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Wireless Scheduling Design for Optimizing
Both Service Regularity and Mean Delay

in Heavy-Traffic Regimes
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Abstract—We consider the design of throughput-optimal sched-
uling policies in multihop wireless networks that also possess
good mean delay performance and provide regular service for
all links—critical metrics for real-time applications. To that end,
we study a parametric class of maximum-weight-type scheduling
policies, called Regular Service Guarantee (RSG) Algorithm,
where each link weight consists of its own queue length and
a counter that tracks the time since the last service, namely
Time-Since-Last-Service (TSLS). The RSG Algorithm not only
is throughput-optimal, but also achieves a tradeoff between the
service regularity performance and the mean delay, i.e., the service
regularity performance of the RSG Algorithm improves at the
cost of increasing mean delay. This motivates us to investigate
whether satisfactory service regularity and low mean-delay can
be simultaneously achieved by the RSG Algorithm by carefully
selecting its design parameter. To that end, we perform a novel
Lyapunov-drift-based analysis of the steady-state behavior of the
stochastic network. Our analysis reveals that the RSG Algorithm
can minimize the total mean queue length to establish mean delay
optimality under heavily loaded conditions as long as the design
parameter weighting for the TSLS scales no faster than the order
of , where measures the closeness of the network load to the
boundary of the capacity region. To the best of our knowledge,
this is the first work that provides regular service to all links while
also achieving heavy-traffic optimality in mean queue lengths.
Index Terms—Heavy-traffic analysis, mean delay, service

regularity, throughput, wireless scheduling.

I. INTRODUCTION

R EAL-TIME applications, such as voice over IP or live
multimedia streaming, are becoming increasingly pop-

ular as smartphones proliferate in wireless networks. To sup-
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port real-time applications, network algorithm design should not
only efficiently manage the interference among simultaneous
transmissions, but also meet the requirements of quality of ser-
vice (QoS) including delay, packet delivery ratio, and jitter.
Such QoS requirements, in turn, depend on the higher-order sta-
tistics of the arrival and service process, which poses significant
challenges for efficient network algorithm design.
In recent years, there has been an increasing understanding on

the algorithm design that targets various aspects of QoS, espe-
cially packet delivery ratio requirement (e.g., [8], [9], and [11])
and low end-to-end delay (e.g., [2], [6], [25], and [26]). How-
ever, these QoS metrics do not fully characterize the quality of
experience (QoE) of users in real-time applications in wireless
networks. For example, in the network where each individual
user wants to watch its video that is delivered by the base station,
each mobile user would like to receive the data from the base
station regularly. Yet, both the time-varying nature of wireless
channels and the scheduling policy significantly affect the reg-
ularity of the received data of each mobile user. The traditional
scheduling policies aiming to maximize the system throughput
(e.g., [10], [17], and [22]) or provide various fairness guaran-
tees (e.g., [3], [16], [18], and [21]) at the base station side do
not take users’ experience into account and thus lead to the high
irregularity of the received data of mobile users.
Our work is motivated by the recent advances made in

[13] and [15] that provide a promising approach for man-
aging this critical QoS metric. In particular, [13] provides a
throughput-optimal algorithm that prioritizes service of links
with the largest link weight in general network topologies,
where each link weight is the weighted sum of its own queue
length and a counter, namely the Time-Since-Last-Service
(TSLS), that tracks the time since the last service. This algo-
rithm improves service regularity as its design parameter
weighting for the TSLS increases (see Section III for more
details). Yet, increasing also has an averse effect on the mean
delay performance, which is also vital for most applications.
With this motivation, this paper focuses on the tradeoff be-

tween the service regularity and the mean delay performance
that this class of policies achieves. In particular, we are inter-
ested in identifying the range of values for in which the mean
delay performance guarantees can be provided, while the reg-
ularity characteristics are preserved. To that end, we build on
the recently developed approach of using Lyapunov drifts for
the steady-state analysis of queueing networks [4]. The main
result emanating from this analysis is the scaling law of as
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the system gets more and more heavily loaded so that the algo-
rithm is mean-delay-optimal among all feasible scheduling poli-
cies and provides the best service regularity among this class of
policies. Specifically, we show that the heavy-traffic optimality
is preserved as long as scales1 as , where is the
heavy-traffic parameter characterizing the closeness of the ar-
rival rate vector to the boundary of the capacity region.
Our analysis relates to the vast literature on heavy-traffic anal-

