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Abstract

A new joint angle-Doppler maximum likelihood estimator based on importance sampling (IS) is proposed.

The IS method allows one to compute the maximum likelihood estimator in a computationally efficient manner.

It is based upon generating random variates using an importance function which approximates the compressed

likelihood function. The performance is very close to the Cramer-Rao Lower Bound (CRLB). The choice of

the algorithm parameters, which will affect the estimation performance, is also addressed in this paper. With a

reasonable parameter choice, even the angles/Dopplers for closely spaced sources can be accurately estimated,

whereas conventional subspace methods fail. Comparison with some suboptimal methods demonsrates that the

IS method produces better performance at low SNR and/or small snapshots.

I. INTRODUCTION

In many signal processing problems such as are encountered in radar and sonar, it is desired to estimate

parameters of multiple moving targets from the observed data. The direction of arrival (DOA) and the

Doppler of the targets are two important parameters used to identify the target. This issue has been

studied extensively in recent years [1], [2]. Some techniques such as high-resolution DOA estimation

and frequency estimation, can efficiently estimate DOA and Doppler individually, but there have been

few results addressing the joint estimation problem. As a result, a maximum likelihood angle-frequency

estimator that can be efficiently implemented is desired, and is the subject of this paper.
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It is well known that the maximum likelihood estimator (MLE) is an asymptotically efficient estimator

[11]. In practice, its performance even for short data records nearly always outperforms other estimators.

However, for the problem at hand the analytical expression for the likelihood function is a complicated

nonlinear function of the parameters of interest and thus, it is computationally prohibitive to find the

global maximum. Some suboptimal methods or simplified methods have been proposed to solve this

problem in two different ways. The first approach is to decouple DOA and Doppler by replacing the

2-D optimization problem with two sequential 1-D optimization problems [3]. In this way, one set of

parameters is fixed and the solution for the other set is found using a 1-D optimization algorithm. Then,

the solution for the other parameter set is solved in the same way. Repeating this process results in an

iterative approach, which, unfortunately cannot be shown to converge and even when convergence is

obtained, is often only to a local maximum. The performance of these type of estimators will only attain

the 2-D CRLB when the number of array elements and/or number of snapshots is large. As examples, in

[6] a simple and efficient tree-structured frequency-space-frequency(FSF) MUSIC/ESPRIT algorithm,

where two 1-D frequency-MUSIC/ESPRIT and a 1-D space-MUSIC/ESPRIT algorithm, accompanied

by a temporal or spatial filtering process, approximates the 2-D nonlinear optimization required to

determine the MLE. The FSF-MUSIC/ESPRIT algorithm can estimate the angles and Dopplers of two

sources with very close DOAs or Dopplers but only when the other set of parameters are well separated.

Additionally, the number of sources with the identical Doppler or DOA must be known or estimated in

prior, which is difficult in practice. In the second general approach, a joint angle and frequency estimation

(JAFE) method based on ESPRIT method has been proposed. The observed data vectors are smoothed

spatially and temporally to construct a new high-dimensional data matrix and then the parameters can

be estimated from the eigenvalues of the shifted matrix according to the rotation invariance principle

[10]. The advantage of this method is that parameters of the same target are paired automatically and

the computational burden is low compared to the MLE using a grid search. The disadvantage is that it is

suboptimal and only formulated for a uniform linear array (ULA). Its performance achieves the CRLB

at high SNR only when the smoothing factor is chosen to be some optimal value, which is never known

in priori. Additionally, the computational complexity can still be quite high due to a high-dimensional

eigen-decomposition [7], [8]. In [4] the JAFE algorithm has been extended to the colored noise, where

it was pointed out that the root mean square error (RMSE) of the estimators based on subspace methods

are far above the CRLB, even at high SNR [4].

In order to obtain higher estimation accuracy, the MLE has therefore been the subject of intense

interest. In [5] two different 2-D approximations to the likelihood function were proposed to alleviate

the effect of noise by exploiting a linear expansion of noise covariance matrix or by oblique projections
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and a zero-forcing solution. The approximate 2-D MLE, as proposed, still requires a 2-D nonlinear

optimization and hence, good initial estimates to avoid convergence to a local maximum are required.

In this paper we show how to compute the exact MLE in a computationally efficient manner. Previous

work in this area by the authors [16], [17] have demonstrated good results for frequency estimation and

also DOA estimation. These previous results are now extended to joint DOA/Doppler estimation. The

key ingredient is the theorem of global optimization as discussed in [12]. Applying and extending this

theorem to the problem at hand produces a method for global maximization of the compressed likelihood

function. It replaces the multidimenisional maximization by a multidimensional integration, which can

be well approximated by Monte Carlo techniques [14], [15]. The Monte Carlo implementation uses

importance sampling (IS), which has previously been shown to be a practical solution for these type of

problems.

The paper is organized as follows. The data model and assumptions are described in Section II.

