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Multidimensional Probability Density Function
Approximations for Detection, Classification, and

Model Order Selection
Steven M. Kay, Fellow, IEEE, Albert H. Nuttall, and Paul M. Baggenstoss, Member, IEEE

Abstract—This paper addresses the problem of calculating the
multidimensional probability density functions (PDFs) of statistics
derived from known many-to-one transformations of independent
random variables (RVs) with known distributions. The statistics
covered in the paper include reflection coefficients, autocorrela-
tion estimates, cepstral coefficients, and general linear functions of
independent RVs. Through PDF transformation, these results can
be used for general PDF approximation, detection, classification,
and model order selection. A model order selection example that
shows significantly better performance than the Akaike and MDL
method is included.

Index Terms—Classification, class-specific features, PDF estima-
tion, sufficient statistics.

I. INTRODUCTION

I N THIS paper, we present approximations of multidimen-
sional probability density functions (PDFs) for statistics de-

rived from the standard normal distribution. Let ,
where is a vector of independent and identically distributed
(iid) samples of zero-mean Gaussian noise of unit variance. The
feature extractionfunction can be any useful set of statis-
tics. The challenge is to accurately evaluate the joint multidi-
mensional PDF of . The results must be valid everywhere, in-
cluding the tails of the PDF. We show that the results can be used
to approximate for an arbitrary alternative hypothesis

. This approach has applications in detection, classification,
and model order selection.

A. Motivation and Previous Work

The distribution of statistics derived from purely white
Gaussian noise (WGN) have been studied in the past; how-
ever, applications have been limited because WGN is rarely
encountered in practice. An important application of the WGN
condition is as the null hypothesis in testing for colored noise.
Tests for colored noise based on the periodogram [1] and serial
autocorrelation function [2]–[4] have been studied.
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Since the introduction of methods related to the class-specific
method [5]–[7], the WGN hypothesis has become increasingly
useful. This is because WGN is seen not as a hypothesis to be
explicitly tested but, rather, as a reference hypothesis for con-
verting likelihood tests into likelihood ratio tests in a way similar
to the “dummy” hypothesis of Van Trees [8] and then taking ad-
vantage of sufficient statistics on a class-by-class basis. In par-
ticular, testing hypothesis against can be accomplished
by comparing the likelihood ratios (LRs) according to

(1)

where denotes a PDF, and is any reference hypothesis,
such as the WGN case. By finding class-specific sufficient sta-
tistics and , (1) can be reduced to the
LR comparison

(2)

where must be sufficient for versus , and must be
sufficient for versus . Note that only the low-dimensional
numerator PDFs need to be approximated from training data.
Clearly, the denominator PDFs and must
be evaluated, which is the topic of this paper. The extension to

hypotheses is obvious.
In a later development, a theorem that extended the class-spe-

cific approach to the case when sufficiency of the statistics could
not be guaranteed was introduced [9], [10]. This latter theorem
allows the PDF of a set of statistics to be converted into a PDF
of the input data. More precisely, let be any mul-
tidimensional set of statistics derived from the raw data. Let

be an approximation to the PDF of under hypoth-
esis . Then, the PDF of under can be approximated by

at (3)

where is a fixed reference hypothesis chosen specially for
. According to Theorems 1 and 2 of [9], (3) isalwaysa

PDF; thus, it integrates to 1 over for any reference hypoth-
esis and any transformation , provided
meets a mild positivity requirement [9]. More precisely, we must
have whenever . While no addi-
tional requirements are needed for to be a PDF, the pair
( , ) should be chosen carefully so that is a
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good approximation to . In particular, if is
approximately sufficient for distinguishing from , and

, then .
Approximate sufficiency can be formally defined by the rela-

tionship

although in practice, approximate sufficient statistics are ob-
tained not always by mathematical analysis but, often, by expe-
rience and intuition. If approximate sufficient statisticscan be
found, can be approximated simply by choosing a suit-
able reference hypothesis , then approximating ,
and finally converting this PDF into a PDF ofusing (3). This
represents a new general method for PDF approximation and
statistical hypothesis testing. Using (3), a classifier may then be
constructed using class-specific features

(4)

where , and . The extension to classes
is obvious. This classifier requires PDF estimates with dimen-
sion only as high as the largest set of statistics and not as high
as the total number of all statistics, as in a classical classifier.

In this paper, we limit ourselves to a particular choice of
reference hypothesis, namely, the WGN case denoted by.
Choosing the WGN hypothesis for has many advantages.
First, an analytic solution for is often tractable. Second,
the condition of positivity is always met. Third, the sufficiency
requirement against WGN is itself often a sensible requirement.
Finally, the solutions for the WGN case provided herein can
often be easily modified for arbitrary Gaussian-based distribu-
tions. When a common reference hypothesis is used, the classi-
fier simplifies to

(5)

This classifier is identical to (2), but it has a different interpre-
tation.

