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Convergence of the Multidimensional
Minimum Variance Spectral Estimator for

Continuous and Mixed Spectra
Steven Kay, Fellow, IEEE, and Lewis Pakula

Abstract—A proof of the pointwise convergence of the multidi-
mensional minimum variance spectral estimator as the region of
data support becomes infinite is given. It is shown that an octant is
sufficient to ensure that the minimum variance spectral estimator
will converge to the true power spectral density. The proof is valid
for 1-D, multidimensional, continuous, and mixed spectra. Another
useful result is that a normalized minimum variance spectral es-
timator can be defined to indicate sinusoidal power for processes
with a mixed spectrum. Finally, upper and lower bounds on the
continuous portion of the spectral estimate are given.

Index Terms—Signal resolution, signal detection.

I. INTRODUCTION

T HE minimum variance spectral estimator (MVSE), orig-
inally proposed by Capon [5], has found widespread use

in time series analysis and array processing [3], [7]. In the latter
case it is sometimes referred to as the minimum variance distor-
tionless response beamformer (MVDR) [7]. One of its important
properties is that it can be used to estimate the power spectral
density (PSD) in multiple dimensions and for arbitrarily spaced
data samples [6]. Thus, it lends itself nicely to spatial processing
and temporal processing or a combination of both. In practice,
only a finite region of data support is available. Thus, the ques-
tion of which region of support should be used naturally arises.
In order to be able to estimate the PSD without error as the size
of the selected region of support increases, it is necessary to
establish convergence results. Many convergence theorems are
available that address various types of spectra. For 1-D sinu-
soids in colored noise an elegant proof is given in [8], which
establishes convergence at the sinusoidal frequencies for a nor-
malized MVSE designed to locate these sinusoidal frequency
locations. For the usual MVSE, however, no convergence re-
sults are given for the continuous part of the spectrum. Further
results along these lines are presented in [9]. Finally, in [10] a
convergence proof for the sinusoidal frequency locations for the
multichannel mixed spectrum case is given for the normalized
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MVSE. Again no convergence results are given for the contin-
uous part of the spectrum for the usual MVSE.

In this paper we give a general proof that is quite straight-
forward, relying only on the definition of the MVSE, the use
of the Cauchy–Schwarz inequality, and widely known results in
Fourier series theory. The proof covers the following cases.

1) A continuous PSD, either 1-D or multidimensional.
2) A mixed PSD consisting of a continuous PSD component

as well as point masses (sinusoidal contributions), either
1-D or multidimensional.

From a practical viewpoint this covers all the cases of interest
except for the multichannel one. We believe that this last case
can also be proven in a similar way and hence would extend the
theorem in [10].

A useful result of this paper is the answer to the question of
an adequate region of data support to ensure convergenece. The
required region of support is the causal one in one-dimension
and a quarter plane (QP) region in two dimensions, i.e., this is
the availability of the data which for one dimension is for

, for two dimensions it is for
, and so forth. Then as in one

dimension and as in two dimensions, and so
forth, the MVSE will converge pointwise to the true PSD at the
frequencies for which the PSD is continuous. More generally
one requires an octant region of support in dimensions.

II. DEFINITION OF THE MVSE

For the sake of clarity consider the -dimensional MVSE
for and for , a region of support that we will
denote as (although this latter choice entails no loss of
generality). The extension to arbitrary is identical except for
a more complicated symbolism.

To define the MVSE we first note that it can be viewed as a
scaled version of the minimum variance of a linear unbiased es-
timator for the complex amplitude of a sinusoid [3]. In so doing,
it is assumed that the complex sinusoid is added to wide sense
stationary colored noise with PSD . The variance can
be shown to be given in filtering terms as

(1)

where is the frequency response of a linear shift in-
variant filter with constrained value and whose
coefficient support is over a QP as [3]

(2)
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The value of when it is minimized over all
subject to the constraint produces

the minimum value of the variance of the unbiased estimator.
Using this value the MVSE is defined as

(3)

Note that a scale factor of is used to convert the variance,
i.e., power, into a power spectral density estimator.

