct simulations to compare
our policy with traditional throughput-optimal scheduling algo-
rithms in more general setups, including switch topologies and
fading scenarios.

II. SYSTEM MODEL

We consider a wireless network with L links, where a link
represents a pair of a transmitter and a receiver that are within

the transmission range of each other. We assume that the system
operates in slotted time with normalized slots ¢ € {1,2,...}.
Due to the interference-limited nature of wireless transmissions,
the success or failure of a transmission over a link depends on
whether an interfering link is also active in the same slot, which
is called the link-based conflict model. We call a set of links
that can be active simultaneously as a feasible schedule and
denote it as S[t] = (S;[t])f~,, where Si[t] = 1 if the link !
is scheduled in slot ¢ and S;[t] = 0, otherwise. We use S to
denote the set of all feasible schedules.

We capture the channel fading over link [ via a non-negative-
integer-valued random variable C[t], with Ci[t] < Cpax, Vi, t,
for some Cpax < 00, which measures the maximum amount
of service available in slot ¢, if the link [/ is scheduled. We
assume that C[t] = (Cj[t])L_,, Vt > 0, are independently and
identically distributed (i.i.d.) over time. We assume that Cpip £
min; E[Cy[t]] > 0. Let S(®) £ {Sc : S € S} denote the set
of feasible rate vectors when the channel is in state ¢, where
ab = (a;b;)}, denotes the component-wise product of two
vectors a and b. Then, the capacity region is defined as

R £ Pr{C[t] = c} - CH{S}, (1)

where CH{.A} denotes a convex hull of the set A, and the
summation is a Minkowski addition of sets.

We assume a per-link traffic model!, where A;[t] denotes
the number of packets arriving at link [ in slot ¢ that are
independently distributed over links, and i.i.d. over time with
finite mean A\; > 0, and Aj[t] < Apax, VI, ¢, for some
Apax < 00. Accordingly, a queue is maintained for each link
[ with Q;[t] denoting its queue length at the beginning of time
slot t. Then, the evolution of queue [ is described as follows:

Qult +1] = (Qu[t] + Ault] — Ci[t]Si[t]) ™, W4, 2

where (z)* = max{z,0}. We say that the queue [ is strongly
stable if it satisfies

1 X
lim sup 7. ; E[Qu[t]] < oo. 3)
We call system stable if all queues are strongly stable. In this
paper, we consider the policies under which the system evolves
as a Markov Chain. We call an algorithm throughput-optimal
if it makes all queues strongly stable for any arrival rate vector
A = (\)f, that lies strictly within the capacity region.

In this work, we are interested in providing regular service
for each link, which relates to the statistics of the inter-
service time. We use Ij[m] to denote the time between the
(m — 1)*" and the m'" service for link [. If the system is
stable, the steady-state distribution of the underlying Markov
Chain exists (see [19]) and thus we use Q = (Q,)&,,
S = (S))f, and I = (I;){~, to denote the random vector
with the same steady-state distribution of the queue-length,
service processes and inter-service time, respectively. We use

'We note that our algorithm can be extended to serve multi-hop traffic, but
the notion of service regularity is clearer in the per-link context.



the normalized second moment of the inter-service time under
the steady-state distribution, i.e., E[T.]/(E[T;]), as a measure
of the * regularlty of the service that link [ receives. Noting
that ]E[Il]/(]E[Il]) = Var(I;)/(E[I;])? + 1, the normalized
second moment of the inter-service time reflects its normalized
variance. Hence, the smaller the normalized second moment of
the inter-service time, the smaller its normalized variance and
thus the received service is more regular.

We would like to develop throughput-optimal policies
that achleve low values of a linear increasing function of
(IE[I J/(E[L])?)E, in steady-state, implying more regular ser-
vice. However, unlike queue-lengths with Markovian evolution,
the dynamics of inter-service times do not lend themselves to
commonly used Markovian analysis methods. To overcome this
obstacle, we introduce the following related quantity, namely
the time-since-last-service, which has much more tractable form
of evolution, and whose mean has a close relationship to
the normalized second moment of the inter-service time (cf.
Lemma 1).

