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I. INTRODUCTION

Designing a model order estimator is a problem of
considerable practical importance. Since the problem
is essentially one of composite hypothesis testing, for
which no optimal solution exists, there is no overall
agreement on its solution. One common approach
employs a Bayesian philosophy which assumes a
noninformative prior in an effort to “integrate out”
the unknown model parameters. Then, the effect
of the prior is ignored [14, 17]. Along these lines
the minimum description length (MDL) has been
proposed based on coding arguments [16]. It also
may be derived using asymptotic Bayesian arguments
[17]. Recently, a new approach termed the conditional
model estimator (CME) has been proposed and has
been found to work quite well for polynomial model
order estimation [15]. Unfortunately, it can produce
poor results for problems in which the determinant
of the Fisher information matrix does not result in a
stringent enough penalty factor. In an effort to provide
a more unified approach to composite hypothesis
testing, we investigate the use of the exponentially
embedded probability density function (pdf) family.
The concept of embedding pdfs in a more general

family has appeared previously in an attempt to test
between different pdf families [2]. However, there
does not seem to be any detailed investigation into its
properties and applications. Our main contribution is
to present the embedded family in a more systematic
form in an attempt to allow problems of composite
hypothesis testing to be derived that perform well
in practice. We term this method exponentially
embedded families (EEFs). It allows the user to
embed two or more pdfs into a family of pdfs that
are indexed by one or more parameters. This new
embedded family has the form of an exponential
family and so inherits many of the nice mathematical
and optimality properties of that family. It may also be
viewed from the standpoint of differential geometry in
that the embedded family forms a manifold in log-pdf
space. Inference problems then become parameter
tests and many new results obtained by using this
viewpoint may be leveraged [3]. Our focus here,
however, is to present the exponentially embedded
family, and to apply it to the model order estimation
problem. However, we also point out that the concepts
presented lead to an extension of the generalized
likelihood ratio test (GLRT) for multiple alternative
hypotheses. Future work will concentrate on this
important result.
The paper is organized as follows. In Section

II we present the EEF while Section III gives
some examples. Section IV introduces the reduced
EEF. General results are given for the important
linear model in Section V and a general asymptotic
form of the reduced embedded family is given in
Section VI. Section VII discusses model order
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estimation and a computer simulation of the proposed
method is described in Section VIII. Finally, Section
IX offers some conclusions.

II. DEFINITION OF EEF

Assume that we have two distinct pdfs p1(x) and
p0(x), where x= [x[0]x[1] : : :x[N ¡1]]T. These pdfs
will later model the data under the general model
hypothesis H1 and under a reference hypothesis
H0, respectively. We wish to embed these pdfs
in a family of pdfs, that is to say, the given pdfs
will comprise two elements in a much larger set of
pdfs. The family of pdfs will be denoted by p(x;´),
where ´ is the embedding parameter and takes on
values 0· ´ · 1. The given pdfs are assigned to the
“endpoints” as p1(x) = p(x;1) and p0(x) = p(x;0).
There are many possible embeddings. For example,
a common one is the mixture embedding defined
as

p(x;´) = ´p1(x) + (1¡ ´)p0(x): (1)

The domain of p(x;´) with respect to x is the domain
of its embedded pdfs, which are assumed to be the
same. Note that p(x;´) integrates to one for all 0·
´ · 1. For several reasons, which we subsequently
enumerate, it is more fruitful to use an exponential
embedding or

p(x;´) =
p´1(x)p

1¡´
0 (x)R

p´1(x)p
1¡´
0 (x)dx

: (2)

We term this the binary EEF. It is a family of pdfs
whose parameter ´ takes on all values in [0,1] such
that

M0(´) =
Z
p´1(x)p

1¡´
0 (x)dx<1: (3)

It is clear that M0(0) =M0(1) = 1. Also, it can
be shown using Holder’s inequality that M0(´)
is a convex function of ´ [1] and so 0<M0(´)·
max(M0(0),M0(1)) = 1. Thus, the EEF will be defined
over 0· ´ · 1. Furthermore, by letting

K0(´) = lnM0(´) (4)

T(x) = ln
p1(x)
p0(x)

(5)

(2) can be written as

p(x;´) = exp[´T(x)¡K0(´) + lnp0(x)] (6)

which is recognized as a one-parameter exponential
family with natural parameter ´ [1, 2, 9, 10]. Also,
the statistic T(x) is a minimal sufficient statistic for ´.
The function K0(´) is termed the cumulant generating
function since M0(´) is the moment generating
function of T(x), when x has the pdf p0(x). This is

Fig. 1. Geometric interpretation of EEF as geodesic curve from
lnp0 to lnp1.

because from (3)

M0(´) =
Z
exp

·
´ ln

p1(x)
p0(x)

¸
p0(x)dx

= E0[exp(´T(x))]: (7)

The subscript on the expectation operator denotes
expectation with respect to p0(x).
We now discuss some motivations for our use of

the EEF. First, if we examine its log-likelihood

lnp(x;´) = ´ lnp1(x)+ (1¡ ´) lnp0(x)¡K0(´)
it is seen to be a convex combination of the given
log-likelihoods. The factor K0(´) is of course needed
for normalization. Thus, the log-likelihood is a
smooth curve from lnp0 to lnp1 and may be thought
of as comprising a submanifold of dimension one
[3]. This curve may be interpreted as a geodesic
in the log-likelihood space [4]. This interpretation
depends on the geometric analogy between the
Kullback-Liebler measure, or divergence, and squared
Euclidean distance. The measure is defined as

D(p1 kp0) =
Z
p1(x) ln

p1(x)
p0(x)

dx:

It is nonnegative and equals zero if and only if
p0 = p1 for almost every x. We refer to Fig. 1. There
we envision a space of log-pdfs of which lnp0 and
lnp1 are elements and which we seek to connect
with a curve of minimum distance. To do so we first
examine all log-pdfs along a single coordinate curve,
say ´1. This curve is composed of all pdfs for which
D(pkp0)¡D(pkp1) = g(´1). The function g defines
the locus of log-pdfs for which the difference of
the distance-squares is constant and will depend on
´. Since the divergence acts as a distance-squared,
we interpret these curves as hyperbolas and thus are
drawn as such. Now we choose the point on this curve
as the one which minimizes the squared distance from
lnp0 or which minimizes D(p´1 kp0). We then do

334 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 1 JANUARY 2005



this for all ´ to generate the geodesic from lnp0 to
lnp1. Each point on the geodesic is therefore obtained
by minimizing D(pkp0) subject to the constraint
that D(pkp0)¡D(pkp1) = g(´). The solution to this
problem is well known and is given by (2) [5, 6]
or equivalently the solution set is the line segment
connecting lnp0 with lnp1. Second, p(x;´) admits
a sufficient statistic T(x) for ´ that summarizes all
the information for discrimination between p1 and
p0. Hence, any decision procedures may be based on
p(x;´) without loss in performance [7]. Third, subject
to regularity conditions, the exponential pdf is the
only pdf to admit a sufficient statistic in the case of
a single parameter and independent and identically
distributed (IID) random variables [8]. Finally, as must
be evident by now, the use of the EEF, which is an
exponential family, enjoys a multitude of theoretical
and practical properties as summarized in Appendix
A. This makes the EEF amenable to a vast array of
applications, one of which is explored in Section VII.
The many properties of the one-parameter

exponential family extend to the multiparameter
family. As such, we can define the M-ary EEF as

p(x;´) =
p´11 (x)p

´2
2 (x) : : :p

´M¡1
M¡1(x)p

1¡§M¡1
i=1 ´i

0 (x)R
p´11 (x)p

´2
2 (x) : : :p

´M¡1
M¡1(x)p

1¡§M¡1
i=1 ´i

0 (x)dx
(8)

where 0· ´i · 1 and
PM¡1

i=1 ´i · 1. We will not pursue
this further here, but it will be the subject of a future
paper.

III. EXAMPLES OF THE EEF

The first example of the EEF uses the linear model
[11, 13] because of its wide applicability and its ease
of exposition. The model is defined as

x=Hµ+w

where x is an N £ 1 Gaussian random vector, H is
a N £p constant matrix of full rank with N > p,
and w is an N £ 1 Gaussian random vector with pdf
w»N (0,¾2I). As such its pdfs are

p1(x) =
1

(2¼¾2)N=2
exp

·
¡ 1
2¾2

(x¡Hµ)T(x¡Hµ)
¸

p0(x) =
1

(2¼¾2)N=2
exp

·
¡ 1
2¾2

xTx
¸

where we associate the reference point, i.e., ´ = 0,
with µ = 0. Thus,

T(x) = ln
p1(x)
p0(x)

=¡ 1
2¾2

(x¡Hµ)T(x¡Hµ) + 1
2¾2

xTx (9)

=
xTHµ
¾2

¡ 1
2
kHµk2
¾2

(10)

where k ¢ k denotes the Euclidean norm. Also,
K0(´) = lnE0[exp(´T(x))]

= ln[exp(¡(´=2)kHµk2=¾2)]
+ lnE0[exp((´µ

THT=¾)(x=¾))]:

But for u»N (0,I), E(exp(»Tu)) = exp(»T»=2) and
therefore

K0(´) =
kHµk2
2¾2

(´2¡ ´): (11)

Substituting (10) and (11) into (6) and simplifying
produces

p(x;´) =
1

(2¼¾2)N=2
exp

·
¡ 1
2¾2

(x¡ ´Hµ)T(x¡ ´Hµ)
¸
:

Hence, if p0(x) is N (0,¾2I), p1(x) is N (Hµ,¾2I),
then p(x;´) is N (´Hµ,¾2I). More generally, if p1 is
N (¹1,¾2I), p0 is N (¹0,¾2I), then p(x;´) is N (´¹1 +
(1¡ ´)¹0,¾2I). The EEF is seen to consist of all
N (¹,¾2I) pdfs whose mean lies on the line segment
connecting ¹1 and ¹0.
As a second example, consider p1 as N (0,C1) and

p0 as N (0,C0). Then,

p(x;´) =

µ
1

(2¼)N=2 det1=2(C1)

¶´
exp
£¡ 1

2´x
TC¡11 x

¤
£
µ

1

(2¼)N=2 det1=2(C0)

¶1¡´
exp
£¡ 1

2 (1¡ ´)xTC¡10 x
¤

M0(´)

= cexp[¡ 1
2x

T(´C¡11 + (1¡ ´)C¡10 )x]

where c is a normalization constant. Hence, it is seen
that p(x;´) is N (0,C), where

C= (´C¡11 + (1¡ ´)C¡10 )¡1:
The EEF consists of all N (0,C) pdfs whose
information matrix I=C¡1 lies on a line segment
connecting I1 =C

¡1
1 and I0 =C

¡1
0 .

IV. REDUCED EEF FOR COMPOSITE HYPOTHESIS
TESTING

Now the more interesting case arises when the
signal pdf p1(x) contains some unknown parameters.
In this case we replace p1(x) by p1(x;µ), where µ is
a p£ 1 vector of unknown parameters. The resultant
EEF will now depend on µ. Hence, we cannot test, for
example, H0 : p(x) = p0(x) versus H1 : p(x) 6= p0(x)
due to the unknown parameters µ under H1. An
alternative approach based on the EEF, which is
now

p(x;´) = exp
·
´ ln

µ
p1(x;µ)
p0(x)

¶
¡K0(´) + lnp0(x)

