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Abstract—We address the problem of parameter estimation of
superimposed chirp signals in noise. The approach used here is a
computationally modest implementation of a maximum likelihood
(ML) technique. The ML technique for estimating the complex am-
plitudes, chirping rates, and frequencies reduces to a separable op-
timization problem where the chirping rates and frequencies are
determined by maximizing a compressed likelihood function that
is a function of only the chirping rates and frequencies. Since the
compressed likelihood function is multidimensional, its maximiza-
tion via a grid search is impractical. We propose a noniterative
maximization of the compressed likelihood function using impor-
tance sampling. Simulation results are presented for a scenario in-
volving closely spaced parameters for the individual signals.

I. INTRODUCTION

CHIRP signals are encountered in many different engi-
neering applications including radar, active sonar, and

passive sonar systems. The problem of parameter estimation of
chirp signals has received a great deal of attention [3], [6], [7].
These approaches have been proven to be effective in the sense
that they achieve the Cramér–Rao lower bound (CRLB). How-
ever, most of these approaches are designed for a single chirp
signal. Parameter estimation of superimposed chirp signals is a
difficult signal processing problem. The need for determining
the parameters of superimposed chirp signals arises in passive
sensor array systems, where it has been shown in [13] that
the problem of range and direction-of-arrival estimation for
moderately far, broadside targets reduces to that of estimating
the parameters of sums of chirp signals. Liang and Arun [12]
have also addressed an iterative maximum likelihood (ML)
approach to this problem. Rank-reduction techniques were used
to get good initial parameter estimates, which were then used
in an ML procedure to obtain the final estimates. Although the
approach has been shown to achieve good results at high SNRs,
there is no guarantee that the global optimum will be achieved.

Our aim in this paper is to develop a noniterative computa-
tionally modest implementation of a ML estimator for the chirp
signal parameters. To develop the estimator, we first show that
the data model involves estimation of linear and nonlinear pa-
rameters of a partial general linear model [1]. The complex am-
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plitudes form the linear parameter vector, and the chirp rates and
frequencies form the nonlinear parameter vector. The parameter
estimation problem becomes decoupled, where the nonlinear
parameter vector needs to be estimated first by maximizing a
compressed likelihood function involving only the chirp rates
and frequencies as unknown parameters. The complex ampli-
tude estimates are then obtained from the estimates of chirp rates
and frequencies. In this paper, we focus on estimation of chirp
rates and frequencies only. The straightforward implementation
of the maximization of the compressed likelihood function in-
volves a grid search that is impractical and whose computa-
tional complexity increases with the number of signals. To carry
out this maximization noniteratively, we use a global optimiza-
tion theorem proposed in [2]. This optimization algorithm has
been used for estimation of frequencies of multiple sinusoids
in noise [4]. This algorithm has also been used for the design
of sensor locations and shading weights of a sparse linear array
[5]. To efficiently implement the optimization, we use Monte
Carlo importance sampling [8]. It is observed that the technique
produces good estimates for the unknown parameters, even in
cases where the individual parameters are closely spaced. The
method achieves the CRLB for moderate and high SNRs. Fur-
thermore, the computational burden is quite modest.

II. PROBLEM DEFINITION

A sequence is observed having the
following parametric representation:

(1)

where the parameters, chirp rate( ), frequency
( ), and the complex amplitudes for
are unknown. The noise , is a segment of
a zero mean complex white Gaussian random process. The aim
is to obtain ML estimates of the chirp rate and frequency
for from for .

A. ML Estimation

The data described by (1) can be expressed in matrix form as

(2)

where is a vector given by ,
is a noise vector given by , and
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. The matrix can be expressed
as

(3)

where the vector is given by

...

(4)

where

(5)

and

(6)

Since the noise is assumed to be additive white Gaussian noise
with variance , the probability density function (pdf) of
the data vector in (2) parameterized by , , is given by

, which is equal to

(7)

Hence, the likelihood function of the data is given
by

(8)

The joint ML estimate of is obtained by maximizing
. From (7) and (8), this joint maximization is equiv-

alent to

The parameter vectors that appear in the matrix are non-
linearly related to , whereas the parameter vectoris linearly
related to . It is known that for such kinds of joint parameter
estimation problems, the parameter estimation procedure is de-
coupled [1], where estimation of the unknown nonlinear param-
eters is done first, and the estimated nonlinear parameters are
inserted in the matrix to obtain the linear parameters.
The estimates of the two nonlinear parameters are obtained as
[1]

(9)

The function in the right-hand side of (9) is called the com-
pressed likelihood function . It can be observed from
(9) that obtaining will require a multidimensional
grid search over the two parameter vectors. It is because of the

lack of closed-form solution that the proposed approaches for
these kinds of problems have been iterative. Pincus [2] showed
that for a function of several variables having many local
maxima, it is possible to have a closed-form expression for the
values of the variables yielding the global maximum. Motivated
by the result of [2], we develop a noniterative estimator for

.

