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ABSTRACT

Adaptive waveform design for radar clutter cancellation re-
quires knowledge of the rank of the clutter subspace. In this
paper, we compare the computed clutter subspace rank, r,
using three methods: (i) the exponentially embedded family
(EEF) estimator, (ii) Rissanen’s minimum description length
(MDL) estimator, and (iii) the statistical ranking and selection
method (CWA).

1. INTRODUCTION

Successful application of the space-time adaptive processing
(STAP) for airborne radar systems to detect moving targets
depends on the effective use of the available degrees of free-
dom to ameliorate the problems of training data support and
computational cost. These considerations become particu-
larly important in heterogeneous clutter scenarios. One so-
lution to determine the required number of degrees of free-
dom is to correctly estimate the number of target signals. Un-
der ideal conditions when the power spectrum density (PSD)
of the clutter has a sharp locus (clutter ridge) in the angle-
Doppler space and PSDs of all targets are away from the clut-
ter ridge, it is simple to obtain the correct number of targets.
In practice, the clutter PSD has a wide spread in the angle-
Doppler space and some of target PSDs remain buried in the
clutter spectrum. This often prohibits the correct estimation
of the number of targets. Therefore, another approach is to
adaptively design a proper waveform in order to null the clut-
ter. Consequently, adaptive waveform design for radar clut-
ter cancellation requires a priori knowledge of rank of the
clutter subspace. For airborne radar applications, the clutter
rank is a function of two fundamental factors, i.e., the spatio-
temporal non-stationarity of the clutter and system parameters
such as platform speed, inter-element array spacing, and pulse
repetition interval. The KASSPER data sets [1, 2], which are
simulated data for airborne linear phased radar system with
precisely the above-mentioned system parameters, are used
for the estimation of clutter rank.

Designing a model order estimator to compute the clut-
ter rank is essential for waveform design to mitigate clutter

and to enhance target detection performance of adaptive de-
tectors, e.g., the normalized low-rank adaptive filter [3]. Since
the problem is one of composite hypothesis testing, for which
no optimal solution exists, there is no consensus on its so-
lution. One common approach employs a Bayesian philos-
ophy which assumes a noninformative prior in an effort to
“integrate out” the unknown model parameters. Then, the ef-
fect of the prior is ignored. Along these lines the minimum
description length (MDL) has been proposed based on cod-
ing arguments [4]. Another approach, based on differential
geometric statistical models, is the exponentially embedded
family (EEF) [5]. In this paper, we compare EEF and MDL
estimators for clutter rank estimation.

The CWA method [6] is based on ranking and a variation
of the subset selection approach [7] to develop a screening
procedure to select secondary data for radar signal process-
ing. With some effort, the CWA method can be modified
for the estimation of clutter rank provided that the clutter
covariance matrix is given. In other words, one can refor-
mulate the CWA procedure by replacing δ∗ and c with the
clutter-to-noise ratio, CNR (in the case of signals embedded
in white noise, it will be signal-to-noise ratio, SNR), where
δ∗ is a preassigned real number to differentiate between good
and bad eigenvalues and c is the real number chosen to sat-
isfy the condition that the probability of a correct selection
is optimal. After this replacement, the computed clutter rank
during each Monte Carlo simulation step is equal to the to-
tal number of eigenvectors Vi having the ratio of eigenvalues
λi/λp > CNR (i = 1, 2, · · · , p−1) where p is the total num-
ber of eigenvalues for the clutter covariance matrix and λp is
the smallest eigenvalue .

In Section 2, we describe radar parameters used to gen-
erate simulated L-band and X-band KASSPER data sets and
present eigenspectra computed for both data sets. Then, the
EEF formulation for covariance rank estimation is given in
Section 3. Computed clutter ranks using EEF, MDL, and
CWA methods for both data sets are illustrated in the Sections
4 and 5, respectively. Section 6 presents conclusions.
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Parameter Value
Carrier frequency 1240 MHz
Bandwidth 10 MHz
Number of antenna elements (J) 11
Number of pulses (N ) 32
Pulse repetition frequency (T−1) 1984 Hz
horizontal element spacing (dh) 0.1092 m
vertical element spacing (dv) 0.1407 m
1000 range bins from 35 km to 50 km
Clutter-to-noise ratio (CNR) 40 dB
Platform speed (vp) 100 m/s

Table 1. Parameters for L-band KASSPER data (set 1)