ysis of queueing networks (for example, [1], [5], [19], [20], [23],
and [24]), and in particular extends the Lyapunov drift-based
approach in [4]. A critical step in most of these results is to
establish a state-space collapse along a single dimension, and
thus relate the multidimensional system operation to a resource-
pooled single-dimensional system. Our construction also fol-
lows such line of argument in broad strokes. However, the new
dynamics of the considered class of algorithms require new
Lyapunov functions and techniques in establishing their heavy-
traffic optimality.
Note on Notation:We use bold and script font of a variable to

denote a vector and a set. Also, let denote the cardinality of
the set . We use to denote the set of interior points of
the set .We use and to denote the inner product and
componentwise product of the vector and , respectively. We
use and to denote the componentwise square and square
root of the vector , respectively. We also use to
denote componentwise comparison of two vectors, respectively.
Let and denote the and norm of the vector ,
respectively.

II. SYSTEM MODEL

We consider a wireless network represented by a graph
, where is the set of nodes and is the set of

links. A node represents a wireless transmitter or receiver,
while a link represents a pair of transmitter and receiver that are
within the transmission range of each other. We use for
convenience. We consider the link-based conflict model, where
links conflicting with each other cannot be active at the same
time. We call a set of links that can be active simultaneously as
a feasible schedule and denote it as , where

if the link is scheduled in time-slot , and
otherwise. Let be the set of all feasible schedules.
We capture the channel fading over link in time-slot

via a non-negative-integer-valued random variable ,
with strictly positive mean and , for
some , which measures the maximum amount
of service available in slot , if scheduled. We assume
that is an independently and
identically distributed (i.i.d.) sequence of random vectors
with . We use to denote the set
of all possible channel states. Note that is finite. Let

denote the set of feasible rate vectors
in the channel state . Then, the capacity region is defined
as , where denotes the
convex hull of the set .

1We say if there exists a such that for two
real-valued sequences and .

We assume a per-link traffic model, where denotes the
number of packets arriving at link in slot that are indepen-
dently distributed over links and i.i.d. over time with finite mean

, and , for some . Accord-
ingly, a queue is maintained for each link with denoting
its queue length at the beginning of time-slot . Let

be the unused service for
queue in slot . Then, the evolution of queue is described as
follows:

(1)

We say that the queue is strongly stable if it satisfies

We call an algorithm throughput-optimal if it makes all queues
strongly stable for any arrival rate vector that lies
strictly within the capacity region.
Our goal is to design a throughput-optimal scheduling algo-

rithm that also possesses the following desirable properties for
satisfying the QoS requirements: 1) provides regular services in
the sense that the normalized second moment of the interservice
times of the links is small; and 2) achieves low mean delay in
the sense that the total mean queue lengths is small, especially
in the regime where the system is heavily loaded—when delay
effects are most pronounced.
Next, we provide a regular service scheduler that possesses

throughput optimality and regular service guarantees, and then
investigate its mean-delay performance under the heavy-traffic
regime.

III. REGULAR SERVICE SCHEDULER

One of our goals is to provide regular services for each link,
which is related to the second moment of the interservice times.
To characterize the interservice time, we introduce a counter
for each link , namely TSLS, to keep track of the time since
link was last served. In particular, each increases by 1 in
each time-slot when link has zero transmission rate, either be-
cause it is not scheduled or because its channel is unavailable,
i.e., , and drops to 0 otherwise. More precisely, the
evolution of is described as follows:

if
if . (2)

Thus, the TSLS records the link “age” since the last time it
received service and is closely related to the interservice time.
Indeed, in [13], we showed that the normalized second moment
of the interservice times of each link is proportional to the mean
value of its TSLS for any stabilizing policy. Thus, the TSLS
has a direct impact on service regularity: The smaller the mean
TSLS value, the more regular the service.
This connection motivates the following maximum-weight

type algorithm that uses a combination of queue lengths and
TSLS values as its weights.
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Fig. 1. Performance of the RSG Algorithm.

