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Mean Likelihood Frequency Estimation

Steven Kay Fellow, IEEE,and Supratim Saha

Abstract—Estimation of signals with nonlinear as well as linear
parameters in noise is studied. Maximum likelihood estimation has
been shown to perform the best among all the methods. In such
problems, joint maximum likelihood estimation of the unknown
parameters reduces to a separable optimization problem, where
first, the nonlinear parameters are estimated via a grid search, and RS
then, the nonlinear parameter estimates are used to estimate the zo....-~"%
linear parameters. We show that a grid search can be avoided by
using the mean likelihood estimator for estimating the unknown 15~
nonlinear parameters and how its performance can be made equiv-
alent to that of the maximum likelihood estimator (MLE). The L
mean likelihood estimator requires computation of a multidimen- s ....-F"
sional integral. However, using the concepts of importance sam-
pling, we obtain the mean likelihood estimate without using in-
tegration. The technique is computationally far less burdensome
than the direct maximum likelihood method but performs just as
well. Simulation examples for estimating frequencies of multiple
sinusoids in noise are given. The general technique can be applied

to a large class of nonlinear regression problems. ¢
1 f

Index Terms—Frequency estimation, Monte Carlo methods, op-
timization methods, sonar signal analysis. Fig. 1. Plot of.J(f) for two sinusoids (noise free case) afd> f;.

Although the maximum likelihood estimator (MLE) is not,
) o _ ) in general, the optimal estimator for finite data records, the op-
M ANY problems in statistical signal processing may bgma| minimum variance unbiased (MVU) estimator may be an-
posed as ones that attempt to estimate signals with lineatically difficult to obtain or may not exist at all [9]. Thus,

as_well as nonlinear parameters in additive white Gaussiﬁt{g3 MLE, which is asymptotically optimal and has been shown
noise. These problems are referred to as nonlinear regresg{PRxhipit the best performance for finite data records [8], is
[13]. A common example is the estimation of frequencies e preferred estimator. The exact MLE requires a multidimen-
multiple sinusoids in noise. In this problem, the noise-corruptaghnal grid search over the possible frequencies since the mul-
data are linear with respect to the complex amplitudes of thgimensional likelihood function is a highly nonlinear function
sinusoids but nonlinear with respect to the frequencies. Theihe frequencies and has many local maxima, even in the ab-
problem of estimation of multiple time delays in a multipatience of noise. The highly multimodal nature of the likelihood
environment is another example. The data in this case are ling@{ction can be seen in Fig. 1 for the noise-free case. The func-
with respect to the attenuations and nonlinear with respgn whose maximum location is the MLE of the frequencies,
to the time delays. The time delay estimation problem al$g yjotted for two closely spaced sinusoids. With an increase in
reduces to the sinusoidal parameter estimation problem afig& number of sinusoids, the computational burden of the re-
transforming the data to the Fourier domain, where the attenyjired grid search increases enormously. Because of the imprac-
ations take the role of amplitudes, and the time delays take §&jity of the direct MLE, iterative approaches have been used,
role of frequencies. The direction-of-arrival (DOA) estimatiopequiring a good initial guess of the frequencies. Furthermore,
problem [17] in array processing also reduces to estimatigfle to the highly multimodal nature of the likelihood function,
of multiple frequencies, although in the spatial domain. Agere is no guarantee that an estimate obtained iteratively will
a result, the problem of sinusoidal frequency estimation hgg the global maximum. A typical iterative MLE approach is
received a lot of attention in the signal processing communifjascriped by [16]. Other techniques that are not based on the
and, thus, will be our main focus in this paper. Our propos§@| £, such as subspace methods, have been shown to perform
approach, howeveran be applied to many other nonlineanyej| only at higher SNR'’s [8]. The MLE, on the other hand, has
regression problems as well been shown to perform well even at low signal-to-noise ratios
(SNR’s) [10].Our main goal, therefore, is to develop a noniter-
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hood estimation (MELE)s based on computation of the mearsaussian noise. The complex data model for these signals can
of the likelihood function [1]. It considers thrmalized likeli- be expressed in the form

hood functioras a probability density function. Even though the

frequencies are not assumed to be random variables, an estimate x=H(a)f +w Q)

can be obtained as the mean value of the normalized likelihood

function. This is because the likelihood function, when propvhere

erly normalized, possesses all the properties of a joint PDF inx N x 1 noise-corrupted data vector;

the unknown parameters. Since the frequencies are not randonf, q x 1 linear parameter vector;

we say that the normalized likelihood function ipseudo-PDF ~ H(a) N x ¢ matrix, which is dependent on the nonlinear
of the unknown frequencies. signal parameters or thex 1 parameter vecta.

