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Multidimensional Probability Density Function
Approximations for Detection, Classification, and
Model Order Selection

Steven M. Kay Fellow, IEEE Albert H. Nuttall, and Paul M. Baggenstoddember, IEEE

Abstract—This paper addresses the problem of calculating the ~ Since the introduction of methods related to the class-specific
multidimensional probability density functions (PDFs) of statistics method [5]-[7], the WGN hypothesis has become increasingly
derived from known many-to-one transformations of independent ety This is because WGN is seen not as a hypothesis to be
random variables (RVs) with known distributions. The statistics . .
covered in the paper include reflection coefficients, autocorrela- eXp!'C'tIY te.Sted but, ra,ther'_ as,a refere,nce hyPOtheS's florlcon'
tion estimates, cepstral coefficients, and general linear functions of Verting likelihood tests into likelihood ratio tests in a way similar
independent RVs. Through PDF transformation, these results can to the “dummy” hypothesis of Van Trees [8] and then taking ad-
be used for general PDF approximation, detection, classification, vantage of sufficient statistics on a class-by-class basis. In par-

and model order selection. A model order selection example that . ; ; ; ;
shows significantly better performance than the Akaike and MDL ttl);u(g:"ntpe:rtilr?g t?épl?ktzﬁﬁfotj ?g?g;sfég)agczgrzfﬁgr:;p“Shed

method is included.
Index Terms—Classification, class-specific features, PDF estima- p(x|Hy) S p(x|Hz) 0
tion, sufficient statistics. p(x[Ho) ~ p(x|Ho)

wherep( ) denotes a PDF, anH), is any reference hypothesis,

such as the WGN case. By finding class-specific sufficient sta-
N THIS paper, we present approximations of multidimenisticsz; = 71(x) andz, = T»(x), (1) can be reduced to the
sional probability density functions (PDFs) for statistics dg-R comparison

rived from the standard normal distribution. Let= T(x),

wherex is a vector of independent and identically distributed p(z1|H1) ; p(z2|H2)

(iid) samples of zero-mean Gaussian noise of unit variance. The p(z1|Ho) = p(z2|Ho)

feature extractiorfunction7’( ) can be any useful set of statis- .
0 y vherez; must be sufficient fod; versusHy, andz, must be

tics. The challenge is to accurately evaluate the joint multidf?

mensional PDF of. The results must be valid everywhere in_sufficient forHs versusH. Note that only the low-dimensional

cluding the tails of the PDF. We show that the results can be U%LHnerator PDFs ”?‘ed to be approximated from training data.
to approximates(x|H; ) for an arbitrary alternative hypothesis learly, the denominator PDR&z,|Ho) and p(zx|Ho) must

H;. This approach has applications in detection, classificatio%e
and model order selection. M

|I. INTRODUCTION

)

evaluated, which is the topic of this paper. The extension to
hypotheses is obvious.
In a later development, atheorem that extended the class-spe-
cific approach to the case when sufficiency of the statistics could
not be guaranteed was introduced [9], [10]. This latter theorem
The distribution of statistics derived from purely whiteyllows the PDF of a set of statistics to be converted into a PDF
Gaussian noise (WGN) have been studied in the past; hoyf-the input data. More precisely, let = T1(x) be any mul-
ever, applications have been limited because WGN is rarglfimensional set of statistics derived from the raw dataet
encountered in practice. An important application of the WGMZ1 |H1) be an approximation to the PDF »f under hypoth-

condition is as the null hypothesis in testing for colored noisgsisH, . Then, the PDF ok underH; can be approximated by
Tests for colored noise based on the periodogram [1] and serial

i i _ i R x|H,
autocorrelation function [2]-[4] have been studied. Plx|HL) = [P( |Ho, 1)
p(z1|Ho,1)
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good approximation tp(x|H1). In particular, ifz; = 71 (x) is  (RVs) that are all Gaussian of zero mean and unit variance. The
approximately sufficient for distinguishing; from H, 1, and feature set whose distribution we seek is denated 7'(x) =

p(z1|Hy) — p(z1|Hy), thenp(x|H,) — p(x|H,). [21 --- 2], whereM < N generally.
Approximate sufficiency can be formally defined by the rela-
tionship Il. SOME EXACT SOLUTIONS
p(x|Hy) p(z1|Hy) For some transformations = T'(x), the exact joint PDF of
p(x[Ho 1) = p(z1|Ho 1) z can be derived. Some of these transformations can be seen

_ _ _ - o as special cases of more general problems for which we have
although in practice, approximate sufficient statistics are oBerived approximations. Therefore, they can serve as important

tained not always by mathematical analysis but, often, by expest cases for the more general results (especially in the tails).
rience and intuition. If approximate sufficient statistigan be

found,p(x| H;) can be approximated simply by choosing a suitA. Order Statistics

able reference hypothesif 1, then approximating(z: | H.), Order statistics are important features in classification.
and finally converting this PDF into a PDF gfusing (3). This  gxamples of order statistics are the three largest FFT bin
represents a new general method for PDF approximation adgnitudes or the median ¥ sample values. The joint
statistical hypothesis testing. Using (3), a classifier may then gyripytion of a collection of order statistics is easily found for
constructed using class-specific features i.i.d. RVs. [12]. ConsidetV iid samples derived fronx using

. . A p
p(x|Ho,1) | . < [ p(x|Ho,2) ] . a transformationw,, = 7T'(z,). Definew = [wy --- wn]’.
|:p(z1|H071) Bzl Hy) > p(z2|Ho, 2) DzalHz) () | o y 2 [y -+ yn]’ be obtained fromw by sorting into

ascending order. Leg 2 [21 -+ 2p] be a subset ofy.

wherez; = T (x), andz> = T>(x). The extension td/ classes Specifically, z1 = ., 22 = y 23 = Un.., where

is obvious. This classifier requires PDF estimates with dimep”_" '~ n’2“< 21;1];4 N T e

sion only as high as the Iarggst. set of ;tatistics gnd not as h'gr[et Py (w) andp,, (w) be_the.cumulative distribution func-

as the t.otal number of a!l statistics, asin a cla_ssmal clas§|f|ert.on (CDF) and PDF ofu,,, respectively. Then, fabf = 2, for
In this paper, we limit ourselves to a particular choice O(ixample the joint PDF is

reference hypothesis, namely, the WGN case denoteHJy '