In Section III, the likelihood function and the compressed likelihood function, which includes the

parameters of interest, are derived. The global maximization technique is described in Section IV as

well as the method to find the global maximum of the compressed likelihood function. Section V

includes the choice of the importance function, the algorithm for DOAs and Dopplers, and discusses

the effect of some algorithm parameters on the MSE of the IS estimator. Computer simulations and

a comparison with other typical suboptimal methods are described in Section VI. Finally Section VII

gives a discussion and conclusions about the proposed method.

x
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Fig. 1. Geometry of linear array for joint DOA and Doppler estimation.

4



II. DATA MODELS

Suppose there are p narrowband signal sources of interest at angles θ1, . . . , θp that are incident on

a linear array of M sensors as shown in Figure 1. The possible range of arrival angles is −π/2 6

θm 6 π/2,m = 1, . . . , p with θm = 0 denoting the array normal direction. The leftmost sensor lies at

the origin and the ith sensor position with respect to the origin is di. All signals have the same known

carrier frequency and each signal has a different DOA and Doppler. The deterministic signals are given

by complex signals as si(n) = bie
j2πfin, i = 1, . . . , p, where bi is the deterministic complex amplitude

and fi is the Doppler frequency. After demodulation and downsampling, the signal received at the linear

array, assuming a total of N snapshots is given by

x(n) =

p∑
i=1

a(θi)si(n) + w(n), n = 0, 1, . . . , N − 1, (1)

where θi is the DOA of the ith signal and a(θi) is the array manifold vector to a signal from direction

θi and is defined as

a(θi) =
[

1 ej2πfc
d1
c

sin(θi) . . . ej2πfc
dM−1

c
sin(θi)

]T
(2)

and fc is the carrier frequency, and c is the speed of propagation. w(n) is the complex noise vector,

which is assumed to be a sample vector of temporally and spatially white gaussian noise. As a result,

we assume the known covariance matrix is σ2I.

By suitable downsampling, the Doppler frequency takes values in the range −0.5 ≤ fi < 0.5. (1) can

be written in matrix form as

x(n) = A(θ)Φnb + w(n), n = 0, 1, . . . , N − 1, (3)

where A(θ) and b are defined as

A(θ) = [a(θ1), a(θ2), . . . , a(θp)], (4)

b = [b1, b2, . . . , bp]
T , (5)

Φ = diag{φ} = diag
{

[ejω1 , ejω2 , . . . , ejωp ]T
}
, (6)

φ = [ejω1 , ejω2 , . . . , ejωp ]T , (7)

and ωi = 2πfi. This model can also be extended to the random signal model, where the complex

amplitude bi is varied randomly with time. Then the model (3) becomes

x(n) = A(θ)Φnb(n) + w(n), n = 0, 1, . . . , N − 1. (8)

In this paper, only the deterministic model in (3) is considered with the random model to be studied in

a future paper.
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III. THE LIKELIHOOD FUNCTION

We define a vector η as the set of all unknown parameters, ie. ηi = {θi, ωi,Re(bi), Im(bi)}, i =

1, . . . , p. The log likelihood function of the observed data x(n) is [5]

L(x |η ) = −MN ln(πσ2)− 1

σ2

N−1∑
n=0

[x(n)−A(θ)Φnb]H [x(n)−A(θ)Φnb], (9)

and our goal is to maximize (9) over the parameters θ and ω. Unfortunately, L(x |η ) is a very nonlinear

function with respect to θ and ω, but is quadratic with respect to the complex amplitude b. As a result,

we can maximize the likelihood function over b by taking the gradient of L(x |η) with respect to b

and setting it to zero. When inserted back into the likelihood function, it will yield the compressed

likelihood function. The complex derivative of the likelihood function with respect to b (treating θ and

ω as constants) can be written as

∂L(x |η )

∂b∗
=

1

σ2

N−1∑
n=0

[
(A(θ)Φn)Hx(n)− (A(θ)Φn)HA(θ)Φnb

]
=

1

σ2

N−1∑
n=0

[
(Φn)HAH(θ)x(n)− (Φn)HAH(θ)A(θ)Φnb

]
. (10)

According to Hadamard product property,

abT �Q = diag(a)Qdiag(b),

and Φ is diagonal, then (10) can be simplified as

∂L(x |η )

∂b∗
=

1

σ2

N−1∑
n=0

[
(Φn)HAH(θ)x(n)−

(
AH(θ)A(θ)� [φ∗n(φn)T ]

)
b
]

=
1

σ2

N−1∑
n=0

[
(Φn)HAH(θ)x(n)

]
− N

σ2

(
AH(θ)A(θ)� E(ω)

)
b, (11)

where the kl’th element of the matrix E is

[E(ω)]kl =

[
1

N

N−1∑
n=0

φ∗n(φn)T

]
kl

=
1

N

N−1∑
n=0

ejn(ωl−ωk)

=
1

N
ek

Hel, (12)

and ek =
[

1 ejωk . . . ej(N−1)ωk

]T
.
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Let (11) equal zero so that the optimal estimate for b is

b̂ =
[
AH(θ)A(θ)� E(ω)