It should be emphasized that we are considering the frequdtie data vectox is linearly related to the parameter vector
cies to be unknown deterministic constants as opposed to réult depends nonlinearly am. The noise vectow is assumed
izations of random variables. The latter formalism is the bagie consist of samples of complex white Gaussian noise and is
assumption of the Bayesian philosophy. The problem could ha¥edimensionN x 1. Exponentials in noise, sinusoids in noise,
been approached by assuming the frequencies are random faMdsignals in noise, etc. [9] can be modeled in the form given
using a uniform prior (i.e., a noninformative prior) for the freby (1). We now show how the sinusoidal parameter estimation
quencies and a suitable noninformative prior for the in-phapgoblem can be expressed in the above form. Consider a signal
and quadrature amplitude components [6]. This approach woglnsisting ofp complex sinusoids embedded in complex white
then produce the minimum mean squared error estimator, whér@ussian noise. tf[n] denotes the received data, then
the mean square error criterion is defined in the Bayesian sense »
[2], i.e., when averaged over the prior PDF of the amplitude . ‘ . ‘ ‘
components and frequencies. Our approach, however, is a clas- olnl = Z Aiexplj(2m fin + ¢i)] + win] 2)
sical one in which we attempt to implement an estimator that
approximates the MLE. No prior knowledge of the amplitudfor » = 0,---,N — 1, and whered < f; < fo < -+ <
components and frequencies is assumed other than that requjted< 1, andw(n] is complex white Gaussian noise with vari-
for identifiability. Note, however, that the approach describeshces?. Note that we have assumed that the frequencies are
herein applies equally well under the Bayesian assumptions ditlered since without this assumption, they are not identifiable.
this case, the pseudo-PDF can be interpreted as a posterior A&t is to say, any reordering of the frequencies in (2) will pro-
and the MELE as the posterior mean. duce the same data values and, hence, even in the absence of

To implement the MELE requires a multidimensional intenoise the frequencies cannot be uniquely determined. Now, the
gration, which at first appears impractical, but such types of idata model of (2) can be expressed in the form of (1), With
tegrals can be well approximated by Monte Carlo techniquesing the complex amplitudes or
[14], [15]. In particular, importance sampling has been shown
to be a very powerful Monte Carlo technique, allowing multidi- 8 = [A; exp(j¢1) Asexp(iga) -+  Apexp(ipp)]*
mensional integrals to be evaluated efficiently. We will use the (3)
importance sampling approach to obtain the mean likelihood es-
timates. The proposed method will be shown via computer sifinda being the frequencies so that
ulation to perform about the same as the MLE as previously
mentioned. The MLE is recognized as the most accurate esti-  H(a) = H(f) = [e(f1) e(f2) -+ e(fp)] (4)
mator for finite data records and, furthermore, can be shown
to asymptotically achieve the Cramér-Rao lower bound (as théere
datarecord length becomes large and/or the signal-to-noise ratio
becomes large [9]). e(f;) = lexp(j2r fi(0))  exp(j2m fi(1))

The paper is organized as follows. In Section Il, we discuss o exp(y2nfi(N — 1)]F (5)
the general nonlinear regression problem and the estimation of
the nonlinear parameters using mean likelihood. In Section gy — £ = [f1--- fp]¥. Itis clear from (2) that the signal is
the use of importance sampling to efficiently obtain the meafpnlinear with respect to the frequencig's and linear with re-
likelihood estimate is described. In Section IV, the complete ilgpect to the complex amplitudeis exp(j$; )'s. For data models
plementation details of the sinusoidal frequency estimator basgghressible in the form of (1), the joint MLE & and & re-
on MELE and importance sampling is discussed. Section V caffgces to a separable optimization problem soflhat becomes
tains some simulation results and also the details of the comprunction oféyy., the latter being determined first.

tational complexity of the proposed method. Finally, in Section The general likelihood function for the data model of (1) can
VI, we give conclusions and future directions. be expressed as

i=1

L{a, 0) x p(x; ,0)

_ _ 2 _ Hiy
We are interested in the estimation of parameters of signals = ;v 2n XP[—(1/07)(x — H()0)" (x — H(a)0)]
that have linear as well as nonlinear parameters in additive white (6)