B. Need for Accurate PDF Approximations in the Tails

Because is a fixed reference hypothesis determined prior
to the measurement of data, it is possible that the actual data
lies on the distant tails of the PDF . This is also true
at the output of the feature transformations. Thus, it is possible
that both and approach zero simultaneously.
Therefore, accurate tail approximations of are needed
for meaningful results.

Commonly-used approximation methods such as the central
limit theorem (CLT) do not provide accurate answers in the tails.
In this paper, we apply the multidimensional saddlepoint ap-
proximation (SPA) [2], [11], which can provide accurate PDF
tail estimates.

C. Notation

In the remainder of the paper, the raw input data
is a set of independent real random variables

(RVs) that are all Gaussian of zero mean and unit variance. The
feature set whose distribution we seek is denoted

, where generally.

II. SOME EXACT SOLUTIONS

For some transformations , the exact joint PDF of
can be derived. Some of these transformations can be seen

as special cases of more general problems for which we have
derived approximations. Therefore, they can serve as important
test cases for the more general results (especially in the tails).

A. Order Statistics

Order statistics are important features in classification.
Examples of order statistics are the three largest FFT bin
magnitudes or the median of sample values. The joint
distribution of a collection of order statistics is easily found for
i.i.d. RVs. [12]. Consider iid samples derived from using
a transformation . Define .
Let be obtained from by sorting into

ascending order. Let be a subset of .
Specifically, , , where

.
Let and be the cumulative distribution func-

tion (CDF) and PDF of , respectively. Then, for , for
example, the joint PDF is

Extending this to arbitrary order , consider the th, th,
, th-order statistics, where

follows the joint PDF

(6)

We consider two cases.

1) When are real Gaussian RVs and
, then are Chi(1) (chi-distributed with 1 degree

of freedom), and we have and
erf for .

2) When are complex Gaussian RVs and
, then are Chi-squared(2) (chi-squared

with 2 degrees of freedom), and we have
and for .

Using these forms for and and (6), we can eval-
uate the desired PDFs for. Calculation involves some delicate
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numerical problems, especially in the tails; however, these can
be successfully dealt with, often by resorting to exceedance dis-
tributions instead of cumulative distributions.

B. Autocorrelation Function and Reflection Coefficients

A widely used model for signal processing applications is the
autoregressive (AR) filter driven by white Gaussian noise [13].
The infinite length autocorrelation function (ACF) completely
describes such processes. However, practical signals have an
autocorrelation function that either decays to zero or is periodic.
Thus, a finite number of autocorrelation samples often provide
adequate information to characterize the process. In short, a set
of autocorrelation samples can be approximatelysufficientfor
testing statistical hypotheses concerning the process.

There are many ways to compute an autocorrelation estimate
[13]. These methods are asympotically equivalent for large
but differ significantly for small . We will concern ourselves
with one particular ACF estimator because an exact formula can
be found for its PDF, which is due to Watson [14]. In particular,
we use the normalizedcircular autocorrelation samples . Let

(7)

where

and

and we define . Assume that is odd so that
is an integer. Then, the exact joint PDF of

is

(8)

where

sgn

and sgn for for , and for ,
and the matrices are of dimension ,

, and , respectively. They are defined as

...
...

...
...

...
...

...

...
...

...
...

where

The region is the convex polyhedron in
formed from the vectors

... ...
...

or the convex polyhedron of the vectors is
the convex set formed by the linear combination

where , and . A MATLAB implementation
of (8) is provided in Appendix A.

1) Experimental Verification:To validate the analysis, it is
useful to compare the derived PDF with experimental values.
The above analysis can be verified experimentally by comparing
a scatter plot of the first two normalized circular ACF estimates
with an intensity image of the PDF obtained from the program.
Fig. 1 shows such a comparison for samples. The figure
illustrates that for small , the range of possible ACF values
occupy regions with linear boundaries in the plane. The shape
of the PDF itself at is a tetrahedron.

2) Reflection Coefficients:Due to the one-to-one transfor-
mation linking the normalized autocorrelation coefficients with
the reflection coefficients [13], it is possible to utilize the above
results to find the exact distribution of reflection coefficients;
however, this applies only when thecircular autocorrelation co-
efficients (7) are used. Consider the transformation

where are the reflection coefficients. The joint PDF
requires knowing the Jacobian of the transfor-

mation , which is
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Fig. 1. (Left) Comparison of (8) with (right) a scatter plot of experimental data points. Autocorrelation estimates were computed fromN = 9 samples. Notice
the “hole ” at (0,0), where the exact PDF cannot be computed.

