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Abstract — Asymptotically optimal estimation of
parameters of analytic nonGaussian probability den-
sity functions is usually accomplished using maximum
likelihood estimators. However, owing to the complex
analytical forms of the density functions this approach
is computationally demanding and not suitable for
real-time implementation. As an alternative to maxi-
mum likelihood, we propose a method based on least
squares fitting of the cumulant generating function.
It is shown to produce good results and is easily im-
plemented in real-time. Application to the Class A
distribution is used to illustrate the method, with its
application to other parametric models planned.

I. INTRODUCTION
Many models of nonGaussian probability density functions
(PDF) have been proposed to represent noise which is en-
countered in radar and sonar (and other physical applica-
tions). Most of these are ad hoc, without a strong physi-
cal basis, and are chosen for their analytical simplicity rather
than their physical applicability. Recently, some new models
primarily based on physical-statistical approaches have been
investigated, which include such features as fluctuating back-
ground noise (K-distributions), and the effects of a few large
scatterers (breaking waves, bubble trains,etc.), as well as mul-
tipath and possible coherent scatter (the KA-model [1]). Here
the physical-statistical approach involves independent orders
of scatter expressed statistically in the form of independent
Poisson processes, enabling one to calculate the effects of all
levels of scatter (weak to strong). The results are expressed
in terms of first and higher-order PDF's as opposed to the
first few moments of classical theory [1]. The great advan-
tages of this is that it is possible to obtain the optimum weak-
signal detection algorithms and their associated performance
measures, namely the probabilities of false alarm and correct
detection, which are needed to predict performance (see Intro-
duction [1]).
are parsimonious in the number of physical parameters, and

These are analytical parametric models, which

which in turn are expressed in terms of measurable quantities.
To illustrate the role of the nonGaussian PDF's in detection
let us use the case of optimum binary weak-signal operation
in the coherent mode as an example. For this the threshold
algorithm is the well known result [10], for additive signal and
noise under H; : S+ N; Ho: N
N
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n=1

where Ty is the likelihood ratio, x = [z122...25]T, B,
is a bias, and the last term is a discrete cross-correlation of
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a (zero memory) nonlinear function of the data with the (av-
erage of) the signal, < s, >, n = 1,2,..., N. [Independent
noise samples are necessarily - postulated in the general, i.e.,
nonGaussian cases, because the higher order PDFs are un-
known.] Here we have explicitly

d
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AR > 2
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in which < >4, denotes the average under the null (i.e., no
signal) hypothesis, and the test for signal present or absent is
InTcon > K, or < K, where K is a positive threshold. For
our purposes here (1) and (2) show directly how the structure
of the detector depends on the PDF p(z|Ho). Since our noise
models for p(xz|Ho) are parametric, this in turn depends on the
model parameters, and consequently on our ability to measure
them in practical situations, particularly where on-line oper-
ation is required. The comparatively simple noise example
given here is the Class A distribution model [8]. Other widely
used cases employ the Class B or impulsive model [7], and the
K, and KA distributions [1].

Unfortunately, the complex analytical form of these mod-
Such

an estimator is desired in order to implement the weak-signal

els precludes a real-time estimator of its parameters.

or locally optimum detector [7,2] in practical applications. In
this paper we propose a method for estimation which is useful
for PDFs whose characteristic functions are readily available
in analytical form. The method is not asymptotically optimal
but can be made so by using more computation [3,4]. We in-
vestigate the performance of this estimator, termed the cumau-
lant function estimator (CFE), and apply it to the Middleton
Class A model [8,9]. Tt is shown to produce reliable estimates
It should be mentioned that
the EM approach has been tried for Class A model parameter
estimation [5]. The reported statistical performance is that
expected of an MLE. However, the convergence to the global

with very little computation.

maximum, i.e, the true MLE, is always in question, and the
procedure is computationally demanding. Furthermore, in [5]
only a two-parameter estimator was implemented. We are able
to implement the full three parameter estimator, as explained
in the next section. Finally, it is important to note that this
approach can easily be extended to other nonGaussian PDFs

such as the K and KA PDFs [1].



The ultimate aim of this research is to provide on-line, i.e.,
real-time, estimates of the parameters of the analytic PDF's,
and related functions (involving these parameters) of the de-
tection processs. Thus, such detectors become truly adaptive,
taking into account the secular changes in the noise environ-
ment and enabling the detector to remain “matched” to the
noise optimally, or at least near-optimal in practical operation.
The same parameter estimates may also be used in estimation
problems.

