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Abstract

The Cramer-Rao Lower Bound is widely used in statistical signal processing as a benchmark to

evaluate unbiased estimators. However, for some random variables, the probability density function has

no closed analytical form. Therefore, it is very hard or impossible to evaluate the Cramer-Rao Lower

Bound directly. In these cases the characteristic functionmay still have a closed and even simple form. In

this paper, we propose a method to evaluate the Cramer-Rao Lower Bound via the characteristic function.

As an example, the Cramer-Rao Lower Bound of the scale parameter and the shape parameter of the

K-distribution is accurately evaluated with the proposed method. Finally it is shown that for probability

density functions with a scale parameter, the Cramer-Rao Lower Bound for the remaining parameters do

not depend on the scale parameter.

I. I NTRODUCTION

In statistical parameter estimation theory, the Cramer-Rao Lower Bound (CRLB) is a lower bound on

the variance of any unbiased estimator [1]. Letp(x; θ) denotes the probability density function (PDF) of

a random variableX parameterized byθ, whereθ = [θ1, θ2, · · · , θL]T . Let θ̂ be an unbiased estimator

of θ. If p(x; θ) satisfies the “regularity” conditions, or

E

[

∂ ln p (x; θ)

∂θ

]

= 0
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whereE [·] denotes the expectation, then

var
(

θ̂i

)

≥
[

I
−1 (θ)

]

ii
= CRLBθi

(1)

wherevar
(

θ̂i

)

denotes the variance of theith element of the estimator, or the estimator forθi ,
[

I
−1 (θ)

]

ii

is the (i, i) element of the inverse Fisher information matrix, and is the CRLB for θi. The Fisher

information matrix is defined as

[I(θ)]ij = E

[

∂ ln p(x; θ)

∂θi

∂ ln p(x; θ)

∂θj

]

. (2)

It is seen that the key step to obtain the CRLB is the evaluationof [I (θ)]ij . Compared to other variance

bounds [2], [3], the CRLB is usually easier to compute. Therefore it is extensively used in the signal

processing literature as a benchmark to evaluate the performance of an unbiased estimator. However, there

are cases in whichp (x; θ) has no closed form. As a result, the CRLB is hard or impossible to evaluate

analytically via (2). However, in some cases in whichp (x; θ) has no closed form, the characteristic

function (CF) ofp (x; θ) does have a closed and even simple form, for example the K-distribution [4],

the α-stable distribution [5] and the Class A distribution [6].

The CF ofp (x; θ) is defined as

φX (ω; θ) = E
[

ejωX
]

. (3)

This is just the Fourier transform ofp (x; θ). Thereforep (x; θ) can be thought of as a time domain

function andφX (ω; θ) as a frequency domain function. Since (2) is essentially an integration in the time

domain, it is possible to evaluateI (θ) equivalently in the frequency domain. This idea could be applied

to both univariate and multivariate distributions. In thispaper, we focus on parameter CRLB evaluation

of univariate distributions. The extension to multivariatedistributions will be explored in the future work.

The paper is organized as follows. In Section II, the method to evaluate the CRLB via the CF is

introduced. In Section III, an example is given and Section IV offers some conclusions.

II. CRLB COMPUTATION VIA THE CHARACTERISTIC FUNCTION

Equation (2) can be rewritten as

[I (θ)]ij =

∫ ∞

−∞

∂ ln p (x; θ)

∂θi

∂ ln p (x; θ)

∂θj
p (x; θ) dx

=

∫ ∞

−∞

∂p (x; θ)

∂θi

∂p (x; θ)

∂θj

1

p (x; θ)
dx. (4)

Assume there is a real positive numberL, such thatp (x; θ) = 0 for |x| > L
2 , then

[I (θ)]ij =

∫ L/2

−L/2

∂p (x; θ)

∂θi

∂p (x; θ)

∂θj

1

p (x; θ)
dx. (5)
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Let u = x
L ,

[I (θ)]ij =

∫ 1/2

−1/2

∂p (Lu; θ)

∂θi

∂p (Lu; θ)

∂θj

1

p (Lu; θ)
Ldu.