To show that this is indeed the MVSE, although possibly ex-
pressed in unfamiliar terms, we reformulate the MVSE for one
dimension. (For two dimensions the form of the MVSE in terms
of matrices can be found in [3]). Thus, we have from (1)–(3) that

where . Now let
, where denotes transpose, and

. Then it can
be shown that

where is the autocorrelation matrix and denotes
conjugate transpose. Hence, the MVSE is found by minimizing

subject to the constraint that .
The solution is well known to be

and when scaled by produces the MVSE as

(4)

which is the usual expression [3].

III. PROOF OF CONVERGENCE

The main theorem asserts that as in (4) the MVSE
converges to the true PSD at those points at which the PSD is
continuous. For the other points of a mixed spectrum, i.e., one
that contains point masses, the use of (4) will produce infinity
at the frequencies of the sinusoids. If one wishes to obtain the
powers of the sinusoids at the sinusoidal frequencies, then the
normalized version [3]

(5)

will produce the power of the sinusoids at the sinusoidal fre-
quency locations and zero for the frequencies at which the PSD
is continuous as .

Theorem 3.1 (Pointwise Convergence of the Multidimen-
sional MVSE): Let denote a multidimen-
sional power spectral density (PSD) given by

(6)

where is the continuous part of the PSD
and the remaining Dirac impulses represent the point masses at

. is assumed continuous
and periodic with period one in each variable, i.e., continuous
as a function on the -torus (with the basic frequency -cube
defined as

). It is further assumed that
.

Defining the MVSE as

and also defining the normalized MVSE as

then
1) See the bottom of the page, and
2)

Proof: The lower bound result used in the proof is based
on the work in [1] where it is used for the 1-D case. For sake
of simplicity in notation we consider only the 2-D case with the

-dimensional case requiring only a slight change in notation.
We break the proof up into two parts, the first for frequencies at
which the PSD is continuous and the second for the frequencies
at which point masses reside.

First consider a given arbitrary frequency at which
the PSD is continuous and hence is equal to . Let

be the frequency response that minimizes (1) sub-
ject to the constraint that . Then we have
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and defining

this becomes

with the second to last step due to the Cauchy–Schwarz in-
equality and the last step due to the increased output of the
filter due to the sinusoidal contributions. Now let

, which is just

and is recognized as the 1-D Fejer kernel. As a result we have
from above that

Note that the product of two 1-D Fejer kernels can be written
as the 2-D Fejer kernel [2] so that we have

(7)

a lower bound on the MVSE.

Next, let and note that it
satisfies the constraint since its Fourier transform is

and therefore . As a result,
can be no

smaller than and therefore

Thus, we have that

and finally, we have bounded the MVSE as

(8)

The multidimensional Fejer’s theorem [2] states that for a
continuous function we have the limit

Also, for , it is known that

(9)

Now because is continuous and bounded away from
zero by assumption, is also continuous, and there-
fore Fejer’s theorem applies. As a result the limit of both sides
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of the inequality in (8) is and thus by the sandwich
theorem [4]

for all for which is continuous.
Next assume that is at a point mass, say .

Consider an arbitrary such that .
Then,

Hence, for all and there-
fore

and clearly approaches infinity as . This completes the
proof for the usual MVSE.

Next consider the normalized version of the MVSE used to
locate the sinusoidal frequencies. From (8) for a frequency at
which the PSD is continuous we have

(10)

Since the integral converges by the previous results and using
(9) we see that the right-hand-side converges to zero. On the
other hand, for a frequency corresponding to a point mass, say

, we have that

since . Finally, from (10)

As before the right-hand-side converges to zero except for the
last term, which is . This completes the proof.

IV. UPPER AND LOWER BOUNDS ON THE MVSE

Note that from (8) upper and lower bounds for the MVSE for
the frequencies at which the PSD is continuous can be written
as

and noting that both bounds represent 2-D convolutions we have

(11)

The 2-D Fejer kernel is given by

and clearly as produces a 2-D Dirac delta function
necessary for convergence. However, for finite , bounds can
easily be obtained using this expression. It is clear that from (11)
the bounds will be tighter when the PSD has a small dynamic
range. In the extreme but uninteresting case of ,
where is a constant, it is seen that the bounds are the same
and are both equal to .
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