2. EIGENSPECTRA FOR L-BAND AND X-BAND
KASSPER DATACUBES

Typically for space-time adaptive processing (STAP), the side-
looking linear phased array radar has J array elements and
each element transmits N pulses. Within a coherent process-
ing interval (CPI), each receiver processes N pulses. For each
pulse repetition interval (PRI), R data samples are also col-
lected and processed to cover all range bins of the illuminated
terrain. Thus, the J × N × R data is referred as the CPI
datacube. The spatio-temporal product for STAP is JN . In
this paper, simulations for the estimation of the clutter rank
are conducted by using simulated CPI datacubes, namely, L-
band KASSPER datacube (referred to set 1) [1] and X-band
KASSPER datacubes (referred to set 2) [2]. Parameters for
both set 1 and set 2 are shown in Tables 1 and 2. There is
one CPI datacube for set 1 and 90 CPI datacubes for set 2.
To compare the performance of the clutter rank estimation for
three algorithms, namely, EEF, MDL, and CWA, it is neces-
sary to inspect the eigenspectrum for each datacube, which
contains the clutter-only data. For set 1, we simulated clutter-
only data from the true clutter covariance matrix at range bin
500. We then computed the eigenspectrum for set 1 and plot-
ted it in Figure 1(a), where a 60 dB roll-off in eigenvalue oc-
curs after approximately 50 indices. For set 2, since there are
clutter-only data and target-clutter data in each datacube, we
used the clutter-only data to compute the eigenspectrum. In
Figure 1(b), the eigenspectrum for the CPI 10 datacube of set
2 shows that there is probably a 40 dB roll-off in eigenvalue
after approximately 175 eigenvalue indexes, while for other
CPIs at 1, 22, 45, 65, 80, and 90, they all have a more grad-
ual roll-off in eigenvalues. The similar characteristic for those
eigenspectra indicates that perhaps the CPI 10 datacube is an
anomaly. Under ideal conditions for the application of air-
borne linear phased array radar, the Brennan’s rule [8] yields
the clutter rank, r = J + β(N − 1), where β = 2vpT/dh is
the slope of the clutter ridge, vp the platform velocity, T the
pulse repetition interval, and dh the horizontal element spac-
ing. Since β ∼ 1 for set 1, this leads to r ≈ 42 according to
the Brennan’s rule. On the other hand, since β is around 10
for set 2, it yields r ≈ 382.

Parameter Value
Carrier frequency 10000 MHz
Bandwidth 10 MHz
Number of antenna elements 12
Number of pulses 38
Pulse repetition frequency 2081, 1800, and 1518 Hz
horizontal element spacing 0.015 m
vertical element spacing 0.015 m
1667 range bins from 30 km to 55 km
Clutter-to-noise ratio 23 dB
Platform speed 150 m/s

Table 2. Parameters for X-band KASSPER data (set 2)

3. EEF FOR COVARIANCE RANK ESTIMATION

Suppose q complex spatial sinusoids are embedded in com-
plex white Gaussian noise with a single snapshot data vector
given by x = [x[0], x[1], · · · , x[p − 1]]T , where p > q. The
data can be described by [9]

x =
q∑

i=1

A (fi) si + u (1)

where A (fi) =
[
1, e−j2πfi , · · · , e−j2πfi(p−1)

]T
is a p × 1

complex steering vector, si is a scalar complex Gaussian am-
plitude, and u is a p×1 complex white Gaussian noise vector.
It is assumed that u is independent of the signal amplitudes
and its covariance matrix is σ2I. It is also assumed that the
signals are incoherent so that S = E

[
ssH
]

is nonsingular,

where s = [s1, · · · , sq]
T . This is the model used in [9]. Since

Eq. (1) can be rewritten in matrix form as x = As + u where
A = [A (f1) , A (f2) , · · · , A (fq)], the autocorrelation matrix
of x is Rx = ASAH + σ2

uI. The problem is to determine the
number of signals q, or equivalently to estimate the rank of
Rx − σ2

uI, given N independent identically distributed (iid)
data vectors or snapshots x0, x1, · · · , xN−1. Note that the
possible rank ranges from 1 to p. Suppose the model order
is k. It is convenient to re-parameterize Rx using the spec-
tral representation theorem. We can therefore express R(k)

x

as R(k)
x =

∑k
i=1

(
λi − σ2

u

)
ViVH

i + σ2
uI where λ1, · · · , λk

and V1, · · · , Vk are the eigenvalues and eigenvectors, respec-
tively, of R(k)

x . Denoting by θ(k) the parameter vector of the
model, it is given by

θ(k) =
[
λ1, · · · , λk, σ2

u, VT
1 , · · · , VT

k

]T
. (2)

Since EEF and MDL model order estimators require the
maximum likelihood estimator (MLE) of θ(k), we note that
from [10], λ̂i = li, σ̂2 =

∑p
i=k+1 li/(p − k), and V̂i =

Ci(i = 1, · · · , k) where l1 > l2 · · · > lp and C1, · · · ,Cp are
the eigenvalues and eigenvectors, respectively, of the sample
covariance matrix R̂ given by

R̂ =
1
N

N−1∑
i=0

xixH
i . (3)
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(a)

(b)