III. GLOBAL OPTIMIZATION THEOREM

The theorem proposed by Pincus [2] is used to obtain the
maximum/minimum of a multidimensional function having
unique global maximum/minimum.

We apply this theorem to obtain the estimates ofand that
maximize the compressed likelihood function . Based
on the theorem [2], the estimatesand are given by

(10)

and

(11)

where is the normalized compressed likelihood func-
tion

(12)

and and are the th components of and . Although
the theorem states that the global optimum is attained for the
limiting case , it does not mean that the limit has to
be always very large. In fact, this limit is problem specific
and can be some finite number for a specific problem. If the
global optimum is attained for some value of finite, then it
will be attained for all values of above that finite value. It
can be observed from (10) and (11) that the theorem provides
a closed-form expression for obtaining the parameters that
maximize the function, but its evaluation requires computation
of a multidimensional integral. However, it can be noted that
the integrations involved in (10) and (11) are closely related
to integrations involved in probability theory required to
compute expected values of random variables. This is because
the normalized function is positive and has all the
properties of a joint PDF. This is because in (9), the matrix

satisfies the properties of a positive def-
inite matrix. Thus, , and hence, is positive.
However, the parameter vectorsand are not random. Thus,
the normalized function is termed a pseudo-PDF. Using this
concept, the Monte Carlo techniques can be used to replace the
multidimensional integrations in (10) and (11). The simplest
Monte Carlo approach would require generation of random vec-
tors and distributed according to the joint PDF .
However, is a highly nonlinear function of and .
As a result, direct generation ofand realizations is not easy,
and one needs to resort tootherMonte Carlo techniques [9] that
generate samples according to some simpler PDF and use those
samples to estimate the means. Importance sampling belongs
to this class of Monte Carlo techniques and has been proven to
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be a highly effective tool in evaluation of integrals in Bayesian
theory [8]. We thus use importance sampling described in the
next section to efficiently evaluate the estimates ofand .

IV. I MPORTANCESAMPLING

The importance sampling approach [9], [11] is based on the
observation that integrals of the type can be
expressed as

(13)

where is assumed to possess all the properties of a
PDF. is chosen in such a way that whenever

. Then, the right-hand side of (13) can be expressed
as the expected value of , with respect to the
pseudo-PDF . The function is called the normalized
importance function. Unlike , which, in general, is a
nonlinear function of , can be chosen to be some simple
function of so that realizations of can be easily generated.
Then, the value of the integral in (13) can be found by the
Monte Carlo approximation

(14)

where is the th realization of the vector distributed ac-
cording to the pseudo-PDF . The value of needed for a
good approximation depends on the choice of. Typically,
should be chosen similar to as this reduces the variance of
the estimate given by (14). However, another important point to
keep in mind when choosing is that it should be simple
enough so that can be easily generated [8].

The ideas expressed by (13) and (14) can be applied to the
estimation of and once the importance function for this
problem is defined. In particular, if the normalized importance
function is , then the estimates of the coordinates of the
vector and computed using this importance function are
expressed as

(15)

and

(16)

where and are the th realizations of the vectorsand
distributed according to the importance function .

A. Choice of Importance Function

The normalized importance function needs to be
chosen so that the samples and can be easily generated.
Furthermore, should be a close approximation to

. Since

it is obvious that is a compli-
cated function of and . However, if we force the matrix

to be an identity matrix, then the function
will become separable in and . This is the main

idea behind choosing the importance function. Thus, the
importance function is chosen by forcing the matrix

to be , where is a identity
matrix. To make the importance function similar to the function

, we choose the importance function as

(17)

and its normalized version as

(18)

Since , where
has been defined in (4), we can write as

(19)

or

(20)

where

As a result of this choice of in (17), the importance func-
tion now becomes separable inand and can be expressed as

(21)

where

Note that this normalized importance function is a reasonable
approximation to the target function . This is because
the matrix has its columns parameterized by ,
and for well separated pairs parameterizing the columns,
the matrix will be close to an identity
matrix at large number of points in the multidimensional plane.
This occurs because of the properties of complex exponentials
that exhibit approximate orthogonality for well-separated
parameters. This was the philosophy behind the choice of this
importance function. This enables generation ofindependent
samples of distributed according to the joint PDF

with the condition that no two of are the
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same. The realizations of for need to be
distinct. This assumption is necessary for this problem as other-
wise, the matrix will become singular, and
hence, the signal parameters are nonidentifiable. The allowable
ranges of and during generation are determined based
on the identifiability conditions of the problem. The allowable
range of and ensuring identifiability is and

. This is derived in the Appendix.
The variables and are now generated jointly using the

following three steps.

