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Abstract

For composite hypothesis testing, the generalized likelihratio test (GLRT) and the Bayesian
approach are two widely used methods. This paper invesighe two methods for signal detection of a
known waveform and unknown amplitude with distributed sesslt is first proved that the performance
of GLRT can be poor and hence improved for this problem and #meapproximated Bayesian detector
is proposed. Compared with the exact Bayesian approachprpposed method always has a closed
form and hence is easy to implement. Computer simulationlteeshow that the proposed method has

comparable performance to the exact Bayesian approach.

. INTRODUCTION

Detection with distributed sensors has been studied forlynda&ree decades [1] [2] [3]. With respect
to different data assumptions, it can be categorized torakzed detection and decentralized detection.
In centralized detection, it is assumed that all data frolfoahl sensors are available for processing. In
decentralized detection, only compressed data or locasidecfrom all local sensors are communicated
to a central processor, where a central decision is madee $ieccentralized detection can largely resort
to classical detection theory, many works focus on deckrddh detection [1] [2] [3]. However, there
are still some problems left for centralized detection,eegdly when there are unknown parameters in
hypotheses, i.e. composite detection.

In [4], a minimax constant false alarm rate (CFAR) centetdizletector is proposed for composite
detection. However, it assumes that the unknown parantelasliscrete values and the detection involves
large computation. In [3], many distributed detection téghes are reviewed, with focus on the locally
optimum distributed detectors, which are optimal only wisggmal is weak. Other common composite
detection methods include the generalized likelihoodredst (GLRT) and the Bayesian approach.

Because of its ease of implementation, the GLRT is widely wa®di usually has satisfactory perfor-

mance. However, its optimality is hard to establish, evesugin some attempts have been made, based



on different criteria [8] [9]. On the other hand, the Bayesapproach is optimal if the assumed prior
probabilities and prior probability density functions (PDPB§the unknown parameters are true. However,
in most applications the true priors and true prior PDFs arenawk and hard to assume. Furthermore
the integration involved in calculation of the marginal PDRymot be easy to evaluate [12].

In this paper, we examine the important special case of iexdgnt sensors (conditioned on hypothesis).
In particular, we focus on situations that even when a sigga@kresent only part of the sensors receive
the signal. It is shown in Section Ill that in this case, the GLIRhot optimal. Some improvements of
the GLRT are also discussed. In section IV, an approximatete®an detector is proposed based on
vague prior PDFs, which does not need a specific form. Some comgiatelation results are shown in

Section V and finally Section VI offers conclusion and furthescdission.

Il. STATEMENT OF THE PROBLEM

To simplify the mathematical exposition, we assume the @snare ordered with respect to their
importance. That is if < j and sensolj receives signal then sensbmust also receive signal. This
order of importance may be due to the physical locations ef gansors. When the sensors are not
ordered, the discussion is given in Section VI.

We assume that there afd independent sensors or channels. The detection probleratesisis

Hy : x[n] =w|[n] n=0,1---,N—1 1)
H):x[n]=As[n]+w[n n=0,1,---,N—1
where A is the M x 1 unknown amplitude vector, with possibly different elengenir] is a known
waveform andw|(n] is a Gaussian random vector. Each elementvi] is white both in time domain

and in space domain, i.e.

0%, n=m
E [w; [n]w; [m]] = foranyl <i< M
, n#Em
and
0%, i=
E [w; [n]w; [n]] = forany0 <n <N —1
0, i#J

wherew;[n] denotes thé'" element ofw[n] and E[-] denotes the expectation operator. Since the sensors
are ordered, undeil; only the first, elements ofA is nonzero.L is referred to as the true model order
under Hy. Both L and the value of the first elements ofA are unknown. If we assume there dre

nonzero elements iA, the corresponding model of (1) is called modelnd is denoted as1;. Under



model M;, A is denoted as\; andA; = [A;, Ay, -+, A4;,0,0,---,0],,,, Clearly, underH, the data is
from model M, and underH; the data is from modeM;, 1 < i < M. With this modeling, the detection
problem can equivalently be stated as to assign the giventdatty (Hy) or to My UMsU---U My,
(H1).