Let G (u; θ) = p (Lu; θ)

[I (θ)]ij = L

∫ 1/2

−1/2

∂G (u; θ)

∂θi

∂G (u; θ)

∂θj

1

G (u; θ)
du. (6)

From the property of a PDF,p (x; θ) and equivalentlyG (u; θ) ≥ 0, so we can considerG (u; θ) to be a

discrete-time power spectral density (PSD). Therefore,G (u; θ) can be approximated by an autoregressive

(AR) model for a sufficiently large model order, i.e. [7]

G (u; θ) ≈ σ2
u

|A (u)|2
(7)

whereσ2
u is the excitation noise variance, and

A (u) = 1 + a [1] e−j2πu + a [2] e−j2πu2 + · · · + a [p] e−j2πup

wherea[1], a[2], · · · , a[p] are the AR coefficients withp being the order of the AR model. LetF−1 denote

the inverse Fourier transform. It is readily seen that

F−1 {A (u)} =

∫ 1/2

−1/2
A (u)ej2πundu

= a[n]

The proper model orderp can be determined by comparing the estimated AR PSDσ
2
u

|A(u)|2 with the true

G (u; θ) or numerically calculatedG (u; θ). If the fitting error is too large, then a largerp should be

used. Plugging (7) into (6), we have

[I (θ)]ij =
L

σ2
u

∫ 1/2

−1/2

[

∂G (u; θ)

∂θi
A (u)

]

[

∂G (u; θ)

∂θj
A∗ (u)

]

du

=
L

σ2
u

∫ 1/2

−1/2

[

∂G (u; θ)

∂θi
A (u)

]

[

∂G (u; θ)

∂θj
A (u)

]∗
du. (8)

The last equation relies on the property thatp (x; θ), and thereforeG (u; θ) is real. By Parseval’s theorem,

[I (θ)]ij =
L

σ2
u

∞
∑

n=−∞
x [n]y∗ [n] (9)

where

x [n] = F−1
{

∂G (u, θ)

∂θi
A (u)

}

and

y [n] = F−1

{

∂G (u, θ)

∂θj
A (u)

}
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Let g [n] = F−1 {G (u; θ)}, so thatg[n] can be thought of as the autocorrelation sequence associated

with the PSDG (u; θ) [7]. It is given by

g [n] =

∫ 1/2

−1/2
G (u; θ)ej2πundu

=

∫ 1/2

−1/2
p (Lu; θ)ej2πundu. (10)

Letting x = uL in the above equation yields

g[n] =

∫ 1/2

−1/2
p(x; θ)ej2π x

L
nd

x

L

=
1

L
EX

[

ej2π n

L
x
]

=
1

L
φX

(

2πn

L
; θ

)

. (11)

Since the CF is assumed to have a closed analytical form,g[n] can be easily obtained from (11).

With g[0], g[1], · · · , g[p] known, the Yule-Walker method can be used to determine the ARparameters
{

a[1], a[2], · · · , a[p], σ2
u

}

[7].

Next, since the inverse Fourier transform is linear, we have

F−1
{

∂G (u; θ)

∂θi

}

=
∂F−1 {G (u; θ)}

∂θi
. (12)

Plugging (11) into (12), we have

F−1
{

∂G (u; θ)

∂θi

}

=
∂ 1

LφX

(

2πn
L ; θ

)

∂θi

=
1

L

∂

∂θi
φX

(

2πn

L
; θ

)

. (13)

Let

hi[n] =
∂

∂θi
φX

(

2πn

L
; θ

)

(14)

so that from (9)

[I (θ)]ij =
1

Lσ2
u

∞
∑

n=−∞
(a [n] ⋆ hi [n]) (a [n] ⋆ hj [n])∗ (15)

where⋆ denotes the convolution.

If there is a real positive integerM , such thathi[n] ≈ 0, andhj [n] ≈ 0 for |n| > M , then (15) can

be approximated as

[I (θ)]ij =
1

Lσ2
u

M
∑

n=−M

(a [n] ∗ hi [n]) (a [n] ∗ hj [n])∗. (16)

After the analytical form ofhi[n] andhj [n] are obtained,M can be obtained.
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For an arbitraryp (x; θ), we can always find the positive numberL, such thatp (x; θ) ≈ 0 for |x| > L
2 .