Regular Service Guarantee (RSG) Algorithm2:

In each time-slot , select a schedule such that

(3)

where , and are design parameters.

The parameters are weighting factors for the queue
lengths, where a larger will result in a smaller average queue
length. The parameters weigh differently for each
link , with being a common scaling factor for all links. Note
that the RSG Algorithm coincides with the MWS Algorithm
when . Yet, the true significance of the RSG algorithm
is observed for large since as increases, the RSG Algorithm
prioritizes the schedule with the larger TSLS, hence providing
more regular services for each link. In [13], we have showed that
the RSGAlgorithm not only achieves throughput optimality, but
also provides regular service guarantees.
Yet, large values of may also deteriorate the mean delay

performance. We demonstrate this tradeoff in a single-hop non-
fading network with 4 links, where the number of packets ar-
riving at each link follows a Bernoulli distribution with the ar-
rival rate of 0.225. Let for each link . Fig. 1 shows
the mean delay and service regularity performance of the RSG
Algorithm with varying .
Fig. 1 reveals that the improved service regularity of the RSG

Algorithmwith increasing comes at the cost of larger mean de-
lays. We can show that the mean of the total TSLS value is min-
imized as goes to (see [13]). On the other hand, it is known
(e.g., [4] and [20]) that the mean queue lengths are minimized
under heavily loaded conditions (cf. Section IV for more de-
tail) when . In view of the tradeoff observed in the figure,

2For wireless networks with multihop traffic, where packets may traverse
multiple links before their departure, we maintain queue length and TSLS
counter for each flow at each link. Then, we propose a backpressure-type
algorithm with the link weight consisting of queue length and TSLS. We can
still show that the proposed backpressure-type algorithm achieves maximum
throughput. However, the service regularity of each flow is hard to characterize
in this setup, which is left for future research.

Fig. 2. Geometric structure of capacity region.

our objective is to understand whether both the regularity and
the mean-delay optimality characteristics of the RSG Algorithm
can be preserved, especially under heavily loaded conditions,
by carefully selecting .
In Section IV, we answer this question in the affirmative by

explicitly characterizing how should scale with respect to the
traffic load in order to achieve the heavy-traffic optimality while
also optimizing the service regularity performance of the RSG
Algorithm.

IV. HEAVY-TRAFFIC OPTIMALITY RESULT
In this section, we present our main result for the RSG

Algorithm in terms of its mean delay optimality under the
heavy-traffic limit, where the arrival rate vector approaches the
boundary of the capacity region.
In the rest of the paper, we consider the RSG Algorithm3 with

. We first note that the capacity region is a poly-
hedron due to the discreteness and finiteness of the service rate
choices, and thus has a finite number of faces. We consider the
exogenous arrival process with mean rate vector

, where measures the Euclidean distance of
to the boundary of (see Fig. 2).
In heavy-traffic analysis, we study the system performance

as decreases to zero, i.e., as the arrival rate vector approaches
belonging to the relative interior of a face, referred to as

the dominant hyperplane . We denote
, where , and is the normal vector of

the hyperplane satisfying and .
We are interested in understanding the steady-state queue

length values with vanishing . To that end, we first provide a
generic lower bound for all feasible schedulers by constructing

3Let and , . Also let
and . Construct

a hypothetical system with the arrival process and
the channel fading process under the following RSG
Algorithm in the hypothetical system:

where is the TSLS counter for link in the hypothetical system and evolves
as follows:

if
if .