]−1
r(θ,ω), (13)

where the vector r(θ,ω) is defined as

r(θ,ω) =
1

N

N−1∑
n=0

[
(Φn)HAH(θ)x(n)

]
. (14)

Furthermore r(θ,ω) can be shown to be decoupled, which means the ith elements of r(θ,ω) is only

determined by the parameters of the ith source, that is,

r(θ,ω) = [r(θ1, ω1), . . . , r(θp, ωp)]
T , (15)

where

r(θ, ω) =
1

N

N−1∑
n=0

[
e−jωnaH(θ)x(n)

]
= aH(θ)

1

N

N−1∑
n=0

[
e−jωnx(n)

]
= aH(θ)x(ω), (16)

and x(ω) is the normalized N-point discrete time Fourier transform of x(n) at frequency ω. r(θ, ω) is

the spatial-spectral transform of the observed data.

Substituting (13) into the likelihood function in (9) and omitting the constant terms or those terms

not dependent on θ and ω, produces the final compressed likelihood function as

Lc(x |θ,ω) =
1

σ2
rH(θ,ω)

[
AH(θ)A(θ)� E(ω)

]−1
r(θ,ω). (17)

Note that the number of sources is assumed to be known. However, this number can be estimated by

one of the many model order selection techniques available [9], [19]

IV. GLOBAL MAXIMIZATION OF THE LIKELIHOOD FUNCTION

To implement the MLE we need to maximize (17) over θ and ω. Since the compressed likelihood

function is nonlinear with respect to θ and ω, a closed-form solution is not possible. A direct numer-

ical maximization of (17) requires a 2p-D grid search, for which the computational burden increases

exponentially with the number of sources. To avoid a direct maximization we propose to use the global

maximization method by Pincus [12]. It provides a means of performing the nonlinear optimization and
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is guaranteed to produce the global maximum. Based on the theorem given by Pincus, the x that yields

the global maximum of the cost function g(x), is given by

x̂i = lim
ρ→∞

∫
. . .
∫
xi exp(ρg(x))dx∫

. . .
∫

exp(ρg(y))dy
i = 1, 2, . . . ,M. (18)

If we define

ḡ′(x) =
exp(ρg(x))∫

. . .
∫

exp(ρg(y))dy

as the normalized function of exp(ρg(x)), then ḡ′(x) will satisfy
∫
. . .
∫
ḡ′(x)dx = 1 and can be

considered as a pseudo-PDF of x. So the optimal x̂i in (18) is the mean value given by

x̂i =

∫
. . .

∫
xiḡ
′(x)dx i = 1, . . . ,M. (19)

Intuitively, the pseudo-PDF ḡ′(x) becomes a Dirac delta function at the location of the global maximum

of g(x) as ρ→∞.

The MLE for the parameters estimates, obtained from the location of the global maximum of the

compressed likelihood function Lc(x |θ,ω) are given by

θ̂i =

∫
. . .

∫
θiL̄
′
c(x |θ,ω) dθdω, (20)

ω̂i =

∫
. . .

∫
ωiL̄

′
c(x |θ,ω) dθdω, i = 1, . . . ,M. (21)

where L̄′c(x |θ,ω) is the normalized 2p-dimension pseudo-PDF of exp(ρLc(x |θ,ω)),

L̄′c(x |θ,ω) =
exp(ρLc(x |θ,ω))∫

. . .
∫

exp(ρLc(x |θ,ω))dθdω
. (22)

In practice, it is difficult to directly evaluate the multi-dimensional integral in (20) and (21), and

it would seem that we have just traded one difficult problem for another. However, if we are able to

generate in an easy manner T realizations of the vector θ and ω, then (20) and (21) can be approximated

by

θ̂ =
1

T

T∑
t=1

θ(t), (23)

ω̂ =
1

T

T∑
t=1

ω(t) (24)

where θ(t) and ω(t) are the tth realizations of θ and ω distributed according to L̄′c(x |θ,ω). In this

way the complicated integration can be approximated by simple sample averaging. Clearly, from the

law of large numbers [20] the sample means will converge to the expected values as T → ∞ so that

there is no convergence issues. The only question in practice is the necessary value of T required for a
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small error between the sample mean and the expected value. Note that θ̂ and ω̂ are unbiased estimates

of (20) and (21), and the variance will decrease as T increases.

It still remains to determine how realizations of the importance function can be easily generated.

Since L̄′c(x |θ,ω) is a highly nonlinear function of θ and ω, the direct generation of random number

distributed according to L̄′c(x |θ,ω) is difficult. To overcome this difficulty, as previously proposed [16],

[17], one can use a simple PDF to generate realizations and then “unbias” the result using the concept

of IS.

