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Conditional Model Order Estimation
Steven Kay, Fellow, IEEE

Abstract—A new approach to model order selection is proposed.
Based on the theory of sufficient statistics, the method does not re-
quire any prior knowledge of the model parameters. It is able to
discriminate between models by basing the decision on the part of
the data that is independent of the model parameters. This is ac-
complished conceptually by transforming the data into a sufficient
statistic and an ancillary statistic with respect to the model param-
eters. It is the probability density function of the ancillary statistic
when adjusted for its dimensionality that is used to estimate the
order. Furthermore, the rule is directly tied to the goal of mini-
mizing the probability of error and does not employ any asymp-
totic approximations. The estimator can be shown to be consistent
and, via computer simulation, is found to outperform the minimum
description length estimator.

Index Terms—Adaptive signal detection, modeling, spectral
analysis, speech analysis.

I. INTRODUCTION

T HE DETERMINATION of the number of parameters in a
model used to fit a data set is a well-known and well-re-

searched problem [1], [2], [11], [16], [17]. When the parame-
ters of each competing model are known, the optimal solution
is to choose the model with the largesta posterioriprobability.
However, as is usually the case, the parameters are unknown,
and the fitting problem becomes quite difficult with no optimal
solution existing. In terms of hypothesis testing, model selection
is a multiple composite hypothesis test [15]. One way to attack
this problem is to assume a prior probability density function
(PDF) for the unknown parameters of each model. This is the
so-called Bayesian approach [5], [17]. Then, the model param-
eters are “integrated out” to yield the PDF of the data. Finally,
the maximuma posteriori (MAP) decision rule, which mini-
mizes the probability of error, is used. In practice, prior PDFs
are seldom available, leading one to assume a noninformative
prior or to discard the prior entirely [7]. This approach, how-
ever, is fraught with difficulty as stated by Cox and Hinkley.
With reference to prior selection, they state the following [6]:

“There is no difficulty in principle with [prior selection]
but note that with the approximate uniform prior densities
[the factors due to the priors] do not cancel, as they would
in any calculation ‘within’ an individual model. … From
a subjectivist viewpoint it is in principle possible in any
particular application to determine ‘your’ numerical value
for this ratio.”
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To avoid the use of priors numerous model selection rules
have been formulated based on information theoretic concepts.
Some of these are the Akaike information criterion (AIC) [2]
and its variants, the final prediction error (FPE) [1], and the
minimum description length (MDL) [16]. All these criteria have
been justified and/or derived based onasymptotic arguments.
Their application to finite data records (and, in particular, short
data records, which is the case of interest) may not be justified.
Furthermore, for finite data records,these criteria do not di-
rectly attempt to minimize the probability of error of a decision.
Hence, there is no direct link to the important goal of selecting
the correct model order most of the time.

Our approach is an attempt to alleviate the theoretical and
practical shortcomings of the asymptotic approaches previously
described. We desire a rule that is based on finite data records
and works well in terms of maximizing the probability of a cor-
rect decision. To this end, we propose the conditional model es-
timator (CME). It is applicable to the model selection problem
when sufficient statistics exist for the parameters of each com-
peting model. The approach is classical in nature and, therefore,
does not require any prior knowledge of the model parameters.
Based on the theory of sufficient statistics,the CME avoids the
need for prior parameter knowledge by maximizing the condi-
tional PDF of the data. The conditioning is done on the suffi-
cient statistics, which are observed directly. One way to view
this approach is that it splits the observed data into two parts.
One part is the sufficient statistic for the model parameters under
each hypothesis, and the remaining data has a PDF that does not
depend on the model parameters but only on its dimension. The
remaining data is sometimes referred to as an ancillary statistic
[15] when making inferences about the unknown model param-
eters. Since the model parameters are unknown and presumably
may take on any values, the sufficient statistic PDF cannot be
determined in the absence of prior knowledge. Hence, this part
of the data is discarded, leaving only the “ancillary” data. The
latter carries no information about the model parameters, as-
suming agivenmodel. However, in the model order selection
problem, it appears that the PDF of the ancillary statisticwhen
adjusted for its dimensionis capable of discriminating between
models, without requiring knowledge of the model parameters
for each model. It will be shown that this approach has some
optimality properties in that it yields the minimum variance un-
biased (MVU) estimator of the probability of a correct decision
under the correct hypothesis. In addition, it can be shown to pro-
duce a consistent estimator. Finally, it should be noted that at
least in the case of the Gaussian linear model, which is examined
in detail in this paper, the CME yields a similar estimator to that
obtained based on Bayesian arguments. Bayesian approaches
have been summarized in [9], who have tabulated the various
model order selection rules for numerous assumed prior proba-
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bilities on the parameters. For finite data records, however, the
arbitrariness introduced by the various priors is not shared by
the CME approach.

