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Abstract

A multichannel extension of the AR matrix prewhitened power spectral density estimator, which was
originally developed for a single channel, is proposed. In order to make the extension, the Cholesky de-
composition of the inverse autocorrelation matrix for a multichannel autoregressive process is discussed
and the autoregressive model order selection for a multichannel process based on the exponentially em-
bedded families criterion is introduced. The asymptotic mean and variance of the proposed estimator are
derived. Compared to a filter-based autoregressive prewhitened multichannel power spectral estimator,
the new estimator has less bias, i.e. higher resolution, and less overall mean square error for short data
records due to the amelioration of end effects by the matrix prewhitener. It can serve as an excellent
multichannel spectral estimator for processes exhibiting a wide dynamic range. Simulation results are
given which show the advantage of the new estimator over a variety of common multichannel power
spectral density estimators.

1 Introduction

Multichannel power spectral density (MPSD) estimation techniques are widely used in many applications,
such as sonar, radar, geophysics and biomedicine. Similar to single channel power spectral density (PSD)
estimation, there are basically two broad categories of MPSD estimators. One is the nonparametric ap-
proach, among which the Fourier-based estimators are the most popular [1–3]. The other is the parametric
method, which assumes a model for the data. Spectral estimation then becomes a problem of estimating
the parameters in the assumed model. The most commonly used model is the autoregressive (AR) model
because accurate estimates of the AR parameters can be found by solving a set of linear equations [1,3,5].

Similar to the single channel case for short data records the Fourier-based methods can suffer from
significant bias problems while AR model-based methods can suffer from inaccuracies in the model as
well as from imprecise model order selection. Furthermore, some effective AR model-based approaches
cannot be easily extended to the multichannel case [1,5]. In addition, as pointed out by Jenkins and Watts
[2], spurious cross-correlation or spurious cross-spectral content may arise unless a prewhitening filter is
applied before MPSD estimation. One such prewhitening filter was suggested by Thomson [6] for single
channel PSD estimation. The filter system function is given by A(z) = 1 +

∑p
k=1

a[k]z−k and the filter
parameters a[1], a[2], · · · , a[p] can be estimated from the data using any AR model-based method. Denoting
the output of this FIR filter by u[n], a Fourier-based estimator is then used to generate the PSD estimate
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P̂u(f). Finally, the PSD estimate of the original data is found as [6]

P̂x(f) =
P̂u(f)

|1 +
∑p

k=1
â[k] exp(−j2πfk)|2 (1)

where â[1], â[2], · · · , â[p] are the estimated AR filter parameters. We term this the AR prewhitened (ARPW)
spectral estimator.

Because of the inconsistency of the definitions in the literature concerning MPSD estimation, the
following definitions will be made. A complex multichannel sequence x[n] is defined as the complex L × 1
vector

x[n] = [x1[n], x2[n], · · · , xL[n]]T

where xi[n] represents the data observed at the output of the ith channel and L is the number of channels.
For a wide sense stationary (WSS) multichannel random process, the autocorrelation function (ACF) at
lag k is defined as the L × L matrix function

Rx[k] = E
[

x[n + k]xH [n]
]

=











r11[k] r12[k] · · · r1L[k]
r21[k] r22[k] · · · r2L[k]

...
...

. . .
...

rL1[k] rL2[k] · · · rLL[k]











(2)

where E [·] is the mathematical expectation, the superscript H denotes conjugate transpose and rij [k] is
the cross-correlation function (CCF) between xi[n] and xj [n] at lag k or

rij [k] = E
[

xi[n + k]x∗
j [n]

]

. (3)

For multichannel data of N samples, the sample vector, which is NL × 1, is defined as

x =
[

xT [0],xT [1], · · · ,xT [N − 1]
]T

. (4)

The NL × NL multichannel autocorrelation matrix (ACM) of order N is defined as

Rx = E
[

xxH
]

(5)

=











Rx[0] Rx[−1] · · · Rx[−N + 1]
Rx[1] Rx[0] · · · Rx[−N + 2]

...
...

. . .
...

Rx[N − 1] Rx[N − 2] · · · Rx[0]











.

From definition (2) it is seen that RH
x [k] = Rx[−k], so Rx is hermitian. Because the multichannel process

is assumed to be wide sense stationary, Rx is also block Toeplitz.
The power spectral density matrix or cross-spectral matrix is defined as

Px(f) =











P11(f) P12(f) · · · P1L(f)
P21(f) P22(f) · · · P2L(f)

...
...

. . .
...

PL1(f) PL2(f) · · · PLL(f)











.
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The diagonal elements Pii(f) are the PSDs of the individual channels or auto-PSDs, while the off-diagonal
elements Pil(f) for i 6= l are the cross-PSDs between xi[n] and xl[n], which are defined as

Pil(f) =
∞
∑

k=−∞

ril[k] exp(−j2πfk). (6)

The magnitude squared coherence (MSC) between channels i and j is a quantity that indicates whether
the spectral amplitude of the process at a particular frequency in channel i is associated with large or small
spectral amplitude at the same frequency in channel j. It is defined as

|γij(f)|2 =
|Pij(f)|2

Pii(f)Pjj(f)
. (7)

A classic Fourier-based spectral estimator is the periodogram, which is given as the L × L matrix

P̂PER (f) =
1

N
X (f)XH (f) (8)

where the Fourier transform is the L × 1 vector

X (f) =

N−1
∑

n=0

x [n] exp (−j2πfn) . (9)

