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Abstract—Estimation of signals with nonlinear as well as linear
parameters in noise is studied. Maximum likelihood estimation has
been shown to perform the best among all the methods. In such
problems, joint maximum likelihood estimation of the unknown
parameters reduces to a separable optimization problem, where
first, the nonlinear parameters are estimated via a grid search, and
then, the nonlinear parameter estimates are used to estimate the
linear parameters. We show that a grid search can be avoided by
using the mean likelihood estimator for estimating the unknown
nonlinear parameters and how its performance can be made equiv-
alent to that of the maximum likelihood estimator (MLE). The
mean likelihood estimator requires computation of a multidimen-
sional integral. However, using the concepts of importance sam-
pling, we obtain the mean likelihood estimate without using in-
tegration. The technique is computationally far less burdensome
than the direct maximum likelihood method but performs just as
well. Simulation examples for estimating frequencies of multiple
sinusoids in noise are given. The general technique can be applied
to a large class of nonlinear regression problems.

Index Terms—Frequency estimation, Monte Carlo methods, op-
timization methods, sonar signal analysis.

I. INTRODUCTION

M ANY problems in statistical signal processing may be
posed as ones that attempt to estimate signals with linear

as well as nonlinear parameters in additive white Gaussian
noise. These problems are referred to as nonlinear regression
[13]. A common example is the estimation of frequencies of
multiple sinusoids in noise. In this problem, the noise-corrupted
data are linear with respect to the complex amplitudes of the
sinusoids but nonlinear with respect to the frequencies. The
problem of estimation of multiple time delays in a multipath
environment is another example. The data in this case are linear
with respect to the attenuations and nonlinear with respect
to the time delays. The time delay estimation problem also
reduces to the sinusoidal parameter estimation problem after
transforming the data to the Fourier domain, where the attenu-
ations take the role of amplitudes, and the time delays take the
role of frequencies. The direction-of-arrival (DOA) estimation
problem [17] in array processing also reduces to estimation
of multiple frequencies, although in the spatial domain. As
a result, the problem of sinusoidal frequency estimation has
received a lot of attention in the signal processing community
and, thus, will be our main focus in this paper. Our proposed
approach, however,can be applied to many other nonlinear
regression problems as well.
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Fig. 1. Plot ofJ(f) for two sinusoids (noise free case) andf > f .

Although the maximum likelihood estimator (MLE) is not,
in general, the optimal estimator for finite data records, the op-
timal minimum variance unbiased (MVU) estimator may be an-
alytically difficult to obtain or may not exist at all [9]. Thus,
the MLE, which is asymptotically optimal and has been shown
to exhibit the best performance for finite data records [8], is
the preferred estimator. The exact MLE requires a multidimen-
sional grid search over the possible frequencies since the mul-
tidimensional likelihood function is a highly nonlinear function
of the frequencies and has many local maxima, even in the ab-
sence of noise. The highly multimodal nature of the likelihood
function can be seen in Fig. 1 for the noise-free case. The func-
tion, whose maximum location is the MLE of the frequencies,
is plotted for two closely spaced sinusoids. With an increase in
the number of sinusoids, the computational burden of the re-
quired grid search increases enormously. Because of the imprac-
ticality of the direct MLE, iterative approaches have been used,
requiring a good initial guess of the frequencies. Furthermore,
due to the highly multimodal nature of the likelihood function,
there is no guarantee that an estimate obtained iteratively will
be the global maximum. A typical iterative MLE approach is
described by [16]. Other techniques that are not based on the
MLE, such as subspace methods, have been shown to perform
well only at higher SNR’s [8]. The MLE, on the other hand, has
been shown to perform well even at low signal-to-noise ratios
(SNR’s) [10].Our main goal, therefore, is to develop a noniter-
ative estimator that approximates the MLE but is computation-
ally efficient.