Choosing the WGN hypothesis fdf, has many advantages. ,_(z, z,)

First, an analytic solution fqr(z| Hy) is often tractable. Second, N! (1)
the condition of positivity is always met. Third, the sufficiency = (n1 — 1)!(ns — n1 — DN — ny)! [Poo(21)]
requirement against WGN is itself often a sensible requirement. (na—n1—1)

Finally, the solutions for the WGN case provided herein can Polz)l 'w(ZQ),_ Pu(z1)] Pu(72)

often be easily modified for arbitrary Gaussian-based distribu- L= Poy(z2)] V),

tions. When a common reference hypothesis is used, the cla

fier simplifies to %('t_ending this to arbitrary orde¥{, consider then;th, noth,

-- -, nysth-order statistics, where

p(x[Ho) | . < [ p(x|Ho) | .
—_ H —_ H>). 5 e
[p(Z1|Ho) p(z1|Hy) > p(z2Ho) P(z2|Ho) ) 1<n <ng < <npy <N
This classifier is identical to (2), but it has a different interprd©!lows the joint PDF
tation.
pz(zla 2y v ZM)
N!

B. Need for Accurate PDF Approximations in the Tails — ' ' ' ¥ '
—D(ne—n1—D(ng—no—1)! --- (N—np)!
Becaused, is a fixed reference hypothesis determined prior (n1=1)}(n2 =1 =1)(ng=n,—1) (N=n)

ny—1 ng—nyi—1
to the measurement of data, it is possible that the actual data - [P (21" pun(20)[Pus(22) = P21 )
lies on the distant tails of the PDFx|H,). This is also true - Pu(22)[Puw(23) = Py (22)] "¢ ™2 Dy, (23) - --
at the output of the feature transformations. Thus, it is possible . [1_Pw(zj\l)](N_nM)pw(75]\4)- (6)

that bothy(z,| Ho) andp(z2| Ho) approach zero simultaneously.

Therefore, accurate tail approximationg6#;| Hy) are needed ~ We consider two cases.

for meaningful results. 1) When{z, } are real Gaussiat¥(0, 1) RVs andw,, =
Commonly-used approximation methods such as the central |z, |, then{w, } are Chi(1) (chi-distributed with 1 degree

limittheorem (CLT) do not provide accurate answers inthe tails.  of freedom), and we have, (w) = (2/\/%)@—102/2 and

In this paper, we apply the multidimensional saddlepoint ap- P, (w) = erf(w/y/2) for w > 0.

proximation (SPA) [2], [11], which can provide accurate PDF 2) When{x,} are complex Gaussia@N (0, 2) RVs and

tail estimates. wy, = |7,|%, then{w, } are Chi-squared(2) (chi-squared
_ with 2 degrees of freedom), and we hayg(w) =
C. Notation (1/2)e*/? and P,,(w) = 1 — ¢=*/2 for w > 0.

In the remainder of the paper, the raw input data= Using these forms foP,,(w) andp,,(w) and (6), we can eval-
[z1 --- zn]" is a set of independent real random variablasate the desired PDFs far Calculation involves some delicate
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numerical problems, especially in the tails; however, these can ’yﬁ) ’y](»f) ’y](»lp)

be successfully dealt with, often by resorting to exceedance dis- Q@ r)
tributions instead of cumulative distributions. L o T T T
B(j1, j2 -+ jr) =
B. Autocorrelation Function and Reflection Coefficients (‘1) (‘2) ('P)

A widely used model for signal processing applications is the Ve Yie T e
autoregressive (AR) filter driven by white Gaussian noise [13]. 1 %(U %@ ,y](P)
The infinite length autocorrelation function (ACF) completely O @ )
describes such processes. However, practical signals have an . . v v v,
autocorrelation function that either decays to zero or is periodic\/1 2 ** Jr) = ' H '

Thus, a finite number of autocorrelation samples often provide A, deeeie : : :
adequate information to characterize the process. In short, a set 1 %(}13) %(? %(}1:)
of autocorrelation samples can be approximaseiificientfor

testing statistical hypotheses concerning the process. where

There are many ways to compute an autocorrelation estimate(k) o1 )
[13]. These methods are asympotically equivalent for lavge 75 = = 08 <ﬁ Jk) J=L2--mk=12-P
but differ significantly for smallV. We will concern ourselves
with one particular ACF estimator because an exact formula canf'he regionSp(71, 72 - -+ 7p) is the convex polyhedron in
be found for its PDF, which is due to Watson [14]. In particuladt” formed from the vectors

we use the normalizegircular autocorrelation samples. Let L (1

0 ,YJI ,YJP
- Tk 2 2
Tk:%’ k=1...P (7) 0 ,y](l) ,y](P)
where (j
() ()
1 N Vi Vip
™= (zi = Z)(Timp — T) or the convex polyhedron of the vectdig; , x; -+ xp41} is
i=1 the convex set formed by the linear combination
and P41

N Z ;X
i=1

_ 1
=g s | |
=1 whereq; > 0,andy; " a; < 1. AMATLAB implementation

and we definery,; = ;. Assume thatV is odd so that Of (8) is provided in Appendix A. o
n = (N — 1)/2 is an integer. Then, the exact joint PDF of 1) Experimental Verification:To validate the analysis, it is
{71, 7o Fplis useful to compare the derived PDF with experimental values.