The multichannel pth order AR model is defined as

x[n] = −
p
∑

i=1

A[i]x[n − i] + u[n] (10)

where A[1],A[2], · · · ,A[p] are L × L AR coefficient matrices and u[n] is the excitation white noise or

Ru [k] = Σδ [k]

and Σ is the L × L excitation noise covariance matrix with δ [·] being the discrete delta function.
The ARPW estimator given in (1) is readily extended to the multichannel case. With the notations

defined above, the multichannel version of (1) is

P̂x (f) = Â−1(f)P̂u (f) Â−H(f) (11)

where Â (f) = I+
∑p

i=1
Â[i] exp (−j2πfi) and Â[1], Â[2], · · · , Â[p] are the estimated multichannel AR filter

parameters. In addition to reducing spurious cross-spectral content, this prewhitened spectral estimator
also gives an auto-PSD spectral estimate with much less bias than a Fourier-based spectral estimator. This
is because the prewhitener reduces the dynamic range of the PSD. However, this estimator is still inferior
to the method proposed in this paper. Instead of the FIR prewhitening filter, the proposed estimator uses
a prewhitening matrix, which is essentially a time-varying filter that is less susceptible to end effects. The
new estimator for a single channel PSD has been proposed in [4], while in this paper it is extended to
MPSD estimation.

Another widely used MPSD spectral estimator is the minimum variance spectral estimator (MVSE)
[1,13]. Also called the maximum likelihood spectral estimator, it was first proposed by Capon for single
channel spectral estimation and is easily generalized to the multichannel case. This MPSD estimator can
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be thought of as motivated by a maximum likelihood (ML) estimation problem. Assume the multichannel
data are

x[n] = Ac exp (j2πf0n) + w [n] , n = 0, 1, · · · , N − 1 (12)

where x[n] is an L× 1 vector, Ac is an L× 1 complex amplitude to be estimated, f0 is a known frequency,

and w =
[

wT [0],wT [1], · · · ,wT [N − 1]
]T

is a NL × 1 complex Gaussian noise vector with zero mean and
known NL × NL covariance matrix Rw . The ML estimate of Ac is [1]

Âc =
(

EH
0 R−1

w E0

)−1
EH

0 R−1
w x (13)

where x is the data sample vector given by (4) and E0 =
[IL, IL exp (j2πf0) , · · · , IL exp (j2πf0 (N − 1))]T (NL × L) with IL being an L × L identity matrix.
The L × L covariance matrix of this estimator is [1]

C
Âc

=
(

EH
0 R−1

w E0

)−1
. (14)

This covariance can be shown to be the noise output covariance matrix of a narrowband multichannel FIR
filter which is constrained to have unity frequency response at f = f0 and adjusts itself to reject noise
components with frequencies not near f = f0 [1]. As a result, for a general WSS multichannel random
process, not necessarily a sinusoid in noise, the covariance matrix at the output of the filter can be used to
indicate the power of the process at f = f0. Therefore, for a general WSS multichannel random process
x[n] the MVSE is defined as

P̂MV (f) = p(EH(f)R̂−1
x E(f)

−1
(15)

where R̂x is the estimated pL × pL ACM of x and E(f) =
[IL, IL exp (j2πf) , · · · , IL exp (j2πf (p − 1))]T (pL × L). This spectral estimator is the covariance
matrix of Âc divided by 1/p , which can be thought of as the filter bandwidth [1]. Further details, such
as the choice of p, the estimation of R̂x, etc., can be found in [1].

The paper is organized as follows. The motivation and properties of the proposed estimator are pre-
sented in Section 2, while Section 3 describes its implementation. Some computer simulation results are
given in Section 4 and finally Section 5 offers some conclusions.

2 Multichannel AR Matrix Prewhitened Spectral Estimator

2.1 Motivation for the New Estimator

Similar to the derivation of the MVSE discussed in the previous section, the data structure of (12) is
used. However, we now assume that Ac is an L× 1 complex Gaussian random vector with zero mean and
unknown covariance matrix CA, which is to be estimated. We also assume that Ac is independent of the
noise w[n] . We note that the basic data assumption here is that the noise samples w[0],w[1], · · · ,w[N −1]
are correlated and hence a simple ML result for independent and identically distributed samples does not
apply. As derived in Appendix A, the ML estimator of CA is

ĈA = S1 − S2 (16)

where
S1 =

(

EH
0 R−1

w E0

)−1
EH

0 R−1
w xxHR−1

w E0

(

EH
0 R−1

w E0

)−1

and

S2 =

(

EH
0 R−1

w E0

)−1
EH

0 R−1
w xxHR−1

w E0

(

EH
0 R−1

w E0

)−1

xHR−1
w E0

(

EH
0
R−1

w E0

)−1
EH

0
R−1

w x
.
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Since Ac is independent of the noise vector w, the ACM of x is

E
(

xxH
)

= E
(

(E0Ac + w)
(

AH
c EH

0 + wH
))

= E0CAEH
0 + Rw.

As a result, the expectation of S1 is

E
(

(

EH
0 R−1

w E0

)−1
EH

0 R−1
w xxHR−1

w E0

(

EH
0 R−1

w E0

)−1
)

(17)

=
(

EH
0 R−1

w E0

)−1
EH

0 R−1
w E

(

xxH
)

R−1
w E0

(

EH
0 R−1

w E0

)−1

=
(

EH
0 R−1

w E0

)−1
EH

0 R−1
w

(

E0CAEH
0 + Rw

)

R−1
w E0

(

EH
0 R−1

w E0

)−1

= CA +
(

EH
0 R−1

w E0

)−1
.