One limitation of the proposed method is that it requires the
PDF families to admit a minimal set of sufficient statistics. This
is, unfortunately, only the case for certain PDFs [15]. However,
the methodology proposed can be extended to the case of ap-
proximate sufficient statistics, which always exist. In particular,
the maximum likelihood estimator (MLE) is asymptotically a
sufficient statistic. Of course, pursuing this line of reasoning
again leads us to the large data record case, which we sought
to avoid. A later paper will explore this avenue. In addition, it
should be noted that for best performance, the sufficient statistic
should be minimal in dimension. However, the approach can
still be applied for nonminimal sufficient statistics, albeit, with
a loss in performance. Finally, for real-world problems, it fre-
quently occurs that the PDF of the competing models is not
known at all. The search for a sufficient statistic then becomes
a moot point. Our results, however, indicate that a reasonable
approach is to choose an estimator of the model parameters and
then compare the PDFs of the sufficient statistics for the various
models for the case of white Gaussian noise. This is termed the
class-specific approach.

The paper is organized as follows. In Section II, the rationale
for the decision rule is described. Section III applies the rule to
the Gaussian linear model, whereas in Section IV, the class-spe-
cific form of the estimator is introduced. Specific signal pro-
cessing examples for the linear model are discussed in Sec-
tion V, whereas in Section VI, the results of a computer simula-
tion are described. Finally, conclusions are given in Section VII.

II. RATIONALE FOR DECISION RULE

It is well known that to minimize the probability of error
for a multiple hypothesis test one should use the maximum

a posterior (MAP) rule [13]. In the model order selection
problem, it is reasonable to assume no knowledge of the
competing models. It is, therefore, usually assumed that the
prior probabilities are equal. We will henceforth adopt this
assumption. For possible hypotheses with equal prior
probabilities of of occurrence, the MAP
rule reduces to the maximum likelihood (ML) rule. The latter
chooses the hypothesis to be the true hypothesis among

if

where is the PDF of the data
conditioned on being true. The ML rule minimizes

or, equivalently, maximizes the probability of a correct decision
, which is

decide

(1)

where is the decision region or subset of for which we
decide if . Note that the decision regions partition
the space . The ML rule assigns to if is max-
imum. In practice, a major difficulty that arises in implementing
this rule is that is not known. It depends on the exact
parameters for each assumed model.

To motivate the use of the CME, first, let the PDF ofdepend
on the model parameters , where is

. Then, the PDF of the data can be written as .
From (1), we seek to maximize

(2)

by choosing the decision regions . The Bayesian approach
would assign a prior PDF to and then integrate it out. As dis-
cussed previously, this can lead to performance that is highly
dependent on the priors assumed. We prefer to retainas a de-
terministic but unknown parameter, i.e., the classical assump-
tion, andestimate for each . Then, we as-
sign to if the estimated value is maximum.Note that this
approach more closely ties the decision procedure to its perfor-
mance. We next show that an optimal estimator of this quantity
exists when the PDF family admits a complete sufficient statistic
for the unknown parameters under each hypothesis. This op-
timal estimator is the MVU estimator.