Fig. 1. Eigenspectra of the clutter-only (a) set 1 and (b) set 2

Now with a similar derivation as in [5], it can be shown that
for complex data EEF chooses the order that maximizes

EEF (k) =(
LGk

(x) − nk

[
ln
(

LGk
(x)

nk

)
+ 1
])

u
(

LGk
(x)

nk
− 1
)

(4)

where u(x) is the unit step function, nk is the number of free
adjustable real parameters in the kth model and LGk

(x) is
defined as

LGk
(x) = 2 ln

p(x; θ̂
(k)

)

p(x; θ̂
(0)

)
. (5)

Here p(x; θ) is the probability density function (PDF) of the
available data, and θ(0) is the parameter vector of the refer-
ence model. From Eq. (2), the free adjustable parameters in
θ(k) are k real eigenvalues, k complex eigenvectors, and the
noise variance. It follows that θ(k) has k + 2pk + 1 parame-
ters. However, the eigenvectors are normalized and mutually
orthogonal. As argued in [9], this amounts to a reduction of
k2 +k degrees of freedom, so that nk = k(2p−k)+1. Using
this to calculate Eq. (4), it can be shown

LGk
(x) = 2N

[
ln

(
k∏

i=1

li

)
− p ln

(
1
p
tr(R̂)

)

+ (p − k) ln

(
1

p − k

p∑
i=k+1

li

)]
. (6)

Also, it can be shown that the MDL is

MDL(k) =
nk

2
lnN + N

[
ln

(
k∏

i=1

li

)

(a)

(b)

Fig. 2. Probabilities of correct order for EEF and MDL as
functions of (a) SNR (p = 7, N = 50) and (b) Number of
Snapshots (p = 7, SNR = −5 dB)

+ (p − k) ln

(
1

p − k

p∑
i=k+1

li

)]
. (7)

To compare both EEF and MDL methods we assume that
three spatial sinusoids are present with true normalized fre-
quencies at [0.2, 0.4, 0.6]. These three sinusoids have the
same SNR ≡ 10 log10 σ2

s/σ2 where σ2
s is the variance of

each sinusoid. From Monte Carlo simulation, probabilities of
correct order selection versus SNR for EEF and MDL are
plotted in Figure 2(a) with p = 7 and N = 50. To compare
probabilities of correct order selection versus number of snap-
shots for EEF and MDL, we also assume three sinusoids are
present with true frequencies at [0.2, 0.4, 0.6]. Results from
Monte Carlo simulation are plotted in Figure 2(b), with p = 7
and SNR = −5 dB. Note that in both cases EEF outperforms
MDL under low SNR and/or few number of snapshot condi-
tions. This is because EEF can be shown to have a minimax
property, in that it estimates the PDF that is closest to the true
one in a minimax sense.

4. CLUTTER RANK ESTIMATION USING THE EEF
AND THE MDL METHODS

Estimation of the clutter rank using EEF and MDL estimators
depends on the proper choice of two parameters: the maxi-
mum model order, L, and the sample support, K, used for
the subspace estimation. The computed clutter ranks as func-
tions of L and K for set 1 are shown in Figures 3(a) and 3(b),
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(a)

(b)

Fig. 3. Computed clutter ranks using EEF and MDL estima-
tors for set 1 as functions of (a) L and (b) K

while that for set 2, CPI 1, 10, 22, 45, 65, 80, 90 are pre-
sented in Figures 4(a) and 4(b). For a fixed K, both EEF and
MDL estimators depend linearly on the maximum model or-
der L when the selected L is smaller than the expected clutter
rank. However, when the selected L is larger than the ex-
pected clutter rank, both estimators become independent of L
as shown in Figures 4(a). Except for CPI 10 of set 2 in Figure
4(b), EEF and MDL estimators are weakly dependent on the
sample support K. Figures 3(a) and 3(b) show that for set 1,
when L ≥ 49, EEF yields r = 49 (48, when 752 < K < 920)
and MDL yields 47 (46, when when 752 < K < 920). For
CPI 10 of set 2, ranges of computed clutter ranks as shown
in Figures 4(a) and 4(b) vary from 105 to 150 using the EEF
method and from 104 to 135 using the MDL method. On the
other hand, for CPI 1, 22, 45, 65, 80, and 90 of set 2, ranges
of computed clutter ranks vary from 57 to 96 for both EEF
and MDL methods. Although both EEF and MDL estimators
provide a better estimate of the clutter rank for set 1, they fail
to yield the clutter rank for set 2 according to the Brennan’s
rule. However, both EEF and MDL estimators can perform
better when there is a sharp roll-off in eigenspectrum, e.g.,
CPI 10 of set 2, of which its eigenspectrum has 40 dB roll-off
at eigenvalue index 175.