For each link [, we introduce a counter 7;, namely Time-
Since-Last-Service (TSLS), to keep track of the time since it
was lastly served, i.e., it was scheduled and the channel was
available. Let

Sl[T]Cl[T] > 0,5[[7’ + 1}0[[’7’ + 1] =
{ -ZSl[t—l}Cl[t—l]ZO }’

be the last time when link [ was served before time slot ¢, then
Ti[t] = t — .[t] — 1. By definition, each counter 7} increases
by 1 in each time slot when link [ has zero transmission rate,
either because it is not scheduled, or because its channel is
unavailable, i.e., Ci[t] = 0, and drops to 0, otherwise. More
precisely, the evolution of the counter 7; can be written as

0 if Si[]Ci[t] > 0
Tt+1] = { Ti[t]+1 if Si[t]Ci[t] =

It can be seen from (4) that the evolution of T;[t] differs
significantly from that of a traditional queue (also see Fig.
2). In particular, unlike the slowly evolving nature of queue-
lengths, the T;[t] is incremented until link [ receives service at
which time it drops to zero. In our design, we will consider
policies that not only use queue-lengths to achieve throughput-
optimality, but also include TSLS to improve service regularity.

The evolution of 7T; is tightly related to the inter-service time
I;, where I is the time between two consecutive instances when
T} hits zero, as shown in Fig. 2. In fact, we have the following
lemma relating the two in steady-state.
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Fig. 2: A sample trajectory of I;[m] and T;[t], where the curve
shows the evolution of T;[t].

Lemma 1: For any policy under which the steady-state dis-
tribution of the underlying Markov Chain exists, we have

— 1
1),

BT = 5 (g0 -
E[I;]
where T and I; denote the steady-state TSLS and inter-service
time at link [, respectively.
Proof: The detailed proof is provided in Appendix A. W

Lemma 1 reveals the connection between the second moment
of the inter-service time I; and the mean of TSLS T in
steady-state. This can be intuitively seen in Fig. 2, where the
area of each “triangle” under the trajectory of T;[t] is roughly
%I 7. In this work, we are interested in designing throughput-
optimal algorithms that reduce the total weighted-sum? of
the normahzed second rréoment of the inter-service tlme ie.,
S B[/ (BIL))", where 1 2 1/E[TL], pr 2 N/,
and 8; > 0 is some parameter related to the link. We can set
Bi > 0 if link [ prefers regular service and /5; = 0 otherwise.

According to Lemma 1, we have

Zﬁpl *QZﬂlAlETl JrZﬁl)\l

Since Zl 1 ﬂl/\l only depends on the system parameters,
we will use Zl L BNE[T)] as our measure for the service
regularity. In this work, we aim to design a scheduling policy
that is not only throughput-optimal, but also yields provable
good characteristics in the service regularity.

We achieve this dual objective by developing a parametric
class of throughput-optimal schedulers (cf. Section III-B) that
utilize a combination of queue-lengths and TSLS in its deci-
sions. Our policy is shown to guarantee a ratio (as a function
of the system statistics) in its service regularity with respect to
a fundamental lower bound (cf. Section IV-A).

&)

2

(6)

III. ALGORITHM DESIGN FOR REGULAR SERVICE

In this section, we first discuss the inefficiency of the
well-known throughput-optimal Maximum Weight Scheduling
(MWS) Algorithm in terms of service regularity. We then pro-
pose Regular Service Guarantee policy which can be shown that
not only achieves the throughput optimality but also possesses
good service regularity performance.

A. Inefficiency of the MWS Algorithm

In this subsection, we describe a well-known scheduling
policy, namely the Maximum Weight Scheduling (MWS) Algo-
rithm and discuss its inefficiency in terms of service regularity
performance. We first give the definition of the MWS Algorithm
for completeness.