Now, let the probability of a correct decision conditioned on
being true be denoted as

(3)

and using the indicator function defined as

if
otherwise

we have from (2) and (3) that

(4)

Next, consider the estimation of the expected value
that depends on . For ease of discussion,

we simplify the notation to , where has the PDF
, and is the indicator function. Since the PDF of

depends on, we can let

(5)

and consider the estimation of , which is the probability
that under the correct hypothesis. If a complete suf-
ficient statistic exists for and an unbiased estimator ex-
ists for , then the Rao–Blackwell–Lehmann–Scheffe the-
orem will yield the MVU estimator [12], [15]. Clearly, is
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an unbiased estimator since its expected value yields, as
per (5). Thus, our MVU estimator for is

(6)

where the expectation is a conditional one with respect to the
PDF of once the sufficient statistic is observed. Note
from the theory of sufficient statistics that will not depend
on but only on the data through . Hence, depends
only on . Now, using (6) in (4) and reintroducing the depen-
dence on the assumed hypothesis, we have the estimate of

where is the conditional PDF of conditioned on having
observed and which does not depend on. It should be
noted that is the MVU estimator of only when

is trueand, thus, only when is thetruesufficient statistic.
Otherwise, there is a misspecification [18].

We now propose the CME rule. This rule maximizes theesti-
mated by letting or, equivalently, if
is maximized. Hence, the CME rule decides if

To actually compute the required conditional PDFs, we note
that

if

otherwise

and therefore, the CME rule chooses the hypothesis that maxi-
mizes

(7)

Note, once again, that this conditional PDF does not depend
on the unknown parameter vector(the apparent dependence
“cancels out”) and therefore allows selection of a model without
knowledge of the parameters of each model. It is interesting to
observe that this rule is just the usual ML rule, except for the de-
nominator term. In effect, the conditioning operation serves to
discard the data within that depends directly on the unknown
parameter vector . This is because the data can be viewed as
having been generated in two steps. In the first step, the suffi-
cient statistic is generated by choosing a realization from a PDF
that depends on the model parameters. In the second step, the
remainder of the data is generated using a PDF that does not de-
pend on the model parameters but only on the model dimension
[4]. In essence, this is the fundamental concept of sufficiency.
It is only the data obtained in step two that is used to make a
decision. In Section III, an example illustrates this property.

In some ways, the CME is an extension of the concept ofsim-
ilar regions or regions of Neyman structure to multiple com-
posite hypothesis testing [15]. Another connection is with the

conditionally principleproposed by Fisher, which states that for
statistical inference, only the part of the PDF that does not de-
pend on any nuisance parameters should be used [15].

III. A PPLICATION TO THELINEAR MODEL

A. Unknown Noise Variance

An important application of the proposed model estimator is
in choosing the order of the Gaussian linear model. Some spe-
cific examples of the Gaussian linear model are given in Sec-
tion V along with a computer simulation. The Gaussian linear
model is defined as [12]

(8)

where
known matrix;

parameter vector;
noise vector that is assumed to be Gaussian with mean
zero and covariance matrix or .

The noise variance is also assumed to be unknown. Hence,
the unknown set of parameters is [ . In keeping with stan-
dard notation, we have not denoted this set of parameters as
since this is usually reserved for only the “signal” portion ()
of the model. Hopefully, the meaning will become clear from
the context. It is well known that this model for the data admits
a sufficient statistic that is complete [10]. The sufficient statistic
for the unknown parameters when properly normalized to make
it an unbiased estimator is

It can further be shown that and are independent random
variables with corresponding PDFs

(9)

Hence, the sufficient statistic

(10)

can be used to implement the CME. To do so, we must determine
from (7)

where we have now omitted thedependence for simplicity.
This ratio is independent of the unknown parameters, as we now
show in our computations. Using (8), we have
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and using the identity

(11)

the PDF becomes

(12)

Now, for the sufficient statistic, we have from (9) and (10)

due to the independence, but from (9)

(13)

and

so that

yields

(14)

Now, noting that

we have from (12)–(14), after some simplifications

Upon taking natural logarithms and reinstating thenotation,
the CME rule results. It says to choose the model orderthat
minimizes

CME

(15)

over , where is the maximum possible
order, and where

(16)

As claimed, the ratio is independent of the unknown parameters.
It is seen that the first term is a fitting error, whereas the second
term is a penalty for overfitting. Under fairly mild conditions,
the CME, as given by (15), can be shown to be consistent. In
Section V, we implement this model order estimator for some
signal processing examples.

