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Abstract—In the problem of sensor integration, an important
issue is to estimate the joint PDF of the measurements of sensors.
However in practice, we may not have enough training data to
have a good estimate. In this paper, we have constructed the
joint PDF using an exponential family for classification. This
method only requires the PDF under a reference hypothesis.
Its performance has shown to be as good as the estimated
maximum a posteriori probability classifier which requires more
information. This shows a wide application of our method in
classification because less information is needed than existing
methods.

Index Terms—Exponential family, classification, joint PDF,
sensor integration.

I. INTRODUCTION

Distributed detection/classification systems have been
widely used in many applications such as radar, sonar, wireless
sensor networks, and medical diagnosis. Since multiple sen-
sors will collect more information than a single sensor does,
a better decision is expected to be made. In classification, it is
well known that the maximum a posteriori probability (MAP)
classifier minimizes the probability of error [1]. However,
the MAP rule requires the complete knowledge of the joint
probability density functions (PDFs) of the measurements
from sensors under each hypothesis, which in practice may
not be available. Hence, it is important in sensor integration
to find appropriate estimates of the joint PDFs under each
hypothesis, and the estimates should contain all the available
information.

In many works, people assume that the marginal PDFs of the
measurements from each sensor are known. One commonly
used method is to simply assume that the measurements are
independent, and the joint PDF is just the product of the
marginal PDFs [2], [3]. This is equivalent to the product rule
in combining classifiers, and it is a severe rule as shown
in [4]. Another concern is that the correlation among the
measurements is neglected by assuming independence. So
some approaches that consider the dependence among the
measurements have been proposed. A copula based method
that estimates the joint PDF from the marginal PDFs is
used in [5], [6]. The exponentially embedded families (EEFs)
that asymptotically minimize the Kullback-Leibler (KL) di-
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vergence between the true PDF and the estimated PDF is
proposed in [7].

Note that the marginal PDFs are required in the above men-
tioned approaches. However, we may not even have enough
training data in practice to have an accurate estimate of the
marginal PDFs, especially when the sensor outputs have high
dimensions. In this paper, we construct the joint PDF using an
exponential family. The construction only requires a reference
PDF and it incorporates all the available information. It can be
shown that the constructed PDF is asymptotically the optimal
one in the sense that it is asymptotically closest to the true
PDF in KL divergence.

By maximizing the constructed PDF over the signal param-
eters, our classifier can be easily derived. The performance
of our method is compared to that of the estimated MAP
classifier, which assumes that the true joint PDF is known
except for the unknown parameters. We present an example
in which their performances appear to be the same. Note
that our method assumes less information than the estimated
MAP classifier does. This shows that our method has many
applications for distributed systems in practice.

The paper is organized as follows. In Section 2, we in-
troduce a distributed classification problem. In Section 3,
we construct the joint PDF by an exponential family and
apply it to the classification problem. An example is given
in Section 4. In Section 5, the performances of our method
and the estimated MAP classifier are compared via simulation.
Conclusions are drawn in Section 6.

II. PROBLEM STATEMENT

Consider the classification problem where we have two
distributed sensors whose outputs T1(x) and T2(x) are trans-
formations of the underlying samples x that are unobservable.
We need to decide from among M candidate hypotheses
Hi for i = 1, 2, . . . ,M . Assume that there is a reference
hypothesis H0 (usually it is the hypothesis with noise only)
and we have enough training data T1n

(x)’s and T2n
(x)’s

under H0 to accurately estimate the joint PDF of T1 and
T2 under H0 [8]. We assume that pT1,T2(t1, t2;H0) is
completely known. However, under Hi (i = 1, 2, . . . ,M )
when a signal is present, we may not even have enough
training samples to accurately estimate the marginal PDFs
under Hi. This is especially the case in the radar scenario,
where the target is present for only a small portion of the time.



Hence, we want to construct appropriate joint PDFs under each
Hi with as much information we have as possible, and make a
classification using the constructed PDFs. A simple illustration
is shown in Figure 1. Note that the result in this paper can be
easily extended to the general multiple-sensor case.
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Fig. 1. Distributed classification system with two sensors.