2The weighting parameter p; is the arrival intensity at link [, and indicates
that the link with higher load prefers more regular service. Despite this, p; is
included in the objective function primarily for technical reasons. Noting that
the link preference parameter 3; can be any non-negative real number, and
thus this weighted form is still general enough.



Algorithm 1 (Maximum Weight Scheduling (MWS) Algorithm): B. The Regular Service Guarantee Policy

Under our model, the MWS Algorithm selects a schedule
SMWS)[1] with the largest total sum of the product of queue-
length and the maximum channel available rate within that
schedule, i.e., it chooses a schedule SMWS)[t] such that

L

S(MWS)[ t] € arg maxz Qi[t]Ci[t]Si[t]. @)
Ses 1o

The MWS Algorithm is known to be throughput-optimal
(e.g., [24], [16], [21], [2]), i.e., it stabilizes the network for
any arrival rate vector A that strictly lies within the capacity
region R. In our setup, the MWS Algorithm can be expected
to have close-to-lower-bound average delay performance (see
[SD. It has also been shown to be heavy-traffic optimal (see
[22], [3]), i.e., it minimizes the mean steady-state queue-length
under heavy-traffic conditions, where the arrival rate vector
approaches the boundary of the capacity region from below.

However, despite its throughput optimality and a number
of favorable properties on the delay performance, the MWS
Algorithm may result in poor performance in terms of service
regularity. This can be observed in Fig. 3 when the MWS
Algorithm serves a set of links with heterogeneous arrival
statistics in a non-fading fully-connected network with 8 links,
where each link can transfer one packet in one time slot if
scheduled and at most one link can be scheduled in each slot.

—e— Asymmetric Arrival Rates
;|| ~4 - Symmetric Arrival Rates o

Var([T}]

4 5
Link #

Fig. 3: The variance of the inter-service time under the MWS
Algorithm for links with different arrival processes in fully-
connected networks with 8 links. The links with smaller rates
or more bursty arrivals suffer from high variance of the inter-
service time.

In Fig. 3, the blue line shows a scenario where the I*" link
has a Bernoulli arrival with rate 2= for [ € {1,...,8}. In
this case, we observe that the variance of the inter-service time
increases exponentially as the arrival rate of the link reduces.
The red curve illustrates a different scenario where all 8 links
have the same mean arrival rate, but increasing variances (i.e.,
burstiness) in their arrivals, where we observe that the link with
more bursty arrivals suffers from higher variance in its inter-
service time.

As discussed above, the MWS Algorithm is throughput-
optimal but inefficient in providing regular services. Note that
the introduced TSLS counter has a direct impact on service
regularity: the smaller the mean TSLS value, the more regular
the service. This interesting connection motivates the following
parametrized policy which is later revealed to possess the
characteristics of throughput optimality and service regularity.

Algorithm 2 (Regular Service Guarantee (RSG) Algorithm):
In each time slot ¢, select a schedule S*[t] such that

L

S*[t] € argmaxz (qQi[t] + BTt Cilt] S, ()

Sses 1

where o; > 0 and v > 0 are fixed control parameters.

We note that there are two sets of control parameters in
the RSG Algorithm?® and they affect different behaviors of
the algorithm. Yet, it will be revealed later that none of
them affects its throughput optimality. The parameters «; are
weighing factors for the queue-lengths, where a larger a; will
result in a smaller average queue-length. The parameter v
is a common weighing factor of TSLS for all links. It will
be revealed in Section IV-B that the design parameter v can
improve the service regularity as it increases. Also note that
when v = 0, our policy coincides with the MWS Algorithm.
When ~ > 0, with the addition of T;[t] terms in the weight
of each link, our algorithm operates completely different from
the MWS and its approximate algorithms, which, to the best
of our knowledge, are the only known policies possessing
the throughput-optimality characteristic in general multi-hop
network topologies. Despite of this, we can still show that our
algorithm is throughput-optimal.