The above analysis can be verified experimentally by comparing
o ~ ['(n) a scatter plot of the first two normalized circular ACF estimates
p(71, 72 - 7p) = T(n—P) Z Z o Z with an intensity image of the PDF obtained from the program.
Fig. 1 shows such a comparison f§r= 9 samples. The figure
illustrates that for smallv, the range of possible ACF values
occupy regions with linear boundaries in the plane. The shape
of the PDF itself atV = 9 is a tetrahedron.
2) Reflection CoefficientsDue to the one-to-one transfor-
G e e mation linking the normalized autocorrelation coefficients with
q(J1, Jo jr) . . . . -~
sgridet(BGr, g -+ jr)][det@A (i, jo -+ jr))]*—T—" the reflect|(_)n coefficients [_13]_, it is possible to ytlllze the_ E'_;\bOV?
= £ L - results to find the exact distribution of reflection coefficients;
det(C(j1, g2 -+~ Jp)) however, this applies only when thicular autocorrelation co-
efficients (7) are used. Consider the transformation

(41,42 = jp)ESP(F1, T2 - Tp)

~q(j1, g2 -+ gp) (8)

where

and sgifz) = 1forz > 0, = —1forz < 0,and= 0forz =0,
and the matriceA, B, C are ofd|mep5|omP+ 1) x (PJ_F 1), (K, - Kp| = Ti(7 -~ 7p)
Px P,and(P+1) x (P+1), respectively. They are defined as

where {K;} are the reflection coefficients. The joint PDF

1 “; 722 7? p(K;1 --- Kp) requires knowing the Jacobian of the transfor-
o ‘ 1 fy](l) fy](l) fy](l ) mationT; ( ), which is
A(ji, j2 - jr) = P-1

- oL oo /o — P Vo1 — K2,
ORISR ogJi = 3 (P —i)log(1 - K7)
ip jp Jjp =1
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Fig. 1. (Left) Comparison of (8) with (right) a scatter plot of experimental data points. Autocorrelation estimates were compubédHréreamples. Notice
the “hole " at (0,0), where the exact PDF cannot be computed.

Thus Letz = [z --- 2] be anM-dimensional real random
o vector with joint MGFg.()\) = E{exp(Xz)}, where vector
logp(Ky -+ Kp) =logp(f1 -+ 7p) +1ogJi. A = [\ --- Ay]’. Then, the joint PDF of: at the M-dimen-

. o AM - O
3) Log-Transformed Reflection CoefficientBecause the SNl pointu = [u; --- uy]" is given by theMth order con-
reflection coefficients are subject to the constraitt| < 1, urintegral

the joint PDF ofp(K; --- Kp) is discontinuous and difficult 1 ,
to approximate using standard techniques such as Gaussian p=(uw) = (i2m)M /CeXp(_)‘ w)g-(A) dA ©)
mixtures [15]. A better-behaved set of features is obtained by
the one-to-one mapping where: = +/—1, and theM-dimensional contout” is par-
allel to the imaginary axis in each of thd dimensions ofA.
K, =log <1 - Kk) ) The joint cumulant generating function (CGF)fs c.(\) =
1+ Ky log g.(A). The most usefuM -dimensional saddlepoint (SP) of
The log of the Jacobian of this transformation is the integrand of (9) is that real poiit = A(u) in M-dimen-
sional space where allf partial derivatives satisfy
r
2
10g JQ = - Z 10g <—1 — K2> . acZ(A) =u,, for 1 <m< M. (10)
k=1 k 8)\m A
Thus When the contou€' is moved inM dimensions to go through
log p(K. -+ K') = log p(K1 -+ K1) +1og Jo. the real SPA and the change of variable
A=A+it,  t=[t -t (11)
[ll. SADDLEPOINT APPROXIMATION (THEORY) is made, (9) becomes
The class of statistics for which the exact PDF is known is u o , <
relatively limited. For a broader class of statistics, the exact moP=(w) = (27)™" exp(-A u) / exp(—it'u)g. (A + it) dt
ment generating function (MGF) is often known. The problemis (12)

that inversion of the MGF transformation to find the exact PDF
may not be possible in closed form. For these cases, we can wbere the newl -dimensional contour passes through the SP
an approximation that provides accurate tail PDF estimates.att = 0.
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The logarithm of the integrand of (12) can be expanded inpmint. Experience has shown that even in the tails, the errors

power series about the origin= 0 according to tends to be in the “mantissa” rather than in the “exponent.”
R There is no reason why additional terms in the expansion
log{exp(—it'u)g.(A +it)} cannot be obtained. In fact, additional terms of the expansion
= —it'u+ cZ(XJrz‘t) have been derived for some important cases including linear

~ —it'u+ c.(A) +it' Ve, (A) — %t’CZ(X)t (13 functions of independent RVs and are available in an NUWC
technical report [16]. These terms can be used not only to pro-

where theM x M matrix vide additional accuracy but as an indication of the validity of
) the first-order SPA as well. Issues of SPA accuracy are treated
A [ e (N) . - )
C.\) = | 2 (14) in more detail in the technical report.
i OO,

is symmetric inm andim; for all A. Thus, using (10) and (13), C. Linear Functions of Independent RVs

the integrand of (12) can be approximated as In many signal processing applications, linear transforma-
tions are made on a set of non-Gaussian but independent RVs.

exp(—it/u)gz(j\ +it) ~ exp [CZ(S\) — % t’CZ(;\)t} (15) Examplesinclude Fourier analysis of the squared magnitudes of
a set of real or complex time samples, autocorrelation estimates
for small [t|. If this approximation is now extrapolatedadl t (by the FFT method), and cepstrum estimates. These problems
and substituted in (12), there follows the usual saddlepoint (@n be posed in the form = Ay, wherey,, = T,(z,), and
tilted Edgeworth) approximation (SPA) i dimensions [11] A is anM x N matrix. Note that RVYy, } are independent
A » but not necessarily identically distributed. The output veetor
exp [cz()\) —-A u} 00 1, . is of lengthM, whereM < N; thus, the transformation is not
@M / exp [ t Cz()\)t} dt one-to-one. Let the MGFs and CGFs of R¢s, } be denoted

p-(u) =

[ Ry ¥ f’ {gn(v)} and{c,(v)}, respectively. That is

exp |c.(A) —Au o

= . —173 A= AW). (16) gn(v) =E{exp(vgn)},  ca(v) =loggn(v)
(2m)M72 [det(C. (V)] fori<n< N (18)