V. ON THE USE OF IMPORTANCE SAMPLING

To compute the integral of the function h(x), where x ∼ ḡ(x) is a PDF, one can use the relationship∫
h(x)ḡ(x)dx =

∫
h(x)

ḡ(x)

p̄(x)
p̄(x)dx, (25)

where p̄(x) is another PDF, for which realizations of x are more easily generated. We will call this new

PDF the the importance function. If p̄(x) is chosen to be a simple function of x so that realizations of

x can be easily generated, the integration in (25) can be approximated by the following averaging

1

T

T∑
t=1

h(xt)
ḡ(xt)

p̄(xt)
, (26)

where xt is the tth realization of x and is distributed according to p̄(x). The performance of this approach

is dependent upon the similarity of the shapes of the PDFs p̄(x) and ḡ(x), and the value of T . Large

T will of course increase the computational complexity, so small T is preferred. Also, to optimally

“estimate” the integral, it can be shown that p̄(x) should be chosen similar to ḡ(x). Another important

point to keep in mind when choosing p̄(x) is that it should be simple enough so that x ∼ p̄(x) can be

easily generated [13], [14]. Clearly, these are conflicting requirements so that some sort of compromise

is required.

Assume that the importance function for the global optimization in (20) and (21) is p̄(x|θ,ω). The

joint DOA and Doppler estimate is then given by

θ̂i =

∫
. . .

∫
θi
L̄′c(x |θ,ω)

p̄(x|θ,ω)
p̄(x|θ,ω)dθdω, (27)

ω̂i =

∫
. . .

∫
ωi
L̄′c(x |θ,ω)

p̄(x|θ,ω)
p̄(x|θ,ω)dθdω, i = 1, . . . ,M. (28)

This method has been applied successfully to the frequency estimation of multiple sinusoidal signals

in [16] and the DOA estimation of multiple stochastic sources in [17]. The choice of the importance

function is discussed next.
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A. Selection of the Importance Function

The compressed likelihood function Lc(x |θ,ω) in (17) is nonlinear function of ω and θ due to the

matrix inverse
[
AH(θ)A(θ)� E(ω)

]−1, so we must find an importance function p̄(x |θ,ω ) to generate

realizations easily. A reasonable approach is to replace the inverse matrix in (17) with a diagonal matrix
1
M

I, so the compressed likelihood function can be simplified to

Lc(x |θ,ω ) ≈ 1

Mσ2
n

rH(θ,ω)r(θ,ω)

=
1

Mσ2
n

p∑
i=1

|r(θi, ωi)|2 . (29)

This type of approximation has been used in [16] and [17] and in fact, yields the true compressed

likelihood function for well separated sources. Although the well separated case is not the problem of

interest here, it can occur for some combinations of DOA/Dopplers of multiple sources. An importance

function for (20) and (21) in this case is

p(θ,ω) = exp

(
ρ1

1

Mσ2
n

p∑
i=1

|r(θi, ωi)|2
)

=

p∏
i=1

exp(ρ1Ix(θi, ωi)). (30)

where

Ix(θi, ωi) =
1

Mσ2
n

|r(θi, ωi)|2 , (31)

and ρ1 is another constant different from ρ, which we will discuss later. Note that Ix(θ, ω) is the two-

dimensional Fourier transform of the array snapshots x(n), n = 0, 1, . . . , N − 1. We normalize the

importance sampling function p(θ,ω) by

p̄(θ,ω) =

p∏
i=1

exp(ρ1Ix(θi, ωi))∫
. . .
∫ p∏
i=1

exp(ρ1Ix(θi, ωi))dθidωi

(32)

to obtain the normalized importance function.

There are two advantages for choosing the importance function as (30). One is that the importance

function is decoupled, that is, the original 2p dimensional PDF p̄(θ,ω) is reduced to the products of

p identical 2-dimensional PDFs. It is then much easier to generate realizations of the parameters. The

second advantage is that the simplified function in (29) is a good approximation to the compressed

likelihood function in (17) when all or even some of θi or ωi are well separated, i.e., the distance
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between the DOAs and/or Dopplers is larger than the Rayleigh resolution limits. Why this is the case

is described next for the ULA.

The klth element of matrix A(θ)HA(θ) is given by[
A(θ)HA(θ)

]
kl

= a(θk)
Ha(θl)

=
M∑
i=1

ej2πfc(i−1)d/c(sin(θl)−sin(θk)). (33)

If the element spacing of ULA is chosen as half-wavelength at the carrier frequency, i.e., fcd/c = 0.5,

we can prove that ∣∣[A(θ)HA(θ)
]
kl

∣∣ 6 1, if |sin(θl)− sin(θk)| >
1

M
,k 6= l, (34)

and then A(θ)HA(θ) ≈MI. In a similar way, we can prove

|[E(ω)]kl| 6
1

N
, k 6= l, (35)

if the Doppler spacing is much greater than 1/N and E(ω) ≈ I. Therefore, only if the number of

elements or snapshots is large enough, is the simplified compressed likelihood function in (29) equal

to the true compressed likelihood function.

