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Abstract

The Cramer-Rao Lower Bound is widely used in statisticahaigorocessing as a benchmark to
evaluate unbiased estimators. However, for some randoiables, the probability density function has
no closed analytical form. Therefore, it is very hard or irsgible to evaluate the Cramer-Rao Lower
Bound directly. In these cases the characteristic functiay still have a closed and even simple form. In
this paper, we propose a method to evaluate the Cramer-RaerlBound via the characteristic function.
As an example, the Cramer-Rao Lower Bound of the scale paearaad the shape parameter of the
K-distribution is accurately evaluated with the proposeethod. Finally it is shown that for probability
density functions with a scale parameter, the Cramer-RagetL8ound for the remaining parameters do

not depend on the scale parameter.

I. INTRODUCTION

In statistical parameter estimation theory, the Cramear-Rawer Bound (CRLB) is a lower bound on
the variance of any unbiased estimator [1]. két; ) denotes the probability density function (PDF) of
a random variableX parameterized by, where@ = [0y, 6,, - - -,GL]T. Let @ be an unbiased estimator

of 6. If p(x;0) satisfies the “regularity” conditions, or
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where ' [-] denotes the expectation, then

var (0;) > [171(0)] = CRLB, 1)

i1
wherevar (91) denotes the variance of tli# element of the estimator, or the estimator for [I—l (0)]“
is the (i,7) element of the inverse Fisher information matrix, and is ttRLB for ;. The Fisher

information matrix is defined as

[I(B)Lj =L

[alnp(:c;o) alnp(:c;é')] | @)

00; 06,
Itis seen that the key step to obtain the CRLB is the evaluatidh(8)],;. Compared to other variance
bounds [2], [3], the CRLB is usually easier to compute. Thaeefib is extensively used in the signal
processing literature as a benchmark to evaluate the peafoze of an unbiased estimator. However, there
are cases in which (z; @) has no closed form. As a result, the CRLB is hard or impossiblevaluate
analytically via (2). However, in some cases in whigl:; @) has no closed form, the characteristic
function (CF) ofp (x;0) does have a closed and even simple form, for example the tkidigon [4],
the a-stable distribution [5] and the Class A distribution [6].
The CF ofp (z;0) is defined as

ox (w;0) = B [eX] . (3)
This is just the Fourier transform of (z;0). Thereforep (x;0) can be thought of as a time domain
function and¢x (w; @) as a frequency domain function. Since (2) is essentially tegiation in the time
domain, it is possible to evalualg@) equivalently in the frequency domain. This idea could be iegpl
to both univariate and multivariate distributions. In tpigper, we focus on parameter CRLB evaluation
of univariate distributions. The extension to multivaridistributions will be explored in the future work.
The paper is organized as follows. In Section Il, the methodvaduate the CRLB via the CF is

introduced. In Section lll, an example is given and Section fférs some conclusions.

II. CRLB COMPUTATION VIA THE CHARACTERISTIC FUNCTION

Equation (2) can be rewritten as
[ Olnp(x;0)dInp (x;0)
[I (0)]zj - /—oo 891 ae]

/O" Op (z;0) Op (z;0) 1
oo 00; 90; p(z;0)

Assume there is a real positive numblersuch thatp (z;8) = 0 for |z| > £, then

(L% op(x;0) 0p (2;6) 1
T, = [ P Tl 5)

p(x;0)dx

dr. (4)




Letu = 7,

12 9p (Lu; 0) Op (Lu; 0) 1
I (0)]” N /_1/2 00; 00;  p(Lw;0) Ldu.