Thus

3) Log-Transformed Reflection Coefficients:Because the
reflection coefficients are subject to the constraint ,
the joint PDF of is discontinuous and difficult
to approximate using standard techniques such as Gaussian
mixtures [15]. A better-behaved set of features is obtained by
the one-to-one mapping

The log of the Jacobian of this transformation is

Thus

III. SADDLEPOINT APPROXIMATION (THEORY)

The class of statistics for which the exact PDF is known is
relatively limited. For a broader class of statistics, the exact mo-
ment generating function (MGF) is often known. The problem is
that inversion of the MGF transformation to find the exact PDF
may not be possible in closed form. For these cases, we can use
an approximation that provides accurate tail PDF estimates.

Let be an -dimensional real random
vector with joint MGF , where vector

. Then, the joint PDF of at the -dimen-
sional point is given by the th order con-
tour integral

(9)

where , and the -dimensional contour is par-
allel to the imaginary axis in each of the dimensions of .
The joint cumulant generating function (CGF) ofis

. The most useful -dimensional saddlepoint (SP) of
the integrand of (9) is that real point in -dimen-
sional space where all partial derivatives satisfy

for (10)

When the contour is moved in dimensions to go through
the real SP and the change of variable

(11)

is made, (9) becomes

(12)

where the new -dimensional contour passes through the SP
at .
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The logarithm of the integrand of (12) can be expanded in a
power series about the origin according to

(13)

where the matrix

(14)

is symmetric in and for all . Thus, using (10) and (13),
the integrand of (12) can be approximated as

(15)

for small . If this approximation is now extrapolated toall
and substituted in (12), there follows the usual saddlepoint (or
tilted Edgeworth) approximation (SPA) in dimensions [11]

(16)

A. Finding the Saddlepoint

To obtain the SPA (16), the real SP satisfying (10) must
be found. The SP may be found using the Newton–Raphson
iteration

(17)

where is a step-size parameter. The zero vector
can always serve as a starting point because

it is always in the ROC. At each iteration, the new value of
must be tested to see if it is still in the ROC and modified if
necessary.

If the search for the SP is confined to the real axes in multi-
dimensional (MD) lambda space, it can be shown that the Hes-
sian matrix of the joint cumulative generating function (CGF)
is positive definite for all real lambda inside the MD region of
definition of the joint MGF. This means that the MD integrand
has a bowl-like behavior with a single minimum in this real MD
space. Thus, the Newton–Raphson search procedure will always
find the single minimum if conducted in an “appropriately slow”
fashion and if the search is constantly confined to the region of
definition.

B. Accuracy of the SPA

The accuracy of PDF approximations can be experimentally
determined in the tails if an exact formula is available for some
special case. We use this approach whenever possible in what
follows.

Because the SPA is based on a series expansion of the MGF
at the SP, its accuracy depends on the shape of the MGF at this

point. Experience has shown that even in the tails, the errors
tends to be in the “mantissa” rather than in the “exponent.”

There is no reason why additional terms in the expansion
cannot be obtained. In fact, additional terms of the expansion
have been derived for some important cases including linear
functions of independent RVs and are available in an NUWC
technical report [16]. These terms can be used not only to pro-
vide additional accuracy but as an indication of the validity of
the first-order SPA as well. Issues of SPA accuracy are treated
in more detail in the technical report.

C. Linear Functions of Independent RVs

In many signal processing applications, linear transforma-
tions are made on a set of non-Gaussian but independent RVs.
Examples include Fourier analysis of the squared magnitudes of
a set of real or complex time samples, autocorrelation estimates
(by the FFT method), and cepstrum estimates. These problems
can be posed in the form , where , and

is an matrix. Note that RVs are independent
but not necessarily identically distributed. The output vector
is of length , where ; thus, the transformation is not
one-to-one. Let the MGFs and CGFs of RVs be denoted

and , respectively. That is

E

for (18)

where E denotes an ensemble average. The weighted sum of
independent RVs of interest is given by

for (19)

where , and the real matrix is arbitrary,
except that it must have rank .

The joint MGF of RVs is, upon use of (18) and (19) and
the independence of RVs

E

E

E

(20)

where , and

for (21)

That is

(22)
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The joint CGF of RVs is, using (18)

(23)

There follows, by reference to (21)

for (24)

Finally, the simultaneous equations that must be solved for
the -dimensional saddlepoint are

for (25)

where are the particular values at which the
joint PDF of RVs in (19) is to be evaluated. The second-
order partial derivatives required to obtain the SPA follow from
(21) and (24) as

for

(26)
Once saddlepoint is found from (25), it can be substituted in
(26), and the Hessian matrix can be evaluated at the
saddlepoint, namely, .