where H } denotes an ensemble average. The weighted sum of

A. Finding the Saddlepoink(u) independent RVs of interest is given by
To obtain the SPA (16), the real SiPu) satisfying (10) must N
be found. The SP may be found using the Newton—Raphson Zm = Z GmnYn fori<m< M (19)
iteration n=1
Antt = An 4 KO ) (U — (M) (17) whereM < N, and theM x N real matrix[a.,] is arbitrary,

except that it must have ran¥ .
where0 < x < 1 is a step-size parameter. The zero vector The joint MGF of RVs{z,, } is, upon use of (18) and (19) and
A =1[0,0--- 0] can always serve as a starting point becausee independence of RVgy,, }
it is always in the ROC. At each iteration, the new value\pf M
must be tested to see if it is still in the ROC and modified if A
gz()\l T )\J\l) =E {eXP < )\rnzrn> }
necessary. —
If the search for the SP is confined to the real axes in multi- M N
dimensional (MD) lambda space, it can be shown that the Hes- —E {exp < A Z amnyn> }
sian matrix of the joint cumulative generating function (CGF) I
is positive definite for all real lambda inside the MD region of N M
definition of the joint MGF. This means that the MD integrand = H E {exp <yn Z amn)\m> }
has a bowl-like behavior with a single minimum in this real MD n=1

m=

m=1

space. Thus, the Newton—Raphson search procedure will always N

find the single minimum if conducted in an “appropriately slow” = H In(bn(N)) (20)
fashion and if the search is constantly confined to the region of n=1

definition. wherex = [A; -+ Ay]’, and

B. Accuracy of the SPA

The accuracy of PDF approximations can be experimentally
determined in the tails if an exact formula is available for some
special case. We use this approach whenever possible in whiaat is
follows. N

Becausg the SPA is based on a series expansion of the MG_F g-(A) = H gn(ba (V). (22)
at the SP, its accuracy depends on the shape of the MGF at this o}

M
baN) 2 > Gmndm  fOri<n <N (21)

m=1
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The joint CGF of RVs{z,,} is, using (18) where the ROC is defined by
N
c:(A) =logg-(A) = > cn(bn(N). (23) Z Amlmn <1,  forn=1--- N,
n=1 m=1
There follows, by reference to (21) Taking derivatives

N N —1
a(‘;;\nl Z anlnc for 1 S m S M. (24) 864 Z Amn <1 - Z Al@ln)

n=1

Finally, the M simultaneous equations that must be solved for form=1-.. M.

the M -dimensional saddlepoirit are The second derivatives are

: . N —2
A Chy (b (X)) = 2m, forl<m< M (25) A%c, (A
nzz:l ( ( )) ( ) Z 1- Z )\laln (apnarnn)

OAnOA,

wherez = [z --- z)/] are the particular values at which the for 1 g m,p< M (29)
joint PDF of RVs{z,,} in (19) is to be evaluated. The second-

order partial derivatives required to obtain the SPA follow frorffom which we can construc¥ x M Hessian matrixC’ (A).
(21) and (24) as Finally, we useC, (), ¢.(A) in (16).

2) Real RVs:When {z,} are real zero—mean Gaussian
. N(0,1) RVs, the distribution ofy, = |z,|* is x? with 1
Zam"am nCn(bn(X) forl<m. m* <M. gegree of freedom: thug, (y) = x2(y, 1). Thus,g,(\) =
(26) 1/4/1—2X, where A < 0.5. Similar to the complex case,

Once saddlepoink is found from (25), it can be substituted in"Ve havegn()\) = gy(A) = 1/v1—2X, wherel < 0.5. We
(26), and thel x M Hessian matrix can be evaluated at thBavecy(A) = logg, (M) = —(1/2) 108(1 —2)) for A < 0.5.

a)\nla)\nl*

saddlepoint, namely;’. (A). Substituting this into (23)

IV. APPLICATIONS OF THESADDLEPOINT APPROXIMATION c.(A) =logg.(A Z log <1 -9 Z )\mamn>
A. Linear Sums of Magnitude-Squared Gaussian Random m=1
Variables where the ROC is defined by

An important set of statistics are weighted sums of Chi- "
squared RVs. Specifically, statistics of the form Z Ao a < 0.5 forn=1.--N

7 m=1
Fm = Z Amn¥n, forl <m<M @7) Taking derivatives
-1
wherey,, = |z,|? and wherer,, is a real or complex Gaussian 8c4 _5 1 o \
RV, are frequently encountered in signal processing. Included - Z Gmn | =~ Z {%in
are least-squares polynomial approximations of magni- for L<m< M
tude-squared time series, Fourier analysis of squared time - =
series or FFT output bins, and two-dimensional (2-D) Fourig,e second derivatives are
analysis of images or spectrograms. Such statistics are widely
used in feature-based classification problems. We consider both 52, -(A) J b -2
the case when RV§r,, } are real and whefi,, } are complex. I oN Z 1-2 Z Aain (4apnamn)

1) Complex RVs:Assume thaf,, } are complex zero-mean " n=1 =

Gaussian CN(0,1) RVs ang, = |z,|. Then,y, are expo- forl <m,p<M

nentially distributedp, (y) = e~¥. Alternatively, we may say
thatu = 2y has the Chi-squared distribution with 2 degrees
freedom, which are denoted,(u) = x*(u, 2). Thus,p,(y) =
2p.(2y).

Since MGFg,,()) is not a function ofz, we write g, (A) = .
9,(N) = 1/(1=\), where\ < 1. We have,(A) = log g, (\) = mMatrixform
—log(1 — A) for A < 1. Substituting this into (23)

Srom which we can construct Hessian matfix(\).

3) Experimental Validation:To validate the above results,
especially in the tails, it is necessary to find a case for which
the exact result is known. Notice that (27) may be written in the

z=Ay

c-(A) = log g-(A Z log | 1— Z Moo (28) vv_hereA isa g_eneral fuII-ranIM x N matrix. A class of ma-
trices A for which the exact joint PDF af can be calculated is

m=1
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-3

described by Nuttall [17]. A special case of this more gener *1°
class is the following. Let . . e e m e e ar s

u=Ayy 2 i

where

20 20 --- 20
Ar=1g9 2 0 2 0 2|
Clearly thenu; andu. are independent. Furthermore, for the
case of Section IV-Aly; andwus are chi-square RVs withV
degrees of freedom. Thus, it is straightforward to write dows -1} .
the PDFp,(u). The above can be generalized if we linearl

transformu using a general full-rank two-by-two matriX..