¸
(12)
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eliminates the dependence of the pdf on µ by
decomposing it into a term dependent on µ and
one that is independent of µ. This relies on the
assumption that p1(x;µ) admits a sufficient statistic
for µ. This sufficient statistic need not be minimal
and thus will always exist. A minimal sufficient
statistic will sometimes exist but one can always use
an approximate (actually asymptotically) minimal
sufficient statistic which is given by the MLE of µ.
Assuming a minimal sufficient statistic exists, we can
use the Neyman-Fisher factorization theorem to write

p1(x;µ) = p1(x j T= t(x))pT(t(x);µ) (13)

where p1(x j T= t) is the conditional pdf of x,
conditioned on the sufficient statistic T, which is p£ 1
and pT(t;µ) is the pdf of T. The “conditional” pdf
follows from (13) as

p1(x j T= t(x)) =
p1(x;µ)
pT(t(x);µ)

and must be independent of µ. Note that the
conditional pdf as defined is actually a density
function over a manifold and so actual integration
to determine probabilities will require the volume
element of the manifold be included [18]. As a result
we have from (12) and (13)

p(x;´) = exp

"
´ ln

µ
p1(x j T= t(x))

p0(x)

¶

+ ´ lnpT(t(x);µ)¡K0(´) + lnp0(x)
#
:

Since µ is completely unknown, inference cannot be
made based on p(x;´). In this type of situation, there
are several approaches. Firstly, Fisher has argued that
inference should be based on only the part of the
likelihood function that is known or p1(x j T= t(x)),
omitting the other term pT(t(x);µ) [12]. Note that if
we do so, then p(x;´) remains a valid pdf family over
´ (which is not so in the likelihood case), once K0(´)
is adjusted for the correct normalization. In fact, it
appears that the embedded family derives many of
its useful properties from the use of a normalization
factor. A second approach which ultimately leads
to the same p(x;´) is to assume that pT(t(x);µ) is a
uniform pdf over its domain or to let pT(t(x);µ) =
constant. Although this is an improper pdf, the
resulting p(x;´) will still be a proper pdf. This
approach is much the same as the use of improper
pdfs in Bayesian analysis. However, it is important to
note that this approach is not Bayesian in that µ is a
deterministic parameter. If we employ either of these
arguments, the reduced EEF will be

p(x;´) = exp

·
´ ln

µ
p1(x j T= t(x))

p0(x)

¶
¡K0(´)+ lnp0(x)

¸
(14)

where K0(´) is modified to be the new normalization
factor. Since K0(´) has been modified, the domain
of p(x;´) may be a subset of the original one 0·
´ · 1. This is evident in the next example, which
is included to demonstrate that the reduced EEF
no longer depends on the unknown parameters but
retains some discrimination necessary for hypothesis
testing.

EXAMPLE 1 Reduced EEF for dc level in white
Gaussian noise.

Consider the data x[n] = A+w[n], where A is
unknown and can take on values ¡1< A<1 and
w[n] is white Gaussian noise with known variance ¾2.
Then,

p1(x;A) =
1

(2¼¾2)N=2
exp

"
¡ 1
2¾2

N¡1X
n=0

(x[n]¡A)2
#

and a minimal sufficient statistic for A is easily
shown to be T(x) = (1=N)

PN¡1
n=0 x[n] = x̄ [13]. The

conditional pdf required in (14) is

p1(x j T = t(x)) =
p1(x;A)
pT(t(x);A)

: (15)

This ratio must be functionally independent of A. This
is because if T is a sufficient statistic for A, then the
pdf of the data x conditioned on the statistic cannot
depend on the unknown parameter. To verify this we
carry out the details. We first write the pdf as

p1(x;A) =
1

(2¼¾2)N=2
exp

"
¡ 1
2¾2

N¡1X
n=0

(x[n]¡ x̄+ x̄¡A)2
#

and note that
PN¡1
n=0 (x[n]¡ x̄+ x̄¡A)2 =PN¡1

n=0 (x[n]¡ x̄)2 +N(x̄¡A)2 to yield
p1(x;A) =

1
(2¼¾2)N=2

exp

"
¡ 1
2¾2

Ã
N¡1X
n=0

(x[n]¡ x̄)2 +N(x̄¡A)2
!#

:

Also the pdf of T = x̄ is N (A,¾2=N) so that
p1(x;A)
pT(t(x);A)

=

1
(2¼¾2)N=2

exp

·
¡ 1
2¾2

³PN¡1
n=0 (x[n]¡ x̄)2 +N(x̄¡A)2

´¸
1p

2¼¾2=N
exp

·
¡ 1
2¾2=N

(x̄¡A)2
¸

=

p
N

(2¼¾2)(N¡1)=2
exp

"
¡ 1
2¾2

N¡1X
n=0

(x[n]¡ x̄)2
#

which is seen to be functionally independent of the
unknown parameter A. Hence, the choice of A in (15)
is arbitrary. By choosing A= 0 we associate ´ = 0
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with A= 0, and thus

p1(x j T = t(x)) =
p1(x;A= 0)
pT(t(x);A= 0)

=
p0(x)

pT(t(x);A= 0)
:

(16)
Hence we have that

p1(x j T = t(x))
p0(x)

=
1

pT(t(x);A= 0)
:

Using this in (14) produces

p(x;´) = exp[¡´ lnpT(t(x);A= 0)¡K0(´)+ lnp0(x)]
(17)

which no longer depends on the unknown parameter
A. To find K0(´) note that T(x) = x̄»N (0,¾2=N)
when A= 0 and thus

lnpT(t(x);A= 0) = c¡
Nx̄2

2¾2
(18)

where c is a constant. We have

K0(´) = lnE0(exp[¡´ lnpT(t(x);A= 0)])
=¡c´+ lnE0[exp((´=2)(Nx̄2=¾2))]

=¡c´+ ln 1
(1¡ ´)1=2 (19)

since Nx̄2=¾2 » Â21 for p0(x) the pdf of x. Finally, we
have from (17), (18), and (19)

p(x;´) = exp
·
(´=2)

Nx̄2

¾2
+
1
2
ln(1¡ ´) + lnp0(x)

¸
:

(20)