Since from (14),
(

EH
0 R−1

w E0

)−1
is the covariance matrix of the noise at the narrowband filter output,

CA +
(

EH
0 R−1

w E0

)−1
will be the sinusoid plus noise covariance matrix at the filter output. Furthermore,

S2 can be thought of as an approximate estimate of the noise covariance matrix at the filter output. So
S1−S2 will be an estimate of the sinusoid covariance matrix or CA. (It can be shown, for a multichannel
process S2 is a biased estimate of the noise power at the filter output, so ĈA is also a biased estimator.)
Since the expected value of S1 is the overall power at the output of a narrowband filter, it can be used
to indicate spectral content on average. Suppose the data does not consist solely of a sinusoid in noise,
but more generally a wide sense stationary random process. Then we can define a new spectral estimator
based on S1 as

P̂x (f) = N
(

EH (f) R̂−1
x E (f)

)−1

EH (f) R̂−1
x xxHR̂−1

x E (f)
(

EH (f) R̂−1
x E (f)

)−1

(18)

where E (f) = [IL, IL exp (j2πf) , · · · , IL exp (j2πf (N − 1))]T (NL×L) and R̂x is some suitable estimate
of the NL × NL ACM Rx. Again, the bandwidth of the filter 1/N is used to convert the power to power
spectral density. We term this the multichannel AR matrix prewhitened (MARMPW) spectral estimator
for reasons which will become clear shortly. If L = 1 or for a single channel, after some algebra (18) can
be simplified to

P̂x (f) = N

∣

∣

∣

∣

∣

eH (f) R̂−1
x x

eH (f) R̂−1
x e (f)

∣

∣

∣

∣

∣

2

(19)

where R̂x is an estimate of the N × N ACM of the single channel process and e (f) =
[1, exp (j2πf) , · · · , exp (j2πf (N − 1))]T (N × 1). This is the ARMPW estimator proposed in [4]. Al-
though the new multichannel spectral estimator is for complex data, it is also applicable to real data. Of
course then EH (f) R̂−1

x E (f) will be real since R̂−1
x is a real symmetric matrix.

2.2 Properties of the MARMPW

The MARMPW spectral estimator is asymptotically unbiased. This means that as N → ∞ , we have

E
[

P̂x (f)
]

→ Px (f). To see this, first note that if the autocorrelation matrix is a continuous function

of a fixed number of parameters, then substituting the consistent estimates of these parameters, we have
R̂x → Rx in probability. If Rx is invertible and hence is a continuous function of its elements, then
R̂−1

x → R−1
x in probability [7]. Finally, by Slutsky’s theorem [7] we can replace R̂x by Rx in (18) to yield

P̂x (f) = N
(

EH (f)R−1
x E (f)

)−1
EH (f)R−1

x xxHR−1
x E (f)

(

EH (f)R−1
x E (f)

)−1
. (20)
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Taking the expectation we have

E
[

P̂x (f)
]

= N
(

EH (f)R−1
x E (f)

)−1

=

(

EH (f)√
N

R−1
x

E (f)√
N

)−1

. (21)

Since Rx is a hermitian and block Toeplitz matrix, it is well known that as N → ∞ [9,10]

R−1
x →

N−1
∑

i=0

E (fi)√
N

P−1
x (fi)

EH (fi)√
N

(22)

where fi = i/N . Therefore we have for fk = k/N that as N → ∞

EH (fk)√
N

R−1
x

E (fk)√
N

→ EH (fk)√
N

N−1
∑

i=0

E (fi)√
N

P−1
x (fi)

EH (fi)√
N

E (fk)√
N

= P−1
x (fk) . (23)

This follows from EH (fi)E (fk) = NILδik, where δik is the Kronecker delta. Thus, we have finally from
(21) and (23) that for f = fk = k/N

E
[

P̂x (fk)
]

→ Px (fk) as N → ∞.

By a continuity argument, we have E
[

P̂x (f)
]

→ Px (f) for continuous spectra. Thus, the MARMPW

spectral estimator is an asymptotically unbiased estimator. By a similar argument (see Appendix B) it

can be shown that as N → ∞, var
(

P̂ij (f)
)

→ Pii (f) Pjj (f). This is the same asymptotic variance as for

the multichannel periodogram [2].

3 Implementation of the MARMPW

3.1 Estimation of the Matrix Prewhitener

As explained in [4] the inverse of the ACM R−1
x in (18) acts as the prewhitener. In order to estimate

this autocorrelation matrix prewhitener the Cholesky decomposition of R−1
x for a complex WSS random

process is derived in Appendix C. It is given as

R−1
x = ΦHP−1Φ (24)

where Φ is the NL × NL lower triangular matrix

Φ =















I 0 0 · · · 0

A1[1] I 0 · · · 0

A2 [2] A2 [1] I · · · 0
...

...
...

. . .
...