IV. A PPLICATIONS OF THESADDLEPOINT APPROXIMATION

A. Linear Sums of Magnitude-Squared Gaussian Random
Variables

An important set of statistics are weighted sums of Chi-
squared RVs. Specifically, statistics of the form

for (27)

where and where is a real or complex Gaussian
RV, are frequently encountered in signal processing. Included
are least-squares polynomial approximations of magni-
tude-squared time series, Fourier analysis of squared time
series or FFT output bins, and two-dimensional (2-D) Fourier
analysis of images or spectrograms. Such statistics are widely
used in feature-based classification problems. We consider both
the case when RVs are real and when are complex.

1) Complex RVs:Assume that are complex zero-mean
Gaussian CN(0,1) RVs and . Then, are expo-
nentially distributed . Alternatively, we may say
that has the Chi-squared distribution with 2 degrees of
freedom, which are denoted . Thus,

.
Since MGF is not a function of , we write

, where . We have
for . Substituting this into (23)

(28)

where the ROC is defined by

for

Taking derivatives

for

The second derivatives are

for (29)

from which we can construct Hessian matrix .
Finally, we use in (16).

2) Real RVs:When are real zero-mean Gaussian
(0,1) RVs, the distribution of is with 1

degree of freedom; thus, . Thus,
, where . Similar to the complex case,

we have , where . We
have for .
Substituting this into (23)

where the ROC is defined by

for

Taking derivatives

for

The second derivatives are

for

from which we can construct Hessian matrix .
3) Experimental Validation:To validate the above results,

especially in the tails, it is necessary to find a case for which
the exact result is known. Notice that (27) may be written in the
matrix form

where is a general full-rank matrix. A class of ma-
trices for which the exact joint PDF of can be calculated is
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described by Nuttall [17]. A special case of this more general
class is the following. Let

where

Clearly then, and are independent. Furthermore, for the
case of Section IV-A1, and are chi-square RVs with
degrees of freedom. Thus, it is straightforward to write down
the PDF . The above can be generalized if we linearly
transform using a general full-rank two-by-two matrix .
Let

Then, the joint PDF of will equal

We tried this approach with and

and derived from complex-valued data, as in
Section IV-A1.

The experiment was designed to probe the tails of the PDF.
This was accomplished by generating data using a variance dif-
fering from one (the assumed PDF). In the experiment, 1000
data samples ofwere generated using , where

was chosen randomly according to and where
. The SPA error was determined by comparing

with the exact expression. The results are shown in Fig. 2. The
error was approximately 0.0026 for all samples except one,
for which the error was 0.0026. It is unclear why this pat-
tern occurred. Notice, however, that this very low approxima-
tion error occurred in the deep tails where is as low as

140 000. The accuracy that is obtained by the SPA method de-
pends ultimately on the accuracy of the integral approximation
(15) and the accuracy to which the saddlepoint itself is deter-
mined. These, in turn, depend on the matrixas well as the
univariate MGFs . Issues of the approximation accuracy
have been studied by Nuttall [16]. In particular, additional terms
of the power series expansion (13) can be obtained for the case
of the linear function ofiid RVs.

B. Cepstrum and Autocorrelation Estimates (Noncontiguous)

It is possible to represent the cepstrum and autocorrelation es-
timates as linear functions of a set of independent (but not identi-
cally distributed) RVs, allowing the results of Section III-C to be
used. Recall that samples , are independent
identically distributed (iid) real Gaussian RVs with zero mean
and unit variance. The corresponding complex Fourier coeffi-
cients are defined as

for (30)

Fig. 2. PDF estimation error for SPA in the far tails using data generated with
random variance. The vertical axis shows the difference between the log-PDF
values of the SPA and the exact expression. The error was+2.6e-3 most of the
time, except for one occurrence of�2.6e-3.

Since are real, it follows that for
; however, and are always real.

Define the set of real spectral quantities

Case I (Autocorrelation):

Case II (Cepstrum):
(31)

for and even. Then, for
. Finally, perform an inverse FFT back into the

time domain to get the ACF or cepstrum estimates, respectively,
according to

for (32)

For Case I, are autocorrelation estimates (scaled by),
and for Case II, they are cepstrum estimates (also with a special
scaling).

Expression (32) can be written purely in terms of real vari-
ables

for (33)

where

for and

for
(34)

The remainder of RVs can be found, if desired, from the
relation for .