As alluded to earlier, the domain of p(x;´) has been
reduced to 0· ´ < 1 since ´ = 1 is now excluded
(K0(1) =1). This reduced EEF pdf is recognized as
a one-parameter exponential pdf. Also, by rearranging
the terms it is easily shown that

p(x;´) =

p
1¡ ´

(2¼¾2)N=2
exp

·
¡ 1
2¾2

xT(I¡ ´P)x
¸

where P=H(HTH)¡1HT with H= [11 : : :1]T. The
matrix P is of course the N £N projection matrix for
the linear model and has rank one. Furthermore, since

(I¡ ´P)¡1 = I+ ´

1¡ ´P

we see that the reduced EEF is N (0,C´) with

C´ = I+
´

1¡ ´P:

To verify that the reduced EEF can be used for
inference, we examine its form for ´ = 0 versus
´ > 0. If ´ = 0, the pdf corresponds to white Gaussian
noise, while for ´ > 0, the pdf is that of N correlated
Gaussian random variables. By a suitable linear
transformation we can transform the pdf into one
in which the random variables are Gaussian with

zero means and are independent. The variances then
become for ´ = 0, var(y[n]) = 1 for n= 1,2, : : : ,N ¡ 1
and for ´ > 0, var(y[n]) = 1 for n= 1,2, : : : ,N ¡ 1 and
var(y[0]) = 1+ ´=(1¡ ´) = 1=(1¡ ´). (Just note that
P is symmetric and idempotent with one eigenvalue
equal to one and the remaining eigenvalues equal to
zero.) Hence, there is still discrimination available
via the reduced pdf. However, it now manifests itself
in the variance of the random variable y[0] since
inference is not possible based on the unknown
mean A.

V. REDUCED EEF FOR THE LINEAR MODEL

To generalize Example 1 we determine the EEF
for the linear model. This result will be used later.
In the case of the linear model it is well known that
the minimal sufficient statistic for µ, which is also the
maximum likelihood estimator (MLE), is [13]

T(x) = µ̂ = (HTH)¡1HTx

and has the pdf µ̂ »N (µ,¾2(HTH)¡1). Thus, from (14)
and using the same arguments as before

T́ (x) = ln
p1(x j T= t(x))

p0(x)

= ln
p1(x j µ̂)
p0(x)

= ln
p1(x;µ)

p(µ̂;µ)p0(x)
:

Since the ratio is independent of µ, we choose µ = 0
so that p1(x;µ = 0) = p0(x) and we have

T́ (x) =¡ lnp(µ̂;0)

where p(µ̂;0) is the pdf of µ̂ obtained for the choice
of µ = 0. Ignoring the constant terms (not dependent
on x) since these are absorbed by K0(´), this becomes

T́ (x) =
µ̂THTHµ̂
2¾2

(21)

and therefore

K0(´) = ln

"
E0

Ã
exp

Ã
´
µ̂THTHµ̂
2¾2

!!#
:

But µ̂THTHµ̂=¾2 » Â2p for µ = 0 and so

K0(´) = ln
·

1
(1¡ ´)p=2

¸
: (22)

From (14), (21), and (22) the EEF for the linear
model becomes

p(x;´) = exp

"
´
µ̂THTHµ̂
2¾2

+
p

2
ln(1¡ ´) + lnp0(x)

#
:

(23)
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VI. GENERAL REDUCED EEF VIA ASYMPTOTICS

In extending the utility of the results for the
linear model to more general problems one can
make use of the asymptotic properties of the
MLE. Specifically, if the pdf p1(x) = p(x;µ) has
unknown parameters µ, a p£1 vector, and satisfies
certain regularity conditions, then the MLE µ̂ is
asymptotically a minimal sufficient statistic. It is
shown in Appendix B that asymptotically we have
the reduced EEF

p(x;´) = exp[(´=2)lG(x) + (p=2) ln(1¡ ´)+ lnp(x;µ0)]
(24)

where 0· ´ < 1 and lG(x) is the GLRT statistic given
by

lG(x) = 2ln
p(x; µ̂)
p(x;µ0)

: (25)

It can be shown that (24) is also valid in the presence
of nuisance parameters ® if we use as the GLRT
statistic

lG(x) = 2ln
p(x; µ̂,®̂1)
p(x;µ0,®̂0)

(26)

where ®̂1 is the unconstrained MLE of ® and ®̂0 is
the constrained (when µ = µ0) MLE of ®.

VII. AN APPLICATION TO MODEL ORDER
ESTIMATION

One approach to model order estimation is to
embed all the models into an M-ary EEF as given
by (8). Then, reducing it to a family dependent only
on ´1,´2, : : : ,´M¡1 by using the sufficient statistics,
we can formulate a model order estimator. This will
be reported on in a future paper. Here, we retain the
binary embedding for which the EEF for the ith order
model is from (6)

pi(x;´) = exp
·
´ ln

pi(x;µi)
p0(x)

¡K0(´)+ lnp0(x)
¸

for i= 1,2, : : : ,M ¡1 and µi is an i£ 1 vector of
unknown model parameters. As usual p0(x) is
assumed known. Using the sufficient statistics to yield
a reduced EEF and letting µi = 0 we have

pi(x;´) = exp
·
´ ln

µ
1

pTi (t(x);0)

¶
¡K0(´)+ lnp0(x)

¸
:

The proposed model order estimator chooses the
model whose maximized likelihood function or
pi(x; ˆ́) is maximum over all models. The estimator
ˆ́ is then the MLE for ´ based on the ith order model.
Thus, we choose model k if

EEF(i) = max
´

·
´ ln

µ
1

pTi(t(x);0)

¶
¡K0(´)

¸
(27)

is maximized for i= k. This approach is justified by
arguing that for large data records, i.e., asymptotically,
the divergence between the true pdf and the estimated
one becomes a minimum. The argument is given in
Appendix C.
As an illustration, we again consider the linear

model. Then, using (23) and replacing p with i, we
have

´ ln
µ

1
pTi (t(x);0)

¶
¡K0(´) = ´

µ̂Ti H
T
i Hiµ̂i
2¾2

+
i

2
ln(1¡ ´)