1) Evaluate the two-dimensional (2-D) joint PDF at
discrete set of points on a rectangular grid, and

obtain the marginal PDF as

for . and are the th frequency andth
chirp rate points, respectively, on the rectangular grid.
refers to the spacing between any two successive chirp
rate parameters sampled on the rectangular grid. As there
are such points, .

From the marginal PDF , obtain the cumulative
distribution function as

by approximating the integral as a sum.
2) From the marginal PDF so obtained in Step 1, ob-

tain the conditional PDF as

Evaluate the conditional cumulative distribution function
of the conditional PDF as

for all .
3) Generate , , and obtain

and . Repeat this step times
to obtain a realization of the vectorand , each of which
has dimension .

4) Repeat Step 3 times to obtain realizations of the
vector and . Since, in Step 3, the pairs are gen-
erated independently times, any two of them may turn
out to be the same, which is in violation of the identifi-
ability conditions of the problem. To avoid such a pos-
sibility, once is generated using ,
is generated by the same procedure of first generating

, except that now, is compared with
, where the set refers to all frequency points on

the grid except . This can be written in set notation as

(22)

Thus, is obtained as with allowable
values of being in the set given by (22). Continuing
in this manner, is generated in the same way as,
except that now, the set becomes

(23)

Thus, while carrying out the generation of th time
in Step 3, is obtained as

with allowable values of being the set given by (23).
The for each is obtained using .

This eliminates the possibility of any two of
being the same for to .

By generation of the pair using the above Steps 1–3,
it may appear that the vector no longer is generated from the
pseudo PDF because we have forced a condition of dis-
tinct . This would be true from a theoretical viewpoint.
However, by a choice of sufficiently large, the generation of
the pair will be closely distributed according to the de-
sired pseudo-PDF. This can be understood as follows: If the pair

is the th generated pair, then is the th gener-
ated pair. If , which occurs with high probability if
is large, then the generation will not involve any conditioning.
If happens to equal , then this conditional generation will
prevent from being equal to expected. However, then
will equal or . Again, for a large value of chosen

, this generation will be closely distributed according to the
desired PDF . Thus, a large value of prevents the es-
timator from being biased.

Now, these realizations could be used in (15) and (16) to ob-
tain the estimates that are essentially the linear means ofand

. However, we do not use (15) and (16). Rather, we make fur-
ther use of the periodicity properties ofand in reducing the
computations. Since and , are periodic with period 1 and
2, respectively, they posses the properties of a circular random
variable. We thus compute the circular means [10], [14] and ob-
tain the angle of the circular means to computeand . The
key idea in defining a circular mean is to average position vec-
tors [10]. The circular mean also alleviates the bias [14]. The
expressions for the estimates based on the circular mean defini-
tion are given by

(24)

and

(25)

Since the angle operation is invariant to multiplication by a con-
stant, (24) and (25) reduce to

(26)

and

(27)
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respectively. It should be noted that by using (26) and (27), the
normalizing constants are no longer required as a result of the
operator, thus reducing the computational burden considerably.
Since , from (20), (26) and
(27) are simplified to

(28)

and

(29)

Note that since (28) and (29) both involve computation of ar-
guments of exponentials that may be very large, computational
difficulties may result. Thus, instead of evaluating the numer-
ator and the denominator
for each individually, the computation is actually carried out
using

(30)

and

(31)

In (30) and (31), first, the difference argument
is evaluated for each, and then, the exponential

of the difference argument is computed. Use of (30) and (31)
eliminates the computation difficulties that arise due to large
arguments in the exponentials.