B. Parameter estimation by importance sampling

Based on the importance function defined in (32), the estimators of DOA and Doppler using IS in

(27) and (28) are

θ̂i =
1

T

T∑
t=1

[θt]i
L̄c(θt,ωt)

p̄(θt,ωt)
, (36)

ω̂i =
1

T

T∑
t=1

[ωt]i
L̄c(θt,ωt)

p̄(θt,ωt)
, (37)

where θt and ωt are the tth realizations of the vectors θ and ω distributed according to the PDF p̄(θ,ω)

in (32). It is noted that since the DOAs and Dopplers are bounded from below and above, it is more

convenient to evaluate the mean using the circular mean, rather than the linear mean. It has been shown

that the linear mean will result in a biased estimator, especially at low SNR and/or short data lengths

[18]. Additionally, the use of the circular mean will reduce the computation greatly as will be explained

shortly.

To describe the concept of a circular mean first consider a circular random variable. This is one

that takes values on a finite interval and that finite interval can be considered to be mapped into the
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unit circle. Specifically, if a random variable φ is defined on the interval [0, 1] with the PDF p(φ), the

circular mean for φ is defined as

Ec[φ] =
1

2π
∠
∫ 1

0

exp(j2πφ)p(φ)dφ, (38)

where ∠ denotes the angle in radians. If we have T realizations of φ, the sample circular mean for φ is

φ̂c =
1

2π
∠

1

T

T∑
t=1

exp(j2πφt). (39)

If the DOAs and Dopplers are not within the interval [0, 1], they may be easily mapped into this interval.

The resulting transformed parameters can be estimated and then inverse mapped to obtain estimates of

the original parameters. This is valid due to the invariance property of the MLE. If we define θ̄ and ω̄

as the normalized DOAs and Dopplers within [0, 1], the MLE of DOA and Doppler with the circular

means in (36) and (37) are

θ̄i,mle =
1

2π
∠

1

T

T∑
t=1

L̄c(θ̄t, ω̄t)

p̄(θ̄t, ω̄t)
exp(j2π[θ̄t]i), (40)

ω̄i,mle =
1

2π
∠

1

T

T∑
t=1

L̄c(θ̄t, ω̄t)

p̄(θ̄t, ω̄t)
exp(j2π[ω̄t]i), (41)

where θ̄t and ω̄t are the tth realizations of vector θ̄ and ω̄ distributed according to the PDF p̄(θ̄, ω̄) in

(32).

There are some tricks that can be employed to make the computation more manageble. The first is

used to reduce the computation greatly. It is noted that we need only determine the angle of the complex

quantity in (39), and therefore the normalization constant term in computing L̄c(θ̄t, ω̄t) and p̄(θ̄t, ω̄t) can

be omitted in (40) and (41). Another trick is necessary to reduce any computational overflow associated

with evaluation of exponential forms. In particular, the exponential forms in Lc(θ̄t, ω̄t) and p(θ̄t, ω̄t)

can lead to overflow. To avoid this we replace the original estimates by the normalized versions as

θ̄i,mle =
1

2π
∠

1

T

T∑
t=1

w
′
(θ̄t, ω̄t) exp(j2π[θ̄t]i), (42)

ω̄i,mle =
1

2π
∠

1

T

T∑
t=1

w
′
(θ̄t, ω̄t) exp(j2π[ω̄t]i), (43)

where the weight coefficient is defined as

w
′
(θ̄t, ω̄t) = exp

[
ρLc(θ̄t, ω̄t)−

P∑
i=1

ρ1Ix(
[
θ̄t
]
i
, [ω̄t]i)− max

16k6T

(
ρLc(θ̄k, ω̄k)−

P∑
i=1

ρ1Ix(
[
θ̄k
]
i
, [ω̄k]i)

)]
(44)

and Ix(θi, ωi) is defined in (31). Since we need only take the angle of a complex quantity, any scaling

will not affect the result.
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C. Summary of steps

For sake of clarity the entire procedure of joint estimation of both DOA and Doppler by importance

sampling is summarized by the following steps:

1) Based on the observed data x(n), n = 0, . . . , N−1, evaluate the 2-D spatial-temporal periodogram

I(θ, ω) according to (16) and (31) to obtain the discretized importance function

p̄(θ̄l, ω̄k) =
exp(ρ1I(θ̄l, ω̄k))

L∑
l=1

K∑
k=1

exp(ρ1I(θ̄l, ω̄k))

, −1/2 6 θ̄l, ω̄k 6 1/2, (45)

where L and K are the total number of points for DOA and Doppler, respectively. Typically, 20

times the number of elements and snapshots is sufficient, that is, L = 20M and K = 20N .

2) Generate a realization of parameter vector pair (θt,ωt) using inverse probability integral trans-

formation [20]. Note that it is important that at least one parameter in the different parameter

pairs ([θt]i, [ωt]i) is different from the others to ensure that the matrix AH(θ)A(θ) � E(ω) is

invertible.

3) Repeat step 2) to obtain T realizations of the vector pair (θt,ωt).

4) Evaluate the weight coefficient w′(θ̄t, ω̄t) defined in (44) and estimate DOAs and Dopplers using

(42) and (43), where the compressed likelihood function is given by (17).