Ill. GENERALIZED LIKELIHOOD RATIO TEST
A. Performance of the GLRT

Firstly, suppose the variane€ is known. Sincel and A are unknown, the GLRT decidéd$, if
Lg (X) = max M > A
1<isM - p (X Mp)
where X = [x[0],x[1],---,x[N — 1]]" denotes the whole data and(X; A;, M;) is the probability
density function (PDF) undek; parameterized by the maximum likelihood estimator (MLAS) which
is estimated assuming/; is true. Since ifi < j, M; can be thought of as a special case/df;, it
is readily shown that the GLRT will always implement the tdstistic based on the maximum model,

ie. [5] A
P (X; AM,MM)

Le(X) = p(X; Mo) >4
or equivalently X
210 Ler (X) = 21n - (X Aar, M) SV @)
p(X;Mo)
The test statistic of (2) has the PDF [5]
21n L (X) ~ Xir Ho 3)
X’?\/[ ()‘) 9 Hl

wherey?3, denotes the chi-squared distribution arﬁq (M) denotes the noncentral chi-squared distribution

with the noncentrality parameteér. The noncentrality parameter is given by

ey A?
=1
A= 2
where
N-1
€= s% [n]
n=0

is the signal waveform energy. Since only the fitselements ofA are nonzero, we have

L
ey A?
\ o il

o2



With the PDF of the GLRT test statistic of (3), we now show thefgrenance of the GLRT is generally
not optimal and can be improved. Suppdse< M and let K be an integer such thdt < K < M. If

there is a generalized likelihood ratio test basedMi-, which decidesH; if

2In L, (X) = 21 P Ax. M) X @)
nLg, =2In >
¢ P (X5 Mo)
the PDF of this test statistic is given by
2
, H
2In L, (X) ~{ K ° (5)
X/%( ()‘>7 Hl

We note that if the variance? is unknown, (2) and (4) should be changed to

p (X; A, 6%, May)
p (X; 55, Mo)

>\

2InLg (X) =2In
and X
p (X5 Ax, 6%, M)
wheres? is the MLE of o2 underM;. However, asymptotically (3) and (5) still hold [5]. Sinéé < M,

> )\//

2InLg, (X) =2In

from Theorem 1, which is proved in Appendix I, the detectordoaen modelM i has better performance
than that of the GLRT, which is based owv ;.
Theorem 3.1: Suppose there are two detection statisfigsand 7. The detection statisti€; has the
PDF
Xl%la Hy
Xfl (A, Hi

and the detector 1 decides a signal is presefit it v,. The detection statisti¢, has the PDF

Ty ~

X12127 HO
X:/22 ()\) ) Hl

and the detector 2 decides a signal is presefit it 2. Then, ifv1 < v2, the performance of detector

Ty ~

1 is better than that of detector 2 in a Neyman-Pearson (NPeséss for the same false alarm rate
detector 1 has a higher probability of detection than detezt

In other words, for this distributed detection problem,Lif< M the GLRT is not optimal. This is
because the GLRT is based owvi,; and therefore the channels that contain only noise sampies a
included in the test statistic. Including these channels increase the degrees of freedom of the test

statistic, however the noncentrality parameter remaiassime.



B. Improved GLRT

From Theorem 1, any detector based/ot) with i > L will have a performance less than the detector
based onM. It is clear that the unknown ordér is critical to the performance of detectors. In order to
improve the GLRT,L can first be estimated and a generalized likelihood ratiobt@séd on model can
then be conducted. This can be done by using various model setlection criteria [6]. A widely used

criterion is the minimum description length (MDL) criteriowhich selects the model that minimizes
MDL (i) = —2InLg, (X)+ilnN, 1<i<M (6)

The GLRT with estimated model is referred to as “rGLRT” in this @ap
Recently, a multifamily likelihood ratio test (MFLRT) is progped to modify the GLRT to accommodate
nested PDF families [7]. The MFLRT decidés; if

o (0 (220) ] (B ) o

wherew(-) is the unit step function.

Tyrrrr (X) = 12%4{

These two revised GLRTs will be compared with the GLRT in Section V.

IV. BAYESIAN APPROACH
A. Approximated Bayesian Approach

Firstly, suppose the varianeg is known. If we are willing to assume Bayesian assumptidmat, is
model M;, 0 <7 < M has a prior probabilityr; and under each model iff;, A;, 1 < j < M has a

prior PDF given ap(A ;| M;), the optimal NP detector decidés, if

p(X[H))
> A 8
» (X Hy) ©
From the Bayesian assumptions
M
p(X[|Hy) =) mip (X|M;) 9)

=1
Plugging (9) into (8), the detector decidég equivalently if
M
;mp (X|M;)
p (X[Mo)
where the marginal PDp(X|M;) is given by

> A (20)

PXIM) = [p(X AM) dA,

— / p (X[ Ai, M) p (AilM;) dA, (12)



As mentioned previously, the true prior PDFs are usually unknand hard to assume. Furthermore the
integration in (11) may not have a closed form. If the varemtis unknown| p (X|A;, M;) p (A;|M;) dA;
should be replaced byf p (X|A;, 0%, M;) p (Ai, 0% M;) dA;do? and it is even more difficult to assume
the prior PDFs as well as calculate the integration.