In this paper, we propose an estimator whose performance is
about the same as the MLE but can be implemented with a mod-
erate amount of computation. The technique, calledmean likeli-
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hood estimation (MELE), is based on computation of the mean
of the likelihood function [1]. It considers thenormalized likeli-
hood functionas a probability density function. Even though the
frequencies are not assumed to be random variables, an estimate
can be obtained as the mean value of the normalized likelihood
function. This is because the likelihood function, when prop-
erly normalized, possesses all the properties of a joint PDF in
the unknown parameters. Since the frequencies are not random,
we say that the normalized likelihood function is apseudo-PDF
of the unknown frequencies.

It should be emphasized that we are considering the frequen-
cies to be unknown deterministic constants as opposed to real-
izations of random variables. The latter formalism is the basic
assumption of the Bayesian philosophy. The problem could have
been approached by assuming the frequencies are random and
using a uniform prior (i.e., a noninformative prior) for the fre-
quencies and a suitable noninformative prior for the in-phase
and quadrature amplitude components [6]. This approach would
then produce the minimum mean squared error estimator, where
the mean square error criterion is defined in the Bayesian sense
[2], i.e., when averaged over the prior PDF of the amplitude
components and frequencies. Our approach, however, is a clas-
sical one in which we attempt to implement an estimator that
approximates the MLE. No prior knowledge of the amplitude
components and frequencies is assumed other than that required
for identifiability. Note, however, that the approach described
herein applies equally well under the Bayesian assumptions. In
this case, the pseudo-PDF can be interpreted as a posterior PDF
and the MELE as the posterior mean.

To implement the MELE requires a multidimensional inte-
gration, which at first appears impractical, but such types of in-
tegrals can be well approximated by Monte Carlo techniques
[14], [15]. In particular, importance sampling has been shown
to be a very powerful Monte Carlo technique, allowing multidi-
mensional integrals to be evaluated efficiently. We will use the
importance sampling approach to obtain the mean likelihood es-
timates. The proposed method will be shown via computer sim-
ulation to perform about the same as the MLE as previously
mentioned. The MLE is recognized as the most accurate esti-
mator for finite data records and, furthermore, can be shown
to asymptotically achieve the Cramér-Rao lower bound (as the
data record length becomes large and/or the signal-to-noise ratio
becomes large [9]).

The paper is organized as follows. In Section II, we discuss
the general nonlinear regression problem and the estimation of
the nonlinear parameters using mean likelihood. In Section III,
the use of importance sampling to efficiently obtain the mean
likelihood estimate is described. In Section IV, the complete im-
plementation details of the sinusoidal frequency estimator based
on MELE and importance sampling is discussed. Section V con-
tains some simulation results and also the details of the compu-
tational complexity of the proposed method. Finally, in Section
VI, we give conclusions and future directions.

II. NONLINEAR REGRESSION

We are interested in the estimation of parameters of signals
that have linear as well as nonlinear parameters in additive white

Gaussian noise. The complex data model for these signals can
be expressed in the form

(1)

where
noise-corrupted data vector;

linear parameter vector;
matrix, which is dependent on the nonlinear

signal parameters or the parameter vector .
The data vector is linearly related to the parameter vector
but depends nonlinearly on. The noise vector is assumed
to consist of samples of complex white Gaussian noise and is
of dimension . Exponentials in noise, sinusoids in noise,
FM signals in noise, etc. [9] can be modeled in the form given
by (1). We now show how the sinusoidal parameter estimation
problem can be expressed in the above form. Consider a signal
consisting of complex sinusoids embedded in complex white
Gaussian noise. If denotes the received data, then

(2)

for , and where
, and is complex white Gaussian noise with vari-

ance . Note that we have assumed that the frequencies are
ordered since without this assumption, they are not identifiable.
That is to say, any reordering of the frequencies in (2) will pro-
duce the same data values and, hence, even in the absence of
noise the frequencies cannot be uniquely determined. Now, the
data model of (2) can be expressed in the form of (1), with
being the complex amplitudes or

(3)

and being the frequencies so that

(4)

where

(5)

and . It is clear from (2) that the signal is
nonlinear with respect to the frequencies’s and linear with re-
spect to the complex amplitudes ’s. For data models
expressible in the form of (1), the joint MLE of and re-
duces to a separable optimization problem so that becomes
a function of , the latter being determined first.

