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Maximum Likelihood Parameter Estimation of
Superimposed Chirps Using Monte Carlo
Importance Sampling
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Abstract—We address the problem of parameter estimation of plitudes form the linear parameter vector, and the chirp rates and
superimposed chirp signals in noise. The approach used here is afrequencies form the nonlinear parameter vector. The parameter
computationally modest implementation of a maximum likelihood estimation problem becomes decoupled, where the nonlinear

(ML) technigue. The ML technique for estimating the complex am- t t ds to b timated first b L
plitudes, chirping rates, and frequencies reduces to a separable op- parameter vector needs 1o be estimated Nirst by maximizing a

timization problem where the chirping rates and frequencies are compressed likelihood function involving only the chirp rates
determined by maximizing a compressed likelihood function that and frequencies as unknown parameters. The complex ampli-
is a function of only the chirping rates and frequencies. Since the tude estimates are then obtained from the estimates of chirp rates
compressed likelihood function is multidimensional, its maximiza- 5,4 frequencies. In this paper, we focus on estimation of chirp
tion via a grid search is impractical. We propose a noniterative . ’ . . .
rates and frequencies only. The straightforward implementation

maximization of the compressed likelihood function using impor- At o o
tance sampling. Simulation results are presented for a scenario in- Of the maximization of the compressed likelihood function in-

volving closely spaced parameters for the individual signals. volves a grid search that is impractical and whose computa-
tional complexity increases with the number of signals. To carry
l. INTRODUCTION out this maximization noniteratively, we use a global optimiza-

HIRP sianal tered i i N tion theorem proposed in [2]. This optimization algorithm has
. S|gna|s_ atrg enQOlendgre md manyt_ iherent englaen used for estimation of frequencies of multiple sinusoids
neering applications including radar, active sonar, an Eoise [4]. This algorithm has also been used for the design

passive sonar systems. The problem of parameter es'umatloni ensor locations and shading weights of a sparse linear array

SSIVE . . f
chirp signals has received a great deal of attention [3], [6], [ﬁ@ . To efficiently implement the optimization, we use Monte
ffo importance sampling [8]. It is observed that the technique

These approaches have been proven to be effective in the s
roduces good estimates for the unknown parameters, even in

that they achieve the Cramér—Rao lower bound (CRLB). Ho
WBes where the individual parameters are closely spaced. The

ever, most of these approaches are designed for a single ¢
signal. Parameter estimation of superimposed chirp signals I$8thod achieves the CRLB for moderate and high SNRs. Fur-
nl‘f?\eermore, the computational burden is quite modest.

difficult signal processing problem. The need for determini
the parameters of superimposed chirp signals arises in passiv
sensor array systems, where it has been shown in [13] that
the problem of range and direction-of-arrival estimation for
moderately far, broadside targets reduces to that of estimating\ sequence:[n], n =0, ..., N — 1 is observed having the
the parameters of sums of chirp signals. Liang and Arun [1&]llowing parametric representation:
have also addressed an iterative maximum likelihood (ML) »
approach to this problem. Rank-reduction techniques were used o . m; o
to get good initial parameter estimates, which were then used zln = ; Aiexp [‘]2” (fm + 2" )} +up] (1)
in an ML procedure to obtain the final estimates. Although the =
approach has been shown to achieve good results at high SNR®ere the parameters, chirp rate (0 < m; < 2), frequencyf;
there is no guarantee that the global optimum will be achieve@. < f; < 1), and the complex amplitudes; fori =1, ... p

Our aim in this paper is to develop a noniterative computare unknown. The noige[n],n =0, ..., N —1is asegment of
tionally modest implementation of a ML estimator for the chira zero mean complex white Gaussian random process. The aim
signal parameters. To develop the estimator, we first show th&to obtain ML estimates of the chirp rate; and frequency;
the data model involves estimation of linear and nonlinear plor: = 1, ..., pfromz[n]forn =0, ..., N — L
rameters of a partial general linear model [1]. The complex am-