5) Convert the normalized parameter pairs (θ̄, ω̄) into the true parameter pairs (θ,ω).

One straightforward way to generate random numbers in step 2) is based on the inverse probability

transformation as applied to 2-D [20]. In this approach one generates two independent identically

distributed uniform random numbers, then search for the point from the 2-D cumulative function of

p̄(θ̄l, ω̄k) to match the generated uniform random numbers. It requires a 2-D search to find the optimal

match and is computationally prohibitive. A simpler method is to decompose the 2-D PDF into the

product of two 1-D PDFs. It is easily shown that p̄(θ̄l, ω̄k) can be described as

p̄(θ̄l, ω̄k) = p̄(θ̄l|ω̄k)p̄(ω̄k) = p̄(ω̄k|θ̄l)p̄(θ̄l), (46)

so the 2-D PDF can be considered as the product of two 1-D PDFs. One feasible way is to evaluate

the cumulative function c(ω̄) and c(θ̄|ω̄) from the 2-D PDF p̄(θ̄, ω̄) is to generate one uniform random

number φ1 in [0, 1] and find the parameter ω̄1 to make c(ω̄1) the closest to φ1. Next, generate another

uniform random number φ2 and find the optimal parameter θ̄1 to make c(θ̄1|ω̄1) closest to φ2. Continue

generating (θ̄2, ω̄2), . . . , (θ̄p, ω̄p) in a similar way with the condition that all ω̄is are distinct. This

simplification reduces the computational burden at the cost of generality. Two sources with identical

Doppler but different DOAs cannot be identified, but this case rarely occurs.
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D. Performance analysis of the IS estimators

For the integration in (25), it is easily proven that the IS estimator in (26) is unbiased, and the variance

of the estimator is finite when the expectation satisfies

Ep̄

[
h2(x)

ḡ′2(x)

p̄2(x)

]
=

∫
h2(x)

ḡ′2(x)

p̄(x)
dx <∞, (47)

where Ep̄ is the expectation operation with respect to PDF p̄(x) [15]. If the choice of the importance

function p̄(x) is

p̄(x) =
|h(x)|ḡ′(x)∫
|h(z)|ḡ′(z)dz

, (48)

then it can be shown that the variance of estimator is minimum [13]. However, (48) is unrealizable

because the optimal importance function is just the original function which we sought to avoid consid-

ering as a PDF. However, it indicates how to choose the importance function. One rule is to find the

distribution function p̄ to keep hḡ
′
/̄p flat for all possible parameter values, or try to keep hḡ

′
/̄p finite if

the previous condition cannot be held. Another consideration, which should also be kept in mind, is

that random numbers with the distribution function to be the importance function are generated easily.

In order to easily generate a realization, the importance function for the cost function L̄′c(x |θ,ω) in

(22) is chosen as p̄′(θ,ω) in (32). There are three parameters that need to be carefully chosen — ρ, ρ1,

and T in the IS method. As ρ goes to infinity, L̄′c(x |θ,ω) approximates a Dirac delta function at the

true value, but the parameter ρ cannot be chosen too large or computational overflow will occur. The

role of ρ1 is to amplify I(θ, ω) in (32) so that p̄′(θ,ω) has a sharp peak at the maximum of L̄′c(x |θ,ω).

The number of realizations, T , is dependent on the choice of the importance function. A good choice

of the importance function will lead to small T and thus, less computation. As discussed previously,

p̄′(θ,ω) is an approximation to L̄′c(x |θ,ω) and their peak locations will be different if parameter pairs

of two sources are within the Rayleigh resolution limits. A large ρ1 will decrease the probability where

random numbers include the true value, and thus a large number of realizations T is required to keep

the same variance — hence, increasing the computational burden. If all parameters are well separated,

p̄′(θ,ω) is a good approximation to L̄′c(x |θ,ω), and as discussed in subsection A has a sharp peak

at the true parameter locations. If there are two sources with almost the same DOA and Doppler, the

situation becomes more complicated. First, the peak of the compressed likelihood function Lc(x |θ,ω)

is not as evident as before so that a larger ρ is required. Secondly, the importance function is a biased

approximation, so that a small value of ρ1 can increase the probability of inclusion of true parameters.
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VI. COMPUTER SIMULATIONS

In this section, two proposed DOA/Doppler estimation algorithms, JAFE [8] and FSF-ESPRIT [6],

are compared with the proposed IS method. We choose an 8-element ULA with half-wavelength spacing

since JAFE and FSF-ESPRIT are only suitable for ULA. Note, however, that our method can easily be

extended to a nonuniform linear array and other known array shapes. For this case, the 3 dB beamwidth

of the beamformer with uniform shading weights is 12.8◦ and the Doppler Rayleigh resolution limit is

2/N , where N is the number of snapshots. For JAFE, the temporal and spatial smoothing factors are

chosen as 5 and 2, respectively. The number of sources with the same Doppler or DOA is unknown

in practice, so all sources are assumed to have different parameters for FSF-ESPRIT. The mean square

error (MSE) of the three estimators are compared with the Cramer-Rao lower bound (CRLB). See the

Appendix for a derivation of the CRLB.
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Fig. 2. The MSE of Doppler ((a) and (b)) and DOA ((c) and (d)) estimates for three algorithms vs SNR when sources are resolvable with

(−8◦, 0.15) and (10◦, 0.207). Results are obtained by averaging of 1000 Monte Carlo simulations with N = 50, ρ = 80 and ρ1 = 6.