Il. NONLINEAR REGRESSION
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wherep(x; «, @) is the probability density function at with [ll. | MPORTANCE SAMPLING

parameters: andd. The MLE ofé is given by [9] To compute a multidimensional integral of the type given in

b= (H (0)H(a))"*H (a)x @ (13), importance sampling has been shown to be a powerful tool
[4]. The approach is based on the observation that integrals such
when a is replaced by its MLE. The compressed likelihoo@s/ h(a)L(c) da can be expressed as
function is defined as

N . hao)L(a) da = | hla)—= d 15
Le,0) = L'(e) x plox:cx B). ®) | Heiie) da= [ Mo da a9
From (6) and (7), we have whereg(a) is a pseudo-PDF, and we assume iat) > O.
Note that we use the symbolispa) to denote the normalized
p(x;0,0) = % version ofg(a), which will be used later. Then, the right-hand
ot

. side of (15) can be interpreted as the expected value of

cexp[—(1/0”)(x — H(@)8)" (x — H(a)®)] (9) h(a)(I(a)/g()), with respect to the pseudo-PDfa). The

_ exp[—(1/a?)x" function g(e) is called the normalized importance function.
aNg2N Unlike L{a), which, in general, is a complicated function

-(I-H(a)(H” (@)H(a)) '"H”(@))x]. (10) of @, g(a) can be chosen to be some simple functionaof

so that realizations ofe can be easily generated. Then, the

approximate value of the integral in (15) can be found by the

Monte Carlo estimate

By omitting the terms not dependentanthe compressed like-
lihood function becomes

L'(@) = exp|(1/0*)x"H(e)(H" (e)H(a)) " H" (a)x]. 1 U L(ay)
— 1
(11) M ; M) ) (16)
Thenormalizedcompressed likelihood function is defined as \whereq,, is the kth realization of the vectoi generated ac-
B I (a) cording to the pseudo-PDF «). The value ofM/ needed for a
La)= ———. (12)  good approximation depends on the choicg.dfypically, (o)
/ L'(a)do should be chosen similar tb(«), as this reduces the variance

of the estimate given by (16). However, another important point
This is a function of the parameter vectoand has all the prop- to keep in mind when choosirg{«) is that it should be simple
erties of a PDF, although strictly speaking, it is not a PDF sinemough so thak ~ g(«) can be easily generated. We explain in
a is deterministic. We ternk (c) a pseudo-PDF ie. With this  the next section how to choogéa) for the sinusoidal param-
definition, we can define theean likelihood estimataf the pa- eter estimation problem described in Section II.
rameter vectot: as

N IV. SINUSOIDAL FREQUENCY ESTIMATION
&mee (87 i:1,2,"', . 13 3 . ) .
Gmel / / ’ p (13) For the sinusoidal parameter estimation problem, the com-

As can be seen from the above expression, the mean Iikelihc%gssed likelihood function was shown to be [see (11)]

estimated; mele requires an evaluation of gdimensional in-
tegral (assuming is real), which is difficult to implement in
practice. However, sincé(«) is a pseudo-PDF, we can inter-
preté; mele as the expected value af. It has been shown that WhereH now depends o = £, per (4), and we have omitted

for this type of problem, Monte Carlo approximation techniqud§€ explicitdependence &f onf. The MELE of the frequencies
can achieve good results without using direct integration [3]. & computed using the importance sampling approach described
straightforward Monte Carlo approximation to the MELE, i.ePreviously. Due to the fact that the frequencies have the prop-

1
L'(f) = exp | Sx"HH"H)"H"x a7)
g

the mean ofL(a), is erties of acircular random variable [12], the mean likelihood
estimate off; is obtained using the circular mean definition or
M
1
~ _ . 1 _
Qe = 37 D (14) Jiamete = 5 / / exp(j2n f;) L(f) df
k=1 s

whereaqy, is the kth realization of the vectos distributed ac- This amounts to computing the angle of the mean likelihood es-
cording toL(e) or & ~ L(ea). Computingémei by (14) re- timate ofexp(j2« f;). Note that if the mean were to be evaluated
quires the generation @f ~ L(«). For the problem of interest directly as

in this paper, generation of the vecter~ L(«) is difficult, as A

L(a) is a highly nonlinear function af. Therefore, even though fi mele = / / LiL(f)df (18)
direct integration can be avoided by using (14), the generation

of a ~ L{«) may again demand integration. As a result, wihen the estimates obtained would be biased [7], especially
do not use (14) to determirig,,.;.. Rather, we use importanceat low SNR’s and/or for short data records. The key idea in

sampling [14], as described in the next section. defining a circular mean is to average position vectors. Hence,
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if 61,65, --,6, are realizations of a random pomtp(;j#) on
the circumference of a circle of unit radius, then the samp
mean of the data is defined as [12] P e