Let and be the queue
length process under the RSG Algorithm in the original system and the RSG
Algorithm with for each link in the hypothetical system, respec-
tively. Then, it is easy to show that is stochastically equal
to . Thus, we can study the queue length behavior under the RSG
Algorithm with for each link in the hypothetical system.
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Fig. 3. Symmetric arrivals in a single-hop network. (a) Mean queue length.
(b) Service regularity.

a hypothetical single-server queue with the arrival process
, and the i.i.d. service process with the proba-

bility distribution

for each channel state (4)

where is the maximum -weighted
service rate achievable in channel state . By the con-
struction of capacity region , we have . Also,
it is easy to show that the constructed single-server queue
length is stochastically smaller than the queue length
process under any feasible scheduling policy.
Hence, by using [4, Lemma 4], we have the following lower
bound on the expected steady-state queue length under any
feasible scheduling policy.
Proposition 1: Let be a random vector with the same

distribution as the steady-state distribution of the queue length
processes under any feasible scheduling policy. Consider the
heavy-traffic limit , suppose that the variance vector

of the arrival process converges to a
constant vector . Then

(5)

where .
This fundamental lower bound of all feasible scheduling

policies motivates the following definition of heavy-traffic
optimality of a scheduler.
Definition 1 (Heavy-Traffic Optimality): A scheduler is

called heavy-traffic optimal if its steady-state queue length
vector satisfies

(6)

where is defined in Proposition 1.
It is well known that theMWSAlgorithm, which corresponds

to the RSG Algorithm with , is heavy-traffic optimal (e.g.,
[4] and [20]). This is shown by first establishing a state-space
collapse, i.e., the deviations of queue lengths from the direc-
tion are bounded, independent of heavy-traffic parameter .
Since the lower bound of mean queue length is of order of ,
the deviations from the direction are negligible compared to
the large queue length for a sufficiently small , and thus the
queue lengths concentrate along the normal vector . Because
of this, we also call the normal vector the line of attraction.

However, as discussed in Section III, we are interested in
large values of to provide satisfactory service regularity. Yet,
it is unknown whether the RSG Algorithm can remain heavy-
traffic optimal when is nonzero since larger values of lead to
higher mean queue lengths (cf. Fig. 1). Also, the state-space col-
lapse result is not applicable since the deviations from the line
of attraction depend on . This raises the question of how
should scale with in order to achieve heavy-traffic optimality
while allowing to take large values (providingmore regular
services). We answer this interesting and challenging question
by providing the following main result, proved in Section VI.
Proposition 2: Let be a random vector with the same

distribution as the steady-state distribution of the queue length
processes under the RSG Algorithm. Consider the heavy-traffic
limit , and suppose that the variance vector of
the arrival process converges to a constant vector
. Suppose the channel fading satisfies the mild assumption4

, for all . Then

(7)

where and is defined
in (23).
Furthermore, if , then and

thus the RSG Algorithm is heavy-traffic optimal.
This result is interesting in that it provides an explicit scaling

regime in which the design parameter can be increased
to utilize the service regulating nature of the RSG Algorithm
without sacrificing the heavy-traffic optimality. Intuitively, if

scales slowly as vanishes, each link weight is dominated
by its own queue length in the heavy-traffic regime, and thus
the heavy-traffic optimality may be maintained; otherwise, the
heavy-traffic optimality result may not hold, as will be demon-
strated in Section V.

V. SIMULATION RESULTS
In this section, we provide simulation results to compare the

mean delay and service regularity performance of the RSG Al-
gorithm with the MWS Algorithm. In the simulation, we con-
sider a single-hop nonfading network with 4 links. Its capacity
region is . We
use arrival process where the number of arrivals in each slot
follows a Bernoulli distribution. We consider the symmetric
case , and the asymmetric case

.
From Figs. 3(a) and 4(a), we can observe that the RSG Algo-

rithm with both and and the MWS Algorithm
converge to the theoretical lower bound and thus is heavy-traffic
optimal, which confirms our theoretical results. Yet, the RSG
Algorithm with has large mean queue length, which
does not match with the theoretical lower bound and thus is
not heavy-traffic optimal. Hence, should scale as slowly as

to preserve heavy-traffic optimality.
From Figs. 3(b) and 4(b), we can see that the RSG Algorithm

with even significantly outperforms the MWS Algorithm

4We note that our result holds in single-hop network topologies without this
assumption, and its extension to more general settings is part of our future work.
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Fig. 4. Asymmetric arrivals in a single-hop network. (a) Mean queue length.
(b) Service regularity.

in terms of service regularity. More remarkably, the RSG Al-
gorithm with can achieve the lower bound (see [13])
achieved by the round-robin policy under symmetric arrivals.