The general likelihood function for the data model of (1) can
be expressed as

(6)
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where is the probability density function of with
parameters and . The MLE of is given by [9]

(7)

when is replaced by its MLE. The compressed likelihood
function is defined as

(8)

From (6) and (7), we have

(9)

(10)

By omitting the terms not dependent on, the compressed like-
lihood function becomes

(11)

Thenormalizedcompressed likelihood function is defined as

(12)

This is a function of the parameter vectorand has all the prop-
erties of a PDF, although strictly speaking, it is not a PDF since

is deterministic. We term a pseudo-PDF in . With this
definition, we can define themean likelihood estimateof the pa-
rameter vector as

(13)

As can be seen from the above expression, the mean likelihood
estimate requires an evaluation of a-dimensional in-
tegral (assuming is real), which is difficult to implement in
practice. However, since is a pseudo-PDF, we can inter-
pret as the expected value of . It has been shown that
for this type of problem, Monte Carlo approximation techniques
can achieve good results without using direct integration [3]. A
straightforward Monte Carlo approximation to the MELE, i.e.,
the mean of , is

(14)

where is the th realization of the vector distributed ac-
cording to or . Computing by (14) re-
quires the generation of . For the problem of interest
in this paper, generation of the vector is difficult, as

is a highly nonlinear function of. Therefore, even though
direct integration can be avoided by using (14), the generation
of may again demand integration. As a result, we
do not use (14) to determine . Rather, we use importance
sampling [14], as described in the next section.

III. I MPORTANCESAMPLING

To compute a multidimensional integral of the type given in
(13), importance sampling has been shown to be a powerful tool
[4]. The approach is based on the observation that integrals such
as can be expressed as

(15)

where is a pseudo-PDF, and we assume that .
Note that we use the symbolism to denote the normalized
version of , which will be used later. Then, the right-hand
side of (15) can be interpreted as the expected value of

, with respect to the pseudo-PDF . The
function is called the normalized importance function.
Unlike , which, in general, is a complicated function
of , can be chosen to be some simple function of
so that realizations of can be easily generated. Then, the
approximate value of the integral in (15) can be found by the
Monte Carlo estimate

(16)

where is the th realization of the vector generated ac-
cording to the pseudo-PDF . The value of needed for a
good approximation depends on the choice of. Typically,
should be chosen similar to , as this reduces the variance
of the estimate given by (16). However, another important point
to keep in mind when choosing is that it should be simple
enough so that can be easily generated. We explain in
the next section how to choose for the sinusoidal param-
eter estimation problem described in Section II.

IV. SINUSOIDAL FREQUENCYESTIMATION

For the sinusoidal parameter estimation problem, the com-
pressed likelihood function was shown to be [see (11)]

(17)

where now depends on , per (4), and we have omitted
the explicit dependence of on . The MELE of the frequencies
is computed using the importance sampling approach described
previously. Due to the fact that the frequencies have the prop-
erties of acircular random variable [12], the mean likelihood
estimate of is obtained using the circular mean definition or

This amounts to computing the angle of the mean likelihood es-
timate of . Note that if the mean were to be evaluated
directly as

(18)

then the estimates obtained would be biased [7], especially
at low SNR’s and/or for short data records. The key idea in
defining a circular mean is to average position vectors. Hence,
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if are realizations of a random point on
the circumference of a circle of unit radius, then the sample
mean of the data is defined as [12]

(19)

The use of (19) alleviates the estimator bias. The difficulty of
using the linear mean had also been remarked upon by [11].
Thus, is defined from (16) and (19) as

(20)

for , where is the th realization of the frequency
vector. Note that since we need only find the angle of the com-
plex quantity in (20), an equivalent estimator is

(21)

or finally

(22)

where

This observation is quite important in that it simplifies the com-
putation greatly. We no longer need to find the normalization
constants and in computing and