_ 1 M
O="Ca7 D exp(if). (19)

k=1

25 J.

2.
The use of (19) alleviates the estimator bias. The difficulty 5.
using the linear mean had also been remarked upon by [1 1J..-
Thus, f; mele is defined from (16) and (19) as 05,

0sly
1

M
.11 L(fi) .o oo
fz,mele - 27TZM k§=1 g(fk) eXp(J27r[fk]z) (20)

fori =1,---,p, wherefy, is thekth realization of the frequency
vector. Note that since we need only find the angle of the cor-

plex quantity in (20), an equivalent estimator is Fig. 2. Plot of modified/(f) for two sinusoids (noise-free case).

0
f, 0 ¢

M /
fi,mele = Z eXp (727 [fr]:) (21) Now, g(f) can be expressed as (retainipdor the function of
b1 the scalarf)

or finally

f) = H g(fi) (25)

. 11 <
imele = — L — w(fy) exp(j2n[fL]; 22
Ji,mel on "M ; (1) exp(y2n[fi]:) (22) whereg(f;) = exp(I(f:)/o2).
Before proceeding further, recall that the main reason for
where using the MELE is to make the method perform similar to the
() MLE. The MLE is the location of the global maximum of the
w(f) = ] function.J(f) = x?" H(H”H)~*H"x. However, the function
g(f) J(f) has several local maxima, even in the absence of noise.
This can be seen from Fig. 1, in which we have plotted the func-
ion J(f) for the noise-free two-sinusoid case. Fig. 2 shows the
5\0'[ of exp(pJ(f)), wherep is a factor used to make the func-
tion more peaked. In Fig. 2, we have get 1. The reason for
making the function more peaked is that the global maximum
WI|| then have a relatively higher peak as compared with the
15&1 maxima points. If such a modified function is used, the
mean likelihood estimate will be nearly equal to the maximum
likelihood estimate. In fact, it can be shown thapas> ~, the
mean likelihood estimate is equal to the maximum likelihood
timate, assuming that it is unique (see the proof in the Ap-

This observation is quite important in that it simplifies the co
putation greatly. We no longer need to find the normalizatio
constants/ L/(f) df and/ g(f) df in computingZ(f) and
g(f).

Having expressed the mean likelihood estimate of the fre
guencies in (22), we need to choose an appropriate importa
functiong(f) that WI|| aIIowf to be generated easily. From (17)
we observe that ifH” H)~! is replaced byl/N, wherel is the
p X p identity matrix, thenL/(f) becomes separable in tifgs.
Hence, with this choice, the joint pseudo-PDF can be writt

313 a prgduct f{)f :ne marglnf_\ls. G_egeratu:jn Otf rel_allztgnonsfo pendix). Therefore, instead of using the likelihood function of
en recuces 1o the genera ionoindepen entealizations o &17), we use thenodifiedlikelihood function defined as
/- Note that such a choice is a good approximation for well-sep-

arated sinusoids. Thus, we let
Linou(f) = explox HH"H) 'H"x] (26)

p
g(f) = exp[(1/No?)xHH" x] = exp [1/0-2 Z I(fi)] and choosg for the best performance. Note that the only differ-
i=1 ence from the actual likelihood function is that instead of scaling
(23) by 1/02, which is dependent on the SNR and which is usually
unknown, we use a scaling equalgowhich we choose inde-
wherel(f;) is the periodogram of the data evaluated at the frgendently of the SNR. In a similar way, we define the modified

quencyf; and is given by importance function as
1|y 2 P
_ i f. — HyH — :
I(fi) =% E:j s[n] exp(—j2r fin) (24)  gmoa(f) = exp[ox"HH x/N] —[[ exp(pl(f:))  (27)
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so that we finally have from (26) and (27)
H H —1gH
w(f) = exp[px" HH“H) *H" x|

p
[T exp(or(5:))
=1
which is used in (22). co
To obtain good estimation performance, it is important t
choosep appropriately. Too small a value will result in a broac
modified likelihood function, and the mean will not necessaril
be the same as the location of the maximum. Too large a val
will lead to numerical difficulties. A typical value and the one
used for the two-sinusoid case described in Sectionp/4s1.
A further discussion of the choice pfis contained in that sec- % -~~~ ~===~~~-~~--~
tion.