A. ML Estimation
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0 =16 --- 6,]'. TheN x p matrixH(e, 8) can be expressedlack of closed-form solution that the proposed approaches for
as these kinds of problems have been iterative. Pincus [2] showed
that for a function of several variables having many local
H(a, B) = [e(a1, B1) - e(ap, Bp)] (3) maxima, it is possible to have a closed-form expression for the
values of the variables yielding the global maximum. Motivated

where theN x 1 vectore(q;, 3;) is given by by the result of [2], we develop a noniterative estimator for

r . m; 7 o .
exp(j2r (£(0) + ™ (0)?)) «h
. m; Ill. GLOBAL OPTIMIZATION THEOREM
B exp(52n (1) + 5 (1?)) . _ .
e(ai, i) = _ The theorem proposed by Pincus [2] is used to obtain the
maximum/minimum of a multidimensional function having
| exp (J27r (fz( ) + m; (N _ 1)2>> unique global _maX|mum/m|n|mu_m. _
- We apply this theorem to obtain the estimatea @ndg that
(4) maximize the compressed likelihood functibn(e, 8). Based
Where on the theorem [2], the estimatésandg are given by
a=[fi - f ©) @ =t [ [ @i paadp @0
and and = =
B=[mi1 - my. (6) [ﬂ} - lim/ / BT (e, B)dedB  (11)
g P70 oo —o0

Since the noise is assumed to be additive white Gaussian noise _ _ o
with variances?2, the probability density function (pdf) of WhereL;(a, g) is the normalized compressed likelihood func-
the data vectok in (2) parameterized b, 8, 8 is given by tlon

p(x; a, 3, @), which is equal to exp(pL.(a, B))

o |~ (x— Hla, £)0)" (x~ Ha. 99)] . () / o [ ewtoLiap) daas

and[a]; and[]; are theith components ofr andg. Although
the theorem states that the global optimum is attained for the
limiting casep — oo, it does not mean that the limit has to
Lie, B, ) x p(x; o, B, 6). (8) be always very large. In fact, this limit is problem specific
and can be some finite number for a specific problem. If the
The joint ML estimate ofx, 3, @ is obtained by maximizing global optimum is attained for some value of fingethen it
L(a, B, 8). From (7) and (8), this joint maximization is equiv-will be attained for all values op above that finite value. It
alent to can be observed from (10) and (11) that the theorem provides
a closed-form expression for obtaining the parameters that
min (x — H(a, 8)8)" (x — H(a, B)6). maximize the function, but its evaluation requires computation
o of a multidimensional integral. However, it can be noted that
The parameter vectotg g that appear in the matrid are non- the integrations involved in (10) and (11) are closely related
linearly related tax, whereas the parameter vecfois linearly to integrations involved in probability theory required to
related tox. It is known that for such kinds of joint parametercompute expected values of random variables. This is because
estimation problems, the parameter estimation procedure is thee normalized functior’’,(a, B) is positive and has all the
coupled [1], where estimation of the unknown nonlinear pararproperties of a joint PDF. This is because in (9), the matrix
eters is done first, and the estimated nonlinear parameters [Hé («, 8)H(«, B)] satisfies the properties of a positive def-
inserted in the matri¥I(c, B) to obtain the linear parameters.inite matrix. Thus,L.(«, 8), and hencel’(«, B) is positive.
The estimates of the two nonlinear parameters are obtainedHasvever, the parameter vectatsandg are not random. Thus,

12)

Hence, the likelihood function of the dala«, 3, 8) is given
by

[1] the normalized function is termed a pseudo-PDF. Using this
. concept, the Monte Carlo techniques can be used to replace the
|:&rnlea ﬂrnle:| multidimensional integrations in (10) and (11). The simplest