= ´
xTPHix
2¾2

+
i

2
ln(1¡ ´)

(28)
where PHi =Hi(H

T
i Hi)

¡1HTi and Hi is N £ i.
Maximizing over the domain 0· ´ < 1 by
differentiating and setting equal to zero produces
the global maximum (since ¡K0(´) is concave as
summarized in Appendix A)

ˆ́ =

8>>>><>>>>:
1¡ 1

xTPHix
i¾2

xTPHix
i¾2

> 1

0
xTPHix
i¾2

· 1:

(29)

Since xTPHix¸ 0, we must have ˆ́ · 1. But if ˆ́ = 0,
then EEF(i) = 0 and otherwise EEF(i)> 0 as we now
show. For ˆ́ > 0 and letting Qi = x

TPHix=¾
2 we have

from (27), (28), and (29)

EEF(i) =
µ
1¡ i

Qi

¶
Qi
2
+
i

2
ln
i

Qi
=
Qi
2
¡ i

2

µ
ln
Qi
i
+1
¶

or equivalently letting EEF(i) be multiplied by two

EEF(i) =Qi¡ i
µ
ln
Qi
i
+1
¶
:

But for ˆ́ > 0, we have that Qi > i and thus EEF(i) is
monotonically increasing in Qi and equals zero for
Qi = i.
We can also write the EEF in more compact form

as

EEF(i) =
µ
Qi¡ i

µ
ln
Qi
i
+1
¶¶

u

µ
Qi
i
¡ 1
¶

(30)

where u(x) is the unit step function. Note that Qi
increases with model order while i(ln(Qi=i) +1),
the penalty term, will also usually increase with
model order. It is interesting to note that the usual
determinant of the Fisher information matrix is
not present in the penalty term. The EEF model
order estimator will then exhibit an increase in
robustness over such approaches as the asymptotic
MAP [14], and CME [15], all of which have this
term present. This is because the determinant of
the Fisher information matrix is not guaranteed to
increase and so is not in general a penalty factor. As
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an example, in the linear model part of the penalty
term is lndet(I(µi)) = lndet(H

T
i Hi=¾

2) and it can be
shown that

lndet
µ
HTi Hi
¾2

¶
= ln(hTi P

?
Hi¡1hi) + lndet

Ã
HTi¡1Hi¡1
¾2

!
where hi is the new column vector of Hi and P

?
Hi¡1 is

the orthogonal projection operator. If the new column
lies within the same subspace as that spanned by the
columns of Hi¡1, then h

T
i P

?
Hi¡1hi = 0 and the Fisher

information matrix for the ith order model will be
singular [13]. The penalty will then will be ¡1 and
the estimator will always choose that model. This
appears to be at odds with what one would normally
expect.
The MDL [16] for the same problem can be shown

to be
MDL(i) =¡Qi+ i lnN: (31)

The main difference is seen to be the penalty term.
For the EEF approach it is

P(i)¼ i ln Qi
i

The two will be about the same if E(Qi)=i=O(N).
However, for a polynomial fitting problem, as an
example, we will have E(Qi)=i=O(N

®), where ® > 1,
and so the EEF will have a more stingent penalty
factor. We would therefore expect a lower probability
of overparametrization. This is borne out in the
simulation examples of Section VIII. The penalty
term in the EEF approach depends on Qi=i or the
energy to noise ratio (ENR) per dimension. Finally,
it can be shown that the EEF model order estimator is
consistent.
To apply the model order estimator more generally

we can use an asymptotic argument. As shown in
Appendix D the model order estimator chooses the
kth model if

EEF(i) =
µ
lGi(x)¡ i

·
ln
µ
lGi (x)
i

¶
+1
¸¶
u

µ
lGi (x)
i

¡1
¶

(32)
where

lGi (x) = 2ln
p(x; µ̂i)
p(x;µ0)

is maximum for i= k. Here µ̂i is the MLE for the
parameters of the ith order model. It can furthermore
be shown that in the presence of nuisance parameters
® we obtain (32) but with

lGi (x) = 2ln
p(x; µ̂i,®̂i)
p(x;µ0,®̂0)

(33)

where ®̂i is the unconstrained MLE for the ith order
model and ®̂0 is the constrained MLE (for µ = µ0).
It is interesting to note that the EEF extends

the GLRT to allow testing of multiple alternative

hypotheses, and in particular, when the alternatives
have differing numbers of unknown parameters. For
example, if we wish to implement the usual binary
test of H0 : µ = µ0,® versus H1 : µ 6= µ0,®, then
since

EEF(i) =
µ
lGi (x)¡ i

·
ln
µ
lGi (x)
i

¶
+1
¸¶
u

µ
lGi (x)
i

¡ 1
¶

with

lGi (x) = 2ln
p(x; µ̂i,®̂i)
p(x;µ0,®̂0)

we need only compute the value of the EEF with
i= p and compare it to a threshold. But the EEF is a
monotonic function of lGi(x) and so an equivalent test
is to decide H1 if lGi (x)> °, which is the usual GLRT.
When there are multiple alternative hypotheses,
however, the EEF first computes the GLRT for each
hypothesis or lGi (x), next applies the transformation

gi(x) =
³
x¡ i

h
ln
³x
i

´
+1
i´
u
³x
i
¡ 1
´

and then chooses the hypothesis that yields the
maximum. The effect of the transformations gi(x) is to
penalize the lGi(x) as the number of tested parameters
increases. It is easily shown that gi(x) is a monotonic
function and gj(x)< gi(x) for j > i. To set a constant
probability of false alarm we can next compare the
EEF statistic (the one that yielded the maximum)
to a threshold. Hence, it would appear that the EEF
model order estimator as described herein extends the
GLRT to the case of multiple alternative hypotheses.
The usual problem of the GLRT, that the hypothesis
with the most number of unknown parameters will
always be chosen, has been solved by first applying
the transformations gi(x).
As a second example of interest, we can apply

the asymptotic form to the problem of model order
estimation for an autoregressive (AR) process [19].
We use (32) and (33). In this case the unknown
parameters µ are the AR filter parameters and the
nuisance parameter is the excitation noise variance ¾2u .
We therefore have that µ = a= [a[1]a[2] : : :a[i]]T and
®i = ¾