5. CLUTTER RANK ESTIMATION USING THE CWA
METHOD

The CWA method can be reformulated to be dependent on
the clutter to noise ratio, CNR, and the sample support, K.

(a)

(b)

Fig. 4. Computed clutter ranks using EEF and MDL estima-
tors for set 2 as functions of (a) L and (b) K

From Monte Carlo simulation, we have shown in Figures 5
and 6 that CWA strongly depends on the choice of CNR and
K. In Figure 5(a), for fixed K = 412, CWA yields r ∼ 42
for set 1 when CNR = 40 dB, which is consistent with the
true CNR of set 1 (see Table 1). To confirm the choice of
K, if CNR is fixed at 40 dB, the computed clutter rank at
K = 412 is again about 42 as shown in Figure 5(b). For set
2, if K is fixed at 506, Figure 6(a) shows that CWA for set 2
CPI 1, 10, 22, 45, 65, 80, and 90 gives rise to r ∼ 382 when
CNR = 20 dB. On the other hand, if CNR is fixed at 20
dB, the computed clutter rank at K = 506 is also close to
382 as shown in Figure 6(b). Private communication with the
developers of KASSPER data sets [1, 2] confirms that CNR
for KASSPER data set 2 is around 23 dB. This indicates that if
one selects the appropriate CNR and K, CWA can properly
determine the correct clutter rank, which is governed by the
Brennan’s rule.

6. CONCLUSIONS

The clutter rank for KASSPER set 1 has the low-rank charac-
teristic because r is about 42 and much less than the spatio-
temporal product JN = 352. Except for the CPI 10 datacube,
the clutter rank for KASSPER set 2 on the average is close to
full rank because r is around 382 and close to JN = 456.
Since both EEF and MDL methods are designed to estimate
the model order (namely, a finite number of strong signals) for
the measured data, they have better estimation performance of
the clutter rank when the clutter has the low-rank character-
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(a)

(b)

Fig. 5. Computed clutter ranks using CWA method for set 1
as functions of (a) CNR and (b) K

(a)

(b)

Fig. 6. Computed clutter ranks using CWA method for set 2
as functions of (a) CNR and (b) K

istic. In other words, when there is a rapid roll-off of eigen-
values in the clutter eigenspectrum, both EEF and MDL are
efficient to predict the clutter rank. However, when there is
a gradual roll-off of eigenvalues in the clutter eigenspectrum,
both EEF and MDL yield a estimated clutter rank lower than
that given by the Brennan’s rule. On the other hand, as long
as CNR and K can be “properly” chosen, the CWA method
gives rise to the correct clutter rank. Two caveats in the ap-
plication of CWA are: (i) increased computational cost com-
pared to both EEF and MDL methods and (ii) requirement of
a priori information about CNR and K.

7. REFERENCES

[1] J. S. Bergin and P. M. Techau. High-fidelity site-specific
radar simulation: Kassper‘02 workshop datacube. Tech-
nical Report ISL-SCRD-TR-02-105, Defense Advanced
Research Projects Agency, May 15, 2002.

[2] P. M. Techau J. S. Bergin and G. Chaney. High-fidelity
site-specific radar simulation: Kassper data set 2. Tech-
nical Report ISL-SCRD-TR-02-106, Defense Advanced
Research Projects Agency, October 1, 2002.

[3] M. Rangaswamy, F. C. Lin, and K. Gerlach. Robust
adaptive signal processing methods for heterogeneous
radar clutter scenario. special issue of the EURASIP J.
Signal Processing: New Trends and Findings in Antenna
Array Processing for Radar, 84:1653–1665, 2004.

[4] J. Rissanen. Modeling by shortest data description. Au-
tomatica, pages 465–478, 1978.

[5] S. Kay. Exponentially embedded families-New ap-
proaches to model order estimation. IEEE Trans. on
Aerospace and Electronic Systems, 41:333–344, 2005.

[6] P. Chen, M. C. Wicks, and R. S. Adve. Development of a
statistical procedure for detecting the number of signals
in a radar measurement. IEE Proc. F, Radar, Sonar and
Navigation, 148:219–226, 2001.

[7] P. Chen, W. L. Melvin, and M. C. Wicks. Screening
among multivariate normal data. Journal of Multivariate
Analysis, 69:10–29, 1999.

[8] J. Ward. Space-time adaptive processing for airborne
radar. Technical Report Technical Report 1015, MIT
Lincoln Laboratory, December 1994.

[9] M. Wax and T. Kailath. Detection of signals by informa-
tion theoretic criteria. IEEE Trans. on Acoust., Speech,
Signal Processing, 33:387–392, 1985.

[10] T. W. Anderson. Asymptotic theory for principal com-
ponent analysis. The Annals of Mathematical Statistics,
34:122–148, 1963.

1-4244-1276-5/07/$25.00©2007 IEEE 343 2007 Waveform Diversity & Design