Let G (u;0) = p(Lu;0)

V2 0G (u;0) 0G (u;0) 1
[I(e)]ij_L/l/g 90; 90, Gse) " ©)

From the property of a PDIg (z; 6) and equivalentlyG (u; @) > 0, so we can consideF (u; 0) to be a
discrete-time power spectral density (PSD). TherefGréy; ) can be approximated by an autoregressive

(AR) model for a sufficiently large model order, i.e. [7]
ag,
G(u;0) ~ — = (7)
A (u)]?

whereag is the excitation noise variance, and
Aw)=1+al]e 2™ 4 q[2]e92™2 1 ... 4 q[p] e I2™wP

wherea[1],a[2],- - -, a[p] are the AR coefficients with being the order of the AR model. L&t~! denote

the inverse Fourier transform. It is readily seen that
1/2 .
FHAM)} = A (u)e?* ™ dy,
—-1/2
= aln]

P ‘2 with the true

The proper model ordes can be determined by comparing the estimated AR
G (u; @) or numerically calculated~ (u; @). If the fitting error is too large, then a largershould be
used. Plugging (7) into (6), we have

12 710G (u; 0) 0G (u;0) .,

L) = */ [ (U)} 9G (u:0) ' )A (u)|du
1/2 00;
1/2 . .
% [8G (u, G)A(u)} 0G (u; 9)

(%) _1/2 691 89]
The last equation relies on the property théi; 0), and therefore (u; ) is real. By Parseval’s theorem,
L & N
= > ey [n] ©)

U n=—00

A (u)] du. (8)

[L(0)];; =

where

and



Let g[n] = F1{G (u;0)}, so thatg[n] can be thought of as the autocorrelation sequence assbciate

with the PSDG (u; ) [7]. It is given by
1/2

gln] = G (u;0)e?*™ " dy,
~1/2

1/2 ,
= /_I/Qp(Lu; 0)e? 2™ dy, (20)

Letting x = uL in the above equation yields

1/2 o
gl = [ plao)eingl
1/ L

- Lo

_ %@( (272”;0> . (11)

Since the CF is assumed to have a closed analytical fgifn], can be easily obtained from (11).
With ¢[0], g[1], - -, g[p] known, the Yule-Walker method can be used to determine thepARmeters
{a[1]7 a[2]7 B a[p]v Ug} [7]

Next, since the inverse Fourier transform is linear, we have

1 [0G (u;0) 78.7:_1{G(u;9)}
}"1{ 20, }_ o0 . (12)

Plugging (11) into (12), we have

o {8G (u; 9)} O1ox (%52:0)

00; 00;
_ ;;@iqsx (22” a) . (13)
Let
iln] = 5-ox (47750) (14)
so that from (9) o
1(0)],, = Li%nzoo (a[n] « b [n]) (a ] % B [m])° (15)

wherex denotes the convolution.
If there is a real positive intege¥/, such thath;[n] ~ 0, andh;[n] ~ 0 for |n| > M, then (15) can

be approximated as
M
TOy= 7o O (@l *hi[o]) (aln] < by )" (16)
U n=—M

After the analytical form ofi;[n] andh;[n| are obtained)/ can be obtained.



For an arbitrary (z; 6), we can always find the positive numbiersuch thap (z; 0) ~ 0 for || > £.
This may be done directly from the expressionpdfr; 8). However, since we are considering the case
whenp (z; 0) has no closed form, it is necessary to be able to determhifi®m ¢x (w;8). To do so
note that the moments of can be obtained by [8]

1 d"gx (w)

E[X" =
X" Jm dw™

w=0

From the moments oK and¢x (w; @), L can be found using probability bounds. In the example of the
next section, the Chernoff bound is used to deternding®]. The steps to evaluatd (8)],; via the CF
¢ox (w; @) are summarized below,

1) From¢x (w; @), obtain L such thatp (x;0) ~ 0 for |z| > % by using a bound.

2) Select an AR model order.

3) Calculateg[0], g[1],- - -, g[p] from (11).

4) Determinea[l],a[2],---a[p], o2 by the Yule-Walker method.

5) Obtain the expression @f;[n| and h;[n] from (14).

6) SelectM from the expression ok;[n] and h;[n].

7) Evaluatel(6) from (16).

We note that in the above procedure the PDF p (z;6) need not be known.