(28)

L s

A. Generation of o RN k

Due to separability of,.qa(f) in the f;'s, as seenin (27), the
frequencies can be considered independent. This makes gener-
ation of the f;'s quite simple. The only constraint on thg's
is that there should be some minimum separation between :
two of them. Such a constraint is necessary because in get
ating a frequency vector, two of the frequencies may turn out
be nearly the same. This violates the implicit assumption tr
the frequencies are distinct and, hence, identifiable. If this ¢
curs, the matrix ¥ H will be singular, or alternatively, the co- amax, |- -~ - = - == - oo o ____ .
variance matrix of the complex sinusoidal amplitudes will nc !
exist. The latter is, of course, just another indication that tt ~ ©° :
frequencies are not identifiable. In the direct MLE, as well & !
our technique, the condition of distinct frequencies and, henemaxi-a - ______ !

1
!
|
|
|
|

1

a full-rank H is required in order to determine the frequencie" ™" [ ===~~~
We have implicitly assumed this in ordering the frequencies

|

|

:

|

the modelasy < fo < -+- < f,. S |
Next, we show how to generate a realization of the vefitor 0 /" ¥ Tma'x“ 5 1
We first consider the case when= 2. For f;, we generate RN -S G Hing e e el
up ~ UJ[0,1] and then usg; = G~'(u1), whereG(f) is the ®)

cumulative distribution function of defined as [see (27)]

max(l‘,f

A

Fig. 3. (a) Generation of frequendfy for two sinusoids. (Generate, ~
f _ U[(0,G(f1 —8)) U (G(f1+6),1)], wheref; = G~'(uy)). (b) Generaton
G(f)= / Tmoa(u) du of frequencyfs for three sinusoids. (Generatg ~ U[(0, G(min(fi, f2) —
0 5)) U (G(I@ill(fl: fz,) +6), G(max(fi, f2) - 8)) U (G'(qlax(fla f2) +
exp(p](u)) 6),1)], afterf; andfz have been generated with the conditjgn— f2| > 4).
(

f
= / T du.
0 / exp(pl(§)) d¢ , , :
0 eration of f, can be understood by referring to Fig. 3(a), where
This is a standard method for generating a sample distribuggsketch of G(f)—the cumulative distribution function of
according to a given PDF. However, due to the steep slope%iod(./)—is shown for two closely spaced sinusoids. As
G(f), the direct method of finding the frequency sample pghould satisfy the minimum frequency separation with respect
using fl — G*l(ul) would require a fine search to Obtafm to fl, instead of generatingQ in the same way aﬁl, we first
asarg min; |u; — G(f)|. This would make the process ofgenerateu, ~ U[(0,G(f1 —6)) U (G(f1 + 6),1)]. Then,
generatingf; computationally intensive. Note, however, that thE0m this uz, we use the golden search to firfd, which is
function S(f) = |u; — G(f)| is unimodal because, is fixed 9given by f = arg miny [uz — G(f)|. This guarantees that
for a given realization, and¥(f) is a cumulative distribution |f2 — fi| > é.
function, which is an increasing function @f This property of  Whenp = 3, we proceed as before to obtain the first two
S(f) allows us to use a golden search [18] to find the locatidrequency samples. Then, the third frequency sanfipleeeds
of the minimum ofS(f). The golden search is known to conto be generated subject to the constrajrits— f>| > & and
verge after a small number of iterations and requires only ohg — fi| > 6. Now, we generate:s, which is distributed
function evaluation per iteration. uniformly in the union of three intervals. This satisfies the
Oncef; is generatedfs is generated such thgt, — f1| > 6, minimum frequency separation requirement with respect
whereé is the minimum allowable frequency separation. Gerte f; and f,. Fig. 3(b) illustrates this procedure. Then,
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uz ~ U0, G(min(f1, fo) — 8)) U (G(min(f1, f2) + 96), V. COMPUTERSIMULATION RESULTS