This may be done directly from the expression ofp (x; θ). However, since we are considering the case

when p (x; θ) has no closed form, it is necessary to be able to determineL from φX (ω; θ). To do so

note that the moments ofX can be obtained by [8]

E [Xn] =
1

jn

dnφX (ω)

dωn

∣

∣

∣

∣

ω=0

.

From the moments ofX andφX (ω; θ), L can be found using probability bounds. In the example of the

next section, the Chernoff bound is used to determineL [9]. The steps to evaluate[I (θ)]ij via the CF

φX (ω; θ) are summarized below,

1) FromφX (ω; θ), obtainL such thatp (x; θ) ≈ 0 for |x| > L
2 , by using a bound.

2) Select an AR model orderp.

3) Calculateg[0], g[1], · · · , g[p] from (11).

4) Determinea[1], a[2], · · · a[p], σ2
u by the Yule-Walker method.

5) Obtain the expression ofhi[n] andhj [n] from (14).

6) SelectM from the expression ofhi[n] andhj [n].

7) EvaluateI(θ) from (16).

We note that in the above procedure the PDF p (x; θ) need not be known.

III. CRLB COMPUTATION FOR THEK-DISTRIBUTION

The K-distribution is widely used to model sea surface clutter in high-resolution radar systems and to

model sea floor reverberation in high-resolution active sonar systems [4], [10], [11], [12].

Let X = Xr + jXi be a zero mean, circularly symmetric complex Gaussian random variable, i.e.

[Xr, Xi]
T ∼ N

(

0, σ2
I
)

, whereI is a 2 × 2 identity matrix. LetY be a Gamma random variable with

the shape parameter beingν + 1 and the scale parameter being1/2, or

pY (y) =











( 1

2
)

ν+1

Γ(ν+1)y
ν exp

(

−1
2y
)

y ≥ 0

0 y < 0
(17)

whereΓ (·) denotes the Gamma function andν > −1. Then
√

Y X is distributed according to a complex

K-distribution [12]. Denote this variable asR = Z + jT , whereZ is the real part ofR and T is the

imaginary part. The joint CF of(Z, T ) is given by [10]

φZ,T (ω, γ) = E
[

ejωZ+jγT
]

=
1

(1 + σ2 (ω2 + γ2))ν+1 . (18)
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Hence, the CF ofZ is given by

φZ (ω) = φZ,T (ω, 0) =
1

(1 + σ2ω2)ν+1 (19)

and the PDF ofZ can be shown to be

pZ (z) =
1√

πσ2Γ (ν + 1)

( |z|
2σ

)ν+1/2

Kν+1/2

( |z|
σ

)

(20)

whereKα (·) is the modified Bessel function of the second kind.

From (20) it is seen thatσ is the scale parameter andν is the shape parameter. The moments ofZ

can be obtained from the CF as

E [Z] =
1

j

∂φZ (ω)

∂ω

∣

∣

∣

∣

ω=0

= 0 (21)

and

E
[

Z2
]

= −∂2φZ (ω)

∂ω2

∣

∣

∣

∣

∣

ω=0

= 2 (ν + 1)σ2. (22)

Therefore the variance ofZ is

var (Z) = E
[

Z2
]

− E2 [Z] = 2 (ν + 1) σ2.

It is seen that asν decreases, the variance ofZ decreases. Whenν → −1, var (Z) → 0, which means

Z approaches the deterministic value 0.

In [10] an approximate CRLB forν of the PDF of|R| is derived under the condition thatσ2 is known

and ν ≫ 0. In the rest of this paper, we will focus on computing the CRLBsfor both ν and σ2 of

pZ (z) without any additional constrain on the range ofν. Considering the expression of (20), it would

be a formidable task to evaluate[I (θ)]ij using (2). Therefore we evaluate[I (θ)]ij via the CF using the

method introduced in the last section.

A. Selection of L

L is determined from the Chernoff bound, which is given as [9]

prob (z ≥ τ) ≤ exp (−sτ)E [exp (sz)]

= exp (−sτ + log (E [exp (sz)])) (23)

for any s ≥ 0. With this bound, anL is found as

L =











2
√

15 (ν + 1) σ for ν ≥ 4

10
√

15σ for ν < 4
(24)

The details are given in Appendix I.