It is shown in [10] that assuming vague prior PDFs, the mardhiaf p(X|M;) can be asymptotically
approximated as

p (X|M;) =~ const - p (X|AZ,MZ) ‘I (AZ) E (271'6)%

where| - | denotes determinant arIc(Ai) is the observed information matrix, or

A 92 Inp (X|As, M;
T(Ag) = - ng./(xiaAf |

A=A,
For the model given by (1), it can be shown that asymptoticall

(4)

~ N*

and therefore
. N\ 3
p(X|M;) = const - p (X|A;, M;) ( ) (12)

2me

Plugging the above into (10) we have

%j:lmconst - p (X\Az, /\/l,) (%)75

1= > )\/
p(X|Mp)
or , ,
N\ 2
> i (zm> L, (X) > X" (13)
=1

Wheno? is unknown, similarly we have
i+l

-~ N T2
p (X|M;) = const - p (X\Ai, 6?,./\/12') ( )

2re

and (13) is still valid. The detector given by (13) is refertedas “aBayesian” in the simulations of

Section V.

B. An Exact Bayesian Detector

In order to make a comparison to the approximated Bayesitatide in the simulations in Section V,

in this subsection we provide a set of Bayesian prior PDFs #mtlrin a detector with a closed form.



Supposer? is known, and undeM;, the i elements ofA; are independent and identically distributed,

or
p(adm) = TTp (a0 (14
=1
Assume under any modeé¥t;, 1 <i < M
p(Ay) = ——— exp (—12 (A — m?) L 1<k<i (15)
\/@ 2073,
Denotingx;, = [X,[0], Xx[1],--, Xx[N — 1]]* as the data vector from chanriglbecause each channel

is independent to other channels we have

p(XIMi) (kM)
—<ios =l o (16)
p (X|Mo) ,};[1 p (x| Mo)
Denoting g((:zmog as R (xx), with the assumed prior PDFs, after some algebra we have
2 N202 (3;,)° + 2N puapo® — Nydo?
NUAk +0o 252 (foka + 02)
wherez, denotes the mean of the data from sensogiven as
1 N-1
Tk = N nz::o Xy [n]
From (10) and (16) the Bayesian detector decitigsif
M i
S omi [ R(xk) > A (18)
i=1 k=1

V. COMPUTERSIMULATIONS

In this section the previously discussed detectors are aogdpvia computer simulations. We note,
these detectors are derived from different origins and tauet different properties. The performance
of each detector requires further investigation. This sectinly serves to give some examples of these

detectors and to show the GLRT can be improved.

A. Known Variance

Define the SNR of channdl as
2
SNR; = 10log 10 (%’C)
g

With this definition, when SNR > 20dB all methods yield pretty good results. Therefore the main

concern is the situation when SNR< 20dB, i.e. when|4,| < /222, Hence we assume’ =



10002 11 < | < i for p(Ag) given by (15), so thaso 4, = \/%7 and for most values that,, will take
the SNR. is less thar20dB. Since the SNRfor each sensor is the same, we simply denote it as SNR.
We also assumgy, = 0,1 < k < i for p(Ax) and the priorsr;, 1 <i < M are all equal.

Now, all the assumptions required for the exact Bayesiaacati@t given by (17) and (18) are made.
If all these assumptions are true, the exact Bayesian detescoptimal. However, since in practice the
assumptions are rarely completely true, the Bayesian appres only to find a realizable detector and
we hope the detector will be robust. That is when the true préord prior PDFs are not the same as
the assumptions, the detector still has satisfactory padaoce. In the simulation the true priors under
H, are set to equal, which is the same as the assumed priors.veliQuiee trueA, takes fixed value, in
other wordsA;, is deterministic.

Since the detection performance only depends on the energyedfignal waveform, we simply let
sfn]=1,0<n < N-1ando?= N, so that= = 1. The number of sensor¥/ is set to be5. With

the parameters, it can be shown that

on-e:(51)

