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Abstract

1 Introduction

The K-PDF is a good model for clutter when the scatterers are not homogeneous. The random variable

that describes a noise sample is given by

Z =
√

V U

where V is a Gamma distributed random variable with shape parameter α = ν + 1, and scale parameter

λ = 1/2, and U is Gaussian with mean zero and variance σ2. The random variables U and V are

independent. The PDF can be shown to be

pZ(z) =
1√

πσ2Γ(ν + 1)

( |z|
2σ

)ν+1/2

Kν+1/2

( |z|
σ

)
−∞ < z < ∞. (1)

In this paper we examine the use of a simple but effective estimation procedure for the parameters ν and

σ2. Although the maximum likelihood estimator is the asymptotically optimal estimator, it is difficult to

implement it for the K-PDF. As an alternative estimator, we use the cumulant generating function (CGF)

approach as previously described in [2].
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2 Estimation Method

It can easily be shown that the characteristic function for the PDF of (??) is

φZ(ω) = E (exp(jωZ)) =
1

(1 + ω2σ2)ν+1
(2)

for all ω. As a result the CGF is

KZ(ω) = log [φZ(ω)]

= −(ν + 1) log
(
1 + σ2ω2

)
. (3)

We see that the CGF is now linear in the unknown shape parameter ν and nonlinear in the scale parameter

σ2. Hence, we can estimate it by fitting the estimated CGF in a least squares sense. The estimated CGF

is defined as

K̂Z(ω) = log

(
1
N

N∑
i=1

cos(ωzi)

)
(4)

where it is assumed that N independent and identically distributed (IID) samples of Z or {z1, z2, . . . , zN}
have been observed. Also, note that the K-PDF is an even function so that its characteristic function and

hence its CGF is real. To estimate ν we minimize the least squares error

J(ν, σ2) =
M∑

k=0

(
K̂Z(ωk) − KZ(ωk)

)2
(5)

over a suitable range of ω’s, ω0 ≤ ω ≤ ωM . To do so we first minimize with respect to the linear parameter

ν of

J(θ1, θ2) =
M∑

k=0


K̂Z(ωk) −


−(ν + 1)︸ ︷︷ ︸

θ1

log


1 + σ2︸︷︷︸

θ2

ω2
k








2

=
M∑

k=0

(
K̂Z(ωk) − θ1 log

(
1 + θ2ω

2
k

))2

= (K̂ − H(θ2)θ1)T (K̂ − H(θ2)θ1) (6)

where we have let

K̂ =




K̂Z(ω0)

K̂Z(ω1)
...

K̂Z(ωM)




H(θ2) =




ln(1 + θ2ω
2
0)

ln(1 + θ2ω
2
1)

...

ln(1 + θ2ω
2
M )




.

The minimization of J(θ1, θ2) over θ1 produces the result [1]

θ̂1 =
(
HT (θ2)H(θ2)

)−1
HT (θ2)K̂ (7)
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which when substituted into (??) produces

J(θ̂1, θ2) = K̂T
(
I − H(θ2)

(
HT (θ2)H(θ2)

)−1
HT (θ2)

)
K̂

so that equivalently we need to maximize

L(θ2) = K̂TH(θ2)
(
HT (θ2)H(θ2)

)−1
HT (θ2)K̂

over θ2. This can be written as

L(θ2) =

[∑M
k=0 K̂Z(ωk) ln(1 + θ2ω

2
k)
]2

∑M
k=0

[
ln(1 + θ2ω2

k)
]2 (8)

and must be maximized over θ2 > 0 using a grid search. Once the maximizing value of θ2 = σ2 has been

found, then this value is the least squares estimate θ̂2 = σ̂2. With this value, the estimate of θ1 easily

follows from (??) as

θ̂1 =
∑M

k=0 K̂Z(ωk) ln(1 + θ̂2ω
2
k)∑M

k=0

[
ln(1 + θ̂2ω2

k)
]2 (9)

and thus, ν̂ = −(1+ θ̂1). The only parameter that needs to be specified is the set of ω’s for which the error

is minimized over. Typically, we choose these to be equally spaced over an interval [0, 0.5].

3 Computer Simulation Results

The estimator described for ν and σ2 was implemented to determine its bias and variance. As a basis for

comparison we also compare the performance to that of a method of moments estimator. The latter is

easy to implement but has no optimality properties [1]. It is easily shown that

E[Z2] = 2(ν + 1)σ2

E[Z4] = 12(ν + 1)(ν + 2)(σ2)2

so that solving for the unknown parameters produces

σ2 =
E[Z4] − 3E2[Z2]

6E[Z2]

ν =
E[Z2]
2σ2

− 1.

The method of moments estimator for σ2 and ν is obtained by replacing the second- and fourth-order

moments by the sample moments.
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For the simulation we used ν = 2, σ2 = 3, N = 1000 data samples, and ωk = 0.01k for k = 0, 1, . . . , 500.

We searched over 1 ≤ σ2 ≤ 5 in maximizing (??). To assess the variance performance we also computed

the Cramer-Rao lower bound (CRLB). From [3] it was found that for ν = 2

CRLB(ν̂) =
620
N

CRLB(σ2) =
80(σ2)2

N
.

The results are shown in Table 1. Note that the CGF estimator has less bias and variance for both

Table 1: Estimator performance for ν = 2, σ2 = 3, and N = 1000

ν - mean ν - variance σ2 - mean σ2 - variance

Moments estimator 2.6857 3.7867 2.9198 1.5183

CGF estimator 2.3595 1.5188 2.9974 0.9557

CRLB −−− 0.6200 −−− 0.7200

parameters. Its variance performance versus the CRLB is an increased factor of 1.5188/0.6200 = 2.45 for

ν and 0.9557/0.7200 = 1.32 for σ2 while that for the method of moments estimator is substantially higher.
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