Complex RVs in (30), for , are all in-
dependent of each other, due to the white Gaussian statistics of

that were assumed. We let

for (35)
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Then, , , and

E E E E (36)

for . All these and RVs in (35)
are independent of each other and are Gaussian zero mean. We
express (33) in the compact form

for (37)

where

for (38)

In (37), all of the RVs for are independent
of each other because all of the RVs for
are independent of each other.

1) Case I—Autocorrelation Estimates:From the informa-
tion above, it is seen that RVs and , if scaled by ,
have a chi-squared distribution with 1 degree of freedom. The

PDF is for
, with MGF for . It follows that

without the scaling, the MGF is

for (39)

In addition, RVs , for , have PDF
for , with MGF

for (40)

In compact notation, define the MGFs of all the in (37)

for and

for
(41)

Then, the corresponding CGFs for the in (37) are

for and

for
(42)

Now, we will consider a subset of all the RVs origi-
nally defined in (32) and then manipulated into forms (33) and
(37). In particular, consider only the set

for (43)

where are arbitrarydistincttime instants in the interval
. That is

for (44)

Write this expression as

for (45)

where

for (46)

Let vector and random vector
. The joint MGF of the -dimensional vector is

E

E

E

E

(47)

where we used the independence of RVs [see (39)–(41)]
and defined

for (48)

The joint CGF of follows, from (42) and (47), as

(49)

The partial derivatives of interest are

for

(50)
where we used (48) to determine

for

(51)

The simultaneous equations that must be solved for saddle-
point are, from (46) and (50)

for

(52)
where are the particular values of RVs and
where the joint PDF of the ACF estimates is of interest. We also
have, from (50) and (51)

for (53)
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The MGFs for were presented in (39) and (40). The func-
tions required in the SPA are

(54)

and

(55)

2) Case II: Cepstrum Estimates:From the information
above, it is seen that RVs and have PDF

for . In additon, RVs , for
, have PDF for . It follows

that RVs and have PDF
for all , whereas RVs , for , have PDF

for all . This immediately leads to the
common MGF for and in the form

for (56)

whereas the common MGF for , is

for (57)

The functions required for the SPA for the cepstrum estimates
are

(58)

and

(59)

where is the psi function (see [18, Sec. 6.3 and 6.4].
3) Experimental Validation:Exact solutions to validate the

unnormalized ACF estimates (Section IV-B1) and Cepstrum es-
timates (Section IV-B-2) have not yet been worked out; there-
fore, approximation error cannot yet be determined. Note, how-
ever, that the basic approach is the same as Section IV-A1,

Fig. 3. Comparison of the method of Section IV-B2 with a Gaussian mixture
approximation with standard normal input data.

which has been validated experimentally. The approaches differ
in the choice of matrix and the fact that RVs are not all
identically distributed.

In spite of that, it is still a good idea to validate the analysis
with another entirely different approach. To do this, we used
a Gaussian mixture (GM) PDF approximation using simulated
data. While a PDF approximation obtained from simulated data
cannot test errors in the tails, it can at least validate the PDF in
the neighborhood of the peak. With this in mind, the method of
Section IV-B2 was tested using a noncontiguous set of cepstrum
coefficients. We took 4000 independent samples of a set of eight
cepstrum outputs from a size-1024 cepstrum. The cepstrum in-
dexes were . The cepstrum
processor was excited with RVs from the standard normal
distribution. The 4000 eight-tuples were used as training data
for a GM PDF estimator [15]. The same data was used to pro-
duce Fig. 3. In this plot, we evaluated the log-PDF for each data
sample. The log-PDF from the GM approximation is plotted on
the axis, and the value from the method of Section IV-B2 is
plotted on the axis. Ideally, all data points should fall on the

line. The plot shows good agreement, considering the
fact that the PDF approximation is in a relatively high dimen-
sion. The errors increase in the tails; however, this is due to the
mixture approximation and not the SPA.

C. Other Applications

The SPA is applicable whenever the MGF or CGF can be
derived. The SPA has been derived for additional statistics in-
cluding correlated and non-Gaussian statistics [16], [19].