[1l. CRLB COMPUTATION FOR THEK-DISTRIBUTION

The K-distribution is widely used to model sea surface chutiehigh-resolution radar systems and to
model sea floor reverberation in high-resolution active seyatems [4], [10], [11], [12].

Let X = X, + jX; be a zero mean, circularly symmetric complex Gaussian randariable, i.e.
[X;, X;]T ~ N (0,0%I), wherel is a2 x 2 identity matrix. LetY” be a Gamma random variable with
the shape parameter beingt 1 and the scale parameter beihg, or

1\v+1
;)

v 1
Ton Y exp (—iy) y=>0
0 y<0

py (y) = (17)

whereT (-) denotes the Gamma function and> —1. Theny/Y X is distributed according to a complex
K-distribution [12]. Denote this variable a8 = Z + 57, where Z is the real part ofR and 7" is the
imaginary part. The joint CF ofZ,T') is given by [10]

(bZ,T (w7,y) — E [eij-i-j'yT}

1
T 4o (@) (9




Hence, the CF o/ is given by
1

TR (9

¢z (W) =¢zr (W,0) =
and the PDF ofZ can be shown to be
B 1 |Z| v+1/2 |Z|
PO o () e () 0
where K, (-) is the modified Bessel function of the second kind.

From (20) it is seen that is the scale parameter andis the shape parameter. The momentsZof

can be obtained from the CF as

_100z(w)|
Bl7)= =5 =0 1)
and
2
p[2] - -T5r =2 (22)

Therefore the variance of is
var (Z) = E [2%] - B2 [Z] = 2(v + 1) 0>

It is seen that ag decreases, the variance Bfdecreases. Whem — —1, var (Z) — 0, which means
Z approaches the deterministic value 0.

In [10] an approximate CRLB for of the PDF of|R| is derived under the condition that is known
and v > 0. In the rest of this paper, we will focus on computing the CRLBs both v and % of
pz (z) without any additional constrain on the rangerofConsidering the expression of (20), it would
be a formidable task to evaluafe(8)],; using (2). Therefore we evaluafe(6)];; via the CF using the

method introduced in the last section.

A. Sdlection of L

L is determined from the Chernoff bound, which is given as [9]
prob(z>71) < exp(—s7)E[exp (sz)]
= exp(—s7 + log (E [exp (s2)])) (23)

for any s > 0. With this bound, arl is found as

2v15(v+1)o for v>4

LBy > 2
10v/150 for v<4

The details are given in Appendix .

In general, a simple procedure to determinés to increase it, until the results converge.



B. Sdection of the AR Model Order p

It can be seen that from (20) as— —1 , pz (z) becomes narrower, requiring to be large. The
proper value ofp is also determined by.. This is because ab increases, the PSD'(u; 8) becomes
narrower, requiring a larges. For the selection of. given by (24), an empirical formula is obtained

from simulations, and is given as

[1200 exp (—7v) +70] for —1<v < 0.9
50 for v»>0.9

p:

where[-] denotes “the smallest integer greater than”.

In general, a simple procedure to determinis to increase it, until the results converge.

C. Expression of g[n] and h;[n]

Plugging (19) into (11) we have

1
19 (1 + O_ng)zﬂrl

gln] =

—_27n

W=7

Plugging (19) into (14) yields

0
Oo?

he2[n] =

1
(1+ 0%2)”“]

2rn
L

w=

w? (14 v)

—_— 25
(1 +O,2w2)1/+2 . ( )

2nn
and

9
ov

1
(1+02w2)u+1]

In (1+ U2w2)
v+1
(14 o2w?) o

__27n

W=7

(26)

2rn
L

D. Selection of M

From the derivation in Appendix II,

M = min (Ml, MQ)

= (L) o],
2m \ 10—4

where




and

i Lo( )T
Mo — min (’7271_0_3416—‘ y ’7271_0_ (10’4> * -‘) v Z 0
) =
[%./aﬂ ~1<v <0
wherez, is the greatest root of the equation

log (1 + x)
(1+x>1+1/

and it can be easily found by a numerical method.