III. JOINT PDF CONSTRUCTION AND ITS APPLICATION IN
CLASSIFICATION

Since pT1,T2(t1, t2;H0) is the only information available,
in order to specify the joint PDF pT1,T2(t1, t2;Hi), we need
the following assumptions [9].

1) The signal is small under each Hi and hence
pT1,T2(t1, t2;Hi) is close to pT1,T2(t1, t2;H0).

2) Under each Hi, the joint PDF can be parameterized by
some signal parameters θi so that

pT1,T2(t1, t2;Hi) = pT1,T2(t1, t2;θi)

pT1,T2(t1, t2;H0) = pT1,T2(t1, t2;0)

Hence the classification problem is to choose from

Hi : θ = θi for i = 1, . . . , M

Let

T =
[

T1

T2

]

so that the joint PDF pT1,T2(t1, t2;θi) can be written as
pT(t;θi). As shown in [9] with a first order Taylor expansion

on the log-likelihood function under each Hi, we can construct
the PDF of T under Hi as

pT(t;θi) = exp
[
θT

i t − K(θi) + ln pT(t;0)
]

(1)

where
K(θi) = lnE0

[
exp

(
θT

i T
)]

(2)

is the cumulant generating function of pT(t;0), and it nor-
malizes the PDF to integrate to 1. Note that it is assumed that
pT(t;0) is available or it can be estimated with reasonable
accuracy.

In order to estimate the unknown parameters θi in pT(t;θi),
we will use the maximum likelihood estimate (MLE) [10].
We see that in (1), the constructed PDF is in the form of an
exponential family, and many nice properties are as follows:

1. T is a sufficient statistic for constructed PDF, and hence
this PDF incorporates all the sensor information.

2. K(θi) is convex by Holder’s inequality [11]. Since max-
imizing pT(t;θi) is equivalent to maximizing θT

i t − K(θi),
this becomes a convex optimization problem and many exist-
ing methods can be readily utilized [12], [13].

3. It can be shown that by maximizing pT(t;θi) over θi,
the resulting PDF is asymptotically the closest to the true PDF
pT(t;Hi) in KL divergence [9]. Similar arguments have been
shown in [7], [14].

For classification, if we assume equal prior probabilities
of each hypothesis, i.e., p(H1) = p(H2) = · · · = p(HM ),
the MAP rule can be reduced to the maximum likelihood
(ML) rule [1]. When the MLE of θi is found by maximizing
pT(t;θi) over θi, we consider pT(t; θ̂i) as our estimate of
pT(t;Hi) where θ̂i is the MLE of θi. Hence similar to the ML
rule, we will decide Hi for which the following is maximum
over i:

pT(t; θ̂i) (3)

By the monotonicity of the log function, we can equivalently
decide Hi for which the following is maximum over i:

ln
pT(t; θ̂i)
pT(t;0)

= θ̂
T

i t − K(θ̂i) (4)

We will compare the performance of our classifier to that
of the estimated MAP classifier. The estimated MAP classifier
assumes that the PDF of T under Hi is known except for
some unknown underlying parameters αi. We still assume that
p(H1) = p(H2) = · · · = p(HM ). So the estimated MAP
classifier finds the MLE of αi and chooses Hi for which the
following is maximum over i:

pT(t; α̂i) (5)

where α̂i is the MLE of αi. Note that for the estimated
MAP classifier, αi are the unknown parameters in the true
PDF under Hi, while θi are the unknown parameters in the
constructed PDF under Hi. Since the constructed PDF may
or may not be the true PDF, the estimated MAP classifier
assumes more information than our classifier.



IV. A LINEAR MODEL EXAMPLE

Consider the following classification model:

Hi : x = Aisi + w (6)

where si is an N × 1 known signal vector with the same
length as x, Ai is the unknown signal amplitude, and w is
white Gaussian noise with known variance σ2. Assume that
instead of observing x, we can only observe the measurements
of two sensors

T1 = HT
1 x

T2 = HT
2 x (7)

where H1 is N × p1 and H2 is N × p2. Here p1 and p2 are
the length for vectors T1 and T2 respectively. We can write
(7) as

T = GT x (8)

by letting

T =
[

T1

T2

]

and
G = [H1 H2]

where G is N × (p1 + p2) with p1 + p2 ≤ N . We assume
that G has full column rank so that there are no redundant
measurements of the sensors. Note that G can be any matrix
with full column rank.