G(max(f1, f2) = 8)) U (G(max(fy, f2) +6), I if max(fi, e consider the cases of two and three sinusoids. If the two
f2) =0 > min(fi, f2) + 6, orus ~ U[(0, Gmin(f1, f2) = gjnysoids are widely spaced in frequency, the periodogram peak
6).) U (0, Glmin(/y, f2) +.6)’ L), if max(.fl’.f?) N locations will indicate the frequencies correctly. However, if the

mm.(f.l’ f2) + 6. The Iatter_W|II occur r?‘re'y '6_ IS very s_maII two frequencies are closely spaced, then the two sinusoids in-
but '.f I does,_ug will be uniformly d|st_r|buted 'flthe union of teract with one another, and the periodogram peak locations are
two intervals instead of three. Then, fiffd = G~"(u3) by the biased estimates of the frequencies. The following example con-

goII:den searctﬂ. th . ids. th . ted ﬁ'ders the case of closely spaced sinusoids for which the peri-
or more than three sinusoids, the process 15 repeated. %gram peak locations are poor estimates of the frequencies.

frequency realizations are grouped in asc_ending orde_r to Obta"?ixample 1—Two Sinusoidsiwo equiamplitude sinusoids in

the frequency \_/ect_o rsamplg: The processis repeatdftimes additive complex white Gaussian noise are considered. We have
to yield M realizations of the frequency vectfyr. N = 25 data points of[n] = exp(j2r fin) + exp(j (2 fan +
7/4))+w[r], wheref; = 0.5andf,; = 0.52. This exampleis a

i ) standard one and has been used extensively in [8]. The variance
1) Find the periodogrand(f) of the datax[n], which is  of 4[] is chosen to result in a given SNR, which is defined as

B. Algorithm Summary fop = 3

given by 10log,, 1/02 dB. As an illustration, a typical periodogram of
N1 2 the data is plotted in Fig. 4(a) for an SNR of 5 dB. It is clear
I(f) = 1 Z z[n] exp(—j27 fn) from the plot that the peak locations of the periodogram fail to
N = identify the true frequencies of the two sinusoids for this ex-

ample. The MELE is able to accurately estimate the frequencies,

2) Compute the normalized importance function given b ; ) . o
) P P g yas seen in the figure (as given by the solid lines, and note that

Gooa(f) = exp(pI(f)) 0<f<1 at f = 0.52, the line indicating the true frequency and the one
mod ! e d - ’ indicating the MELE coalesce). In Fig. 4(b), we have plotted the
o exp(pI(£)) d cumulative distribution function
3) Determine the cumulative distribution function of / eXP (pd(w)) du
gmod(f) as
; exp(pl(§)) dé
G(f) = /0 Imoa(w) du 0 f < 1. wherep was chosen equal to 1 for this example. As can be ob-

served, there is a very sharp transition from 0 to 1 in the vicinity
of the actual frequencies (i.e., the region around 0.5). Using this
cumulative distribution function, we generat&fl = 2000 real-
izations of the frequency vector using the technique described in
Section IV-A. Then, the frequency estimate is obtained from the
000 realizations af using (29). The entire process is repeated
5t the same SNR with independent noise samples to obtain the
estimates for different trials, and then, the mean square error for
the given SNR is calculated. The number of Monte Carlo trials
required was a maximum of 750, with more trials required for
lower SNR’s. In Fig. 5, we plot0log,, (1/mean square error)
versus the SNR. The mean square error was determined from
the Monte Carlo trials as

4) Generate arealization of the frequency ve€tdio do so,
first generatef; usingw; ~ UJ[0, 1] and a golden search,
as described in Section IV-A, to fingy, = G~!(uq).
Oncey; is generated, put a band around it fis— 6, f1 +
). Choose’ as 0.001 for good performance. More gens
erally, 5 should be chosen to be less than one tenth of the
minimum frequency separation expected. Now, to guar-
antee thatf; is separated fronf; by at least, generate
uz ~ U[(0,G(f1 = 8)) U (G(f1 + 6),1)], and again,
use a golden search to obtafp = G~!(uz). In addi-
tion, put a band aroung; as(f2 — 6, f> + &), and gen-
erateus uniformly distributed in the union of three inter-
vals, as described in Section IV-A, and obtginfrom it.
Now, define the frequency vector samfijeby arranging () 5
/1, f2, f3 in ascending order. Repeat the overall process mean square errcr M Z(fz mete ~ fi)
to generaté/ realizations of orf, fork = 1,2,---, M. k=1

5) Compute the mean likelihood estimate of thefrequenmmere fz *) . is the estimate of théth frequency from the