In general, a simple procedure to determineL is to increase it, until the results converge.
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B. Selection of the AR Model Order p

It can be seen that from (20) asν → −1 , pZ (z) becomes narrower, requiringp to be large. The

proper value ofp is also determined byL. This is because asL increases, the PSDG(u; θ) becomes

narrower, requiring a largerp. For the selection ofL given by (24), an empirical formula is obtained

from simulations, and is given as

p =











⌈1200 exp (−7ν)+70⌉ for −1 < ν < 0.9

50 for ν ≥ 0.9

where⌈·⌉ denotes “the smallest integer greater than”.

In general, a simple procedure to determinep is to increase it, until the results converge.

C. Expression of g[n] and hi[n]

Plugging (19) into (11) we have

g[n] =
1

L (1 + σ2ω2)ν+1

∣

∣

∣

∣

∣

ω= 2πn

L

Plugging (19) into (14) yields

hσ2 [n] =
∂

∂σ2

[

1

(1 + σ2ω2)ν+1

]∣

∣

∣

∣

∣

ω= 2πn

L

=
ω2 (1 + ν)

(1 + σ2ω2)ν+2

∣

∣

∣

∣

∣

ω= 2πn

L

(25)

and

hν [n] =
∂

∂ν

[

1

(1 + σ2ω2)ν+1

]∣

∣

∣

∣

∣

ω= 2πn

L

=
ln
(

1 + σ2ω2
)

(1 + σ2ω2)ν+1

∣

∣

∣

∣

∣

ω= 2πn

L

(26)

D. Selection of M

From the derivation in Appendix II,

M = min (M1, M2)

where

M1 =

⌈

L

2π

(

1 + ν

10−4

)
1

2ν+2

σ− 2ν+4

2ν+2

⌉

.
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and

M2 =











min

(

⌈

L
2πσ341.6

⌉

,

⌈

L
2πσ

(

1
10−4

)
2

2ν+1

⌉)

ν ≥ 0
⌈

L
2πσ

√
xν

⌉

−1<ν < 0

wherexν is the greatest root of the equation

log (1 + x)

(1 + x)1+ν = 10−4

and it can be easily found by a numerical method.

In general, a simple procedure to determineM is to increase it, until the results converge.

E. A Corroboration Test

Now we have everything to calculateI (θ) from (16). As a corroboration test of the proposed method,

a special case in whichν = 0 is considered first. Whenν = 0, it is readily shown that

pZ (z) =
1

2σ
exp

(

−|z|
σ

)

. (27)

After some simple algebra, we have

[I (θ)]σ2σ2 = E





(

∂ ln p
(

x; σ2
)

∂σ2

)2


 =
1

4σ4
. (28)

The theoretical value given by (28) and the value computed from the proposed method are shown in

Fig. 1 as circles and stars respectively. It can be seen that the match is very good and the results are

precise enough for most applications. However, if higher precision is required, we can always increase

L, p andM .

F. CRLB Evaluation of ν and σ2 for the K-PDF of (20)

Even though there are two parameters inpZ (z), it is shown in Appendix III that theCRLBν is

independent ofσ2, and for a fixedν, CRLBσ2 is a linear function ofσ4. This is becauseσ is a scale

parameter ofpZ (z). Therefore, there is no need to plot the 2 dimensional figures ofCRLBσ2 and

CRLBν versusσ2 andν. In Fig. 2 the computedCRLBν is plotted versusν and in Fig. 3 the computed
CRLB

σ2

σ4 is plotted versusν. In both figures the computed values are connected with straight line for

better viewing.
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Fig. 1. Theoretical and computed[I(θ)]σ2σ2 versusσ2 for the K-PDF of (20) withν = 0.
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Fig. 2. EvaluatedCRLBν versusν for all σ
2

.

IV. CONCLUSION

We have proposed a method to evaluate the CRLB via the CF. When the PDF has no closed form,

it can be very hard or impossible to evaluate the CRLB directly. With the proposed method, the CRLB
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Fig. 3. Evaluated
CRLB

σ2

σ4 versusν

.

can be accurately evaluated when the CF is known. As an example, the CRLBs of the scale parameter

and the shape parameter of the K-distribution have been computed with the proposed approach. It has

also been shown that for a PDF with a scale parameter, the CRLB for the remaining parameters do not

depend on the scale parameter.