A Log—PDF Approx. error

Let = l
z=A Ay = Au. s . . . . . .
14 ~12 -10 -8 -6 4 2 o
.. . True log—PDF val 4
Then, the joint PDF of will equal eleTR ke x10
1 1 . - . . . .
P (z) — pu(Ag z)| det(A2)| . Fig. 2. PD_F estimation error for _SPA in the far t_a||s using data generated with
random variance. The vertical axis shows the difference between the log-PDF
We tried this approach wittv = 128 and \{alues of the SPA and the exact expression. The errorHv2age-3 most of the
time, except for one occurrence ef2.6e-3.
1 2
Ay = |:2 1:| . .
Since{z,} are real, it follows thalX y_;, = X} for1 < k <
and {y;} derived from complex-valued data, as iV —1; howeverX,andXy,, are always real.
Section IV-A1. Define the set ofV real spectral quantities

The experiment was designed to probe the tails of the PDF.
This was accomplished by generating data using a variance dif- )
fering from one (the assumed PDF). In the experiment, 1000 Case Il (Cepstrum): Vi = log|Xy

L >
data samples aefwere generated using ~ CN(0, °), where for0 <k < N —1andN even. Then¥x_, = Y; for 1 <

2 H _ 2
o” was chosen randomly according 48 = w? and where < N — 1. Finally, perform an inverse FFT back into the

w ~ N(0, 100). The SPA error was determined by comparing,_~ . . .
: . - me domain to get the ACF or cepstrum estimates, respectively,
with the exact expression. The results are shown in Fig. 2. The .
X according to

error was approximately-0.0026 for all samples except one,

Case | (Autocorrelation): Y3, = |Xi|?

(1)

for which the error was-0.0026. It is unclear why this pat- N-1
tern occurred. Notice, however, that this very low approxima-, = Z Yy exp(i2rkt/N), for0<t<N-—-1. (32
tion error occurred in the deep tails whésg p.(z) is as low as k=0

—140000. The accuracy that is obtained by the SPA method de- ) .

pends ultimately on the accuracy of the integral approximatiéi?” Cas€ lw: are autocorrelation estimates (scaledy),
(15) and the accuracy to which the saddlepoint itself is deté?d for Case I, they are cepstrum estimates (also with a special
mined. These, in turn, depend on the matAixas well as the SC&lN9). _ _ _
univariate MGFsy, (). Issues of the approximation accuracy Expression (32) can be written purely in terms of real vari-
have been studied by Nuttall [16]. In particular, additional ternfPles

of the power series expansion (13) can be obtained for the case N/2

of the linear function ofid RVs. wy = Z ex cos(2rkt /N)Yy, foro <t< N/2 (33)
k=0
B. Cepstrum and Autocorrelation Estimates (Noncontiguous)
Itis possible to represent the cepstrum and autocorrelation ggere
timates as linear functions of a set of independent (but notidenti- A (1, for k=0andN/2
cally distributed) RVs, allowing the results of Section IlI-C to be €L = {2 for 1<k<N/2-1 } : (34)

used. Recall that samplé¢s; },0 < ¢ < N —1 are independent

identically distributed (iid) real Gaussian RVs with zero meamhe remainder of RV§w, } can be found, if desired, from the
and unit variance. The corresponding complex Fourier coeffelationwy_, = w, forl < ¢t < N — 1.

cients are defined as Complex RVs{X}} in (30), for0 < k£ < N/2, are all in-
g\ 1/2N-1 dependent of each other, due to the white Gaussian statistics of
X = <N) Z zy exp(—i2nkt/N) {z:} that were assumed. We let
t=0

forO< k<N -1. (30) Xy =U + Vi for0 <k < N/2. (35)
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Then,Vo = 0, V2 = 0, and
E(U3) =2, E(UXn) =2 EUD=EV])=1 (36)

forl < k < N/2 — 1. All these{U}} and{Vi} RVs in (35)

are independent of each other and are Gaussian zero mean.

express (33) in the compact form

N/2
we =Y anYy, foro<t< N2 (37)
k=0
where
a2 e cos(2rkt/N), for0 <t, k < N/2. (38)

In (37), all of the{Y%} RVs for0 < k£ < N/2 are independent

of each other because all of the RYX;.} for0 < k& < N/2
are independent of each other.

1) Case |—Autocorrelation Estimate$irom the informa-
tion above, it is seen that RU&§ andUz, ,, if scaled byl/2,

have a chi-squared distribution with 1 degree of freedom. The

x2(1) PDF isp(u) = (1/2v/27)(1/2)~*/? exp(—u/4) for u >
0, with MGF ¢g(v) = 1/4/1 —2v for v < 0.5. It follows that
without the scaling, the MGF is

o(e) = 0(20) = —=—.

In addition, RVs(I/2 + V;2), for 1 < k < N/2 — 1, have PDF
exp(—w/2)/2 for w > 0, with MGF

for v < 0.25. (39)

forv < 0.5.