AN−1 [N − 1] AN−1 [N − 2] AN−1 [N − 3] · · · I















(25)

with each block being L × L and P is the NL × NL block diagonal matrix

P = diag (Σ0,Σ1, · · · ,ΣN−1) . (26)
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Here I is the L × L identity matrix, Aj [i] is the ith filter parameter for an AR model of order j, and
Σj is the corresponding excitation noise covariance matrix. This decomposition is valid for any process.
However, if the process is an AR process of order p, then we have for j ≥ p

Aj [i] =

{

Ap[i] i = 1, 2, · · · , p
0 i > p

Σj = Σp. (27)

In order to obtain a statistically stable prewhitening matrix we restrict the order of the maximum AR
model to p, where p ≪ N . The estimation of R−1

x then reduces to an estimation of an AR model of
order p based on x[n] for n = 0, 1, · · · , N − 1. Many multichannel AR methods can automatically provide
estimates of all the lower order AR model parameters [1,5]. In the computer simulations of the next section,
we use the autocorrelation method which solves the Yule-Walker equations with a biased ACF estimator
[1]. From the derivation in Appendix C, it is readily seen, (24) also holds for real data. Of course it is
more appropriate to change conjugate transpose [·]H to transpose [·]T . The same results for real data are
also given in [3].

3.2 AR model order selection for Rx

We consider first real AR models. The extension to complex is then given. For the selection of the AR
model order, even though an arbitrary WSS random process is representable as an AR process of order
p = ∞, the usual model order selection rules appear to choose reasonable finite order approximations. The
commonly used methods are Akaike’s information criterion (AIC) [11] and the minimum description length
(MDL) criterion [12]. In this paper we propose to use a method recently described in [8], which is based
on exponentially embedded families (EEF). It has been shown to have better performance than AIC and
the MDL for AR model order estimation. For real data, it proceeds as follows [8]

p̂ = arg max
1≤i≤pmax

{(

LGi
(x) − i

[

ln

(

LGi
(x)

i

)

+ 1

])

u

(

LGi
(x)

i
− 1

)}

(28)

where u(x) is the unit step function and LGi
(x) is the generalized log-likelihood ratio for an AR model of

order i as compared to a reference model, which is taken to be an AR model of order zero (just WGN).
For a real multichannel AR process of order i, the generalized log-likelihood ratio becomes [3,8]

LGi
(x) = (N − i) ln





det
(

Σ̂0

)

det
(

Σ̂i

)



 (29)

where Σ̂i and Σ̂0 are L×L conditional ML excitation noise covariance matrix estimators of the AR model
of order i and the reference model respectively, given as [3]

Σ̂i =
1

N − i
xT

i

(

I − Hi

(

HT
i Hi

)−1
HT

i

)

xi (30)

Σ̂0 =
1

N − i
xT

i xi. (31)

Here I is the (N − i) × (N − i) identity matrix and

xi =
[

x[i] x[i + 1] · · · x[N − 1]
]T

((N − i) × L) (32)
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Hi =











xT [i − 1] xT [i − 2] · · · xT [0]
xT [i] xT [i − 1] · · · xT [1]

...
...

. . .
...

xT [N − 2] xT [N − 3] · · · xT [N − 1 − i]











((N − i) × Li) . (33)

For large data records computation of (29) may be a serious load. In this case Σ̂i and Σ̂0 can be replaced
by estimates from the AR model based methods which provide approximate ML estimates. From the
derivation of EEF in [8], it is easy to see the above procedure also works for complex data if we change
transpose [·]T to conjugate transpose [·]H in (30) and (31).

4 Summary of the New Estimator

One last comment is from the observation that both the periodogram of (8) and the MARMPW spectral
estimator of (18) result in estimates of the MPSD matrix with rank 1. In fact, this problem exists in all
MPSD estimators involving Fourier-based methods. In order to solve this problem and recover the correct
rank of Px(f) , we can break the data into K blocks and average the spectral estimate of each block.
For a full rank Px(f), at least K = L blocks should be averaged. In the simulations to follow the AR
parameters used to construct R̂−1

x are estimated from the whole data record. However, the MARMPW
spectral estimator of (18) is applied to each block and the results are averaged. Of course R̂−1

x is now a
N ′L × N ′L matrix, where N ′ is the data length of each block.

The MARMPW spectral estimator is now summarized.

1. Choose a maximum AR model order pmax.

2. Using the EEF model order estimator of (28) obtain p̂.

3. Estimate the AR model parameters for the different order AR models j = 0, 1, · · · , p̂ as
{

Σ̂0

}

,
{

Â1 [1] , Σ̂1

}

, · · · ,
{

Âp̂ [1] , Âp̂ [2] , · · · , Âp̂ [p̂] , Σ̂p̂

}

. In the simulations to follow we have used

the autocorrelation or Yule-Walker method and so the AR model parameters for all the lower order
models are available.

4. Segment the data into K equal length blocks, with K ≥ L .

5. Construct the N ′L × N ′L matrix R̂−1
x using the estimated parameters (see (24–27)).

6. Compute the MARMPW spectral estimate of (18) for each block and average them to get the final
estimate.

5 Computer Simulation Results

In this section we present some computer simulations intended to show the bias, i.e. resolution, and mean
square error (MSE) advantages of the proposed spectral estimator. We compare the MARMPW spectral
estimator with the following estimators:

AR-YW Autocorrelation or Yule-Walker method, which is a typical AR model-based method, denoted
here as AR-YW. The EEF method is used to determine the AR model order.

Periodogram A conventional Fourier-based spectral estimator, given in (8).
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MARPW Multichannel ARPW spectral estimator, given in (11). The EEF method is used to determine
AR model orders and the AR-YW method is used to estimate the AR model parameters.