.
Having expressed the mean likelihood estimate of the fre-

quencies in (22), we need to choose an appropriate importance
function that will allow to be generated easily. From (17),
we observe that if is replaced by , where is the

identity matrix, then becomes separable in the’s.
Hence, with this choice, the joint pseudo-PDF can be written
as a product of the marginals. Generation of realizations of
then reduces to the generation ofindependentrealizations of

. Note that such a choice is a good approximation for well-sep-
arated sinusoids. Thus, we let

(23)

where is the periodogram of the data evaluated at the fre-
quency and is given by

(24)

Fig. 2. Plot of modifiedJ(f) for two sinusoids (noise-free case).

Now, can be expressed as (retainingfor the function of
the scalar )

(25)

where .
Before proceeding further, recall that the main reason for

using the MELE is to make the method perform similar to the
MLE. The MLE is the location of the global maximum of the
function . However, the function

has several local maxima, even in the absence of noise.
This can be seen from Fig. 1, in which we have plotted the func-
tion for the noise-free two-sinusoid case. Fig. 2 shows the
plot of , where is a factor used to make the func-
tion more peaked. In Fig. 2, we have set . The reason for
making the function more peaked is that the global maximum
will then have a relatively higher peak as compared with the
local maxima points. If such a modified function is used, the
mean likelihood estimate will be nearly equal to the maximum
likelihood estimate. In fact, it can be shown that as , the
mean likelihood estimate is equal to the maximum likelihood
estimate, assuming that it is unique (see the proof in the Ap-
pendix). Therefore, instead of using the likelihood function of
(17), we use themodifiedlikelihood function defined as

(26)

and choose for the best performance. Note that the only differ-
ence from the actual likelihood function is that instead of scaling
by , which is dependent on the SNR and which is usually
unknown, we use a scaling equal to, which we choose inde-
pendently of the SNR. In a similar way, we define the modified
importance function as

(27)
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so that we finally have from (26) and (27)

(28)

which is used in (22).
To obtain good estimation performance, it is important to

choose appropriately. Too small a value will result in a broad
modified likelihood function, and the mean will not necessarily
be the same as the location of the maximum. Too large a value
will lead to numerical difficulties. A typical value and the one
used for the two-sinusoid case described in Section V is .
A further discussion of the choice ofis contained in that sec-
tion.

A. Generation of

Due to separability of in the ’s, as seen in (27), the
frequencies can be considered independent. This makes gener-
ation of the ’s quite simple. The only constraint on the’s
is that there should be some minimum separation between any
two of them. Such a constraint is necessary because in gener-
ating a frequency vector, two of the frequencies may turn out to
be nearly the same. This violates the implicit assumption that
the frequencies are distinct and, hence, identifiable. If this oc-
curs, the matrix will be singular, or alternatively, the co-
variance matrix of the complex sinusoidal amplitudes will not
exist. The latter is, of course, just another indication that the
frequencies are not identifiable. In the direct MLE, as well as
our technique, the condition of distinct frequencies and, hence,
a full-rank is required in order to determine the frequencies.
We have implicitly assumed this in ordering the frequencies of
the model as .

Next, we show how to generate a realization of the vector.
We first consider the case when . For , we generate

and then use , where is the
cumulative distribution function of defined as [see (27)]

This is a standard method for generating a sample distributed
according to a given PDF. However, due to the steep slope of

, the direct method of finding the frequency sample by
using would require a fine search to obtain
as . This would make the process of
generating computationally intensive. Note, however, that the
function is unimodal because is fixed
for a given realization, and is a cumulative distribution
function, which is an increasing function of. This property of

allows us to use a golden search [18] to find the location
of the minimum of . The golden search is known to con-
verge after a small number of iterations and requires only one
function evaluation per iteration.