APPENDIX I

SELECTION OFL

From (19), the moment generation function ofZ is given as

E [ζz] =
1

(1 − σ2ζ2)υ+1 .

Letting ζ = s and minimizing logarithm of (23)

F (s) = −sτ − (ν + 1) log
(

1 − σ2s2
)

with respect tos, we have

F (ŝ) = −
√

(ν + 1)2 +
τ2

σ2
+ ν + 1 − (ν + 1) log











1 −

(

√

σ2 (ν + 1)2 + τ2 − σ (ν + 1)2
)2

τ2











.
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If we let τ =
√

15 (ν + 1)2 σ2 then

F (ŝ) = −3 − log

(

2

5

)

−
(

3 + log

(

2

5

))

ν.

It can be shown that forν < 4

prob (z ≥ τ | ν < 4) ≤ prob (z ≥ τ | ν = 4) ≤ exp (F (ŝ; ν = 4)) < 2.987 × 10−5.

Hence if we choose

τ =











√
15 (ν + 1) σ for ν ≥ 4

5
√

15σ for ν < 4
(29)

thenprob (z ≥ τ) < 2.987 × 10−5. SincepZ (z) is symmetric we have

prob (z ≤ −τ) < 2.987 × 10−5.

Letting L = 2τ , thenpZ (z) ≈ 0 for |z| > L
2 .

APPENDIX II

SELECTION OFM

Differentiating (19) with respect toσ2 and taking the absolute value yield
∣

∣

∣

∣

d

dσ2
φX (ω)

∣

∣

∣

∣

=
ω2 (1 + ν)

(1 + σ2ω2)ν+2

<
ω2 (1 + ν)

(σ2ω2)ν+2

=
(1 + ν)

(σ2)ν+2 ω2ν+2
. (30)

Hence, we have
∣

∣

∣

d
dσ2 φX (ω)

∣

∣

∣ < 10−4, if

ω >

(

1 + ν

σ2ν+410−4

)
1

2ν+2

=

(

1 + ν

10−4

)
1

2ν+2

σ− 2ν+4

2ν+2 .

Equivalently,|hσ2 [n]| < 10−4 for all n ≥ M1, if

M1 =

⌈

L

2π

(

1 + ν

10−4

)
1

2ν+2

σ− 2ν+4

2ν+2

⌉

.
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Differentiating (19) with respect toν and taking the absolute value yield
∣

∣

∣

∣

d

dν
φX (ω)

∣

∣

∣

∣

=
ln
(

1 + σ2ω2
)

(1 + σ2ω2)ν+1

<
ln
(

1 + σ2ω2
)

(σ2ω2)ν+1

≤
(

σ2ω2
)1/2

(σ2)ν+2 ω2ν+2

=
1

(σ2ω2)ν+1/2
. (31)

If ν > −1
2 then

∣

∣

∣

d
dν φX (ω)

∣

∣

∣ < 10−4 for

ω ≥ 1

σ

(

1

10−4

)
2

2ν+1

.

Or equivalently|hν [n]| < 10−4 for all n ≥ M2, if

M2 ≥
⌈

L

2πσ

(

1

10−4

)
2

2ν+1

⌉

.

However, whenν → 0, M2 could be very large and this bound is not tight enough. Therefore, another

bound is derived in the follows.

For ν > 0
log

(

1 + σ2ω2
)

(1 + σ2ω2)ν+1 <
log

(

1 + σ2ω2
)

(1 + σ2ω2)

solving the equationlog(1+x)
1+x = 10−4 we havex = 1.1667 × 105, so

log
(

1 + σ2ω2
)

(1 + σ2ω2)ν+1 < 10−4

if ω ≥ 1
σ341.6. Or equivalently|hν [n]| < 10−4 for all n ≥ M2, if

M2 =

⌈

L

2πσ
341.6

⌉

.

Therefore forν > 0 we have

M2 = min

(

⌈

L

2πσ
341.6

⌉

,

⌈

L

2πσ

(

1

10−4

)
2

2ν+1

⌉)

.

For −1 < ν ≤ 0, the equation
log (1 + x)

(1 + x)1+ν = 10−4

is first solved numerically. Letxν be the greatest root, then

log
(

1 + σ2ω2
)

(1 + σ2ω2)ν+1 < 10−4
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if ω >
√

xν

σ . Or equivalently|hν [n]| < 10−4 for all n ≥ M2, if

M2 =

⌈

L

2πσ

√
xν

⌉

.