- - 15 Monte Carlo approach would require generation of random vec-
TR [X (H(a,ﬂ) [H" (a, p)H(a, f)] " H"(a, ﬂ))x} " torsa andg distributed according to the joint PDE, («, 8).
9) However,f;(a, B) is a highly nonlinear function of andg.
As a result, direct generation afandg realizations is not easy,
The function in the right-hand side of (9) is called the comand one needs to resortdtherMonte Carlo techniques [9] that
pressed likelihood functioth.(e, 3). It can be observed from generate samples according to some simpler PDF and use those
(9) that obtainindé; e, Bmle] will require a multidimensional samples to estimate the means. Importance sampling belongs
grid search over the two parameter vectors. It is because of thehis class of Monte Carlo techniques and has been proven to
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be a highly effective tool in evaluation of integrals in Bayesiait is obvious thatl!(«, 8) = exp(pL.(«, B)) is a compli-
theory [8]. We thus use importance sampling described in thated function ofa and 8. However, if we force the matrix

next section to efficiently evaluate the estimatesx@ind . H"(a, B)H(a, B) to be an identity matrix, then the function
L.(a, B) will become separable in and 8. This is the main
IV. | MPORTANCE SAMPLING idea behind choosing the importance function. Thus, the

importance function is chosen by forcing thex p matrix
The importance sampling approach [9] [ll] is based on t p(a7 B)H(a, B) to be NI, whgreIp |sgap x p identity

observatlgn that integrals of the tygle/(x) L(x)dx can be matrix. To make the importance function similar to the function
expressed as L (e, B), we choose the importance function as

[rregax= [ V& oawax (13 ga /J’)—eXp<p1x H(a, §) 1 B (o, f)x ) 17)

where g(x) is assumed to possess all the properties of ad its normalized version @Eéa )
PDF.g(x) is chosen in such a way thagtx) > 0 whenever

L'(x) > 0. Then, the right-hand side of (13) can be expressed (18)
as the expected value bfx)(L'(x)/g(x)), with respect to the / / B) dadp
pseudo-PDFj(x). The functiong(x) is called the normalized

importance function. UnlikeL’(x), which, in general, is a SinceH(a, B) = [e(ay, A1) --- e(ay, B,)], wheree(a,, 3,)

nonlinear function ok, g(x) can be chosen to be some simpl@as been defined in (4), we can write, B) as
function ofx so that realizations af can be easily generated.

Then, the value of the integral in (13) can be found by thga, 8)
Monte Carlo approximation

Z z[n] exp(—‘7'27r (fm + % n2))

n=0

p

B = exXp [pl Z %
(14)

1 & I’ (xx) iz
R D hix) 3(x)

k=1

|

(19)

wherex;, is the kth realization of the vectox distributed ac- or

cording to the pseudo-PDg{x). The value ofR needed for a i

good approximation depends on the choicg.dfypically, 7(x) gla, B) = [ explprI(c, 8] (20)
should be chosen similar #o(x) as this reduces the variance of =1

the estimate given by (14). However, another important point ¢ghere

keep in mind when choosing(x) is that it should be simple
enough so that ~ g(x) can be easily generated [8].

The ideas expressed by (13) and (14) can be applied to the
estimation ofa and 8 once the importance function for this
problem is defined. In particular, if the normalized importanc@s aresult of this choice gf(, 8) in (17), the importance func-
function isg(a, B), then the estimates of the coordinates of théon now becomes separabledrandg and can be expressed as
vector & and 8 computed using this importance function are

p
expressed as H o, B3) (21)

N1 2

% Z z[n] exp(—j27r (fm + % 712))

n=

I(ci, Bi) =

=1
A1 & L (alw ﬂk) where
=g i oy 09
and 9l Bi)

al l ) E(akv ﬂk)
B =% I ) (16)

exp[p1 (i, fi)]
// explp1d (e, B3i)] dey; dﬁ

Note that this normalized importance function is a reasonable
approximation to the target functiait, (e, B). This is because
the matrixH(«, 8) has its columns parameterized fy, 3),
and for well separatefd, 3) pairs parameterizing the columns,
the matrix [H” («, B)H(ex, B)] will be close to an identity
matrix at large number of points in the multidimensional plane.
The normalized importance functiof(a, 8) needs to be This occurs because of the properties of complex exponentials
chosen so that the samples and3,, can be easily generated.that exhibit approximate orthogonality for well-separated
Furthermore,g(e, B) should be a close approximation toparameters. This was the philosophy behind the choice of this
L'(a, B). Since importance function. This enables generatiop aidependent
samples of(«;, 3;) distributed according to the joint PDF
L.(a, B) =x"H(a, B) [H" (o, B)H(e, ﬂ)]_1 H"(a, B)x  g(as, B;) with the condition that no two of«;, 3;) are the

wherec;, andg,, are thekth realizations of the vectorsandg
distributed according to the importance functigfa, 3).