Once is generated, is generated such that ,
where is the minimum allowable frequency separation. Gen-

(a)

(b)

Fig. 3. (a) Generation of frequencyf for two sinusoids. (Generateu �
U [(0; G(f � �)) [ (G(f + �); 1)], wheref = G (u )). (b) Generaton
of frequencyf for three sinusoids. (Generateu � U [(0;G(min(f ; f ) �
�)) [ (G(min(f ; f ) + �),G(max(f ; f )� �)) [ (G(max(f ; f ) +
�); 1)], afterf andf have been generated with the conditionjf �f j > �).

eration of can be understood by referring to Fig. 3(a), where
a sketch of —the cumulative distribution function of

—is shown for two closely spaced sinusoids. As
should satisfy the minimum frequency separation with respect
to , instead of generating in the same way as , we first
generate . Then,
from this , we use the golden search to find, which is
given by . This guarantees that

.

When , we proceed as before to obtain the first two
frequency samples. Then, the third frequency sampleneeds
to be generated subject to the constraints and

. Now, we generate , which is distributed
uniformly in the union of three intervals. This satisfies the
minimum frequency separation requirement with respect
to and . Fig. 3(b) illustrates this procedure. Then,
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,
, if

, or
, if

. The latter will occur rarely if is very small
but if it does, will be uniformly distributed in the union of
two intervals instead of three. Then, find by the
golden search.

For more than three sinusoids, the process is repeated. The
frequency realizations are grouped in ascending order to obtain
the frequency vector sample. The process is repeatedtimes
to yield realizations of the frequency vector.

B. Algorithm Summary for

1) Find the periodogram of the data , which is
given by

2) Compute the normalized importance function given by

3) Determine the cumulative distribution function of
as

4) Generate a realization of the frequency vector. To do so,
first generate using and a golden search,
as described in Section IV-A, to find .
Once is generated, put a band around it as

. Choose as 0.001 for good performance. More gen-
erally, should be chosen to be less than one tenth of the
minimum frequency separation expected. Now, to guar-
antee that is separated from by at least , generate

, and again,
use a golden search to obtain . In addi-
tion, put a band around as , and gen-
erate uniformly distributed in the union of three inter-
vals, as described in Section IV-A, and obtainfrom it.
Now, define the frequency vector sampleby arranging

in ascending order. Repeat the overall process
to generate realizations of or for .

5) Compute the mean likelihood estimate of the frequencies
for using

(29)

where

(30)

and .

V. COMPUTERSIMULATION RESULTS

We consider the cases of two and three sinusoids. If the two
sinusoids are widely spaced in frequency, the periodogram peak
locations will indicate the frequencies correctly. However, if the
two frequencies are closely spaced, then the two sinusoids in-
teract with one another, and the periodogram peak locations are
biased estimates of the frequencies. The following example con-
siders the case of closely spaced sinusoids for which the peri-
odogram peak locations are poor estimates of the frequencies.

Example 1—Two Sinusoids:Two equiamplitude sinusoids in
additive complex white Gaussian noise are considered. We have

data points of
, where and . This example is a

standard one and has been used extensively in [8]. The variance
of is chosen to result in a given SNR, which is defined as

dB. As an illustration, a typical periodogram of
the data is plotted in Fig. 4(a) for an SNR of 5 dB. It is clear
from the plot that the peak locations of the periodogram fail to
identify the true frequencies of the two sinusoids for this ex-
ample. The MELE is able to accurately estimate the frequencies,
as seen in the figure (as given by the solid lines, and note that
at , the line indicating the true frequency and the one
indicating the MELE coalesce). In Fig. 4(b), we have plotted the
cumulative distribution function

where was chosen equal to 1 for this example. As can be ob-
served, there is a very sharp transition from 0 to 1 in the vicinity
of the actual frequencies (i.e., the region around 0.5). Using this
cumulative distribution function, we generated real-
izations of the frequency vector using the technique described in
Section IV-A. Then, the frequency estimate is obtained from the
2000 realizations of using (29). The entire process is repeated
for the same SNR with independent noise samples to obtain the
estimates for different trials, and then, the mean square error for
the given SNR is calculated. The number of Monte Carlo trials
required was a maximum of 750, with more trials required for
lower SNR’s. In Fig. 5, we plot (1/mean square error)
versus the SNR. The mean square error was determined from
the Monte Carlo trials as

mean square error

where is the estimate of theth frequency from the
th Monte Carlo trial [see (29)]. The performance of the