V. OTHER ASYMPTOTIC METHODS

A. Reflection Coefficients and Autocorrelation Estimates
(Contiguous)

For large , an asymptotic form is available for the reflection
coefficients, which is due to Daniels [2]. Let be
the reflection coefficients derived from the Levinson recursion
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on [13]. The general form for the asymptotic (large
) distribution of is the following. Let

Let be the largest integer less than or equal to , and let
be the smallest integer greater than or equal to. Then

(60)

As explained in Section II-B2, the normalized autocorrela-
tion function estimates are related to the reflection coefficients
by a one-to-one transformation [13]. The PDF re-
quires knowing the Jacobian of the transformation from ACF to
reflection coefficients, namely

Thus

(61)

B. Experimental Validation

We can compare the approximation for
from Section V-A with the exact expression from Section II-B.
In order to evaluate tail accuracy, independent samples were
passed through an AR filter of order 4 to make them correlated.
The AR filter coefficients were chosen at random by selecting
reflection coefficients from a uniform distribution in the range
[ 1,1] and then transforming to AR coefficients and ACF
samples. Two-hundred independent trials were computed. The
log-PDF value from the exact method of Section II-B was
plotted on the axis of Fig. 4, and the difference between the
log-PDF from (61) and the exact expression is plotted on the
axis. The error was quite small (less than 1 in magnitude) for
samples with log-PDF values above10 but increased in the
tails. This could reflect errors due to an inherent assumption
of independence. Note, however, that the errors are acceptable
even at very low values of log-PDF.

VI. A PPLICATION TOAUTOREGRESSIVE(AR) MODEL-ORDER

SELECTION

Consider the problem of determining the orderof an au-
toregressive process, which is denoted AR(). The MAP rule

(62)

Fig. 4. Comparison of theoretical and approximate PDF for normalized ACF
estimates.

where is the hypothesis corresponding to order, may be
implemented using the class-specific approach. Applying (3),
we have

(63)

where we have assumed that is a constant, corre-
sponds to the case of iid Gaussian noise, andis a sufficient
statistic for the AR( ) process. Of course, this assumes we have
the prior knowledge of . It is interesting to note, how-
ever, that the denominator term in (63) usually has a dominant
effect on the decision. In fact, Kay [6] has shown that omission
of the numerator in (63) and using the rule

(64)

implements the conditional model estimator (CME), which
has been shown to outperform the minimum description length
(MDL) rule [7]. However, (63) should be an upper bound in
performance due to knowledge of the numerator PDF (which
we call thea priori PDF of ).

We now test formulas (63) and (64) and compare with the
Akaike and MDL method [13]. As an approximate sufficient
statistic for an AR( ) process, we use the vector of circular ACF
estimates (7), which is denoted

In the experiment, we generate an AR process with knownin
the range . We utilize odd data record lengths of
11, 13, 15, 17, 21, 127, and 255 with 1000 independent trials for
each combination of . In each trial, the AR process is de-
termined by randomly selecting the reflection coefficients (RCs)
from a uniform distribution on [ 1,1]. The only restriction was
that the th RC had to be greater than 0.2 in magnitude (to make
sure the data model was truly of order). The RCs were then
converted into AR coefficients, and an AR process was created
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by filtering independent Gaussian noise. The model order selec-
tion was accomplished by determining the best fit of the given
approach over . We compared the following ap-
proaches:

• CS-RC: Class-Specific Using RC:Because the RC esti-
mates are related to by a one-to-one transformation,
they are equivalent from a sufficiency point of view. We
may approximate the PDF of the RC estimates
by the PDF of the true RCs used in the experiment. This
approach should provide somewhat of an upper bound of
performance since it makes use of knowledge not avail-
able to the other methods. Let
be the vector of RC estimates. Equation (63) becomes

(65)

with (61) used to approximate the denominator PDF. We
used the prior density of , which is
the density used for the true RCs in the experiment. We
ignored the effect of the constraint and the
fact that the RC estimates do not in fact have the same
density as the true RCs.

• CME-ACF—CME Approach Using ACF:Implementing
CME using , (63) becomes

(66)

with (61) used to approximate the denominator PDF.
• Akaike Method (Circular ACF):The Akaike method is

(67)

where is the estimate of the power of the white noise
driving sequence computed from the ACF estimates
using the Levinson algorithm [13]. Thecircular ACF
estimates were used.

• Minimum Description Length (MDL):The MDL method
is

(68)

Results of the experiment are provided in Tables I–IV for true
value of ranging from 1 to 4. It is difficult to compare the per-
formance of the various approaches based on just one value of
true . This is due to biases that cause a given approach to per-
form better at a particular and worse at another. For example,
the Akaike method is biased toward a higher value ofand thus
appears better at for low values of . Average perfor-
mance (averaged over) is plotted in Fig. 5. The results show
that at low , the CS-RC and CME-ACF methods outperformed
both the MDL and Akaike methods consistently by about 3%.
At high , all methods were similar, except the Akaike method,
which is known to be an inconsistent estimator of model order.
The advantage of the known prior in the CS-RC approach was

TABLE I
RESULTS FORP = 1. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT

TABLE II
RESULTS FORP = 2. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT

TABLE III
RESULTS FORP = 3. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT

TABLE IV
RESULTS FORP = 4. PROBABILITY OF CORRECTMODEL ORDER IN PERCENT

not significant compared with CME-ACF, although it appears to
always outperform the CME-ACF method by a small amount.
The CS-RC approach, which has some prior knowledge of the
distribution of the RCs, provided better performance most of
the time than the other approaches; however, it appears to fall
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Fig. 5. Model order selection results averaged overP = 1–4.

below CME at high . This can be explained by the fact that
the CS-RC approach, while it has prior knowledge, is only an
approximate MAP implementation.