We compare the receiver operating characteristics (ROGJeswof the GLRT given by (2), the rGLRT
with model selected by the MDL, the MFLRT given by (7), the apjmwated Bayesian detector given by
(13) and the exact Bayesian detector given by (17) and (18en\5NR= 6 or A, = 2 the performances
of detectors of 5000 realizations are shown in Fig. 1, and wBldR= 12 or A; = 4 the performances
of detectors of 5000 realizations are shown in Fig. 2. Fortixelly low SNR case, it can be seen in
the Fig. 1 that the Bayesian detector, aBayesian detectotrenFLRT are better than the GLRT for
all region of the ROC curve. The rGLRT are better than GLRT forrégion of the ROC curve where
Pr4 > 0.04. For relatively high SNR case, it can be seen in the Fig. 2 treaGhRT is the worst for all
region of the ROC curve. Comparing Fig. 1 and Fig. 2, it is sean tile aBayesian detector has very
similar performance to the exact Bayesian detector. It $® akeen from Fig. 1 and Fig. 2, when SNR
is low, the rGLRT is close to the GLRT, which is the worst detecémd when SNR is high rGLRT is
the best detector. Compared with the rGLRT, the MFLRT is moreaisbbActually, it can be shown the

MFLRT has some minimax properties, which will be addressed futare work.

B. Unknown Variance

When the variance?2 is unknown, it can be shown

&2 T2
L, (X) = ((;2)
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Fig. 1. ROC curves of the detectors in relatively low SNR (known varignce

ROC curves from 5000 trials; SNR = 12; M =5
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Fig. 2. ROC curves of the detectors in relatively high SNR (known vaepnc

where
N—

1 _
= NM Z i[n] — 3;)° + Z (X, [n])?

=0 \i=1 j=k+1

S

3
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Because in this case, it is even more difficult to assume vailat PDFs, we only compare the othér
detectors. When SNR 6 the performances of detectors of 5000 realizations are showig. 3, and

when SNR= 12 the performances of detectors of 5000 realizations are ishowviFig. 4. For relatively

ROC curves from 5000 trials; SNR=6; M =5
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Fig. 3. ROC curves of the detectors in relatively low SNR (unknown vaggan

low SNR case, it can be seen in the Fig. 3 that the aBayesiantoietewd the MFLRT are better than
the GLRT for all region of the ROC curve. The rGLRT are better tia GLRT for the region of the
ROC curve wherePr 4 > 0.04. For relatively high SNR case, it can be seen in the Fig. 4 taG@hRT
is the worst for all region of the ROC curve. The minimax prépef the MFLRT can also be observed

comparing Fig. 3 and Fig. 4.

VI. CONCLUSIONS ANDDISCUSSION

We have investigated the GLRT and the Bayesian approach faratieed composite distributed
detection. In particular, In particular, we have proved tih& performance of GLRT is poor and can be
improved for this problem. An approximated Bayesian detebas also been proposed based on vague
prior PDFs, and therefore the marginal PDF can be obtained wiithtegration. As a result, the detector
always has a closed form.

In our exposition, we assume the sensors have already bderedrwith respect to their importance.

Therefore when there al sensors, onhy\/ + 1 models need to be considered. When the original data
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ROC curves from 5000 trials; SNR =12; M =5
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Fig. 4. ROC curves of the detectors in relatively high SNR (unknown neep

from sensors are not ordered, fbf sensors we have to consid®¥ models as in [4]. This will greatly
increase the computational load. Alternatively, someimieary processing can be conducted to order
the sensors and similar techniques as in [11] can be usedeWwowthe performance degradation as a

result of ordering needs further investigation.
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APPENDIX |

PROOF OFTHEOREM 1
Sincer1 < v2, consider a hypothesis testing problem, in which,
Hy:x[l] ~ Xzzm z (2] ~ X12/2—y1
Hy:z 1] ~ X51 Ny =2 ~ XD
andz[1] is independent of[2] in each hypothesis. The optimal NP detector deciesf [5]

Py @M pe, L, @2)  pe o (1)
P, @)z, (=2)  pye, (@[1])

>

Plugging in the expression of the PDF g, and x’, ()\) yields [5]

() e [ o] 4 )] 2 YA

2\ X = RT(%k)
1 g _1
2%F(%)x[1] exp( 2x[1])

The above expression can be simplified to

o
Z cra[1]F >~
k=0

>

o0}

with all positive ¢;s. Sincez[1] > 0, ¢ [1]¥ is a monotonically non-decreasing function ],
k=0

the detector decide&; equivalently if

Tnp ([x[1], 2[2]) = 2[1] >+ (19)
This is the optimal detector in the NP sense. Now considerh@natetector which decided; if
Te ([=[1],#[2]]) = =[1] + z[2] > 2"
This detector is different from the optimal detector (19) émerefore it has a poorer performance. Since

Xgh HO

Tnp ~ p
Xv1 (>‘) ) H,



and
X12/27 HO

X:/22 (A) ) Hl

The theorem is proved by lettinf = Tnp andTy = Tq.

Tg ~
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