B. Known Noise Variance

We now determine the CME for the case of a linear model
with knownnoise variance. Although it is of less practical im-
portance than the previous case, we examine it to illustrate the
essence of the CME. As alluded to earlier, the CME bases its de-
cision on the part of the data that is not influenced by the model
parameters. To see this, we have from (7) that

where refers to the signal parameters in the model
. Since

we have, upon using (11), the equation shown at the bottom of
the next page, or

(17)
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where . The CME is obtained,
therefore, by minimizing

CME

where or equivalently

CME (18)

for given by (16).
Now, to relate to the PDF of the data not depen-

dent on , consider the following transformation from to
, where is and is :

(19)

and is and . The rows of
are chosen to span the orthogonal complement subspace of that
spanned by the columns of. We furthermore assume that the
basis of the former space is orthonormal so that . This
decomposition is always possible. Now, because of the property
that , the random vectors and are not only jointly
Gaussian but independent as well. The latter follows by showing
that the cross-covariance matrix is zero. Next, the Jacobian of
the transformation of (19) is found. Again, due to , we
have that

so that

and since , we have that the Jacobian is

Hence, the PDF of can be found using the inverse transforma-
tion of (19) as

Thus, we have finally that

(20)

which is the PDF of the data when adjusted by the Jaco-
bian for the transformation to a random variable inspace. In
addition, by expliciting determining the PDF of and sub-
stituting into (20), the result of (17) can be obtained.

It is easy to verify that the PDF of cannot depend on
since

The CME is seen to use the part of the transformed data that
does not depend on the model parameters, i.e.,
while discarding the part of the data, i.e., the sufficient statistic

, that does. In essence, forms the ancillary statistic,
and its PDF, when adjusted for its dimensionality as seen in (20),
forms the basis for discrimination.

IV. CLASS-SPECIFICCME

The CME chooses the order that maximizes

As shown for the linear model and as is true in general, this ratio
is independent of the value of as long as the same value is
used in the numerator and denominator. In some cases, it is ad-
vantageous to choose a specific value of. Consider the linear
model example of Section III-A. There, we saw that

If we choose and , then this becomes

However

(21)

for all . Hence, in maximizing , we can omit the nu-
merator term and just choose the hypothesis thatminimizes

From (21), however, we see that this is just the PDF of
when the data consists of white Gaussian noise with variance
one. We term this somewhat fictitious hypothesis the hy-
pothesis. Hence,the CME chooses the hypothesis that minimizes

(22)
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We now show that minimizing (22) is equivalent to the CME
rule. It should be pointed out that this result is quite important
in that the determination of the exact PDF of a sufficient statistic
can be difficult in practice. However, the problem has now been
reduced to finding the PDF of the sufficient statistic, assuming
that the data consist of white Gaussian noise. This being thein-
dependent and identically distributed(IID) case, the determina-
tion of the CME is simplified considerably. An example is that
of model order estimation for an autoregressive process. This
problem is addressed in [14].

From (10), we have that

and due to independence and using (13) and (14)

where

which, upon simplification, yields

CME

This is clearly equivalent since the additional term does not de-
pend on . This approach follows from the class-specific ideas
of [3].

Finally, the interpretation of the CME in this instance is of
interest. The CME appears to choose the hypothesis that is least
likely to resemble white Gaussian noise. As the model order
is increased, the models take on more nonzero parameters, and
hence, the “signal” departs more from zero, i.e., the white noise
case. Once the correct order is reached, additional increases in
order do not increase the signal but add only noise-like contri-
butions. Thus, in the overfitting case, the model becomes more
like white Gaussian noise, and its probability increases.

V. SPECIFICEXAMPLES

Although there are many linear model examples that are im-
portant in signal processing, we choose to focus on two prob-
lems of interest. They are the estimation of a periodic signal in
white Gaussian noise and the fitting of data by a polynomial.
In either case, the results of the previous section apply. For the
polynomial fitting problem, we give some computer simulation
results and comparisons with existing approaches in Section VI.