VI. DETAILED HEAVY-TRAFFIC ANALYSIS

In this section, we prove Proposition 2 by using the ana-
lytical approach in [4], which includes two parts: 1) showing
state-space collapse; 2) using the state-space collapse result to
obtain an upper bound on the mean queue lengths. Yet, it is
worth noting that the abrupt dynamics of TSLS counters pose
significant challenges in heavy-traffic analysis. In particular, it
requires new Lyapunov functions and a novel technique to es-
tablish heavy-traffic optimality of the RSG Algorithm.

A. State-Space Collapse
In this section, we establish a state-space collapse result

under the RSG Algorithm. That is, we develop upper bounds
for the deviation of steady-state queue lengths from the line
of attraction and TSLS counters. These upper bounds are
crucial to establish our main result.
We have mentioned in Section III that the RSG Algorithm

is throughput-optimal, i.e., it stabilizes all queues for any ar-
rival rate vector that are strictly within the capacity region. Let

and be queue length processes and
TSLS counters under the RSG Algorithm, respectively. Also,
we use and to denote their steady-state queue length
random vector and TSLS random vector, respectively. Then, by
the continuous mapping theorem, we have

(8)

(9)

where denotes convergence in distribution, and we define the
projection and the perpendicular vector of any given -dimen-
sional vector with respect to the normal vector as

Next, we will show that under the RSGAlgorithm, the second
moment of is bounded, dependent on , while the
second moment of is bounded by some constant in-
dependent of . Noting that the mean queue length under any
policy scales at least the order of by Proposition 1, the
state-space collapse happens in the following sense: By care-
fully selecting the scaling law of with respect to , both

and are negligible compared to the
large mean queue length for a sufficiently small .
Proposition 3: If , then, under

the RSG Algorithm, there exists a constant , independent
of , such that

(10)

(11)

where we recall that .
It is quite challenging to directly give an upper bound on

. Instead, we will first upper-bound the moment gen-
eration function of , and then use the relationship be-
tween the moments of a random variable and its moment gen-
eration function to upper-bound .
In order to obtain an upper bound on the moment genera-

tion function of , we first study the drift of the Lyapunov
function

and show that when is sufficiently large, it has
a strictly negative drift independent of , which is characterized
in the following key lemma.
Lemma 1: Under the RSG Algorithm, there exist posi-

tive constants and , independent of , such that whenever
, we have

(12)

where

The proof of Lemma 1 is available in Appendix A.
In [4], after showing that has a negative drift under

the MWS Algorithm when is large enough and ob-
serving that the drift of is bounded, the authors utilize
[7, Theorem 2.3] to develop an upper bound on the moment
generation function of , which implies the existence of
all moments of . However, the absolute value of the
drift has neither an upper bound nor an ex-
ponential tail given the current system state since
the TSLS counters have bounded increment but unbounded
decrement, i.e., they can at almost increase by 1 and drop to
0 once their corresponding links are scheduled. Therefore, we
cannot directly apply [7, Theorem 2.3], which requires either
boundedness or the exponential tail of the Lyapunov drift to
establish the existence of the moment generation function of
the system-state variables in addition to Lemma 1. Indeed,
for a Markov chain with a strictly negative drift of Lyapunov
function, if its Lyapunov drift has bounded increment but
unbounded decrement, its moment generation function may not
exist.
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Fig. 5. Markov chain .

Counterexample: Consider a Markov chain with
the following transition probability:

if
if
if if .