Ji fori = 1,2,3 using kth Monte Carlo trial [see (29)]. The performance of the
MELE is shown, as is the MLE. To obtain the MLE per-
Jimele = Z (1) exp(j27[fr];) (29) formance, a fine grid search was conducted of the function
J(f) = xPHMH"H)"'H”x. From this plot, it can be
concluded that the proposed method performs quite well in that
it achieves the Cramér-Rao lower bound (CRLB) and does not
(30) have the drawback of poor performance at low SNR's, which
is typical of the subspace-based methods [8]. In addition, it
HeXp[pI(fi)] requires generation of only 2000 frequency realizations to
=1 achieve the CRLB. It should be noted that both the MLE and
andH = [e(f1)e(f2)e(f:)]*. the proposed method have a threshold SNR of about 1 dB.

M

where
exp[px"H(H"H)"'H"x]

w(f) =
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Fig. 4. (a) Periodogram of the data for two sinusoids in additive white
Gaussian noise SNR 5 dB. (b) Plot of the cumulative distribution function Fig. 6. Performance versysfor a given SNR for two sinusoids.
G(f) for the two sinusoids case SNR 5 dB.

Hence, our method is about the same as the MLE in terms%%from the other two. The sinusoidal parameters Are=

erformance but requires much less computation (see Sectipi /2 = 05:f3 = 052,01 = 0,2 = 0, ¢ = 7/4, 41 =
{J/_A) g P ( /?2 = Az = 1. Fig. 7(a) and (b) shows the periodogram of the
As. alluded to previously, it is important to choose an appr(gi_ata and the cumulative distribution function, respectively. As

priate value fop. The effect of the value of is shown in Fig. 6 in the first example, the periodogram peak locations are biased

foran SNR of 5 dB. The actual value of the mean square error foytimates. For comparison, the MELE is shown for this one re-

eachp is shown as a circle. It is seen that for too small a Vah@!ization of data. The cumulative distribution function exhibits
the performance degrades. This is because the mean of the [fk@Dsitions near 0.2, 0.5, and 0.52, i.e., at the true frequency lo-
lihood function is offset from the global maximum location du&ations. In Fig. 8, we plat0log, , (1/mean square error) versus
to the presence of local maxima. For too large a value, the p&NR and show the Cramér-Rao lower bound on the same plot
formance also degrades, but this is due to numerical errorstthbenchmark the performance. We observe that the estimates
computing the exponentials in (30). In theory,as+ oo, the attain the bound above an SNR of about 1 dB. In this example,
MLE is obtained (see the Appendix). In practice, any value 000 realizations of the frequency vector were sufficient for the
the range shown can be used. Some experimentation is requirethod to achieve the CRLB. For the best performapoeeds
to determine this range, which is somewhat dependent on dtathe chosen appropriately , as previously discussed. For this ex-
record length and SNR. ample, we chosg = 0.48, which proved to be adequate. It has
Example 2—Three Sinusoid®low, we consider the case ofbeen observed that at high SNR’s for the three sinusoid case, the
three sinusoids with two closely spaced ones and the third ggerformance becomes more sensitive to the choige ohlike
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the computational burden involved. It required at most 24

L I S S R P b b ot -1 evaluations of the cumulative distribution function per single
S I i frequency realization. The computation involved in these two
: f : f 1 : : : steps is significantly less than that for the MLE, which for
06k e .................. ,,,,,,,,, ,,,,,,,,, AAAAAAAAAA .......... ....... 4 the two-sinusoid case requires at Ieaéf/2 evaluations of
Sosf | T T U R S N | the likelihood function and at least®/6 evaluations for the

5 : 5 3 5 5 5 5 three-sinusoid case. This is because for a minimum frequency
04k ......... e ......... .......... .......... ......... .......... ......... ....... 4 Separation of 002, a gnd search for the MLE requires at least
' ' ' : : : ﬁ : 100 grid points. Clearly, the computational burden of the MLE

oab ] S B e S S S 1 increases exponentially with the number of sinusoids, whereas
P b 4 for our technique, it does not. In particular, for the two simula-
tion examples considered, the number of frequency realizations
[ R} SR TETPPI ST .............................................................................. 1 did not have to be increased exponentially to achieve the CRLB.
0 ; ; ; ; ; ; ; ; ; The two-sinusoid case required 2000 frequency realizations,
0o 02 08 eyt S %7 %891 whereas the three-sinusoid case required 5000 frequency
() realizations for good performance. In terms of FLOP’s, the
_ , o __ MLE required more than a factor of 17:1 for the two-sinusoid
Fig. 7. (a) Periodogram of the data for three sinusoids in additive white

Gaussian noise, SN 5 dB. (b) Plot of cumulative distribution function case and a factor of 285:1 for the three-sinusoid case.
G(f) for the three-sinusoid case, SNR5 dB.