=10"*

In general, a simple procedure to determivieis to increase it, until the results converge.

E. A Corroboration Test

Now we have everything to calculai€®) from (16). As a corroboration test of the proposed method,

a special case in which = 0 is considered first. When = 0, it is readily shown that

_ 1 ]
pz(2) = %eXP ( a) . (27)
After some simple algebra, we have
2
B Olnp (z;0?) 1
[I (0)]0'202 =LK ( Ho2 - 4o’ (28)

The theoretical value given by (28) and the value computenh fioe proposed method are shown in
Fig. 1 as circles and stars respectively. It can be seen thamttch is very good and the results are
precise enough for most applications. However, if highercjsion is required, we can always increase
L, pand M.

F. CRLB Evaluation of v and o2 for the K-PDF of (20)

Even though there are two parameterspin(z), it is shown in Appendix Il that theCRLB, is
independent ob2, and for a fixedv, CRLB,- is a linear function ofr*. This is because is a scale
parameter ofp; (z). Therefore, there is no need to plot the 2 dimensional figure§’ B B,- and
CRLB, versuss? andv. In Fig. 2 the computed’RL B, is plotted versus and in Fig. 3 the computed
% is plotted versus . In both figures the computed values are connected with btrdiige for

better viewing.
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Fig. 1. Theoretical and computéli()],z,2 versuso? for the K-PDF of (20) withv = 0.

CRLB

Fig. 2. Evaluated”RLB, versusv for all o>

IV. CONCLUSION

We have proposed a method to evaluate the CRLB via the CF. WHiee?DF has no closed form,
it can be very hard or impossible to evaluate the CRLB diredtlith the proposed method, the CRLB
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Fig. 3. Evaluate(% versusy

can be accurately evaluated when the CF is known. As an egartid CRLBs of the scale parameter
and the shape parameter of the K-distribution have been atmapnith the proposed approach. It has
also been shown that for a PDF with a scale parameter, the CRLBidoremaining parameters do not

depend on the scale parameter.

APPENDIXI

SELECTION OF L

From (19), the moment generation function ofis given as
1
(1 _ 02C2)v+1'

Letting ¢ = s and minimizing logarithm of (23)

E¢7] =

F(s)=—st—(r+1)log (1 — 0232>

with respect tos, we have

2 <\/02 (V+1)2+T2—0(V+1)2)2
F(3)=— (1/+1)2+§+1/—|—1—(1/—|—1)10g 1—

T2
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If we let 7 = /15 (v + 1) 02 then

po) =3 t0n(2) - (3418 (2))

It can be shown that for < 4
prob(z>7|v <4) <prob(z>7|v=4) <exp(F(5v=4)) <2987 x 107°.
Hence if we choose
V1b(v+1)o for v>4

T = (29)
5v150 for v<4

thenprob (z > 7) < 2.987 x 107°. Sincepy (z) is symmetric we have
prob(z < —7) < 2.987 x 1077,
Letting L = 27, thenpy (2) ~ 0 for |z| > £.

APPENDIXII

SELECTION OF M

Differentiating (19) with respect te? and taking the absolute value yield

d W (1+vw)
e e
w? (14 v)
(1+v)

ECOEEETE) .

Hence, we have L ¢x (w)‘ <1074, if

1+v Tﬂrz_ 14+v o= — 2o
w >\ Sarraypa =\ 704 A

Equivalently, |k, [n]| < 10~* for all n > My, if

L 1+v 2u1+2 2044
M =|— | —— 2vt2 | |
! {2# (10—4) c W




12

Differentiating (19) with respect to and taking the absolute value yield
In (1 + o%w?)
(1 +O_2w2)l/+1
In (1 + o%w?)
(Uzwg)wrl
(02(,02)1/2
= (0.2)1/+2 Ww2vr+2
 — (31)

(0_2w2)1/+1/2 ’

‘I/¢X (W)‘ =

If v > —1 then

L ox (w)’ <10~ for

1( 1 >+
w> = [ — .
~— o \10~4

Or equivalently|h, [n]| < 10~ for all n > Mo, if

L 1 \ oo
My > | —— (—— .
2= {%a (10—4> w

However, whernv — 0, M> could be very large and this bound is not tight enough. Theeefanother
bound is derived in the follows.