VII. CONCLUSIONS

In this paper, we have provided approximations to the joint
multidimensional PDFs of some important statistics in signal
processing, including autocorrelation estimates, Cepstrum es-
timates, and general linear functions of independent RVs. Al-
though the approaches we have used can, in principle, be used
for any input data hypothesis, we have provided examples in
which the input data is assumed to be iid samples of Gaussian
noise. Because these approximations are valid in the tails of the
PDF, they can be used in conjunction with the PDF projection
theorem (3) to provide PDF estimates of the input raw data for
real-world statistical hypotheses. An application of the method
has provided an AR model-order selection approach that out-
performs the MDL and Akaike methods. The model selection
approach is quite general and can, in principle, be applied to any
model-order selection problem, provided there exists a well-de-
fined approximate sufficient statistic or approximate sufficient
statistic for each model order.

APPENDIX

A. MATLAB Implementation of Equation (8)

The function below returns the PDF value
for an input vector , which has been obtained
from input data samples. The program requiresto be odd.
The algorithm becomes numerically unstable forgreater than
about 30, and it is slow. A faster version, using arbitrary preci-
sion arithmetic, has been written in C, which extends its use-
fulness to higher (as high as 500 has been tried success-
fully); however, it is still somewhat impractical. The usefulness
of these programs is in the fact that they are able to validate the
asymptotic form to be presented in Section III.

function pdf corrpdf( )
%%%%%%%%%%% CORRPDF.M %%%%%%%%%%%%%%%%%%%%
% function pdf corrpdf %
% Code developed by S. M. Kay, 1998 %
% Modified by P. M. Baggenstoss %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(:);
length ;

if round ,
error(“ must be odd”);

end
;

lambda zeros( );
for
lambda ;
end

;
for

sm corrloop( , lambda, sm);
end;
pdf=sm prod ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subroutine corrloop %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function term corrloop(idx lambda term);

size(lambda);
length(idx);

if ,
lambda(idx, 1: );

alpha ;
if min (alpha) & sum(alpha) ,

; ones ;
da det ;

;
for

if sum idx) ,
lambda ; ones ;
(det /da);

end
end
term term det ^ sign det / ;

end
else,

for idx( : ,
term corrloop idx lambda term ;

end;
end;

REFERENCES

[1] G. M. Jenkins and D. G. Watts,Spectral Analysis and Applica-
tions. San Francisco, CA: Holden-Day, 1968.

[2] H. Daniels, “The approximate distribution of serial correlation coeffi-
cients,”Biometrika, pp. 169–185, 1956.

[3] M. H. Quenouille, “The joint distribution of serial correlation coeffi-
cients,”Ann. Math. Stat., vol. 20, pp. 561–571, 1949.

[4] E. J. Hannan,Multiple Time Series. New York: Wiley, 1970.
[5] P. M. Baggenstoss, “Class-specific features in classification,”IEEE

Trans Signal Processing, vol. 47, pp. 3428–3432, Dec. 1999.
[6] S. Kay, “Sufficiency, classification, and the class-specific feature the-

orem,” IEEE Trans. Inform. Theory, vol. 46, pp. 1654–1658, July 2000.



2252 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001

[7] , “Conditional model estimation,”IEEE Trans. Signal Processing,
vol. 49, pp. 1910–1917, Sept. 2001.

[8] H. L. Van Trees,Detection, Estimation, and Modulation Theory, Part 3,
Radar–Sonar Signal Processing and Gaussian Signals in Noise. New
York: Wiley, 1971.

[9] P. M. Baggenstoss, “A modified Baum–Welch algorithm for hidden
Markov models with multiple observation spaces,”IEEE Trans. Speech
Audio Processing, vol. 9, pp. 411–416, May 2001.

[10] , “A theoretically optimum approach to classification using class-
specific features,” inProc. ICPR, Barcelona, Spain, 2000.

[11] O. E. Barndorff-Nielsen and D. R. Cox,Asymptotic Techniques for Use
in Statistics. London, U.K.: Chapman & Hall, 1989.