MVSE Multichannel minimum variance spectral estimator, given in (15), where p is chosen to be N ′ and
R̂−1

x is the same R̂−1
x used in the MARMPW spectral estimator.

Except for the AR-YW, which does not require an estimate of the NL × NL ACM (only
R̂x[0], R̂x[1], · · · , R̂x[p] with p ≪ N are needed), all other methods have the same data segmentation
and averaging as in the MARMPW spectral estimator.

5.1 Two Complex Sinusoids

We compare a two-channel process with both channels being two closely spaced complex sinusoids. The
signal of channel 1 is

x1 [n] = exp (j (2πf1n + ϕ1)) + exp (j (2πf2n + ϕ2)) + w1 [n] , n = 0, 1, · · · , N − 1

and the signal of channel 2 is

x2 [n] = exp (j (2πf1n + ϕ1 + π/3)) + exp (j (2πf2n + ϕ2 + π/3)) + w2 [n] , n = 0, 1, · · · , N − 1

where f1 = 0.13, f2 = 0.14, ϕ1 and ϕ2 are independent uniformly distributed random phases, w1[n]
and w2[n] are two independent complex white Gaussian noise (WGN) processes with covariance matrix

Σ =

[

0.01 0
0 0.01

]

. A data record of N = 256 points was segmented into 4 blocks with each block

being N ′ = 64, which is insufficient for Fourier-based MPSD estimators to resolve the two sinusoids. For
this short data record case EEF is unable to give correct AR order which should be 2, since the data is
approximately only two complex sinusoids. However, even with the selected p̂ being 1, the MARMPW
spectral estimator still gives reasonable results. For the periodogram, in order to have maximum resolution,
no data windowing is used. In Figures 1–4, are shown the average of P̂11(f) over 500 realizations of the
various MPSD estimators. It can be observed that compared to other estimators the MARMPW and
MARPW estimators have the least bias or least “leakage”, since the spectral estimates not near the peaks
are approximately the true value of 10 log10 σ2

w = −20 dB. It is also seen that except for the MARMPW
estimator, no estimator resolves the two sinusoids. This is the case even for the AR-YW estimator, in which
there is no block averaging. The failure of the MARPW estimator to resolve the two sinusoids results from
the use of an FIR prewhitening filter, which is affected to a great extent by end effects in this short data
length situation. For this process the true value of MSC should be 1 at f1 and f2 and 0 elsewhere. In
Figures 5, 6 are shown the estimators of MSC, where it can be seen that the MARMPW and MARPW
estimators provide the most fidelity. Figures 7, 8 show the average angle of P̂12(f). The MARMPW and
MARPW estimators again give the best estimates, which should be −π/3 = −60◦ at f1 and f2 and 0◦

elsewhere. The estimates of P̂22(f) are similar to that of P̂11(f) and so they are not shown. Finally, it
should be noted that the AR-YW spectral estimator and MVSE produce nearly identical results. This is
expected since the MVSE is a weighted average of the AR-YW spectral estimator of various orders [1].

5.2 Real ARMA Process

A real autoregressive moving average (ARMA) process was chosen next. The process is given as

x [n] = −
[

−1.36 0.35
0 −1.51

]

x [n − 1] −
[

0.960 0.35
0 0.960

]

x [n − 2] (34)

+ u[n] +

[

−0.262 −0.650
0 −0.867

]

u [n − 1] +

[

0.490 0.350
0 0.810

]

u [n − 2]

9



where u[n] is a two-channel real white Gaussian noise process with covariance matrix Σu =

[

1 0
0 1

]

. A

data record of N = 256 was segmented into 4 blocks with each block having N ′ = 64 points. In order
to reduce the bias, the periodogram in this case utilized a Hamming window for each block. The window
has sidelobes about 43 dB down, and is matched to the dynamic range of the true P11(f), which exhibits
a dynamic range of about 45 dB as shown in Figure 9 as the thick solid line. In 500 realizations, the
EEF chose p̂ = 5 on the average (with pmax = 15). In Figures 9–12 are shown the mean of P̂11 (f) of the
various estimators. It is seen from Figures 9 and 11 that the MARMPW, the MARPW and the windowed
periodogram spectral estimators have the least leakage among all the estimators. However, the windowing
results in widened peaks in the periodogram and the MARPW estimator exhibits seriously smoothed peaks
as seen in Figure 10 and 12 respectively. A comparison of the relative MSE of P̂11 (f), which is defined

as
(

MSE of P̂11(f)
)

/P2
11(f), is made for the MARMPW and MARPW estimator in Figures 13. It can

be seen that the MARMPW estimator has much less relative MSE than the MARPW estimator near the
peaks, which are generally of most interest in applications, and has similar relative MSE elsewhere. As to
the estimation of MSC, from Figures 14 and 15, the results of the MARMPW and MARPW estimators
are similar to each other and better than other estimators. The same conclusion can be made for the
angle of P̂12(f) from Figures 16 and Figure 17. It is also found from the simulations that the overall MSE
of the estimated MSC by the MARMPW estimator is slightly less than that of the estimated MSC by
the MARPW estimator. This conclusion also holds for the angle of P̂12(f). Because P22(f) exhibits less
spectral dynamic range, all estimators yield good results, and hence the results are omited. As before, it
should be noted that the AR-YW spectral estimator and MVSE produce similar results.