The state transition diagram of Markov chain is
shown in Fig. 5. Consider a linear Lyapunov function . For
any , we have

Thus, the Lyapunov function has a strictly negative drift
when and hence the steady-state distribution of the
Markov chain exists. Recall that its drift increases at almost by
1, but has unbounded decrement, which has similar dynamics
with the system under the RSG Algorithm.
Next, we will show that even the first moment of this Markov

chain does not exist, let alone its moment generation function.
Let be the steady-state random variable of the Markov chain
and . According to the global balance equa-
tions, we can easily calculate

(13)

Thus, we have

Fortunately, we can establish an upper bound on the moment
generation function of under the RSG Algorithm by ex-
ploiting the coupling between queue length processes and TSLS
counters under the RSG Algorithm. Here, we need a mild as-
sumption that , which leads to the
following lemma that all TSLS counters have an exponential
tail independent of .
Lemma 2: If , then, under

the RSG Algorithm, there exists a , independent of ,
such that

(14)

The proof of Lemma 2 is available in Appendix B.
Remark: We can also show that all TSLS counters still have

an exponential tail independent of in nonfading single-hop
network topologies. The extension to the more general setup is
left for future research.
Lemma 2 directly implies (11). The rest of proof mainly

builds on the analytical technique in [7], while it requires
carefully partitioning the space and exploiting
the coupling between the queue length processes and TSLS
counters. The detailed proof can be found in Appendix C.

B. Proof of Main Result
Having established the state-space collapse result, we are

ready to show the heavy-traffic optimality of the RSG Al-
gorithm. In this section, we first give an upper bound on

under the RSG Algorithm and then establish its
heavy-traffic optimality by selecting . In [13],
we have shown that all moments of steady-state system vari-
ables, such as queue lengths and TSLS, are bounded under the
RSG Algorithm, which enables us to analyze its heavy-traffic
performance by using the methodology of “setting the drift of
a Lyapunov function equal to zero.”
We will omit the superscript associated with the queue

lengths and TSLS counters for brevity in the rest of proof. In
order to derive an upper bound on , we need the
following fundamental identity (see [4, Lemma 8]):

(15)

which is derived by setting the expected drift of to 0.
Next, we give upper bounds for each individual term in the

left-hand side (LHS) of (15) and a lower bound for the right-
hand side (RHS) of (15). By simply setting the expected drift of

equal to zero, we have

(16)

where the step follows from the definition of
and ( see Fig. 2); follows from the facts that

must be within capacity region and that
for any vector .

We are ready to provide an upper bound on the first term in the
LHS of (15). Noting the fact that the amount of unused service in
one time-slot at each link cannot be greater than the maximum
channel rate , i.e., , we have

(17)

where the last step utilizes inequality (16).
Next, we focus on the second term in the LHS of (15). The

system stability under the RSG Algorithm implies that it selects
the schedule , which maximizes with high probability
when the arrival rate vector is very close to the face . See
Fig. 6(a) for an example. Based on this observation, we can
show

(18)
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Fig. 6. Key properties of the RSG Algorithm (illustrated in nonfading case for
an easier exposition): (a) when the arrival rate vector is very close to the
face , the RSG Algorithm should select the feasible schedules and
with high probability due to the system stability; (b) when the vector
is within the cone , then the RSG Algorithm selects the schedules and .

where we recall that is
defined in Proposition 2, and

The detailed proof is provided in Appendix F. Inequality (18)
indicates that the second moment of -weighted difference be-
tween arrivals and services is dominated by the -weighted
variance of the arrival process and the variance of the channel
fading process in the heavy-traffic limit.
In order to analyze the third term in the LHS of (15), we

restrict vectors to -dimensional space, where
. We use to denote the vector

restricted in the -dimensional space. Therefore, we have

(19)

where the step utilizes (1); is true since
; utilizes [4, Lemma 9]; uses Cauchy–Schwarz
inequality; follows from the fact that for
any vector and the fact that and

. By taking the limit on both sides
of (19), we have

(20)

where the last step uses inequality (16).

Finally, we consider the RHS of (15). By using the definition
of the RSG Algorithm, we can show

(21)

where is an angle such that , for
all and satisfying ,

(Fig. 6(b)) provides an example il-
lustrating this fact), and (cf. Proposition 3) is independent
of . The proof is provided in Appendix G.
By substituting bounds (17), (18), (20), and (21) into identity

(15), we have

(22)

where

(23)

Thus, if , then the RSG Algorithm is heavy-
traffic optimal by Definition 1. Noting that is independent
of , to satisfy , it is sufficient to have

(24)

By using the state-space collapse result established by
Proposition 3, it is easy to see that meets the
above requirements.