II. THE CUMULANT GENERATING FUNCTION
ESTIMATOR
The characteristic function of a random variable X is defined
as the Fourier transform of its PDF or ¢x (w) = E(exp(jwX)).
As such it is an equivalent description of the PDF. If N
independent and identically distributed (IID) observations
{Il a X2, ..
acteristic function by its sample mean as

.,Zn } are available, then one can estimate the char-

dxlw) = + 3 explior) 3)

or by
Ox(w) = 5 3 coste) @

if the PDF is known to be symmetric, as is the case for most
noise models. Assuming that the PDF depends on an un-
known parameter vector # and hence the characteristic func-
tion depends on @, we can estimate the parameters by mini-
mizing the least squares error

T(0) =" ($x(wn) — dx(en))”

for some suitable sets of wi’s. However, it is usually more ad-
vantageous to fit the estimated cumulant generating function
(CGF) or In ¢x (), since it tends to be partially linear in the
unknown parameters. Such is the case with the Class A PDF
model. Hence, we propose to estimate the parameters of the
class A model by minimizing

1) =3 (Indx (wi) — néx(wi)” (5)

Note
that in order to make the estimator into one that is asymp-

The implementation in this case is relatively simple.

totically efficient it is only necessary to include the asymptotic
covariance matrix in (5), since the characteristic function es-
timator is asymptotically Gaussian [3]. This implies that the
estimated cumulant generating function is also asymptotically
Gaussian. Thus, instead of minimizing the least squares er-
ror as is done in (5), one includes the asymptotic covariance
matrix C of the CGLE estimate samples whose (k,1) element
is

[Cylm =

E [(In¢x (wn) = B(ln x (i) (In dx (w1) = B(In gx (w))) ]

so that the weighted least squares error becomes

J(6) =
ZZ[C&]M (ln qu(wk) —1In qﬁx(wk)) (ln qu(wl) - lnqﬁx(wl)) .

(6)
where [Ci}]kl denotes the (k, 1) element of C;l. Unfortunately,
the covariance matrix depends on the unknown parameters, so
that we have to resort to iterative techniques, which are not
guaranteed to converge or to produce the global minimum
of (6), i.e, the asymptotic MLE. Yet for large enough data
records the performance may be acceptable.

ITI. Crass A MODEL
The Class A model is described by the PDF

. 2N = A™ 1 IQ
pX(IzAv Q,Ug) fexp( A) Z:Om'\/m exp 20_7211 .

(7)
The parameters are defined as follows. The parameter A is a
Poisson mean parameter. The parameter €2 is the nonGaus-
sian noise power while o2 is the Gaussian noise power. The
summarized parameter o2, is defined as *
ot =22y ok (®)
It is sometimes more convenient and physically more mean-
ingful to use the equivalent parameter set {A,F,O‘é}, where
I' = 6%/ is the ratio of the Gaussian to nonGaussian noise
power. We shall use this equivalent parameter set for our com-
puter simulations in Section 4 to be consistent with previous
work [1]. Tt should be noted that the random variable X can
alternatively be described by the decomposition

N
X=Y¢+z (9)
i=1

where the ¢;’s are ITD A(0,Q/A) random variables and Z is
a N(0, 0‘?;) random variable that is independent of the ;’s.
Also, N is a Poisson random variable with mean A. The first
term I = Zil & is a compound Poisson random variable
which models nonGaussian noise while the second random
variable Z models the ambient Gaussian noise. This repre-
sentation is used to generate Class A noise samples used in
the computer simulation described in Section 4. A MATLAB
subprogram is listed in Appendix A for this purpose.

To show that (9) has the PDF of (7) first note that the
PDF of N is Poisson with the probability mass function

A"

Py (m) = exp(=A)—

m=0,1,... (10)
so that conditioned on N = m, the PDF of X is (0, mQ/A+
o) or N(0,02,). The unconditional PDF is obtained by sum-
ming over the probability mass function of (10), resulting in
(7). It is thus seen that the Class A model is essentially a
Gaussian mixture model with a Poisson mixing PDF.
Because of the relatively simple form of (9) the CGF is
easily determined. Conditioned on a fixed value of N = m, we

1In the original work, 2[772,l = O',,Qn of the present paper; see Eq.

(6.1) of [9], for example.



have that Zil & ~ N(0,mQ/A) and hence ¢;(w|N =m) =
exp(—(l/?)wémQ/A). Averaging the conditional expectation
with respect to the probability mass function of (10) yields

o1(w) = exp [A (exp[—(l/?)wQQ/A] — 1)]

and finally because of the assumed independence of I and Z,
we have

dx(w) =exp [A (exp[—(l/?)wQQ/A] — 1) — (1/2)0’?;0]2] .
. The CGF is then

Kx(w) = A (exp[—(1/2)w’Q/A] — 1) — (1/2)02w®.  (11)

To simplify the estimation procedure we let K = I'A =
Ac’ /Q as was done in [5], and also o = ¢4/K, so that we
have