(40)

In compact notation, define the MGFs of all thiE, } in (37)

for k=0andN/2

A go(v)a }
) = . 41
9iv) {gl(v), for 1<k<N/2-1 “1)
Then, the corresponding CGFs for tfig, } in (37) are
ci(v) = log g™, (v)
_ { co(v) =log go(v), for k=0andN/2 }
e =logg(v), for 1<k<N/2—1J"
(42)

Now, we will consider a subset of all té {w;} RVs origi-

nally defined in (32) and then manipulated into forms (33) a

(37). In particular, consider only the set

N/2

we=> anYr, fort=t, - ty, M < N/2+1 (43)
k=0

2247

Write this expression as

N2
Zm= buYy forl<ms<M (45)
k=0
Where
Zm = Wt , brnk = O,k
fori<m< M, 0<k<N/2 (46)

Let vectorA = [A; - - Ay] and random vectoe =
[21 --- zp] . The joint MGF of theM -dimensional vectogz is

g:(A) =E{exp (Nz) }

M
=E {exp <Z )\rnzrn> }
m=1

M N/2
—E {exp (Z A Z bkak> }
m=1 k=0

N/2 M
= H E {exp <Yk Z bm,k)\m,> }
k=0 m=1
N/2
=TI gi(d2) (47)
k=0

where we used the independence of RW¥% } [see (39)—(41)]
and defined

M
M) 2 > bk,

foro <k < N/2. (48)
m=1
The joint CGF ofz follows, from (42) and (47), as
N/2
cz(A) =logg-(A) =Y ci(d (M) (49)
k=0

The partial derivatives of interest are

N/2
g !
T c-(A) = kz_o bk (de(X)),  forl<m <M
(50)
where we used (48) to determine
%dk()\) = b, forl<m< M 0<k<N/2.

(51)

The M simultaneous equations that must be solved for saddle-

Rpint A are, from (46) and (50)

N/2
S an, e} (dk (,\)) —w, , forl<m<M, M<N/2+1

k=0

(52)
where{w,  } are the particulat values of RVs{w;} and
where the joint PDF of the ACF estimates is of interest. We also

where{t,.,} areM arbitrarydistincttime instants in the interval haye, from (50) and (51)

[0, N/2]. That is

N/2

wy, =Y a,1Ye  forl<m< M. (44)
k=0

» z
_ CZ(A) = bnllkbnlzkcz//(dk(A))
Do Do s

forlgml,mQSM. (53)
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The MGFs for{Y},} were presented in (39) and (40). The func i ! 1
tions required in the SPA are

go(v) =1/v/1 — 4w
co(v) = —0.51log(1 — 4v)

) =
CO(U) - 1 _ 4U : :
1 8 " ) By 5

and g™

40) =1
Clll(r(}) = ﬁ (55) g v N “| Gia ...-u-. .

2) Case Il: Cepstrum Estimatessrom the information Fig. 3. _ Co_mpar_ison of the method o_f Section IV-B2 with a Gaussian mixture
above, it is seen that R\l$02 andUﬁ,/Q have PDFeXp(—u/4)/ approximation with standard normal input data.
(4mw)t/? for w > 0. In additon, RVS(U? + V;2), for 1 <
k < N/2 — 1, have PDFexp(—u/2)/2 for u > 0. It follows which has been validated experimentally. The approaches differ
that RVsY; and Yy, have PDFexp(u/2 — ¢*/4)/(4m)'/2  inthe choice of matrbA and the fact that RV§y, } are not all
for all u, whereas RV, for 1 < k& < N/2 — 1, have PDF identically distributed.
exp(u — ¢*/2)/2 for all «. This immediately leads to the In spite of that, it is still a good idea to validate the analysis
common MGF forY, andYy /s, in the form with another entirely different approach. To do this, we used
a Gaussian mixture (GM) PDF approximation using simulated
go(v) 2 4Tw+1/2)/m  for—1/2<w (56) data. While a PDF approximation obtained from simulated data
cannot test errors in the tails, it can at least validate the PDF in
the neighborhood of the peak. With this in mind, the method of
Section IV-B2 was tested using a noncontiguous set of cepstrum

whereas the common MGF féf,, 1 <k < N/2—1is

A v
g(v) =2T(w+1)  for—1<w. (57)  coefficients. We took 4000 independent samples of a set of eight
. : . cepstrum outputs from a size-1024 cepstrum. The cepstrum in-
;Pee functions required for the SPA for the cepstrum estlmatgexes werdt:} = {2, 5 8, 11, 12, 13, 14, 15}. The cepstrum
processor was eXC|ted with R\{s ,} from the standard normal
go(v) =4 (U +1/2)/\/7 ?istribcl;’aolr;b'll;he ;1_00(?{ eig[gthtitu_I[or:es wereolljs:[ed as traincijntg data
—v loe T 1/9 1/9) oo ora estimator . The same data was used to pro-
c?(v) 0g(4) +log I'(v +1/2) = (1/2)log(m) duce Fig. 3. In this plot, we evaluated the log-PDF for each data
co(v) = 108( )+ (v+1/2) sample. The log-PDF from the GM approximation is plotted on
e (v) =9’ (v+1/2) the z axis, and the value from the method of Section IV-B2 is
) (v) =¢"(v+1/2) plotted on they axis. Ideally, all data points should fall on the
A (v) =9 (v +1/2) (58) = =Y line. The plot shoyvs good_ a_greemen_t, congideri_ng the
and fact that the PDF approximation is in a relatively high dimen-
Y sion. The errors increase in the tails; however, this is due to the
g1(v) =2°I(v + 1) mixture approximation and not the SPA.
c1(v) =vlog(2) +log(v + 1) o
¢, (v) = log(2) + (v + 1) C. Other Applications
d'(w) =2’ (v+ 1) T_he SPA is applicable when(-_zver the MGF or CGF_ can t_)e
7 (0) =" (6 + 1) derived. The SPA has been derived for additional statistics in-
v =y v cluding correlated and non-Gaussian statistics [16], [19].
cf"(v) =" (v+1) (59)

. . . V. OTHER ASYMPTOTIC METHODS
wherez is the psi function (see [18, Sec. 6.3 and 6.4].

3) Experimental Validation:Exact solutions to validate the A- Reflection Coefficients and Autocorrelation Estimates
unnormalized ACF estimates (Section IV-B1) and Cepstrum d&ontiguous)
timates (Section 1V-B-2) have not yet been worked out; there-For largeN, an asymptotic form is available for the reflection
fore, approximation error cannot yet be determined. Note, howaeefficients, which is due to Daniels [2]. LEK; --- Kp|' be
ever, that the basic approach is the same as Section IV-Ale reflection coefficients derived from the Levinson recursion
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on[7 --- 7p] [13]. The general form for the asymptotic (large
N) distribution of[K; --- Kp]’is the following. Let ° o

N\ log N-1 °
¢y = logT <—> BT gD <—> I
2 2 2

2
N-1
ce = logl'(N +1) — Nlog2 —logl <T>

N+3
—10gF<T+>.