Proposition 1: The RSG Algorithm with any o; > 0 and
v > 0, is throughput-optimal, i.e., for any arrival rate vector
A € Int(R), the RSG Algorithm stabilizes the system, with

K-1 L
limsup — ZZQZE Qi[t] Bla, 'B’Y), )
=

where Int(A) denotes the interior points of the region A,
L L

B(a,ﬂm) £ 4yCrax 2121 B + 2121 aylE [A%[t] + Cﬁt]]’

€ is some positive constant satisfying A + €1 € R, and 1 is a

vector of ones.

Proof: Consider the Lyapunov function

252(11621

W( + 4'ycmax Z BlT’l

=1

(10)

3The RSG Algorithm inherits the same complexity issue as the well-known
MWS Algorithm. The low complexity or the distributed implementations of
the RSG Algorithm are always attractive in practical networks and are left for
future research.



It is shown in Appendix B that there exists a positive constant
€ > 0 such that

AW 2B [W(Qt + 1), T[t + 1]) — W(Q[t]), T[t))|Q[t], T[]

L
S - 2€ZalQl[t] +B(aaﬁ,’y)

=1

(11

Taking the expectation on the both sides of (11) and summing
over t =0,1,..., K — 1, we have the desired result. [ |

Proposition 1 establishes the throughput optimality of the
RSG Algorithm, thus @;[t] and T;[¢] will converge in distribu-
tion to @, and T, which attain the steady-state distribution
under our policy. Proposition 1 also gives an upper bound for
the expected total queue-length under the steady-state, which
increases linearly with the design parameter . It will be
revealed later that y controls the tradeoff between the average
total queue-length, and the service regularity performance,
especially in the heterogenous networks.

Next, we will show that all moments of steady-state system
variables, such as queue-lengths and TSLS, are bounded under
the RSG Algorithm, which enables us to analyze the service
regularity performance by using the Lyapunov-type approach
developed in [3]. In [6], the sufficient condition for all moments
of state variables of a Markov Chain to exist in steady state is
given as finding a Lyapunov function that satisfies: (1) it has
a negative Lyapunov drift when the system variable is large
enough; (2) the absolute value of the Lyapunov drift is bounded
or has an exponential tail. From equation (11), we know that the
first condition holds. Yet, the second condition is hard to hold
for the Lyapunov function W (Q, T) or its variant /W (Q,T)
due to the unique evolution of TSLS counters (see equation (4)),
which have bounded increment but unbounded decrement. We
tackle this challenge by properly partitioning the system space.

Proposition 2: For any arrival rate vector A € Int(R), all
moments of steady-state queue length and TSLS exist under
the RSG Algorithm with any a; > 0 and v > 0.

Proof: We show the boundedness of I [e”Yllz] for
some 17 > 0 by intelligently partitioning the system space,
where Y[t] £ (ﬁQ[t], 4'yCmaXﬁT[t]), VX denotes the
component-wise square root of the vector x, and xy denotes
the component-wise product of the vectors x and y. Please see
our technical report [13] for details. [ |

Having established the throughput optimality and the mo-
ment existence of the system state variables of the RSG

Algorithm, we are ready to analyze the service regularity
performance, i.e., ZlL:l BINE[T)].

IV. SERVICE REGULARITY PERFORMANCE ANALYSIS

In this section, we study the service regularity performance
of our proposed RSG Algorithm analytically. We first establish
a fundamental lower bound on the service regularity for any
feasible scheduling algorithm. Then, we derive an upper bound
on the service regularity under the RSG Algorithm. These
investigations reveal that the service regularity performance of
the RSG Algorithm can be guaranteed to remain within a factor

of the lower bound, which is expressed as a function of the
system statistics and the design parameters, and can be as low
as 2 in some special networks. We assume the parameter v > 0
throughout this section.