A. Choice of Importance Function
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same. The realizations of «;, ;) fori = 1, ..., pneedto be
distinct. This assumption is necessary for this problem as other-
wise, the matrixt* (a, 8)H(a, 8) will become singular, and
hence, the signal parameters are nonidentifiable. The allowable
ranges ofa; and 3; during generation are determined based
on the identifiability conditions of the problem. The allowable

Thus, a» is obtained asv, = G~!(w;) with allowable
values ofa; being in the sef given by (22). Continuing
in this manneryy, is generated in the same way @s,
except that now, the sét becomes

range ofa; andg; ensuring identifiability i < «; < 1 and

1 1
S:{O,M,...,].—M}—{Oél,...,ap1}. (23)

0 < B; < 1. This is derived in the Appendix. Thus,while c.arrying. out the generationaf, u, pthtime
The variablesy; and3; are now generated jointly using the in Step 3,a,, is obtained as
following three steps. ap = G (uy)

1) Evaluate the two-dimensional (2-D) joint P@Fy, 3) at

with allowable values of, being the sef given by (23).
Thef; for eachw; is obtained using; = G~ (uz ;).
This eliminates the possibility of any two dfy;, /3;)

M x M discrete set of points on a rectangular grid, and
obtain the marginal PDE(«) as

M being the same far = 1 to p.
g(oy) = Z Goa, Bi)6B; By generation of the paify;, 3;) using the above Steps 1-3,
= it may appear that the vector no longer is generated from the

pseudo PDlg(a, 8) because we have forced a condition of dis-
fori=1,... M. o; andp; are thelth frequency andth  tinct («;, ;). This would be true from a theoretical viewpoint.
chirp rate points, respectively, on the rectangular gitl. However, by a choice al/ sufficiently large, the generation of
refers to the spacing between any two successive chife pairg(a, 8) will be closely distributed according to the de-
rate parameters sampled on the rectangular grid. As thefged pseudo-PDF. This can be understood as follows: If the pair

are M such points¢f; = 1/M. (v, ) is theith generated pair, thefay;, /3;) is thejth gener-
From the marginal PDE(OQ) obtain the cumulative ated pair. Ifor; # «;, which occurs with high probability ifi/
distribution functionG;(«) as is large, then the generation will not involve any conditioning.
o If «; happens to equal;, then this conditional generation will
Gla) = / g(z) d prevents; from being equal to expected. However, thens;
0 will equal 3; + or — (1/M). Again, for a large value of chosen

by approximating the integral as a sum. M, this generation will be closely distributed according to the

2) From the marginal PDE(«;) so obtained in Step 1, ob- grisall:?rjffoDm@t()oelln?b;;zl; alarge value d¥f prevents the es-
tain the conditional PDRg(/3|«) as .
BAle) Now, these realizations could be used in (15) and (16) to ob-
B (B, o) tain the estimates that are essentially the linear meansaof
9(Brloa) = Tl B. However, we do not use (15) and (16). Rather, we make fur-
ther use of the periodicity properties®fandg; in reducing the
Evaluate the conditional cumulative distribution functiocomputations. Since; andg;, are periodic with period 1 and
of the conditional PDFg(j3|«) as 2, respectively, they posses the properties of a circular random
variable. We thus compute the circular means [10], [14] and ob-
P tain the angle of the circular means to compatandg. The
(Br|cu) (z]cu) kev idea in defini : - " .
o y idea in defining a circular mean is to average position vec
tors [10]. The circular mean also alleviates the bias [14]. The
forallk, 1=1,..., M. . expressions for the estimates based on the circular mean defini-
3) Generatay; ~ UJ0, 1], uz ~ U0, 1], anq obtalng = tion are given by
G~ Y(u1) andB = G~!(u2|a). Repeat this step times R _
; . ; R 1 1 . L (o, By,
to obtf';un a rgallzatlon of the vectarandg, each of which 6], =— /= Z exp(i2nfan];) = (e, Br) (24)
has dimensiom x 1. 2 R &~ glax, By)
4) Repeat Step 3t times to obtaink realizations of the 5.4