6 Conclusions

The multichannel extension of the ARMPW spectral estimator has been described. Based on a matrix
prewhitener it has a higher resolution than conventional Fourier-based and AR model-based PSD estimators
and has about the same variance as a periodogram. It is also more accurate than spectral estimators based
on a multichannel FIR prewhitening filter, due to the amelioration of end efforts by the matrix prewhitener.
In order to construct this matrix prewhitener, the Cholesky decomposition of the inverse autocorrelation
matrix of a multichannel AR process has been derived and the AR model order selection using the EEF
method has been applied. Because of its excellent properties, the MARMPW spectral estimator is a
valuable method for multichannel processes with high dynamic spectral range.

A ML estimation of CA

Lemma:
Let x be an L× 1 complex vector with ‖x‖ > 1, where ‖·‖ denotes Euclidean norm, then minimization

of J (C) = ln (det (I + C)) − xHC (I + C)−1
x over all positive semidefinite L × L matrices C yields

Jmin = −
(

xHx − ln
(

xHx
)

− 1
)

and is achieved uniquely for C = Ĉ = xxH − xx
H

‖x‖2 . (If ‖x‖ ≤ 1, then the ML estimator of C gives the

nonuseful result Ĉ = 0.)
Proof : Consider

J (C) − Jmin = ln (det (I + C)) − xHC (I + C)−1
x + xHx − ln

(

xHx
)

− 1. (35)
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Let C =
∑L

i=1
λiviv

H
i = VΛVH , where V is a unitary matrix, λi ≥ 0 for all 1 ≤ i ≤ L and Λ =

diag (λ1, λ2, · · · , λL), then

xHx − xHC (I + C)−1
x = xHVVHx − xHVVHC (I + C)−1

VVHx. (36)

Let u = VHx and since V−1 = VH , the right hand side of (36) can be rewritten as

uHu − uH
[

VHC (I + C)−1
V
]

u = uHu − uH
[

VHVΛVH
(

I + VΛVH
)−1

V
]

u

= uHu − uHΛ
[

V−1
(

I + VΛVH
)

V−H
]−1

u

= uHu − uHΛ [I + Λ]−1
u

=
L
∑

i=1

(

|ui|2 −
|ui|2 λi

1 + λi

)

=
L
∑

i=1

(

|ui|2
1 + λi

)

. (37)

Also,

ln (det (I + C)) − ln
(

xHx
)

= ln

(

L
∏

i=1

(1 + λi)

)

− ln

(

L
∑

i=1

|ui|2
)

=
L
∑

i=1

ln (1 + λi) − ln

(

L
∑

i=1

|ui|2
)

. (38)

Plugging (37) and (38) into (35), we have

J (C) − Jmin =
L
∑

i=1

ln (1 + λi) − ln

(

L
∑

i=1

|ui|2
)

+
L
∑

i=1

(

|ui|2
1 + λi

)

− 1

+ ln

(

L
∑

i=1

(

|ui|2
1 + λi

))

− ln

(

L
∑

i=1

(

|ui|2
1 + λi

))

=
L
∑

i=1

ln (1 + λi) + ln











L
∑

i=1

(

|ui|
2

1+λi

)

L
∑

i=1

|ui|2











+
L
∑

i=1

(

|ui|2
1 + λi

)

− ln

(

L
∑

i=1

(

|ui|2
1 + λi

))

− 1

=
L
∑

i=1

ln (1 + λi) + ln

(

L
∑

i=1

(

|ui|2
∑L

j=1
|uj |2

1

1 + λi

))

+
L
∑

i=1

(

|ui|2
1 + λi

)

− ln

(

L
∑

i=1

(

|ui|2
1 + λi

))

− 1.

Let S1 =
∑L

i=1
ln (1 + λi) + ln

(

∑L
i=1

(

|ui|
2PL

j=1
|uj |

2

1

1+λi

))

and S2 =
∑L

i=1

(

|ui|
2

1+λi

)

− ln
(

∑L
i=1

(

|ui|
2

1+λi

))

− 1.

Since
∑L

i=1

(

|ui|
2PL

j=1
|uj |

2

)

= 1 and ln (·) is a concave function, by Jensen’s inequality we have

ln











L
∑

i=1











|ui|2
L
∑

j=1

|uj |2
1

1 + λi





















≥
L
∑

i=1











|ui|2
L
∑

j=1

|uj |2
ln

1

1 + λi










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with equality if and only if |ui|2 = 0 for all i 6= k. Hence we have

S1 ≥
L
∑

i=1

ln (1 + λi) +

L
∑

i=1











|ui|2
L
∑

j=1

|uj |2
ln

1

1 + λi











=

L
∑

i=1











1 − |ui|2
L
∑

j=1

|uj |2











ln (1 + λi)

≥ 0

with equality if and only if |ui|2 = 0 for all i 6= k and

(

1 − |ui|
2PL

j=1
|uj |

2

)

ln (1 + λi) = 0 for all i. As to S2,

since a − ln a − 1 ≥ 0 for all a > 0, with equality if and only if a = 1, we have S2 ≥ 0 with equality if and

only if
∑L

i=1

(

|ui|
2

1+λi

)