A. Lower Bound Analysis

In this subsection, we derive a lower bound based on a
Lyapunov drift argument inspired by the technique used in
[3]. To study the lower bound of the service regularity by
the Lyapunov drift argument, we consider a class of policies,
called P, that not only stabilize the system but also yield the
bounded second moment of the steady-state TSLS*. Note that
our proposed algorithm, as well as the MWS algorithm, falls
into this class by Propositions 1 and 2.

Let Tl(p) and §§p) be the steady-state TSLS and scheduling
variable for link [ under policy p € P, respectively. The
following lemma gives key identities for the first and second
moment of the steady-state TSLS, which are useful in deriving
a lower bound on the service regularity.

Lemma 2: For any policy p € P, we have

; i i
E| S sanT | =0 -E| Y B, (2
leﬁ(p) =1 _leﬁ@) ]
L L [ i
2> BAE [TV = BN -E| Y An
=1 =1 _leﬁ(P)
B Y an ()] a3
1ca® i

where " 2 {l: élgl(p) > 0}, and C = (C))E, has the

same probability distribution as C[t] = (C)[t])L,.
Proof: See Appendix C for the proof. ]
We are ready to give a lower bound on the service regularity
for any feasible policy p € P.
Proposition 3: For any policy p € P, we have

L L L
(P) 1 Zl:1 51)%
NE T > — -1 Al
;51 1 { ) } Z 3 <maxs63 > s B ;Bl !

Proof: In the rest of proof, we will omit superscript p
for conciseness. For any sample path, by Cauchy-Schwarz
inequality, we have

2 2
DOBNT| =Y VBN VBN
leH leH
<Y an | Y BNT, (s
leH leH

4We conjecture that the second moment of the steady-state TSLS is bounded
as long as the system is stable.



where we recall that H £ {I : C;'S; > 0}. This implies

2 (Siem AN’
AN > \2aerANTL) .
2;;[% o 2ieE Bid (15)
Hence, we have
Z BNT: | >E M
leH - ZleH ﬁl)\l
(;) (E [Zleﬁ Bl)\lTl] )2
- F [Zleﬁ 51)\1]
v 2
© (S 8% B [Sicm AN ) (16)
CINEERY :

where the step (a) uses the fact that f(x,y) = "”—; is convex

and Jensen’s inequality for a multi-variable function; step (b)
follows from (12). By substituting (16) into (13), we have

L B 1 ZL BN, L
NE[T,] > —==L22 § . (17
;:1 BINE [Ty] > 2 \E[Y,cq BN B (A7)
Note that

Zﬁl)\l =B

IcH

L
Z B\ Pr{C/S; > 0}

L
Z BlAlﬂ{CzSL>0}]

By substituting (18) into (17), we have the desired result. MW

~

BN Pr{S, =1} < maxZ,Bl)\g (18)

les

Consider a fully-connected non-fading network, where only

one link is scheduled in each time slot. Let 5; = 8 and A\; = A
for each link {. Then, the lower bound becomes
1
ZE [ (”)] > SL(L-1). (19)

This lower bound can be achieved by the Round-Robin
(RR) policy, which serves each link periodically. Indeed, in
the steady-state, the TSLS vector under the RR policy is a

(RR)

permutation of {0,1,2,...,L — 1} and thus ZzL:1 [Tl } =

iL(L-1).

Yet, we would like to point out that the RR policy is not
throughput-optimal. Thus, for an arrival rate vector A that
cannot be supported by the RR policy, we do not expect a
throughput-optimal policy to approach the above lower bound
when serving it. However, for the arrival rate vectors that can
be supported by the RR policy, we shall see in our numerical
results that the performance of our policy can approach this
lower bound when we increase the scaling parameter .