vectora andg. Since, in Step 3, the paifs, 3) are gen- (e, By)
erated independently times, any two of them may turn [} = _1_ ZeXp(J2 AR ) L (25)
out to be the same, which is in violation of the identifi- 9w, Br)

ability conditions of the problem. To avoid such a possijnce the angle operation is invariant to multiplication by a con-
sibility, oncea is generated using; = G~'(u1), @2 stant, (24) and (25) reduce to
is generated by the same procedure of first generating

u; ~ U0, 1], except that nowy,; is compared with 4, = 11 ZeXp 2rfan]) Zelor: Br) Li.(ar, By) (26)
G(S), where the sef refers to all frequency points on " 2 R glax, By)
the grid excepty;. This can be written in set notation asgy,q

G — {07 %7 1- %} —{ou}. (22) [ﬁl I%Z% kzexp( = [Bili ) ((ak,ﬂﬂkk)) 27)
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100 T T T T T T T T T

respectively. It should be noted that by using (26) and (27), the
normalizing constants are no longer required as a result of the
operator, thus reducing the computational burden considerabl ;
Since L’ (e, B;,) = exp(pL.(ay, B;,)), from (20), (26) and B O SO
(27) are simplified to o 5

Mean Square Error (mse) - Solid

Crarer Rao Lower Bound — Dash Dotted

—7""Chirp Rate

Xp(pLC(ak7 ﬂk))

[&] -1/ ER:eX (j2rfan];) =
i 9r"R P by kli exp(plf(aka ﬂk))

(28)

10log, o(1/ms;e)
3

and

~... Frequengy ... .........

g2 1 & o exp(pLe(an, By)) e S

B =-t% ;eXp(JZ 2 B0) e gy @ W B
Note that since (28) and (29) both involve computation of ar- s
guments of exponentials that may be very large, computatione , : : _
difficulties may result. Thus, instead of evaluating the numer- * 2 4 & & 10 12 14 1© % 2
atorexp(pL.(ay, B;)) and the denominatexp(p, I (au, B;.) SR <8)

for eachk individually, the computation is actually carried out  Fig. 1. Plot of true parameters and estimates for 100 realizations.
using

0.025 T T T T T T T T

R

R 1 .

@], = o / = E exp(j27[an);) f,=0.31,=082
k=1

'eXP(ch(ak7ﬂk)—p1](ak7ﬂk)) (30) 002f 01001 20002 - B o .

Coordinates of Signal = :
and intersaction of lines H, and V, v

2 1 & T
B, = 5w o e(izg ) _
k=1 Interspetion of lihes H, and V, 2

~exp(pL.(ar, B1) — p1l{aw, B))- (31) ooth i SO SR U NS SR i

In (30) and (31), first, the difference argumépL.(ax, 8;,) — : ;
p1I(ag, B,,)) is evaluated for each, and then, the exponential : , : Signal, Parameter Estimates

of the difference argument is computed. Use of (30) and (31 *™| e ’ [
eliminates the computation difficulties that arise due to large H

arguments in the exponentials. AT ; ; . . . ;

)
0 0.06 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
Frequency

0ABIE vt VPR e A

Coordinates of Signal, =

Chirp Rate m

$ignal | Parameter Estimates

V. SIMULATION RESULTS
. . Fig. 2. Plot of mean square error versus SNR.
We present an example of estimation of parameters of two

equipower closely spaced chirp signals for whidh = 1, Fig. 1, we plot the estimates @f, m1) and (fa, ms). The

= 0. = 0.001 =1 =0.32 = 0.002. . . .
fi = 0.3,m1 = 0001, 4y =1, f5 = 0.32, andmy = 0.002. =" oo frequency, whereas thexis refers to chirp

The data record length is 50. The valuepgfis chosen as 0.4, : .
andp is chosen equal to 4. It has been observed that the estiméf"te' The true values are shown by circles. The estimate for 100