VII. CONCLUSION
We studied the heavy-traffic behavior of the recently pro-

posed maximum-weight type scheduling algorithm, called
Regular Service Guarantee (RSG) Algorithm, where each link
weight consists of its own queue length and a counter, namely
the Time-Since-Last-Service (TSLS), which tracks the time
since the last service. The RSG Algorithm has been shown
to achieve throughput optimality while providing regular
service guarantees. In this paper, we further showed that the
RSG Algorithm is heavy-traffic optimal as long as its design
parameter weighting for the TSLS , where is the
heavy-traffic parameter characterizing the closeness of the ar-
rival rate vector to the boundary of the capacity region. Noting
that the service regularity improves with increasing , our
result reveals that the RSG Algorithm with a carefully selected
parameter can achieve the best service regularity performance
among the class of the RSG Algorithms without sacrificing the
mean delay optimality under heavy-traffic conditions.
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APPENDIX A
PROOF OF LEMMA 1

We will omit associated with queue length processes, TSLS
counters, and parameter for brevity. Also, we will use
to denote for any vector in the rest of proof.
First, we note that

(25)

where the step follows from the fact that
for so that

with and
; is true since

for any vectors , ,
, and

; is true by letting

Having inequality (25), we can first study the conditional ex-
pectation of and instead of directly
studying the conditional expectation of . We first
focus on

(26)

where the step uses the fact that
for each ; follows from the fact that

and ; is true for
.

Next, we consider . By using the
definition of projection , we have

(27)
Given the queue length vector and TSLS vector at the

beginning of each slot, according to the definition of the RSG
Algorithm and the capacity region , it is easy to see that

(28)

Since is a relative interior point of dominant hyper-
plane , there exists a small enough such that

representing the set of
vectors on the hyperplane that are within distance from

, lies strictly within the face . Therefore,
we have

(29)

where .

Since normal vector and arrival rate vector ,
we have . Therefore, we can find a sufficiently
small such that for all and some

. Hence, by (28) and (29), we have

By substituting above inequality into (27), we have

Since is perpendicular to the normal vector for ,
we have

Hence, we have

(30)

Thus, by substituting (30) into (26), we have

(31)
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Next, we lower-bound

(32)

where the step is true for ; step uses the
definition of projection ; step follows from the fact that

, and
.

By using (31), (32), and (25), we have

Note that

and , where is an indicator function.
Thus, we have

where the last step uses the fact that for any
vector . Hence, for any , by
taking

(33)

we have the desired result.

APPENDIX B
PROOF OF LEMMA 2

If the event

(34)

happens for some , then under the RSG
Algorithm, link should be scheduled at least once during the
past slots, and thus . This implies

does not happen for all

where , and
. Since , we have and thus .

Thus, by taking , we have the desired result.

APPENDIX C
PROOF OF PROPOSITION 3

In the rest of the proof, we will omit associated with the
queue length processes, the TSLS counters, and parameter
for brevity. As we pointed it out in Section VI, it is challenging
to directly provide an upper bound on . Therefore,
we will first upper-bound the moment generation function of

, and then establish the relationship between the moments
of a random variable and its moment generation function to
upper-bound .
Lemma 3: If , then, under the

RSG Algorithm, there exists a satisfying and
such that

(35)

where

(36)

(37)

(38)

(39)

(40)
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(41)

is defined in Lemma 2, and are defined in (33).
In Lemma 1, we have show that

has a negative drift whenever
is large enough. However, as we pointed it out in

Section VI, we cannot directly provide an upper bound on the
moment generation function of by [7, Theorem 2.3],
which requires either boundedness or the exponential tail of
the Lyapunov drift. This is due to the abrupt dynamics of TSLS
counters. We resolve this issue by exploiting the coupling
between the queue length processes and TSLS counters. Please
see Appendix D for details.
Since we are interested in the scaling law of to preserve

heavy-traffic optimality under the RSGAlgorithm, wewill write
an upper bound on the moment generation function of as
a function of based on Lemma 3.
First, it is easy to see that , ,

, , and . Note that we need to
choose a such that

(42)
(43)

It is not hard to verify that

(44)

satisfies above requirements. If is large enough such that
and , then we have

(45)

Thus, we can take to meet the above require-
ments, and hence .
Taking and noting that , we have

where the step uses and .