2
ui
for the ith order model. Hence, µ̂i is the MLE

of the AR filter parameters and ®̂i is the MLE of
the excitation noise variance for the ith order model.
For the reference value of µ we take µ0 = 0 or the
AR filter parameters are all zero so that the reference
hypothesis is just white Gaussian noise with unknown
variance. The exact pdf for an AR process is difficult
to work with directly so that as an approximation
(valid for large N) we use the conditional pdf [19]

p(x;a,¾2)

=
1

(2¼¾2u)
(N¡i)=2 exp

24¡ 1
2¾2u

N¡1X
n=i

Ã
x[n] +

iX
k=1

a[k]x[n¡ k]
!2
35

(34)
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and for the reference hypothesis a= 0 so that

p(x;a= 0,¾2) =
1

(2¼¾2u)(N¡i)=2
exp

"
¡ 1
2¾2u

N¡1X
n=i

x2[n]

#
:

(35)
The required lGi (x) for these pdfs is shown in
Appendix E to be

lGi (x) = (N ¡ i) ln
Ã
¾̂2u0
¾̂2ui

!
(36)

where

¾̂2ui =
1

N ¡ ix
T
i (I¡Hi(HTi Hi)¡1HTi )xi

¾̂2u0 =
1

N ¡ ix
T
i xi

and

xi = [x[i]x[i+1] : : :x[N ¡1]]T

Hi =

266664
x[i¡ 1] x[i¡ 2] : : : x[0]

x[i] x[i¡ 1] : : : x[1]
...

...
...

...

x[N ¡ 2] x[N ¡ 3] : : : x[N ¡ 1¡ i]

377775 :
For this problem the MDL can be shown to be [19]

MDL(i) =N ln(¾̂2ui) + i ln(N): (37)

Computer simulation results are given in the next
section.

VIII. COMPUTER SIMULATIONS

A. Polynomial Model Order Estimation

The problem of determining the order of a
polynomial that is embedded in white Gaussian noise
is a problem of much interest. Since this falls within
the class of linear models, we can apply our results
directly. Hence, we compare the MDL or (31) to the
EEF or (30) and also the CME as described in [15].
We therefore choose the model order to maximize

¡MDL(i) = x
TPHix
¾2

¡ i lnN

EEF(i) =

Ã
xTPHix
¾2

¡ i
"
ln

Ã
xTPHix
i¾2

!
+1

#!

£ u
Ã
xTPHix=¾

2

i
¡ 1
!

¡CME(i) = x
TPHix
¾2

¡ lndet
µ
HTi Hi
2¼¾2

¶
for i= 1,2, : : : ,pmax.
Consider the parabolic signal

s[n] = 0:4n+0:1n2, n= 1,2, : : : ,N ¡1:

Fig. 2. Probability of correct model order for polynomial versus
data record length.

Fig. 3. Probability of correct model order for polynomial versus
inverse noise variance.

For a noise variance of ¾2 = 100 the probability of
correct model order or Pc is shown in Fig. 2 versus the
data record length N. The CME appears to produce
the best results with the EEF nearly as good. The
MDL is consistently poorer owing to its inappropriate
penalty factor for a polynomial. If the data record is
kept fixed at N = 40, then Pc versus the inverse noise
variance or 1=¾2 is shown in Fig. 3. Again the CME
outperforms the EEF but only marginally while the
MDL is consistently poorer.

B. CME Difficulties for Nonincreasing Determinant of
Fisher Information Matrix

For a sinusoidal signal the determinant of the
Fisher information matrix will not necessarily increase
with model order or if it does, it may increase very
slowly. Hence, as shown in the next simulation the
CME may not produce good results. The example to
follow is of limited practical interest but only serves
to highlight the potential difficulties of the CME. The
signal consists of three sinusoids embedded in white
Gaussian noise or

x[n] = cos(2¼(0:1)n)+ cos(2¼(0:11)n)

+ cos(2¼(0:12)n) +w[n], n= 1,2, : : : ,N ¡1
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Fig. 4. Probability of correct model order for sinusoids versus
data record length.

so that the true order or number of sinusoids is three.
As before the signal model has the linear model form
since the frequencies are assumed known. However,
the amplitudes and phases in addition to the number
of sinusoids is assumed unknown. We assume that
the models are nested so that we test the models
with sinusoidal frequencies f1 = 0:10 for model 1,
f1 = 0:10,f2 = 0:11 for model two, f1 = 0:10,f2 =
0:11,f3 = 0:12 for model three,: : : , f1 = 0:10, : : : ,f8 =
0:17 for model eight. In Fig. 4 the Pc versus N is
shown when ¾2 = 10. Now the CME performs very
poorly. This is because the penalty factor is incorrect
for short data records for this example. We have that
HTi Hi ¼ (N=2)Ii and therefore

lndet
µ
HTi Hi
2¼¾2

¶
¼ lndet

µ
N

4¼¾2
Ii

¶

= ln
µ

N

4¼¾2

¶i
= i ln

µ
N

4¼¾2

¶
:

This will only increase with i if N=(4¼¾2)> 1, which
for this example requires N > 40¼ ¼ 125. For smaller
data records the penalty factor will actually decrease
with i. This is evident in Fig. 4. The EEF outperforms
the MDL for N < 230 but is slightly poorer for larger
data records. The performance versus the inverse noise
variance for N = 100 is shown in Fig. 5. Note again
that for the penalty factor to be increasing we must
have N=(4¼¾2)> 1 or 1=¾2 > (4¼)=N ¼ 0:126. Again
the EEF outperforms the MDL for smaller inverse
noise variance (equivalently for lower energy-to-noise
ratio). It is only when the energy-to-noise ratio is very
large or NA2=(2¾2) = 100=(2(0:2)) = 24 dB that the
performance of the MDL is slightly better.