Let n. be the largest integer less than or equalPi®, and let
n, be the smallest integer greater than or equat f8. Then

Log--PDF Approximation Error

logp(K, --- Kp) °
e N -3
:Z{Ce+210g(1+K2i)+ 108‘(1—K22i)}

i=1
N-3

_4 1 L n L 1
=70 -60 -50 -40 -30 -20 -10 [ 10
Exact log-PDF vatue

(1 — K2
10g(1 KQZ—l)} " Fig.4. Comparison of theoretical and approximate PDF for normalized ACF
estimates.
(60)

As explained in Section II-B2, the normalized autocorrelvhereH p is the hypothesis corresponding to ordgrmay be
tion function estimates are related to the reflection coefficienf§plemented using the class-specific approach. Applying (3),
by a one-to-one transformation [13]. The PR, --- 7p) re- We have

+ Z {Co + 10g(1 + KQi_l) +

=1

quires knowing the Jacobian of the transformation from ACF to H
flecti fficient | g max 221 LT) (63)
reflection coefficients, namely P plzp|Ho)
r—1
log J = — Z (P —i)log(1 — K2) where we have assumed thdtH ) is a constantH, corre-
= e sponds to the case of iid Gaussian noise, zpds a sufficient

h statistic for the ARP) process. Of course, this assumes we have
us the prior knowledge of(zp|H p). Itis interesting to note, how-
logp(y - 7p) =log J +logp(Ky, Ko --- Kp). (61) ever, that the denominator term in (63) usually has a dominant

effect on the decision. In fact, Kay [6] has shown that omission
. N of the numerator in (63) and using the rule

B. Experimental Validation
We can compare the approximation_ fotry, 72 - -_fp) arg max 1

from Section V-A with the exact expression from Section II-B. P p(zp|Ho)

In order to evaluate tail accuracy, independent samples were . . .
4 P P Bwplements the conditional model estimator (CME), which

passed through an AR filter of order 4 to make them correlatdd]! - L
s been shown to outperform the minimum description length

The AR filter coefficients were chosen at random by selecti :
DL) rule [7]. However, (63) should be an upper bound in

reflection coefficients from a uniform distribution in the rang )
[—1,1] and then transforming to AR coefficients and acperformance due to knowledge of the numerator PDF (which

samples. Two-hundred independent trials were computed. THg call thea priori PDF ofzp). _
log-PDF value from the exact method of Section II-B was e now test formulas (63) and (64) and compare with the

plotted on theX axis of Fig. 4, and the difference between thékaike and MDL method [13]. As an approximate sufficient
log-PDF from (61) and the exact expression is plotted orrtheStatistic for an ARP) process, we use the vector of circular ACF
axis. The error was quite small (less than 1 in magnitude) feptimates (7), which is denoted

samples with log-PDF values abovel0 but increased in the ip

tails. This could reflect errors due to an inherent assumption r = [f1/Fo, F2/o -+ Tp /7ol .

of independence. Note, however, that the errors are acceptable ] ) )
even at very low values of log-PDF. In the experiment, we generate an AR process with knéwm

therangd < P < 4. We utilize odd data record lengthsdf=
11,13,15,17, 21,127, and 255 with 1000 independent trials for
each combination of?, N. In each trial, the AR process is de-
) o termined by randomly selecting the reflection coefficients (RCs)
Consider the problem of determining the ordeof an au-  from a uniform distribution onf1,1]. The only restriction was
toregressive process, which is denoted RR(The MAP rule 4t thePth RC had to be greater than 0.2 in magnitude (to make
sure the data model was truly of ordej. The RCs were then
arg mf}Xp(H rlx) = mﬁXp(X|H P)p(Hp) (62)  converted into AR coefficients, and an AR process was created

(64)

VI. APPLICATION TO AUTOREGRESSIVEAR) MODEL-ORDER
SELECTION
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by filtering independent Gaussian noise. The model order selec- TABLE |
tion was accomplished by determining the best fit of the giveﬁESULTS FORP = 1. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT
approach ovet < P < 5. We compared the following ap- N CS-RC CME-ACF Akaike MDL
proaches: 11 853 656  60.5 685
* CS-RC: Class-Specific Using R8ecause the RC esti- 13 87.4 69.5 621 728

mates are related o by a one-to-one transformation,

: . . . 15 87.0 712 666 789
they are equivalent from a sufficiency point of view. We

may approximate the PDF of the RC estimat@s”|H ) 17 884 745 684 BL7
by the PDF of the true RCs used in the experiment. This 21 90.2 784 700 85.8
approach should provide somewhat of an upper bound of 127 96.4 94.2 744 96.7
performance since it makes use of knowledge not avail- 255 97.0 96.5 751 976
able to the other methods. LE” 2 [Ky, K, --- Kp]'

be the vector of RC estimates. Equation (63) becomes TABLE I

RESULTS FORP = 2. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT

max p(K71Hr) (65) N CS-RC CME-ACF Akaike MDL
9 ~ - - 1Ke
P p(KP|Ho)
11 28.2 382 278 269
with (61) used to approximate the denominator PDF. We 13 32.4 40.8 304 30.3
. . ", r _ .y . .
used the_ prior density gf(K |Hp)_ = 27", WhICh is 5 404 473 356 368
the density used for the true RCs in the experiment. We . 4L 81 87 380
ignored the effect of the constraif( | > 0.2 and the : ’ : :
fact that the RC estimatds do not in fact have the same 2 53 570 483 488
density as the true RCs. 127 6.3 86.5 67.8  86.0
« CME-ACF—CME Approach Using ACEmplementing 255 93.8 95.1 70.8  94.1
CME usingr”, (63) becomes
1 TABLE Il
max ——— (66) REesULTS FORP = 3. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT
r ’:,P
p (r |H0) N CSRC CME-ACF Akaike MDL
with (61) used to approximate the denominator PDF. H 92 177 15 100
« Akaike Method (Circular ACF)The Akaike method is 13 150 203 163 147
15 21.0 27.9 234 210
min {N log 63 + 2P} (67) 17 247 209 275 223
21 33.3 36.9 336 204
wheres 4 is the estimate of the power of the white noise 127 829 859 647 832
driving sequence computed from the ACF estimates 055 26.6 208 652 873

using the Levinson algorithm [13]. Theircular ACF
estimates were used.