. . tealizations is plotted. It can be observed that the technique is
do not change by increasingfurther. It should be noted that : . . )
X . o always able to resolve the signals and that the estimates lie very
the choice ofp andp; are highly problem specific. In theory, . .
; near the actual signal parameters. The SNR for this example was
should be as large as possible. The valug,athould be chosen

not too high but also not too low. This is because the choice %rfosen as 5 dB. The CRLB is attained for this SNR.

t00 hiah mav result in domination of one sianal compare Next, we perform a Monte Carlo simulation for different
0 igh ap, may >'9 omp gNRs for the same example to determine the threshold SNR at
with the other, whereas too lowg may result in contribution

of noise of strength comparable with the actual signals. HoWhICh the CRLB is no longer attained. There are 100 Monte

! ) e L S \ef_arlo estimations performed for each SNR from 1 to 20 dB, and
ever, the choice gf; is not a very sensitive issue. A judicious

choice helps in reducing the number of importance samplithe mean square error is computed for each. In Fig. 2, we plot

realizationsR. If a poor choice is made, then the number 018 log1g (”.‘ea” square error) Versus th_e SNR. A comparison
: . o Is made with the CRLB at each estimation. It can be observed
importance sampling realizatiod® may have to be larger for

identical performance. Realizations of the frequency and chitr%at below 3 dB SNR, the CRLB is no longer attained.

rates using the three steps discussed in Section IV-A were gen-
erated with the spacing between each sample of frequency and
chirp rate being 0.0005. The number of realizatiéheeeded  We have developed a noniterative technique to estimate the
to obtain estimates for all the simulations was 3500. parameters of superimposed chirp signals. The important con-
First, we show that the technique is able to resolve the tviidbutions of the paper are the application of the global optimiza-
closely spaced signals even for moderate and low SNRs.tion theorem, the use of importance sampling in efficiently im-

VI. CONCLUSIONS
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Chirp Rate(m)

0 0.5 1
Frequency(f)

Fig. 3. Region of interest for frequency and chirp rate obtained from identifiability conditions.

plementing it, and the use of circular mean concept in reducitite frequency parameteft is periodic with period 1, and the

the computations. As a result of this, the technique does rabtirp ratem is periodic with period 2, but since the frequency

suffer from the problem of convergence to a local maxima asasd chirp rate appear in the argument of an exponential together,

the case with iterative techniques. The threshold SNR for whitlie ranged < f < 1 and0 < m < 2 may not be the correct

the technique yields optimal estimates has also been determirsidwable range that will permit identifiability. To determine the

The main computation load of the algorithm is in the generati@lowable range that leads to identifiability, we proceed as fol-

of the samples of frequengyand chirp raten jointly. Thisin- lows. Lets; ,,,[n] and s;4p m+m[n] be the two parametric

volved sampling over a grid of size 20090 2000. Apart from signals, withd < f/ < 1 and0 < m’ < 2. Now, itis required to

this step the approach is not computationally intensive. determine the values @ff’, ') for which the two parametric
Using a direct ML approach, the computational load increassiginalss ; .,,[n] ands s 7 m4n[n] are the same. For

exponentially with an increase in the number of chirp signals.

This is not the case using the proposed technique. If the number sfmln] = S manv 1]

of chirp signals is three, then the only additional step is in the

generation of the third paff;, 5;). This step is computation- or

ally modest. Apart from this, the total number of realizatidhs ( (2 (

is expected to increase for optimal results but not exponential‘fff.p ST

This has been observed for a similar problem of multiple sinu-

. ! / ”2
soidal frequency estimation [4]. e <‘7 <27r [(f +fOn+ (m+mh) ?} + d)))

it is required that

oo )4

APPENDIX
DERIVATION OF REGION OF INTEREST OF m
. !
CHIRP RATE AND FREQUENCY exp <j27r <f n+ 5 n )) =1

Since the parameterized chirp signal,,,[n] has the form

given by or

/

sg,mln] = exp (j27r (fn + % n® + </))) (32) f'n+ m? n? =integer for0 <n < N — 1. (33)
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