V. SIMULATION RESULTS

We present an example of estimation of parameters of two
equipower closely spaced chirp signals for which ,

, , , , and .
The data record length is 50. The value ofis chosen as 0.4,
and is chosen equal to 4. It has been observed that the estimates
do not change by increasingfurther. It should be noted that
the choice of and are highly problem specific. In theory,
should be as large as possible. The value ofshould be chosen
not too high but also not too low. This is because the choice of
too high a may result in domination of one signal compared
with the other, whereas too low a may result in contribution
of noise of strength comparable with the actual signals. How-
ever, the choice of is not a very sensitive issue. A judicious
choice helps in reducing the number of importance sampling
realizations . If a poor choice is made, then the number of
importance sampling realizations may have to be larger for
identical performance. Realizations of the frequency and chirp
rates using the three steps discussed in Section IV-A were gen-
erated with the spacing between each sample of frequency and
chirp rate being 0.0005. The number of realizationsneeded
to obtain estimates for all the simulations was 3500.

First, we show that the technique is able to resolve the two
closely spaced signals even for moderate and low SNRs. In

Fig. 1. Plot of true parameters and estimates for 100 realizations.

Fig. 2. Plot of mean square error versus SNR.

Fig. 1, we plot the estimates of and . The
-axis refers to frequency, whereas the-axis refers to chirp

rate. The true values are shown by circles. The estimate for 100
realizations is plotted. It can be observed that the technique is
always able to resolve the signals and that the estimates lie very
near the actual signal parameters. The SNR for this example was
chosen as 5 dB. The CRLB is attained for this SNR.

Next, we perform a Monte Carlo simulation for different
SNRs for the same example to determine the threshold SNR at
which the CRLB is no longer attained. There are 100 Monte
Carlo estimations performed for each SNR from 1 to 20 dB, and
the mean square error is computed for each. In Fig. 2, we plot

(mean square error) versus the SNR. A comparison
is made with the CRLB at each estimation. It can be observed
that below 3 dB SNR, the CRLB is no longer attained.

VI. CONCLUSIONS

We have developed a noniterative technique to estimate the
parameters of superimposed chirp signals. The important con-
tributions of the paper are the application of the global optimiza-
tion theorem, the use of importance sampling in efficiently im-
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Fig. 3. Region of interest for frequency and chirp rate obtained from identifiability conditions.

plementing it, and the use of circular mean concept in reducing
the computations. As a result of this, the technique does not
suffer from the problem of convergence to a local maxima as is
the case with iterative techniques. The threshold SNR for which
the technique yields optimal estimates has also been determined.
The main computation load of the algorithm is in the generation
of the samples of frequencyand chirp rate jointly. This in-
volved sampling over a grid of size 2000 2000. Apart from
this step the approach is not computationally intensive.

Using a direct ML approach, the computational load increases
exponentially with an increase in the number of chirp signals.
This is not the case using the proposed technique. If the number
of chirp signals is three, then the only additional step is in the
generation of the third pair . This step is computation-
ally modest. Apart from this, the total number of realizations
is expected to increase for optimal results but not exponentially.
This has been observed for a similar problem of multiple sinu-
soidal frequency estimation [4].

APPENDIX

DERIVATION OF REGION OF INTEREST OF

CHIRP RATE AND FREQUENCY

Since the parameterized chirp signal has the form
given by

(32)

the frequency parameter is periodic with period 1, and the
chirp rate is periodic with period 2, but since the frequency
and chirp rate appear in the argument of an exponential together,
the range and may not be the correct
allowable range that will permit identifiability. To determine the
allowable range that leads to identifiability, we proceed as fol-
lows. Let and be the two parametric
signals, with and . Now, it is required to
determine the values of for which the two parametric
signals and are the same. For

or

it is required that

or

integer for (33)
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Now, for

integer (34)

Since and

(35)

From (34) and (35)

(36)

or

(37)

For and satisfying (37), should be an
integer for other values of also. Thus, for

integer (38)

From (37) and (38), we have

integer (39)

but , Thus, from (39)

(40)

Thus, , and is the only possibility. Now, we
show that this choice ensures that .
For and

Since

As a result of this, the identifiability conditions of the problem
are determined by referring to Fig. 3. The value of in
regions I and III are symmetric with respect to the point O. The
regions II and IV do not exhibit any form of symmetry and, thus,
need to be examined individually. Thus, the regions that need to
be examined for the frequency and chirp rate jointly are regions
I, II, and IV. However, due to constraints imposed by narrow-
band chirp signal assumption, region IV may be excluded. This
is because the chirp rate parameter is very small and is in the
range of 10 to 10 . This can be understood by considering
the digital chirp signal to have been obtained by sampling a nar-
rowband analog chirp signal at a rate higher than Nyquist rate.
The equivalent digital rate reduces to a very low quantity in the
order of 10 . Thus, the regions of interest become regions I
and II.
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