C. AR Model Order Estimation

Since the CME is in general unreliable, we only
compare the EEF to the MDL for the problem of AR

Fig. 5. Probability of correct model order for sinusoids versus
inverse noise variance.

Fig. 6. Probability of correct model order for AR process of
order 4.

model order estimation. An AR process of order 4
whose parameters are given by

a[1] =¡2:760
a[2] = 3:809

a[3] =¡2:654
a[4] = 0:924

¾2u = 1

is used to determine the performance of the EEF as
given by (32) and (36), and for the MDL estimator
given by (37). The results are shown in Fig. 6
versus the data record length. As is evident the EEF
outperforms the MDL for all data record lengths.
It appears that overall the EEF produces good

model order estimation, especially for short data
records and/or low energy-to noise-ratios. This is
the regime when the performance of a model order
estimator is most critical.

IX. CONCLUSIONS

A new approach to composite hypothesis testing
has been proposed. It embeds two different pdfs into
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a new pdf family that is an exponential family. In
particular, an application to model order estimation
has been examined in detail and the proposed
approach based on the EEF is shown to perform
quite well. Also, an important extension of the GLRT
for multiple alternative hypotheses with differing
numbers of parameters has been identified. Further
work will be directed toward a comprehensive study
of the theoretical properties of and applications of the
EEF.

APPENDIX A. BACKGROUND ON EXPONENTIAL
FAMILIES

The reader is referred to [1], [9], and [10] for
further details. Consider the exponential pdf of (6).
Some useful properties that we employ are now
given.

1) The statistic T(x) is a minimal and complete
sufficient statistic for ´. Hence, all the information
in x can be reduced to T(x) without degrading the
performance of any detector/classifier based on it.
We may therefore restrict our attention to T(x) in
distinguishing between p(x;´1) and p(x;´0) for any
´1 and ´0.
2) The moments of T(x) are easily found from

K0(´) or equivalently M0(´) since its moment
generating function is

E´(exp(sT(x))) =
Z
exp[(s+ ´)T(x)¡K0(´)]p0(x)dx

= E0[exp((s+ ´)T(x))exp(¡K0(´))]
=M0(s+ ´)exp(¡K0(´)):

As a result, it follows that

E´(T) =M
0
0(´)exp(¡K0(´)) =

M 0
0(´)

M0(´)
=K 00(´)

(38)

var´(T) =
M 00
0 (´)
M0(´)

¡
µ
M 0
0(´)

M0(´)

¶2
=K 000 (´): (39)

3) From (39) K0(´) is a convex function over
0· ´ · 1 since K 000 (´) = var´(T)> 0.
4) The MLE of ´ is easily found due to the

convexity of K0(´). To do so we must find the ´ that
maximizes g(´) = ´T(x)¡K0(´). But g(´) is concave
and so we can differentiate and set equal to zero. The
maximum will either be at this point or at one of the
endpoints ´ = 0 or ´ = 1. Hence, we need to solve

T(x) =K 00(´)

for ´ to find the MLE ˆ́. Also, the Fisher information
for ´ is easily seen to be from (6) I(´) =K 000 (´).

APPENDIX B. ASYMPTOTIC FORM OF REDUCED
EEF

From (14) we have that

p(x;´) = exp

·
´ ln

µ
p1(x j T= t(x))

p(x;µ0)

¶
¡K0(´) + lnp(x;µ0)

¸
where p0(x) is now written as p(x;µ0). But
asymptotically the MLE µ̂ for µ is a sufficient statistic
with the asymptotic pdf µ̂ »N (µ1,I¡1(µ1)), where
I(µ1) is the Fisher information matrix evaluated at
µ = µ1. Hence, we have that upon using the definition
of conditional pdf

ln
µ
p1(x j T= t(x))

p(x;µ0)

¶
= ln

µ
p1(x;µ)

pT(t(x);µ)p(x;µ0)

¶
and since the conditional pdf cannot depend on µ, we
let µ = µ0 to yield (with p1(x;µ0) = p(x;µ0))

ln
µ
p1(x j T= t(x))

p(x;µ0)

¶
=¡ ln(pT(t(x);µ0)):

Now since T= µ̂ we have for µ a p£ 1 vector
pT(t(x);µ0)

=
1

(2¼)(p=2) det1=2(I¡1(µ0))| {z }
c

exp

·
¡1
2
(µ̂¡µ0)TI(µ0)(µ̂¡µ0)

¸
:

Also, since K0(´) is the cumulant generating function
of ¡ ln(pT(t(x);µ0)), it will absorb the constant term c.
Thus,

ln
µ
p1(x j T= t(x))

p(x;µ0)

¶
=
1
2
(µ̂¡µ0)TI(µ0)(µ̂¡µ0):

But when µ = µ0, (µ̂¡µ0)TI(µ0)(µ̂¡µ0) is a
chi-squared random variable with p degrees of
freedom (denoted by Â2p) and thus

K0(´) = lnE0[exp((´=2)Â
2
p)]

= ln
1

(1¡ ´)p=2 :

Finally, then the asymptotic form of the reduced EEF
is

p(x;´) =exp[(´=2)(µ̂¡µ0)TI(µ0)(µ̂¡µ0)
+ (p=2) ln(1¡ ´)+ lnp(x;µ0)]:

This can be rewritten in terms of the GLRT by noting
that asymptotically

(µ̂¡µ0)TI(µ0)(µ̂¡µ0) = 2ln
p(x; µ̂)
p(x;µ0)

which follows from the equivalence of the Wald test
to the GLRT [11]. We let

lG(x) = 2ln
p(x; µ̂)
p(x;µ0)
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be the GLRT statistic so that finally we have

p(x;´) = exp[(´=2)lG(x) + (p=2) ln(1¡ ´)+ lnp(x;µ0)]
(40)

which is the final form.