[12] H. A. David,Order Statistics. New York: Wiley, 1981.
[13] S. Kay, Modern Spectral Estimation: Theory and Applica-

tions. Englewood Cliffs, NJ: Prentice-Hall, 1988.
[14] G. Watson, “On the joint distribution of the circular serial correlation

coefficients,”Biometrika, vol. 43, pp. 161–168, 1956.
[15] D. M. Titterington, A. F. M. Smith, and U. E. Makov,Statistical Analysis

of Finite Mixture Distributions. New York: Wiley, 1985.
[16] A. H. Nuttall, “Saddlepoint approximation and first-order correction

term to the joint probability density function ofM quadratic and
linear forms inK Gaussian random variables with arbitrary means and
covariances,”, Newport, RI, Naval Underwater Warfare Cent. Tech.
Rep. 11 262, Dec. 2000.

[17] , “A class of linear transformations of independent RV’s for which
the exact PDF can be calculated,” memorandum, 2000.

[18] Handbook of Mathematical Functions, ser. Applied Math. Series
55. Washington, DC: Nat. Bur. Stand., U.S. Govt. Printing Office,
June 1964.

[19] A. H. Nuttall, “Saddlepoint approximations for various statistics of de-
pendent non-Gaussian random variables; Applications to the maximum
variate and the range variate,”, Newport, RI, Naval Underwater Warfare
Cent. Tech. Rep. 11 280, Apr. 2001.

Steven M. Kay (F’89) was born in Newark, NJ,
on April 5, 1951. He received the B.E. degree from
Stevens Institute of Technology, Hoboken, NJ, in
1972, the M.E. degree from Columbia University,
New York, NY, in 1973, and the Ph.D. degree from
the Georgia Institute of Technology (Georgia Tech),
Atlanta, in 1980, all in electrical engineering.

From 1972 to 1975, he was with Bell Laboratories,
Holmdel, NJ, where he was involved with transmis-
sion planning for speech communications and simu-
lation and subjective testing of speech processing al-

gorithms. From 1975 to 1977, he attended Georgia Tech to study comunications
theory and digital signal processing. From 1977 to 1980, he was with the Subma-
rine Signal Division, Raytheon Corporation, Portsmouth, RI, where he engaged
in research on autoregressive spectral estimation and design of sonar systems.
He is currently Professor of electrical engineering at the University of Rhode Is-
land, Kingston, and a consultant to industry and the United States Navy. He has
written numerous papers, many of which have been reprinted in the IEEE Press
bookModern Spectral Analysis II. He is a contributor to several edited books on
spectral estimation and is the author ofModern Spectral Estimation: Theory and
Application(Englewood Cliffs, NJ: Prentice-Hall, 1993). He conducts research
in mathematical statistics with applications to digital signal processing. This
includes the theory of detection, estimation, time series, and spectral analysis
with applications to radar, sonar, communications, image processing, speech
processing, biomedical signal processing, vibration, and financial data analysis.

Dr. Kay is a member of Tau Beta Pi and Sigma Xi. He has served on the IEEE
Acoustics, Speech, and Signal Processing Committee on Spectral Estimation
and Modeling.

Albert H. Nuttall received the B.Sc., M.Sc., and
Ph.D. degrees in electrical engineering from the
Massachusetts Institute of Technology (MIT),
Cambridge, in 1954, 1955, and 1958, respectively.

He was with MIT as an Assistant Professor until
1959. From 1957 to 1960, he was with Melpar, and
from 1960 to 1968, he was with Litton Industries.
He was with the Naval Underwater Systems Center
(NUSC), New London, CT, where his interest was in
statistical communication theory. He is now with the
Naval Undersea Warfare Center, Newport, RI.

Dr. Nuttall received the NUSC Distinguished Chair in Signal Processing from
the Navy in April 1987.

Paul M. Baggenstoss(S’82–M’82) was born in
Gastonia, NC, in 1957. He received the B.S.E.E.
degree in 1979 and the M.S.E.E. degree in 1982
from Rensselear Polytechnic Institute (RPI), Troy,
NY. He received the Ph.D. degree in statistical signal
processing from the University of Rhode Island,
Kingston, in 1990, under the supervision of Prof. S.
Kay.

From 1979 to 1996, he was with Raytheon Com-
pany, Waltham, MA, and joined the Naval Undersea
Warfare Center, Newport, RI, in August 1996. Since

then, he has been involved with classification and pattern recognition. He was an
Adjunct Professor with the University of Connecticut, Storrs, where he taught
detection theory and digital signal processing. In February 2000, he began a
joint research effort with the Pattern Recognition Chair, University of Erlangen,
Erlangen, Germany.