Example 1. We address the performance of all algorithms versus SNR and the number of snapshots

when the sources are resolvable. First, the two sources with the parameters (−8◦, 0.15) and (10◦, 0.207)

are chosen, and N = 50 snapshots, ρ = 80, ρ1 = 6 are used. The MSE for the three estimators are
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Fig. 3. The MSE of Doppler ((a) and (b)) and DOA ((c) and (d)) estimates for three algorithms vs N when sources are resolvable with

(−8◦, 0.15) and (10◦, 0.207). Results are obtained by averaging of 1000 Monte Carlo simulations with SNR = 0dB, ρ = 80 and ρ1 = 6.

determined from the average of 1000 Monte Carlo simulations, and the results are shown in Figure 2

as SNR changes from −10 dB to 10 dB. The realization number T is chosen as 2000. It can be seen

from (a) and (b) in figure 2 that the estimation accuracy of Doppler by IS is very close to the CRLB

for allmost all SNRs. The JAFE and FSF-ESPRIT methods, on the other hand, perform poorly for

Doppler estimation (see Figure 2a and 2b) and even for DOA estimation (see Figures 2c and 2d) have

SNR thresholds well above that for IS. In all cases the IS approach produces more accurate estimates

for DOA and Doppler. The performance of the JAFE and FSF-ESPRIT estimators agree with those

presented in [6].

Next, we fix SNR = 0 dB and keep other conditions the same as before. In Figure 3 the MSE of

the three estimators are plotted versus the number of snapshots. Again it is quite apparent that IS has

better performance than the competing techniques, and furthermore its performance is close to CRLB

even for a small number of snapshots.

Example 2. Here the performance of three estimators are compared for two sources with closely

spaced parameters. The parameter pairs of the two sources are (−8◦, 0.15) and (−5◦, 0.158) and N = 50.

The two sources are within the Rayleigh resolution limits for DOA and Doppler, so the importance

function in (32) is a poor approximation to the true function given in (22). A large value of ρ, a small
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Fig. 4. The MSE of Doppler ((a) and (b)) and DOA ((c) and (d)) estimates for three algorithms vs SNR when sources are close with

(−8◦, 0.15) and (−5◦, 0.158). Results are obtained by averaging of 1000 Monte Carlo simulations with N = 50, ρ = 400 and ρ1 = 4.

value of ρ1, and a large value T is therefore necessary for the IS method to produce good results with a

reasonable number of realizations. In Figure 4 we plot the dependence of MSE for the three algorithms

vs SNR, where the number of realizations is T = 8000 and ρ1 = 4, ρ = 400. In this case, JAFE and

FSF-ESPRIT have a large bias for DOA and Doppler estimation due to many outliers which occur at

the low SNR of 0 dB that was chosen, but the MSE of the IS estimator is still very close to the CRLB.

For an SNR above 5 dB, the performance of the IS is slightly higher than the CRLB. The reason is that

the approximation of the likelihood function by the chosen importance function is poorer as the SNR

increases. To compensate for this tendency a smaller ρ1 and larger T are required but in this experiment

we have fixed ρ1 and T .

Example 3. As a further demonstration of the good performance of the IS approach, we next consider

three sources. First, we will examine the performance of all algorithms when only one parameter of

DOA and Doppler is close. For three sources whose true parameter pairs are listed in Table I, Dopplers

of source 1 and 2 are very close but their DOAs are separated, and the DOAs for source 2 and 3 are

17



TABLE I

MSE RELATIVE TO CRLB OF THREE ALGORITHMS FOR 3 SOURCES WITH ONLY ONE CLOSE PARAMETER

DOA Doppler

Source 1 2 3 1 2 3

True parameters −8◦ 10◦ 12◦ 0.150 0.158 0.240

Relative MSE of JAFE (dB) 18.45 18.66 2.0 12.3 20.2 14.6

Relative MSE of FSF (dB) 28.6 17.84 2.0 22.0 22.9 12.9

Relative MSE of IS (dB) 5.54 5.75 6.0 5.8 6.2 6.0

close but their Dopplers are quite different. We fix the algorithm parameters as SNR = 0 dB, N = 50,

ρ = 200 and ρ1 = 6. The MSE of the three algorithms relative to the CRLB are listed in Table I, where

the increase in dB of the MSE over the CRLB is shown. It can be seen that JAFE and FSF-ESPRIT

estimators cannot estimate well for two sources with close Doppler. However, the IS method has almost

the same MSE for all sources.