APPENDIX C. RATIONALE FOR MODEL ORDER
ESTIMATOR

We define the divergence as [5]

D(pkp0) =
Z
p(x) ln

p(x)
p0(x)

dx= Ep(lnp=p0):

We first prove that if a third pdf p´ has the property
that

Ep´ (lnp´(x)=p0(x)) = Ep(lnp´(x)=p0(x)) (41)

then a Pythagorean-like theorem holds [3]

D(pkp0) =D(pkp´) +D(p´ kp0):
Then, we argue that asymptotically this relationship
will hold. A more rigorous proof can be found in
[20]. Since

D(pkp´) +D(p´ kp0) = Ep(lnp=p´) +Ep´ (lnp´=p0)
if (41) holds, then

D(pkp´) +D(p´ kp0) = Ep(lnp=p´) +Ep´ (lnp´=p0)
= Ep(lnp=p´) +Ep(lnp´=p0)

= Ep(lnp=p0)

=D(pkp0):
Now consider p as the true model pdf, i.e., denote
it by pT. For the Pythagorean theorem to hold we
require

Ep´ (lnp´(x)=p0(x)) = EpT (lnp´(x)=p0(x)): (42)

But by the large of large numbers if x is composed of
N IID random variables, then

1
N
lnp´(x)=p0(x)

will converge to its true expected value or

1
N
lnp´(x)=p0(x) =

1
N

N¡1X
n=0

ln
p´(x[n])

p0(x[n])

! E

·
ln
p´(x[n])

p0(x[n])

¸
=
1
N
E

·
lnp´(x)
p0(x)

¸
:

Hence, we can replace (42) by the requirement

Ep´ (lnp´(x)=p0(x)) = lnp´(x)=p0(x) (43)

and note that if

p´(x) = p(x;´) = exp[´T(x)¡K0(´)+ lnp0(x)]

then
lnp´(x)=p0(x) = ´T(x)¡K0(´)

and (43) becomes

Ep´ (´T(x)¡K0(´)) = ´T(x)¡K0(´)
so that the requirement is just

Ep´ (T(x)) = T(x): (44)

But Ep´ (T(x)) =K
0
0(´) so (44) becomes K

0
0(´) = T(x),

which is satisfied if ´ is chosen as the MLE of ´.
Hence, we have asymptotically the Pythagorean
theorem

D(pT kp0) =D(pT kp ˆ́ ) +D(p ˆ́ kp0) (45)

where p ˆ́ = max´ p(x;´).
Now referring to (45) we see that since D(pT kp0)

is fixed, if we wish to minimize the divergence
between the true model and our estimated model,
which is given by D(pT kp ˆ́ ), we should maximize
the divergence between the estimated model and p0 or
D(p ˆ́ kp0). Since

D(p ˆ́ kp0) = Ep ˆ́
µ
ln
p(x; ˆ́)
p0(x)

¶
= ˆ́T(x)¡K0( ˆ́)

we have
EEF(i) = max

´
(´Ti(x)¡K0(´))

which when applied to the reduced EEF is (27).

APPENDIX D. DETERMINATION OF ASYMPTOTIC
MODEL ORDER ESTIMATOR

From (40) we have that

EEF(i) = max
´
((´=2)lGi (x)+ (i=2) ln(1¡ ´)): (46)

The MLE of ´ is easily shown to be

ˆ́ = max
µ
0,1¡ i

lGi (x)

¶
and substituting this value into (46) and multiplying
by two we have that for ˆ́ > 0

EEF(i) = lGi (x)¡ i
·
ln
µ
lGi (x)
i

¶
+1
¸
:

Finally we have that

EEF(i) =

8>><>>:
lGi(x)¡ i

·
ln
µ
lGi (x)
i

¶
+1
¸

lGi (x)
i

> 1

0
lGi (x)
i

· 1:

=
µ
lGi (x)¡ i

·
ln
µ
lGi (x)
i

¶
+1
¸¶
u

µ
lGi (x)
i

¡ 1
¶

where u(x) is the unit step function. Thus, we have
(32).
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APPENDIX E. DERIVATION OF ASYMPTOTIC AR
MODEL ORDER ESTIMATOR

To explicitly evaluate (33) we need the MLE of the
AR parameters for the ith order model. Based on (34)
the MLE is given as [19]

âi =¡(HTi Hi)¡1HTi xi
where

âi = [â[1] â[2] : : : â[i]]
T

xi = [x[i]x[i+1] : : :x[N ¡1]]T

Hi =

266664
x[i¡ 1] x[i¡ 2] : : : x[0]

x[i] x[i¡ 1] : : : x[1]
...

...
...

...

x[N ¡ 2] x[N ¡ 3] : : : x[N ¡ 1¡ i]

377775 :
Also, we have that

¾̂2ui =
1

N ¡ i
N¡1X
n=i

Ã
x[n] +

iX
k=1

âi[k]x[n¡ k]
!2

=
1

N ¡ ix
T
i (I¡Hi(HTi Hi)¡1HTi xi:

Thus, substituting into (34) produces

p(x; âi, ¾̂
2
ui
) =

1
(2¼¾̂2ui)

(N¡i)=2 exp[¡(N ¡ i)=2]:

The constrained MLE for a= 0 is obtained by
maximizing (35) over ¾2u . This is easily shown to
produce

¾̂2u0 =
1

N ¡ i
N¡1X
n=i

x2[n]

=
1

N ¡ ix
T
i xi:

Substituting into (33) produces

p(x;a= 0, ¾̂2u0 ) =
1

(2¼¾̂2u0 )
(N¡i)=2 exp[¡(N ¡ i)=2]:

Therefore,

p(x; âi, ¾̂
2
ui
)

p(x;a= 0, ¾̂2u0 )
=

Ã
¾̂2u0
¾̂2ui

!(N¡i)=2
and finally

lGi (x) = (N ¡ i) ln
Ã
¾̂2u0
¾̂2ui

!
:
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