Forv >0
log (1 +c%w?)  log (1 + o%w?)
(1 +02w2>u+1 (1 +02w2)

solving the equatiod®*%) = 10~* we havez = 1.1667 x 10°, so

log (1 + o?w?)
(14 02w2)"

if w> 1341.6. Or equivalently|h, [n]| < 10~* for all n > M,, if

<1074

L
My = {341.6—‘ .
2mo

Therefore fory > 0 we have

. L L 1 21»24»1

For —1 < v <0, the equation

log (14 x) 1t
(1+JJ)1+V

is first solved numerically. Let, be the greatest root, then
log (1 + o%w?)

<10™*
(14 02w2)"
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if w> @ Or equivalently|h, [n]| < 10~% for all n > My, if

=L vm]

So finally, .
2y ) ({250341.6] , [27{0 (101)*D v>0
[%\/ﬁw —1<v <0
and

M = min (Ml,Mg) .

APPENDIXIII

INDEPENDENCE OF THECRLB OF A SCALE PARAMETER

Theorem 1: Letpz(z;a, ) be a PDF parameterized byand\. If pz(z; o, \) satisfies the “regularity
condition” and)\ is a positive scale parameter, @f(z; o, \) = A\f(\z; ), thenCRLB,, is independent
of the value of), and for a fixedn, CRLB, is a linear function of\2.

We note that the CRLB fory will be smaller when) is known. Also, in theTheorem 1 there is only
one remaining parameter, i®. When there are more than one remaining parameters the sard@sion
still holds, and it can be proved similarly.

Proof: By definition, the(1, 1) element of the Fisher information matrix is

Lo = E[(““(Pza(é(z;a,/\)))j

_ /_O:O (8 (pz Eazo;[a, )\))>2 - (;a’ /\)dz

_ /OO <8)\f (A\z; a))2 T 1 & (32)

oo foJe! Az )

It is assumed that the range of the PDF is fremo to oco. For PDFs with other ranges, the theorem

can be proved similarly. In the rest of the proof the limitstloé¢ integral are omitted for simplicity. Let

x = Mz, after straightforward algebra, we have from (32)

o () L

This is a function ofa only, so it can be denoted as(«) .
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By definition

d(pz ( za)\ 1
I = d
M ( ) pz (N

- (e a) o

= [(rome 8f25200uxz)2 Af(;Z;a)

Let z = Az, after straightforward algebra, we have from (34)

dz. (34)

B . af (u «) 2 1
Ly = / (f (r;0) +x 5 u:x) (o) dx. (35)
This can be denoted a§ g»(«), wheregs(a) is a function ofa only.
Similarly
. — / (3(1)2 (Z;a,k))> <5(pz (Z;oz,A))> L
o da B)) pz (0, \)
_ 3(/\f(AZ;a))) ( , of (u;a) ) 1
_ / ( Y fOz0) +ae SR ) e (36)
Let z = Az, after straightforward algebra, we have from (36)
_ Nﬂm@d( , of (u;0) ) 1
I, — / ( - flea) e SRR ) e, (37)
This can be denoted &qg(a), wheregs(«) is a function ofa only.
Therefore, the Fisher information matrix can be expressed as
1
TN =] 7 (@) 593 ()
393 (a) 3z92(a)
As a result,
-
1 (@A) = 1 i 92 (@) g3 (@)
a1 (Oé) g2 (a) — 93 (a) —)\93 (a) )\291 (a)
This expression proves the theorem. ]

Considering the K-distribution PDF given by (20), accordiogTheorem 1, CRLB, is independent
of % HenceCRLB, is independent of2. Also CRLB. is a linear function o%. After parameter

transformation it can be shown [1f;RLB,- is a linear function ofr*.
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