B. Upper Bound Analysis

In this subsection, we obtain an upper bound on the service
regularity under the RSG Algorithm. Let @l*, ?7 and T;k be
the steady-state queue-length, scheduling variable and TSLS
for link [ under the RSG Algorithm, respectively.

Proposition 4: For the RSG Algorithm, we have

ZL:BMLE {Tﬂ < iﬁl - Z B

=1 = leH"

4 2<T ZalE A +Tr], o

max

where € > 0 satisfies A(1+¢) € R, H £ {I: C;S; > 0}, and
A = (A4}, has the same distribution as A[t] = (A4;[t])~,
Proof: See Appendix D for the details. [ |
Note that the second term of the right hand side of (20)
captures various random effects in the network: the burstiness
of the arrival processes and the channel variations. Under our
policy these effects diminish as the scaling factor v goes
to infinity. Hence, together with Proposition 1, Proposition 4
reveals a tradeoff: when increasing v, the upper bound on
the total queue-length increases linearly with ~y, but the upper
bound for the service regularity decreases.
Consider the fully-connected non-fading network as in Sec-
tion IV-A. Let 8, = S and \; = \ = (1+6) for each link .
Then, as v goes to infinity, (20) becomes

XL:E [Tﬂ < L(L-1),
=1

which is always within twice the value of the lower bound
(19). In the more general case, the upper bound converges
to a constant that is determined by the system statistics and
design parameters as 7y goes to infinity. Moreover, we shall
see in the numerical results presented in Section V-B that
as v increases, the service regularity performance under the
RSG Algorithm actually converges to the lower bound (19)
in the fully-connected non-fading network with the symmetric
parameters.

@

V. NUMERICAL RESULTS

In this section, we provide simulation results for our pro-
posed RSG Algorithm and compare its performance to the
MWS Algorithm and the Oldest Cell First (OCF) Algorithm?
(see [17]). In particular, we investigate the throughput (cf. Sec-
tion V-A) and service regularity (cf. Section V-B) performances
of our policy in both fully-connected network with L = 4
links and 3 x 3 switch. We also look at the behavior of the
RSG Algorithm as well as the potential benefit of the service
regularity in our technical report [13]. In all of our simulations,
we assume Bernoulli arrivals to each link and oy = 5; = 1 for
each link /.

5The OCF Algorithm prioritizes activation of links with the greatest Head-
of-Line (HOL) delay.
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A. Throughput Performance

In this subsection, we illustrate the throughput performance
of the RSG Algorithm in three different network setups with
symmetric arrivals: (i) fully-connected non-fading network,
(ii) fully-connected network with symmetric ON-OFF fading
channels with probability ¢ = 0.8 that the channel is available,
and (iii) 3 x 3 switch. The achievable rate regions for these
three networks, respectively, are

=< 1} s

Ay A{A—(Al)?_l:/\l = Ay 1
1—(1—¢)*

L=< 1

1

In Fig. 4, we compare the total mean queue-length under the
MWS Algorithm, as well as the RSG Algorithm with different
~ values. It can be observed in Fig. 4 that the RSG Algorithm
can stabilize the system in the above network setups. It also can
be seen that the total mean queue-length of the RSG Algorithm
increases with the parameter . This is expected since as y
increases, it becomes more likely for the RSG Algorithm to
choose a queue with less packet to serve, potentially wasting
some service while improving the service regularity, as we shall
see next.