MELE is shown, as is the MLE. To obtain the MLE per-
formance, a fine grid search was conducted of the function

. From this plot, it can be
concluded that the proposed method performs quite well in that
it achieves the Cramér-Rao lower bound (CRLB) and does not
have the drawback of poor performance at low SNR’s, which
is typical of the subspace-based methods [8]. In addition, it
requires generation of only 2000 frequency realizations to
achieve the CRLB. It should be noted that both the MLE and
the proposed method have a threshold SNR of about 1 dB.
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(a)

(b)

Fig. 4. (a) Periodogram of the data for two sinusoids in additive white
Gaussian noise SNR= 5 dB. (b) Plot of the cumulative distribution function
G(f) for the two sinusoids case SNR= 5 dB.

Hence, our method is about the same as the MLE in terms of
performance but requires much less computation (see Section
V-A).

As alluded to previously, it is important to choose an appro-
priate value for . The effect of the value of is shown in Fig. 6
for an SNR of 5 dB. The actual value of the mean square error for
each is shown as a circle. It is seen that for too small a value,
the performance degrades. This is because the mean of the like-
lihood function is offset from the global maximum location due
to the presence of local maxima. For too large a value, the per-
formance also degrades, but this is due to numerical errors in
computing the exponentials in (30). In theory, as , the
MLE is obtained (see the Appendix). In practice, any value in
the range shown can be used. Some experimentation is required
to determine this range, which is somewhat dependent on data
record length and SNR.

Example 2—Three Sinusoids:Now, we consider the case of
three sinusoids with two closely spaced ones and the third one

Fig. 5. Performance of the mean likelihood estimator for two sinusoids in
additive white Gaussian noise.

Fig. 6. Performance versus� for a given SNR for two sinusoids.

far from the other two. The sinusoidal parameters are
,

. Fig. 7(a) and (b) shows the periodogram of the
data and the cumulative distribution function, respectively. As
in the first example, the periodogram peak locations are biased
estimates. For comparison, the MELE is shown for this one re-
alization of data. The cumulative distribution function exhibits
transitions near 0.2, 0.5, and 0.52, i.e., at the true frequency lo-
cations. In Fig. 8, we plot (1/mean square error) versus
SNR and show the Cramér-Rao lower bound on the same plot
to benchmark the performance. We observe that the estimates
attain the bound above an SNR of about 1 dB. In this example,
5000 realizations of the frequency vector were sufficient for the
method to achieve the CRLB. For the best performance,needs
to be chosen appropriately , as previously discussed. For this ex-
ample, we chose , which proved to be adequate. It has
been observed that at high SNR’s for the three sinusoid case, the
performance becomes more sensitive to the choice of, unlike
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(a)

(b)

Fig. 7. (a) Periodogram of the data for three sinusoids in additive white
Gaussian noise, SNR= 5 dB. (b) Plot of cumulative distribution function
G(f) for the three-sinusoid case, SNR= 5 dB.

the case for two sinusoids. Thus, for the three-sinusoid case, it
may be possible that there exists a better choice for the modified
likelihood function for which the performance does not vary as
much with the choice of . This issue needs to be investigated
further. As the MLE becomes too computationally intensive for
more than two sinusoids, we did not carry out the performance
evaluation via Monte Carlo runs for all SNR’s. However, the
threshold SNR for the MLE for the three sinusoid case was also
found to be about 1 dB. According to theory, it should achieve
the CRLB for all SNR’s above the threshold.