Example 1—Periodic Signal in White Gaussian Noise:This
problem is encountered in the processing of voiced speech in
noise as well as detection of periodic signals in noise. What
makes this problem a multiple composite hypothesis testing
problem is the lack of knowledge of the period, in addition to
the signal samples within a period. Assume then that we wish
to estimate the period of the signal as well as the signal samples
within a basic period. If are the samples
within the first period of length , we observe

where . This can be represented by the linear model as
, where

... ...

where
matrix;

identity matrix;
diag with the first diag-
onal elements equal to 1 and the remaining ele-
ments equal to zero;

for an integer that is the maximum number
of periods.

If the period is known, then the MVU estimator of is just
or

(23)

where is the largest integer less than or equal to
, and the estimate of is

(24)

To determine the period, which is the number of signal model
parameters, we use the CME given in Section IV. Note that the
signal estimate used in (24) is that given in (23) for the first
period and replicated for the remaining periods. In addition, for



1916 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 9, SEPTEMBER 2001

TABLE I
MODEL ORDERSCHOSEN BYCME AND MDL—CORRECTORDERIS 3

TABLE II
MODEL ORDERSCHOSEN BYCME AND MDL—CORRECTORDERIS 3

TABLE III
MODEL ORDERSCHOSEN BYCME AND MDL—CORRECTORDERIS 3

this problem, . Then, from (15), we
have that

CME

where , and . The consistency
conditions are easily shown to be satisfied, and hence, this is a
consistent estimator. Other approaches to this problem are con-
tained in [8], [13], and [19].

Example 2—Polynomial Fitting:Now, consider the fitting of
a polynomial of unknown order. The data is assumed to consist
of a polynomial signal embedded in white Gaussian noise of
unknown variance. The polynomial signal is

This data model is again a linear model with

...
...

...
...

...

The CME of (15) applies directly and can be shown to produce
a consistent estimator.

VI. COMPUTERSIMULATION RESULTS

For polynomial fitting as described in the previous section,
we compare the performance of the CME and the minimum
description length (MDL). The latter, which is based on an in-
formation theoretic formulation, determines the model order by
minimizing

MDL

where

For large , the two decision rules differ principally by the use
of for the CME penalty factor versus

for the MDL penalty factor. This has been pointed
out in an asymptotic analysis by [7].

The polynomial chosen for the computer simulation is

so that the true order is . A maximum order of is
assumed. For data points and , the results are
shown in Table I. It is observed that whereas the MDL appears
to overestimate the order, the CME tends to underestimate it.
The probability of a correct model order selection, however, is
larger for the CME. For a smaller amount of noise or

, the results are shown in Table II. Now, the CME is almost
perfect, whereas the MDL still overestimates the true order by a
probability greater than 0.1. For the a large amount of noise or

but a longer data record , the CME is perfect,
whereas the MDL still displays errors, as shown in Table III.
Numerous other simulation examples confirm the superiority of
the CME over the MDL.

VII. D ISCUSSION ANDCONCLUSIONS

The CME approach to model order selection has been shown
to be a viable method in the absence of prior knowledge about
model parameters for each competing model. Its justification
is an attempt to choose a decision rule that is directly tied to
maximizing the probability of a correct decision. In particular,
we have examined its application to the Gaussian linear model
and provided some signal processing examples. This applica-
tion is easily derived. More complicated applications, such as
the estimation of the model order of an autoregressive process,
are currently being investigated. Compared with the MDL, the
CME performance for finite data records appears to be superior.
In addition, it can be proven that under fairly mild conditions,
the CME is a consistent estimator of the model order. Its only
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limitation is that the model PDF family must admit a set of suf-
ficient statistics. They need not be a minimal set or even one
of a dimension equal to that of the unknown parameters. In this
case, the CME given by (7) is still independent of, but its in-
terpretation as an MVU estimator will not hold. Approximate
sufficient statistics such as the MLE can be used to extend its
utility. However, this extension requires asymptotic arguments,
which we have chosen to delay until a future paper.
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