A2 é {)\ = ()\l);l:1 . )\1 = )\2

Az 2 {)\ =\ A =X

B. Service Regularity Performance

In this subsection, we investigate the service regularity
performance of our RSG Algorithm, as well as illustrate the
tradeoff between the total mean queue-length and the service
regularity. We present our results in three different networks:
fully-connected non-fading network, fully-connected fading
network and 3 x 3 switch. In both fully-connected nonfad-
ing and fading networks, we consider the symmetric setup
with the arrival rate vector A £ [0.225,0.225,0.225, 0.225],
and the asymmetric setup with the arrival rate vector A
[0.4,0.3,0.15,0.05]. For a fully-connected ON-OFF fading
network, the probability vectors that the channels are avail-
able are [0.8,0.8,0.8,0.8] in symmetric setup and
q [0.6,0.5,0.4,0.3] in asymmetric setup. For a 3 x 3
switch, we consider the symmetric setup with the arrival
rate vector A = [0.3,0.3,0.3;0.3,0.3,0.3;0.3,0.3,0.3] and
the asymmetric setup with the arrival rate vector A
[0.5,0.3,0.1;0.2,0.4,0.3;0.1,0.2,0.5]. In all simulations, we
choose the scaling parameter v to be the powers of 2, ranging
from 277 to 27.

Fig. 5 shows the relationship between the total mean queue-
length and the service regularity in different network setups.
The tradeoff between the service regularity and the total mean
queue-length can be clearly seen: as v increases, the service
regularity improves while the total mean queue-length also
increases. Also, we can observe that the OCF Algorithm does



not improve the service regularity performance significantly
compared to the MWS Algorithm. The reason lies in that
both MWS and OCF Algorithms perform similarly among
the links that have continuous arrivals, which can be seen
from the Little’s Law. In addition, it has been shown that the
MWS Algorithm is delay-optimal in fully-connected networks
with symmetric Bernoulli arrivals and ON-OFF fading channels
(see [25]). From Fig. 5(b), we can see that the delay-optimal
algorithm may fail to meet the certain service regularity re-
quirement. Furthermore, it can be observed that the simulated
values converge to the fundamental lower bound in non-fading
networks with symmetric setup (Figs 5(a) and (c)), while they
stay away from the lower bound in asymmetric setups. This
motivates us to refine the lower bound analysis in asymmetric
setups, which is left for future investigation. Here, it is worth
mentioning that even with very small ~ values (e.g., 27°), our
RSG Algorithm significantly improves the service regularity,
while introducing negligible increase in the total mean queue-
length.

VI. CONCLUSION

In this work, we investigated the problem of designing a
scheduling policy that is both throughput-optimal and possesses
favorable service regularity characteristics. We introduced a
new parameter of time-since-last-service, and proposed a novel
scheduling policy that combines this parameter with the queue-
lengths in its weight. After establishing the throughput optimal-
ity of our policy, we showed that it also has provable service
regularity performance. In particular, the service regularity of
our policy can be guaranteed to remain within a factor distance
of a fundamental lower bound for any feasible scheduling
policy. We explicitly expressed this factor as a function of
the system statistics and the design parameters. We performed
extensive numerical studies to illustrate the significant gains
achieved by our policy over the traditional queue-length or
head-of-line-delay based policies. Our results show the signif-
icance of utilizing the time-since-last-service in improving the
service regularity performance of throughput-optimal policies.

APPENDIX A
PROOF OF LEMMA 1

Without loss of generality, assume that link [ is served at
time 0. For any positive integer M, there exists an m such that

L)+ +Lfm)] < M,
Il[l]—l--i-fl[m]—i-fl[m-i-l] > M.
We can write
1 M 1 (1] I[1]+1;(2]
_MZEMZ:M<ZEW+§IEM+~
t=1 t=1 t=I;[1]+1

_|_

> M) (22)

t:]l[l]—‘r“'—‘rll [m]+1

We observe the following fact: assume link [ receives its
(m — 1)*" and m*" service at time slot ¢; and t5, respectively,
where to > t1. Then, by definition, I;[m] = to—t1, T[t1+1] =
0 and Tj[ta] = to —t; — 1 = I;[m] — 1. Using this fact, we
know the k" summation on the right hand side of (22) gives
(L [K)(I;[k] — 1)), except for the last one. Thus we have:

M m

Lyomp > LS MHIEZD g
t=1 k=1
M m+1

%ZTZM < % Z w (24)
t=1 k=1

By the definition of m and the fact that IE[I;] < oo when
each link is served with strictly positive probability, we know
that m — oo when M — oo. Since the policy considered in
this paper is Markovian, we have

1 M
i, 37 370 =T

Note that % S Lk < % < Lﬂ%
implies limpy/_, o0 2 = E[I}].
By taking limit on (23) and (24) as M — oo, we have

m* U 1K), which

. om 1 = L[K(L[K] - 1) 1
i UMY T _
N kz_l 2 S 7 ZH Tift]
m—+1
.oom+1 1 LIk (L[k] - 1)
<
Y S VI > 2 ’

k=1
and thus we have the desired result.

APPENDIX B
PROOF OF INEQUALITY (11)

AW 2B [W(Qt + 1], T[t + 1]) — W(Q[t], T[))|Q[t], T[]

L L
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where the last step follows from the evolution of each queue,
and (max{z,0})? < 22.

Let H* £ {I : S}[t]Ci[t] > 0}. According to the definition
of the TSLS counter, we have

L
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=1
=" BT+ 1)
l¢H*
L
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By substituting inequality (27) into (25), we have
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where B(a, 3,7) is defined in Proposition 1.

Let SMWS)[t] € arg maxZalQl ]C1[t]Si. Then, by the
ses 14
definition of the RSG Algorithm, we have

> (uQilt] + BT [H)C
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which implies
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By substituting (29) into (28), we have
L L
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where we recall that H* = {l : S/[t|C;[t] > 0}. By substituting
(31) into (30), we have
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Note that the capacity region R (see [23]) is also equivalent to
a set of arrival rate vectors A such that there exist non-negative
numbers 6(c;s) satisfying

N < ZPr{C = C}ZQ (c;8)esy, Vi,
seS

where s = (s;){; and Y  s0(c;s) = 1,Ve. For any X €
Int(R), there exists an € > 0 such that

(33)
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Hence, we have
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where the step (a) follows from the definition of SMYS) By
substituting (35) into (32), we have
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APPENDIX C
PROOF OF LEMMA 2

In the rest of proof, we will omit the superscript p for brevity.

Proof of identity (12):

L
SOBNTE+1] =Y B (Ti[t] +1)
=1 I1¢H
L
=> BT[] =Y BT[] +Zﬁm > B\, (38)
=1 leH leH
where H £ {I : S;[t]Ci[t] > 0}. Taking expectation on both

sides with respect to the steady state distribution of (Q,T) and
rearranging terms, we have the desired result.

Proof of identity (13):

ZﬁzAle t+1 =3 B (Tt + 1)
I¢H
= Z BINTZ[E 42> BNTIH + > BN
leH I¢H I¢H
L
—ZﬁzAsz =S ANTE + 2 BN

leH

—2) BNTt] +Zﬁl)\z > BN

leH leH

=1

(39)

Taking expectation on both sides with respect to the steady state
distribution of (Q,T) and rearranging terms, we have
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APPENDIX D
PROOF OF PROPOSITION 4

Consider the quadratic Lyapunov function Wq(Q,T) £
5 Zz L u@?. We have

AWq(Q,T)
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Taking expectation on both sides with respect to the
steady state distribution of (Q,T), and using the fact that

E[AWq(Q, T)] = 0 followed from E[@?] < oo forallleL,
we have
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T and the channel state
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Recall that given Q[t] =
CJt], we have
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According to the definition of the capacity region R, we can

show
L
ZE [(u@i[t] + B 0[E]) Ci[t]ST [H]|Q[t] = Q, T[t] = T
=1
L
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The proof is available in our technical report [13].

Since A € Int(R), there exists an € > 0 such that A(1+¢) €

‘R. Hence, we have
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Taking expectation on both sides with respect to the steady state

distribution of (Q, T), we have
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By substituting above inequality into (43) and canceling the

common term in both sides, we have
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where the last step uses identity (12).
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