+ Minimum Description Length (MDL)The MDL method TABLE IV
. RESULTS FORP = 4. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT

is

N CS-RC CME-ACF Akaike MDL
min { Nlog 67 + Plog N} . (68) 11 6.6 85 155 122
Results of the experiment are provided in Tables -1V for true 1 i 1056 14 136
value of P ranging from 1 to 4. It is difficult to compare the per- 15 106 133 204 146
formance of the various approaches based on just one value of 17 16.2 166 236 174
true P. This is due to biases that cause a given approach to per- 21 24.1 259 319 256
form better at a particulaP and worse at another. For example, 127 797 747 63.8 728

the Akaike method is biased toward a higher valu€ @ind thus
255 804 841 652 810

appears better a@ = 4 for low values of N. Average perfor-
mance (averaged ové?) is plotted in Fig. 5. The results show
that atlowV, the CS-RC and CME-ACF methods outperformedot significant compared with CME-ACF, although it appears to
both the MDL and Akaike methods consistently by about 3%lways outperform the CME-ACF method by a small amount.
At high &V, all methods were similar, except the Akaike method;he CS-RC approach, which has some prior knowledge of the
which is known to be an inconsistent estimator of model ordetistribution of the RCs, provided better performance most of
The advantage of the known prior in the CS-RC approach wdme time than the other approaches; however, it appears to fall
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100 function pdf = corrpdf(  r, N)
%%%%%%% %% %% CORRPDF.M %%%%%%%%%%%%%%%%
“r % function pdf = corrpdf (r, N) %
sl % Code developed by S. M. Kay, 1998 %
% Modified by P. M. Baggenstoss %
ol %%0%%%%%% %% %% %% %% % %% %% % %% %% %% %% %% % %%
r = r();

M =length (r);
if round ((N-—1)/2)=(N-1)/2,

60

Probability of Correct Model Order, Percent

sof error(* N must be odd”);
CME-ACR- —% —* end
a0 Akaike A b- A 1 n=(N-1)/2
MDL  o- & o lambda =zeros( n, M);
o g 1 for j=1:n
lambda (j, ;) = cos (2% pi*j*[1 : M|/N);
220‘ 1‘02 end

Number of data samples sm = 0,

for j1=1:n

sm=corrloop( j1,r, lambda, sm);
end;
below CME at highV. This can be explained by the fact thapdf=sm xprod (n — [1: M]);

the CS-RC approach, while it has prior knowledge, is only @%%9%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%

Fig. 5. Model order selection results averaged dver 1-4.

approximate MAP implementation. % subroutine corrloop %
%6%6%6%%%%%6%6%%% %% %% % % % % % %% %% %% %% %% %% %%
function term = corrloop(idx , r,lambda ,term);

VII. CONCLUSIONS [(n, M] =size(lambday;

In this paper, we have provided approximations to the joimt = length(idx);
multidimensional PDFs of some important statistics in signédl (m >= M),
processing, including autocorrelation estimates, Cepstrum es- B =lambda(idx, 1: M);
timates, and general linear functions of independent RVs. Al- alpha = B'\r;
though the approaches we have used can, in principle, be used if min (alpha) > 0 & sum(alpha) < 1,
for any input data hypothesis, we have provided examplesin= [1+/; ones (M, 1) BJ;
which the input data is assumed to be iid samples of Gauss@a=det (A);
noise. Because these approximations are valid in the tails of the= 1,
PDF, they can be used in conjunction with the PDF projectidar j = 1: n
theorem (3) to provide PDF estimates of the input raw data for if sum (5 ==idx) == 0,
real-world statistical hypotheses. An application of the method D =1 lambda (4, 1: M); ones (M, 1) B];
has provided an AR model-order selection approach that out- C = Cx(det (D)/da);
performs the MDL and Akaike methods. The model selection end
approach is quite general and can, in principle, be applied to ae1yd
model-order selection problem, provided there exists a well-derm = term +det (A)"(—1)*sign (det (B))/ C;
fined approximate sufficient statistic or approximate sufficient end
statistic for each model order. else,
for ¢ =idx( m)+1: n,
term =corrloop ([idx ; ¢],»,lambda ,term );
end;
end;

APPENDIX

A. MATLAB Implementation of Equation (8)

The functioncorrpdf(r,N) below returns the PDF value
for an inpUt vector = [fl ”'fp]/’ which has been obtained [1] G. M. Jenkins and D. G. WattsSpectral Analysis and Applica
from N mput data samples. Th_e program requife$o be odd. tions San Francisco, CA: Holden-Day, 1968.

The algorithm becomes numerically unstableffogreater than  [2] H. Daniels, “The approximate distribution of serial correlation coeffi-
about 30, and it is slow. A faster version, using arbitrary preci- __ cients,"Biometrika pp. 169-185, 1956. . . .
. ith ic. has b . in C. which ds i [3] M. H. Quenouille, “The joint distribution of serial correlation coeffi-
sion arit mepc, as een written in C, whic extgn S Its use- cients,”Ann. Math. Stat.vol. 20, pp. 561-571, 1949.
fulness to higherV (as high as 500 has been tried success-[4] E.J. HannanMultiple Time Series New York: Wiley, 1970.
fully); however, it is still somewhat impractical. The usefulness [5] P- M. Baggenstoss, “Class-specific features in classificatitBEE
fth is in the f hat th bl lid h Trans Signal Processingol. 47, pp. 3428-3432, Dec. 1999.
of these programs is in the fact that they are able to validate thgg) s kay, “Sufficiency, classification, and the class-specific feature the-
asymptotic form to be presented in Section Ill. orem,”|EEE Trans. Inform. Theorwol. 46, pp. 1654—-1658, July 2000.
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