Kx(w)=A [exp(—(l/?)awz) — 1] —(1/2)Kaw®.  (12)

Note that the CGF is linear in the parameters A and K and
nonlinear in . We can set up the partially linear model as

ffx(uh)
KX(L(JQ) _
Kx(.wM)
exp{—El?Qiawq -1 —E1§2§o¢wf
exp[—(1/2)aw3] — 1 —(1/2)ouw? A
z S|k
expl=(1/2)aw}] =1 =(1/2)ek, |

H(a)

where Kx (w) represents an estimate of the CGF and w rep-
resents a noise vector which models the statistical estimation
error in Kx (w). The points used for w in the least squares
estimator are chosen to be equally spaced. The least squares
estimator for @ is found by minimizing the least squares error,
which in matrix form is [6]

7(8,0) = (K —H()0)" (K — H(0)8) . (14)

Expanding this into
J(8,0) = K"K — 2K"H(0)0 + 6"H(a)"H ()0
and taking the gradient, using the formulas
oaTe
00

90T A0
06

2A06 (assuming AT = A)

and setting equal to zero and solving, produces the result

6 = (H ()H(e)) 'HT ()K. (15)
After substituting this in the least squares error of (14) we
obtain

J(8,0) = K"K — K"H(a)(H” (0)H(a)) '"H  (0)K  (16)

which needs to be minimized over a. Equivalently, we must
maximize

J(e) = K"H(a)(H" (0)H(e)) "H" (0)K (17)
over «, since K"K does not depend on a. Once that is done
via numerical means to obtain &, @ is found from (15) by
replacing « by &. Note that the estimator K is defined as the
sample mean estimator

N

. 1

K& zlnNZcos(wkxi) k=1,2,...,M (1)
i=1

since the Class A PDF is symmetric. In the next section we
give some results.

IV. COMPUTER SIMULATION RESULTS

In the first simulation example the parameter values were
I'=05x10"3 A =0.35 and 02 = 1. Using N = 10,000
data samples generated according to (9) (see Appendix A), the
estimated CGF and true CGF are shown in Figure 1. Note
the good agreement, which is clearly due to the consistency of
the sample characteristic function estimator. The estimated
values for this simulation were ' = 0.5242 x 1073, A= 0.3511,
and 65 = 1.0140. Note that we used M = 100 equally spaced
w values on the interval [0,1]. Also, the true value of « is
o = 0% /(AT") = 5714 and so we maximized the function (17)
by searching over the interval [0,2a] in one increment steps.
For shorter data records the results are still reasonable. As
an example, for N = 500 the estimated CGF is shown in Fig-
ure 2 with the parameters estimated as ' = 0.4949 x 1073,

A =0.3221, and 6z = 0.9314.

V. CONCLUSIONS

A new method for the real-time estimation of the parameters
of a nonGaussian PDF has been proposed. This method en-
ables us to evaluate the parameters of an analytic PDF on-line,
and thus obtain a full representation of the distribution. Our
method is applied here to the first-order case, but is capable of
extension to the second-order, from which, on the assumption
of (simple) Markovian properties (see Sec. 1.4-3 of [7]) we
can establish the nth order cases. Current work is ongoing to
compare the statistical performance of the proposed estimator
in terms of its mean, variance, and relative efficiency, includ-
ing applications to the K and KA-distributions. In addition,
application to real nonGaussian sonar reverberation data is in
progress.
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A. MATLAB CoDE

Generation of Class A Noise Samples

0 T T T

- - - theoretical CGF
——  estimated CGF |+

% classAgenerate.m

% Input parameters: -0.1 :
% nreal - number of samples of class A

% noise desired -0.15 1
% A - mean of Poisson random variable

% Gamma - ratio of Gaussian to nonGaussian 02 1
% noise power oz |
% varg - Gaussian noise power ‘

% s ]
% Output parameters:

% X - real array of dimension nreal x 1  -035 B
% of class A noise samples

function x=classAgenerate(nreal,A,Gamma,varg) -04 7

x=zeros(nreal,1) ;m=x;
for i=1:nreal
m(i,1)=pois(A);

-05 L L L L I I I

var=varg# ((m(i)+Gamma*A) / (Gamma*A) ) ; 0 0.1 0.2 03 04 Ome(;;:)(m) 06 07 08 0.9
x(i,1)=sqrt(var)*randn(1,1);

end Fig. 2: Theoretical and Estimated Cumulant Generating Function
% pois.m for Class A Noise - N = 500

% This subprogram generates a realization of
% Poisson random variable with mean lambda
function k=pois(lambda)
prod=1;k=0;
while prod>exp(-lambda)
prod=prod*rand(1,1);
k=k+1;
end
k=k-1;