Let H0 be the reference hypothesis when there is noise only,
i.e.,

H0 : x = w (9)

Since x is Gaussian under H0, according to (8), T is also
Gaussian and

T ∼ N
(
0, σ2GT G

)
under H0. We construct the PDF under Hi as in (1) with

K(θi) = lnE0

[
exp

(
θT

i T
)]

=
1
2
σ2θT

i GT Gθi (10)

The next step is to find the MLE of θi. Note that the MLE
of θi is found by maximizing θi

T t − K(θi) over θi. If this
optimization procedure is carried without any constraint, then
θ̂i would be the same for all i. Hence we need some implicit
constraints in finding the MLE. Since θi represents the signal
under Hi, we should have

θi = AiGT si = EHi
(T) (11)

which is the mean of T under Hi. As a result of (10), the
MLE of θi is found by maximizing

θT
i t − K(θi) = θT

i t − 1
2
σ2θT

i GT Gθi (12)

with the constraint in (11). In this case, this is equivalent to
finding the MLE of Ai. It can be found that

Âi =
sT
i Gt

σ2sT
i GGT GGT si

(13)

and

θ̂i =
GT sisT

i Gt
σ2sT

i GGT GGT si
(14)

Hence by removing the constant factors, the test statistic of
our classifier for Hi is

(sT
i Gt)2

(GT si)T GT G(GT si)
(15)

Next we consider the estimate MAP classifier. In this case,
we assume that we know

T ∼ N
(
AiGT si, σ

2GT G
)

under H1

So Ai is really the unknown parameter in the true PDF under
Hi. It can be found that

Âi =
sT
i G

(
GT G

)−1
t

sT
i G (GT G)−1 GT si

(16)

By removing the constant terms, the test statistic of the
estimated MAP classifier for Hi is

(sT
i G

(
GT G

)−1
t)2

(GT si) (GT G)−1 (GT si)
(17)

Note that (13) and (16) are different because (13) is the MLE
of Ai under the constructed PDF and (16) is the MLE of Ai

under the true PDF.

V. SIMULATION RESULTS

For the model in (6)

Hi : x = Aisi + w

let A1 = 0.5, A2 = 1, A3 = 1 and

s1(n) = cos(2πf1n) + 1
s2(n) = cos(2πf2n) + 0.5
s3(n) = cos(2πf3n)

where n = 0, 1, . . . , N − 1 with N = 20, and f1 = 0.17,
f2 = 0.28, f3 = 0.45. Let p(H1) = p(H2) = p(H3) = 1/3.
Assume that there are three sensors, each with an observation
matrix as follows respectively:

H1 =
[

1 1 · · · 1
]T

H2 =
[

1 cos(2πf1) · · · cos (2πf1(N − 1))
1 cos(2πf2) · · · cos (2πf2(N − 1))

]T

H3 =
[

1 cos (2π(f3 + 0.02)) · · ·
cos (2π(f3 + 0.02)(N − 1))]T

Note that in H3, we set the frequency to f3 +0.02. This is the
case when the knowledge of the frequency is not accurate.

The test statistics are used as in (15) and (17) for the two
methods respectively. The probabilities of correct classification
are plotted versus ln(1/σ2) in Figure 2. We see that their
performances appear to be the same, and probabilities of
correct classification goes to 1 as σ2 → 0.
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Fig. 2. Probability of correct classification for both methods.

VI. CONCLUSION

A novel method of constructing the joint PDF of sensor
outputs for classification has been proposed. Only a reference
PDF is needed in the construction. The constructed PDF
is asymptotically the closest to the true PDF in KL diver-
gence, and hence it asymptotically optimal. When applied to
distributed classification, its performance is shown to be as
good as the estimated MAP classifier, which assumes more
information than our classifier.
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