So finally,

M2 =











min

(

⌈

L
2πσ341.6

⌉

,

⌈

L
2πσ

(

1
10−4

)
2

2ν+1

⌉)

ν ≥ 0
⌈

L
2πσ

√
xν

⌉

−1<ν < 0

and

M = min (M1, M2) .

APPENDIX III

INDEPENDENCE OF THECRLB OF A SCALE PARAMETER

Theorem 1: Let pZ(z; α, λ) be a PDF parameterized byα andλ. If pZ(z; α, λ) satisfies the “regularity

condition” andλ is a positive scale parameter, orpZ(z; α, λ) = λf(λz; α), thenCRLBα is independent

of the value ofλ, and for a fixedα, CRLBλ is a linear function ofλ2.

We note that the CRLB forα will be smaller whenλ is known. Also, in theTheorem 1 there is only

one remaining parameter, i.e.α. When there are more than one remaining parameters the same conclusion

still holds, and it can be proved similarly.

Proof: By definition, the(1, 1) element of the Fisher information matrix is

Iαα = E

[

(

∂ ln (pZ (z; α, λ))

∂α

)2
]

=

∫ ∞

−∞

(

∂ (pZ (z; α, λ))

∂α

)2 1

pZ (z; α, λ)
dz

=

∫ ∞

−∞

(

∂λf (λz; α)

∂α

)2 1

λf (λz; α)
dz. (32)

It is assumed that the range of the PDF is from−∞ to ∞. For PDFs with other ranges, the theorem

can be proved similarly. In the rest of the proof the limits ofthe integral are omitted for simplicity. Let

x = λz, after straightforward algebra, we have from (32)

Iαα =

∫ (

∂f (x; α)

∂α

)2 1

f (x; α)
dx. (33)

This is a function ofα only, so it can be denoted asg1(α) .
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By definition

Iλλ =

∫ (

∂ (pZ (z; α, λ))

∂λ

)2 1

pZ (z; α, λ)
dz

=

∫ (

∂λf (λz; α)

∂λ

)2 1

λf (λz; α)
dz

=

∫ (

f (λz; α) + λz
∂f (u; α)

∂u

∣

∣

∣

∣

u=λz

)2 1

λf (λz; α)
dz. (34)

Let x = λz, after straightforward algebra, we have from (34)

Iλλ =

∫ (

f (x; α) + x
∂f (u; α)

∂u

∣

∣

∣

∣

u=x

)2 1

λ2f (x; α)
dx. (35)

This can be denoted as1λ2 g2(α), whereg2(α) is a function ofα only.

Similarly

Iαλ =

∫ (

∂ (pZ (z; α, λ))

∂α

)(

∂ (pZ (z; α, λ))

∂λ

)

1

pZ (z; α, λ)
dz

=

∫ (

∂ (λf (λz; α))

∂α

)(

f (λz; α) + λz
∂f (u; α)

∂u

∣

∣

∣

∣

u=λz

)

1

λf (λz; α)
dz. (36)

Let x = λz, after straightforward algebra, we have from (36)

Iαλ =

∫ (

∂ (f (x; α))

∂α

)(

f (x; α) + x
∂f (u; α)

∂u

∣

∣

∣

∣

u=x

)

1

λf (x; α)
dx. (37)

This can be denoted as1λg3(α), whereg3(α) is a function ofα only.

Therefore, the Fisher information matrix can be expressed as

I (α, λ) =







g1 (α) 1
λg3 (α)

1
λg3 (α) 1

λ2 g2 (α)






.

As a result,

I
−1 (α, λ) =

1

g1 (α) g2 (α) − g2
3 (α)







g2 (α) −λg3 (α)

−λg3 (α) λ2g1 (α)






.

This expression proves the theorem.

Considering the K-distribution PDF given by (20), accordingto Theorem 1, CRLBν is independent

of 1
σ . HenceCRLBν is independent ofσ2. Also CRLB 1

σ

is a linear function of 1
σ2 . After parameter

transformation it can be shown [1],CRLBσ2 is a linear function ofσ4.
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