Thus, by Lemma 3, we have .

Having obtained the upper bound on , we need
to establish the relationship between the moments of a random
variable and its moment generation function to upper-bound

, as shown in the following lemma.
Lemma 4: For a random variable with for

some , we have

(46)

for .
Please see Appendix E for the proof of Lemma 4.
By taking in Lemma 4, we have the desired result.

APPENDIX D
PROOF OF LEMMA 3

Let . We first give an
upper bound on . To that end, let

. We partition into sets
, and , where

Then, we have

(47)
Next, we consider each term in (47) individually.

i) On event , we have

which implies . For , we have

(48)

where step uses the following inequality:
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Hence, we have

(49)
where step uses the inequality (48); step utilizes
the inequality for any -dimensional
vector . Hence, we have

(50)
In order to analyze other two terms in (47), we need the fol-

lowing lemma.
Lemma 5: Under the RSG Algorithm, if , then

(51)

where .
The proof is omitted here due to space limitations and is avail-

able in our technical report [14].
ii) On event , we have

By substituting above inequality into (51), we get

(52)

where

Noting that (12) and (52) satisfy conditions of
[7, Lemma 2.2], there exists such that

where , independent of .
Thus, we have

(53)

iii) On event , we have

(54)

By substituting (54) into (51), we get

(55)

In addition, on event , we have

(56)

Hence, by utilizing (55) and (56), we have

(57)
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where

and
. Thus

(58)

By substituting (50), (53), and (58) into (47), we have

By taking expectation on both sides, we have

(59)

Next, we will upper-bound the term

(60)

where the step uses the fact that for any ;
follows from Lemma 2; is true for and

.
By substituting (60) into (59), we have

(61)

holding for , where
. By using (61) and iterating over , we have

Letting on both sides of the above inequality, we have

which implies the desired result.

APPENDIX E
PROOF OF LEMMA 4

where the step follows from the fact that is
increasing in for ; uses the fact that

is concave in for ,
and Jensen’s Inequality.

APPENDIX F
PROOF OF INEQUALITY (18)

To show inequality (18), we need the following lemma.
Lemma 6: Let

and

for all

Then, for each channel state , and any , we
have

(62)

where we recall that .
The proof mainly follows from the stability condition, i.e.,

, and is similar to that of
[4, Claim 1]. We omit the proof here for conciseness. Lemma 6
implies that

(63)

Similarly, we have

(64)

For , we have

(65)

Next, we give upper bounds for each individual term in the right-
hand side of (65). We will repeatedly use the identity

(66)

where it follows from the definition of (see Fig. 2). By
noting that , we have

(67)
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In addition, by using inequality (64), we have

(68)

For , we have

(69)

Thus, by substituting (63) and (66)–(69) into (65), we have

By taking the expectation on both sides of the above inequality,
we have the desired result.

APPENDIX G
PROOF OF INEQUALITY (21)

Let .
For the face of the region , there exists an
angle such that , for all and
satisfying . Note that

(70)

For , we have

(71)

By using the fact that the arrivals are independent of system
state, we have

(72)

For , we have

(73)

where the step is true for that is the angle between vector
and the normal vector ; follows from the defi-

nition of ; uses ;
follows from the fact that cotangent function is decreasing

in ; uses Cauchy–Schwartz Inequality.
Next, let us consider

(74)

where the step follows from the definition of with dis-
tribution for , and the definition of

; uses Jensen’s Inequality; uses (63).
Thus, by substituting (72)–(74) into (71), we have

(75)

For , we have

(76)

where the step uses the fact that ;
uses (66). By substituting (75) and (76) into (70), we have the
desired result.
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