= 1. Hence we have

J (C) − Jmin = S1 + S2 ≥ 0

with equality if and only if S1 = 0 and S2 = 0. In order to have S1 = 0, we need to have |ui|2 = 0 for

all i 6= k and

(

1 − |ui|
2PL

j=1
|uj |

2

)

ln (1 + λi) = 0 for all i. If the first condition holds, the second condition is

λi = 0 for i 6= k. Thus,

Ĉ = λkvkv
H
k (39)

also, since ui = 0 for i 6= k, we have that ui = vH
i x = 0 for i 6= k. It follows that

vk =
x

‖x‖ . (40)

For S2 = 0, we need
∑L

i=1

(

|ui|
2

1+λi

)

= |uk|
2

1+λk
= 1, so that

λk = |uk|2 − 1. (41)

Replacing uk with vH
k x and plugging (40) into (41) yields

λk =
∣

∣vH
k x
∣

∣

2 − 1

= xHx − 1. (42)

Since it is assumed that ‖x‖ > 1, we have λk > 0 as required. Substituting (40) and (42) into (39) produces
the final result

Ĉ =
(

xHx − 1
) xxH

‖x‖2

= xxH − xxH

‖x‖2
.
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▽

Next, to derive the ML estimator we note that, the data stucture of (12) can be rewritten in vector
form as

x = E0Ac + w. (43)

It is now assumed that Ac is an L×1 complex Gaussian random vector with zero mean and is independent
of the noise w. We want to find the ML estimate of CA, the covariance matrix of Ac, which is assumed

to be positive semidefinite. To simplify the calculation, let y = R
− 1

2

w x and denote E0 by E. We then have
from (43)

y = R
− 1

2

w EAc + R
− 1

2

w w.

Let H = R
− 1

2

w E (NL × L) and ζ = R
− 1

2

w w. Since w ∼ CN (0,Rw), where ∼ CN denotes “is distributed
according to a complex Gaussian distribution” [14], as a result we have the covariance matrix of ζ

Cζ = R
− 1

2

w RwR
−H

2

w

= I.

Hence the covariance matrix of y is
Cy = HCAHH + I.

Then the probability density function of the random vector y is

py (y) =
1

πNL det (Cy)
exp

(

−yHC−1
y y

)

.

The ML estimator of CA is given by minimizing [14]

ln (det (Cy)) + yHC−1
y y (44)

over CA.
Using the identity

det (IMM + AMNBNM ) = det (INN + BNMAMN )

where AMN denotes the M × N matrix A, we have that

det (Cy) = det
(

HCAHH + INL

)

= det
(

CAHHH + IL

)

= det
(

CAEHR−1
w E + IL

)

= det

(

(

EHR−1
w E

)
1

2

)

det
(

CAEHR−1
w E + IL

)

det

(

(

EHR−1
w E

)− 1

2

)

= det

(

(

EHR−1
w E

)
1

2 CA

(

EHR−1
w E

)
1

2 + IL

)

.

Let C =
(

EHR−1
w E

)
1

2 CA

(

EHR−1
w E

)
1

2 , then

det (Cy) = det (C + IL) . (45)
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Using the matrix inversion lemma, we have

yHC−1
y y = yH

(

I + HCAHH
)

y

= yH
(

I − HCA

(

HHHCA + I
)−1

HH
)

y.

Omitting the term yHy, which is not dependent on CA, we have

−yHHCA

(

HHHCA + I
)−1

HHy

= −yHHCA

(

(

HHH
)

1

2

(

(

HHH
)

1

2 CA

(

HHH
)

1

2 + I

)

(

HHH
)− 1

2

)−1

HHy.

But C =
(

EHR−1
w E

)
1

2 CA

(

EHR−1
w E

)
1

2 =
(

HHH
)

1

2 CA

(

HHH
)

1

2 , so that

−yHHCA

(

(

HHH
)

1

2 (C + I)
(

HHH
)− 1

2

)−1

HHy

= −yHHCA

(

HHH
)

1

2 (C + I)−1
(

HHH
)− 1

2 HHy

= −yHH

(

(

HHH
)− 1

2 C

)

(C + I)−1
(

HHH
)− 1

2 HHy

= −
(

(

HHH
)− 1

2 HHy

)H

C (C + I)−1
(

HHH
)− 1

2 HHy.

Letting q =
(

HHH
)− 1

2 HHy =
(

EHR−1
w E

)− 1

2 EHR−1
w x, the above expression is equivalent to

−qHC(IL + C)−1q.

Plugging this and (45) into (44), the ML estimator of CA is obtained by minimizing

ln (det (IL + C)) − qHC (IL + C)−1
q

where C =
(

EHR−1
w E

)
1

2 CA

(

EHR−1
w E

)
1

2 and q =
(

EHR−1
w E

)− 1

2 EHR−1
w x. From the lemma we have

Ĉ = qqH − qqH

‖q‖2
.

After some algebra, we have

ĈA =
(

EHR−1
w E

)−1
EHR−1

w xxHR−1
w E

(

EHR−1
w E

)−1

(

1 − 1

‖q‖2

)

. (46)

Note that ĈA is rank one and hence is positive semidefinite.

B Asymptotic Variance of MARMPW Estimator

As already described in Section 2.2, as N → ∞, we can replace R̂−1
x by R−1

x . Let y =√
N
(

EH (f)R−1
x E (f)

)−1
EH (f)R−1

x x then the MARMPW estimator in (20) can be rewritten as

P̂x (f) = yyH . (47)
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Therefore the covariance of P̂ij (f) and P̂kl (f) is

cov
(

P̂ij (f) , P̂kl (f)
)

= cov
(

yiy
∗
j , yky

∗
l

)

(48)

where yi is the ith element of y.
Since x ∼ CN (0,Rx), as a result we have that

y ∼ CN
(

0, N
(

EH (f)R−1
x E (f)

)−1
)

.