TABLE II

MSE RELATIVE TO CRLB OF THREE ALGORITHMS FOR 4 SOURCES WITH TWO CLOSE PARAMETER

DOA Doppler

Source 1 2 3 4 1 2 3 4

True parameters −8◦ −5◦ 12◦ 14◦ 0.150 0.158 -0.240 -0.230

Relative MSE of JAFE (dB) 39.8 39.1 40.6 40.6 58.6 58.2 57.7 57.8

Relative MSE of FSF (dB) 39.4 38.7 39.6 40.2 58.4 58.3 57.1 57.6

Relative MSE of IS (dB) 13.5 13.7 14.6 13.1 13.3 14.7 13.6 14.4

We add source 4 and change parameters of the other sources as listed in Table II. There are two

groups and each group has two close sources. The parameter for IS method is chosen as ρ = 400,

ρ1 = 5, T = 8000, and SNR = 5 dB. The number of snapshots is 50 and the MSE relative to CRLB

for three algorithms are listed in Table II in dB. It can be seen that only IS method can identify four

sources in this case although the deviation of MSE to CRLB is a little higher than before, but JAFE

and FSF have large MSE due to large outliers using 1000 estimates.

VII. DISCUSSION AND CONCLUSIONS

We have proposed a computationally modest technique to jointly estimate DOAs and Dopplers of

narrowband sources using an MLE. It is noticed that our method does not require initial parameter
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estimates but can still guarantee that the global maximum of the likelihood function will be found and

hence the exact MLE. The computation is far less relative to a grid search that requires an exponentially

increasing number of evaluations of the likelihood function for multiple sources. Relative to other

proposed methods such as JAFE and FSF-ESPRIT, the IS approach exhibits better performance at low

SNR and for a small number of snapshots. For closely spaced sources, for which all parameters are

within the Rayleigh resolution limits, the IS algorithm is able to produce reliable estimates but requires

an increasing number of realizations. For this important case the other methods fail.
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APPENDIX

Use the original likelihood function in (9) as the general model, then the Fisher Information Matrix

(FIM) can be computed simply according to theory in [11]. Since b is complex, we extend the parameter

number to 4p by including the real part and imaginary part of b. Define the new parameter vector η

as η = [θT ,ωT ,Re(bT ), Im(bT )] and the gradient vector of A(θ)Φnb with respect to η is defined as

Dn(η) =

[
∂A(θ)Φnb

η1

,
∂A(θ)Φnb

η2

, . . . ,
∂A(θ)Φnb

η4p

]
, (49)

then the final FIM is given by

I(η) =
2

σ2
n

Re

(
N−1∑
n=0

DH
n (η)Dn(η)

)
. (50)

The CRLB for the ith parameter ηi is obtained from the inverse of the FIM as

CRLB(ηi) = [I−1(η)]ii. (51)

Define

Dθ =
∂a(θ)

∂θT
=

[
∂a(θ1)

∂θ1

,
∂a(θ2)

∂θ2

, . . . ,
∂a(θp)

∂θp

]
,

B = diag(b).

Then the derivative of A(θ)Φnb with respect to each parameter can be evaluated as follows

∂A(θ)Φnb

∂θT
= DθΦ

nB,

∂A(θ)Φnb

∂ωT
= jnA(θ)ΦnB,

∂A(θ)Φnb

∂Re(bT )
= A(θ)Φn,

∂A(θ)Φnb

∂Im(bT )
= jA(θ)Φn.

So the DH
n (η)Dn(η) can be expressed by

DH
n (η)Dn(η) =


(DθΦ

nB)H

(jnA(θ)ΦnB)H

(A(θ)Φn)H

(jA(θ)Φn)H




(DθΦ

nB)H

(jnA(θ)ΦnB)H

(A(θ)Φn)H

(jA(θ)Φn)H ,


H

(52)
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and the FIM is

I(η) =
2

σ2
n

Re


I11 IH21 IH31 jIH31

I21 I22 −jIH32 IH32

I31 jI32 I33 jIH33

−jI31 I32 −jI33 I33

 (53)

where

I11 =
N−1∑
n=0

(DθΦ
nB)H DθΦ

nB =
(
BHDH

θ DθB
)
�NE

I22 =
N−1∑
n=0

n2 (A(θ)ΦnB)H A(θ)ΦnB =
(
BHAH(θ)A(θ)B

)
�

N−1∑
n=0

n2φn∗ (φn)T

I33 =
N−1∑
n=0

(A(θ)Φn)H A(θ)Φn = AH(θ)A(θ)�NE

I21 =
N−1∑
n=0

(jnA(θ)ΦnB)H DθΦ
nB = −jBHAH(θ)DθB�

N−1∑
n=0

nφn∗ (φn)T

I31 =
N−1∑
n=0

(A(θ)Φn)H DθΦ
nB = AH(θ)DθB�NE

I32 =
N−1∑
n=0

(A(θ)Φn)H nA(θ)ΦnB = AH(θ)A(θ)B�
N−1∑
n=0

nφn∗ (φn)T .

These results allow the computation of the FIM so that we finally obtain the CRLB of (51).
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