VI. OTHER PROBLEMS OFINTEREST

the case for two sinusoids. Thus, for the three-sinusoid case, ijlthough we have applied our approach to sinusoidal fre-
may be possible that there exists a better choice for the modifiggency estimation in this paper, the method is more generally
likelihood function for which the performance does not vary agpplicable. Whenever the signal has linear as well as nonlinear
much with the choice op. This issue needs to be investigate@arameters and is embedded in white Gaussian noise, the MELE
further. As the MLE becomes too computationally intensive faipproach can be applied. Some other examples follow.

more than two sinusoids, we did not carry out the performance 1y some extensions to the sinusoidal problem are the estima-
evaluation via Monte Carlo runs for all SNR’s_. However, the tion of parameters of superimposed chirp signals in noise
threshold SNR for the MLE for the three sinusoid case was also 514 the estimation of parameters for damped exponentials
found to be about 1 dB. According to theory, it should achieve i nhoise. The first of these signals is described as

the CRLB for all SNR’s above the threshold. & P

eln] = Asexp(i[2n(fin+ smin®) + ¢i]) + wln].

=1

A. Analysis of Computation

In the MELE method, the two major sources of computations
involved are generation of the realizations of the frequency
vector and the evaluations of the functieff) for the realized
frequency samples (see Section IV-B). In generating the
frequency vector, we have used the golden search to reduce

Here, z[n] is linear with respect to the complex am-
plitudes A; exp(j¢;) and nonlinear with respect to the
sweep ratesn;’s and frequenciesf;’s. The MLE of
m;, fi, and A; requires first the MLE of the nonlinear
parameters, i.em;’s and f;’s, similar to the estimation
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2)

3)

of frequencies in the sinusoidal parameter estimatidari = 1,---,p. Let J(f) = xX!HMH?H) 'H!x , and as-
problem. The MLE of the chirp rates:;’s and the sume thatfy, = arg maxJ(f). Thus, by definitionf, is the
frequenciesf;’s will, however, require a grid search.MLE and is assumed unique. Then

Instead of the impractical grid search, the importance

sampling-based MELE can be implemented. Note that fi = P / / exp(pJ(f)) exp(j2r f;) df

the sinusoidal parameter estimation problem is a special

case of this in which the sweep rates’s are all zero. >ince/(fo) is real, we can rewrite this as

The second estimation problem concerns damped sinu-

soids in noise or / / exp(pJ (£)) exp(s2m fi) df

p ' exp(pJ (£o))
nl =37 Anf expli@nfin+ 6]+ wln] or
=1
where each signal is a complex decaying exponential. / / exp[—p(J(fo) — J(£))]

Note that the sinusoidal parameter estimation problem is -exp(j2n f;) df.
a special case of this in which the magnitude of each of !

the;’s is unity. Since(f) = J(fo)—J(f) > 0, Q(f) has aminimum & = f;.
Maximum likelihood estimation of multiple attenuationdn addition, note that the Hessian Qf(f) is positive definite
and multiple time delays in a multipath environment is awhen evaluated dt= f,. Thus, by Laplace’s theorem, we have
other example. The datdn] in this case can be expresse@sp — oo [5]

as .1 20 \*/? | [92Q(f)
fiI%‘{(?) oot |t
z[n]

= zp: a;s(n —n;) +wln].
i=1 - exp(j2n[fol;) + O <pp/—12+1> }

Here, the signal is linear with respect to the attenuations ,
a,; but nonlinear with respect to the time delays whered?Q(f)/afaf” is the Hessian, an@(¢) denotes a com-
Finally, as mentioned in the introduction, the DOA esplex numbei such thaté| < K¢ for some constank’. Noting
timation problem can be solved using the proposed aitrat the Hessian is real and positive definite and, thus, that the
proach. This extension is currently under investigation.determinant is a positive real number, we have that as oo,

In summary, the MELE procedure can be used for a wide — [fol:, where the latter is the MLE.
variety of signal processing problems of interest.
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