Denoting N
(

EH (f)R−1
x E (f)

)−1
by Cy, from the discussion in Section 2.2, as N → ∞, Cy → Px (f). It

also follows from E [x∗
1x2x

∗
3x4] = E [x∗

1x2] E [x∗
3x4] + E [x∗

1x4] E [x∗
2x3] for x = [x1, x2, x3, x4]

T a zero mean
complex Gaussian random vector [14] that (48) can be evaluated as

cov
(

P̂ij (f) , P̂kl (f)
)

= E
[

yiy
∗
j y

∗
kyl

]

− E
[

yiy
∗
j

]

E [y∗kyl] (49)

= E
[

yiy
∗
j

]

E [y∗kyl] + E
[

yly
∗
j

]

E [yiy
∗
k] − E

[

yiy
∗
j

]

E [y∗kyl]

= E [yiy
∗
k]E

[

yly
∗
j

]

= [Cy]i,k [Cy]l,j
→ Pik (f) Plj (f) .

As a special case, we have for k = i and l = j

var
(

P̂ij (f)
)

→ Pii (f) Pjj (f) .

C The Cholesky Decomposition of the Inverse Autocorrelation Matrix

Given a multichannel random process x[n] for 0 ≤ n ≤ N − 1, we can use linear prediction to obtain
the parameters Aj [1],Aj [2], · · · ,Aj [j] and the corresponding excitation noise covariance matrix Σj by
minimizing the one-step prediction error power or equivalently by solving the Yule-Walker equations [1].

Let u [0] = x [0] and u [n] = x[n] −
n
∑

i=1

(−An [i]x[n − i]) for 1 ≤ n ≤ N − 1 or

u =















u[0]
u[1]
u[2]

...
u[N − 1]















=















I 0 · · · 0

A1[1] I · · · 0

A2[2] A2[1] · · · 0
...

...
. . .

...
AN−1[N − 1] AN−1[N − 2] · · · I





























x[0]
x[1]
x[2]

...
x[N − 1]















. (50)

Then from the linear vector space viewpoint of Yule-Walker equations, u[n] for 0 ≤ n ≤ N − 1 are
uncorrelated or in other words the ACM of u is block diagonal [1]. Thus, we have

Ru = E
[

uuH
]

=













Ru[0] 0 0 0

0 Ru[1]
...

...
...

...
. . . 0

0 0 0 Ru[N − 1]












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=













Σ0 0 0 0

0 Σ1

...
...

...
...

. . . 0

0 0 0 ΣN−1













. (51)

Denoting














I 0 · · · 0

A1[1] I · · · 0

A2[2] A2[1] · · · 0
...

...
. . .

...
AN−1[N − 1] AN−1[N − 2] · · · I















by Φ and plugging (50) to (51) we have

Ru = E
[

ΦxxHΦH
]

= ΦE
[

xxH
]

ΦH

= ΦRxΦ
H .

It follows that
R−1

x = ΦHR−1
u Φ.
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Figure 1: Comparison of P̂11 (f) of MARMPW to periodogram and AR-YW for two sinusoids in WGN
with frequencies f1 = 0.13 and f2 = 0.14.
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Figure 2: Expanded version of Figure 1.
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Figure 3: Comparison of P̂11 (f) of MARMPW to MARPW and MVSE for two sinusoids in WGN with
frequencies f1 = 0.13 and f2 = 0.14.
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Figure 4: Expanded version of Figure 3.
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Figure 5: Comparison of MSC estimates of MARMPW to periodogram and AR-YW for two sinusoids in
WGN with frequencies f1 = 0.13 and f2 = 0.14.
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Figure 6: Comparison of MSC estimates of MARMPW to MARPW and MVSE for two sinusoids in WGN
with frequencies f1 = 0.13 and f2 = 0.14.
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Figure 7: Comparison of ∠P̂12 (f) of MARMPW to periodogram and AR-YW for two sinusoids in WGN
with frequencies f1 = 0.13 and f2 = 0.14.
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Figure 8: Comparison of ∠P̂12 (f) of MARMPW to MARPW and MVSE for two sinusoids in WGN with
frequencies f1 = 0.13 and f2 = 0.14.
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Figure 9: Comparison of P̂11 (f) of MARMPW to periodogram and AR-YW for an ARMA process.
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Figure 10: Expanded version of Figure 9.
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Figure 11: Comparison of P̂11 (f) of MARMPW to MARPW and MVSE for an ARMA process.
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Figure 12: Expanded version of Figure 11.
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Figure 13: Comparison of the relative MSE of P̂11 (f) for MARMPW and MARPW spectral estimators.
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Figure 14: Comparison of MSC estimates of MARMPW to periodogram and AR-YW for an ARMA
process.
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Figure 15: Comparison of MSC estimates of MARMPW to MARPW and MVSE for an ARMA process.
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Figure 16: Comparison of ∠P̂12 (f) of MARMPW to periodogram and AR-YW for an ARMA process.
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Figure 17: Comparison of ∠P̂12 (f) of MARMPW to MARPW and MVSE for an ARMA process.
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