A. Analysis of Computation

In the MELE method, the two major sources of computations
involved are generation of the realizations of the frequency
vector and the evaluations of the function for the realized
frequency samples (see Section IV-B). In generating the
frequency vector, we have used the golden search to reduce

Fig. 8. Performance of the mean likelihood estimator for three sinusoids in
additive white Gaussian noise.

the computational burden involved. It required at most 24
evaluations of the cumulative distribution function per single
frequency realization. The computation involved in these two
steps is significantly less than that for the MLE, which for
the two-sinusoid case requires at least evaluations of
the likelihood function and at least evaluations for the
three-sinusoid case. This is because for a minimum frequency
separation of 0.02, a grid search for the MLE requires at least
100 grid points. Clearly, the computational burden of the MLE
increases exponentially with the number of sinusoids, whereas
for our technique, it does not. In particular, for the two simula-
tion examples considered, the number of frequency realizations
did not have to be increased exponentially to achieve the CRLB.
The two-sinusoid case required 2000 frequency realizations,
whereas the three-sinusoid case required 5000 frequency
realizations for good performance. In terms of FLOP’s, the
MLE required more than a factor of 17:1 for the two-sinusoid
case and a factor of 285:1 for the three-sinusoid case.

VI. OTHER PROBLEMS OFINTEREST

Although we have applied our approach to sinusoidal fre-
quency estimation in this paper, the method is more generally
applicable. Whenever the signal has linear as well as nonlinear
parameters and is embedded in white Gaussian noise, the MELE
approach can be applied. Some other examples follow.

1) Some extensions to the sinusoidal problem are the estima-
tion of parameters of superimposed chirp signals in noise
and the estimation of parameters for damped exponentials
in noise. The first of these signals is described as

Here, is linear with respect to the complex am-
plitudes and nonlinear with respect to the
sweep rates ’s and frequencies ’s. The MLE of

, , and requires first the MLE of the nonlinear
parameters, i.e., ’s and ’s, similar to the estimation
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of frequencies in the sinusoidal parameter estimation
problem. The MLE of the chirp rates ’s and the
frequencies ’s will, however, require a grid search.
Instead of the impractical grid search, the importance
sampling-based MELE can be implemented. Note that
the sinusoidal parameter estimation problem is a special
case of this in which the sweep rates’s are all zero.
The second estimation problem concerns damped sinu-
soids in noise or

where each signal is a complex decaying exponential.
Note that the sinusoidal parameter estimation problem is
a special case of this in which the magnitude of each of
the ’s is unity.

2) Maximum likelihood estimation of multiple attenuations
and multiple time delays in a multipath environment is an-
other example. The data in this case can be expressed
as

Here, the signal is linear with respect to the attenuations
but nonlinear with respect to the time delays.

3) Finally, as mentioned in the introduction, the DOA es-
timation problem can be solved using the proposed ap-
proach. This extension is currently under investigation.

In summary, the MELE procedure can be used for a wide
variety of signal processing problems of interest.

VII. CONCLUSIONS

Many important problems in statistical signal processing in-
volve the estimation of nonlinear as well as linear parameters
of signals in noise. In these cases, maximum likelihood estima-
tion reduces to a separable optimization problem. By applying
MELE, a reduction in estimator complexity has been achieved
while retaining the good performance of the MLE. Furthermore,
the method is not iterative in nature so that there is no question of
convergence or accuracy required of an initial iterate. Although
we have discussed mainly the sinusoidal frequency estimation
problem, the technique can be applied to many other nonlinear
regression problems. However, questions such as the best choice
of the importance function in calculating the mean likelihood
estimate will need to be investigated.

APPENDIX A
ASYMPTOTIC EQUIVALENCE OF MEAN LIKELIHOOD AND

MAXIMUM LIKELIHOOD FREQUENCYESTIMATORS

Consider the basic MELE using (26) or

for . Let , and as-
sume that . Thus, by definition, is the
MLE and is assumed unique. Then

Since is real, we can rewrite this as

or

Since , has a minimum at .
In addition, note that the Hessian of is positive definite
when evaluated at . Thus, by Laplace’s theorem, we have
as [5]

det

where is the Hessian, and denotes a com-
plex number such that for some constant . Noting
that the Hessian is real and positive definite and, thus, that the
determinant is a positive real number, we have that as ,

, where the latter is the MLE.
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