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Abstract

For composite hypothesis testing, the generalized likelihood ratio test (GLRT) and the Bayesian

approach are two widely used methods. This paper investigates the two methods for signal detection of a

known waveform and unknown amplitude with distributed sensors. It is first proved that the performance

of GLRT can be poor and hence improved for this problem and then an approximated Bayesian detector

is proposed. Compared with the exact Bayesian approach, theproposed method always has a closed

form and hence is easy to implement. Computer simulation results show that the proposed method has

comparable performance to the exact Bayesian approach.

I. I NTRODUCTION

Detection with distributed sensors has been studied for nearly three decades [1] [2] [3]. With respect

to different data assumptions, it can be categorized to centralized detection and decentralized detection.

In centralized detection, it is assumed that all data from all local sensors are available for processing. In

decentralized detection, only compressed data or local decision from all local sensors are communicated

to a central processor, where a central decision is made. Since the centralized detection can largely resort

to classical detection theory, many works focus on decentralized detection [1] [2] [3]. However, there

are still some problems left for centralized detection, especially when there are unknown parameters in

hypotheses, i.e. composite detection.

In [4], a minimax constant false alarm rate (CFAR) centralized detector is proposed for composite

detection. However, it assumes that the unknown parameterstake discrete values and the detection involves

large computation. In [3], many distributed detection techniques are reviewed, with focus on the locally

optimum distributed detectors, which are optimal only whensignal is weak. Other common composite

detection methods include the generalized likelihood ratio test (GLRT) and the Bayesian approach.

Because of its ease of implementation, the GLRT is widely usedand usually has satisfactory perfor-

mance. However, its optimality is hard to establish, even though some attempts have been made, based
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on different criteria [8] [9]. On the other hand, the Bayesian approach is optimal if the assumed prior

probabilities and prior probability density functions (PDFs) of the unknown parameters are true. However,

in most applications the true priors and true prior PDFs are unknown and hard to assume. Furthermore

the integration involved in calculation of the marginal PDF may not be easy to evaluate [12].

In this paper, we examine the important special case of independent sensors (conditioned on hypothesis).

In particular, we focus on situations that even when a signalis present only part of the sensors receive

the signal. It is shown in Section III that in this case, the GLRTis not optimal. Some improvements of

the GLRT are also discussed. In section IV, an approximated Bayesian detector is proposed based on

vague prior PDFs, which does not need a specific form. Some computer simulation results are shown in

Section V and finally Section VI offers conclusion and further discussion.

II. STATEMENT OF THE PROBLEM

To simplify the mathematical exposition, we assume the sensors are ordered with respect to their

importance. That is ifi ≤ j and sensorj receives signal then sensori must also receive signal. This

order of importance may be due to the physical locations of the sensors. When the sensors are not

ordered, the discussion is given in Section VI.

We assume that there areM independent sensors or channels. The detection problem is stated as

H0 : x [n] = w [n] n = 0, 1, · · · , N − 1

H1 : x [n] = As [n] + w [n] n = 0, 1, · · · , N − 1
(1)

whereA is the M × 1 unknown amplitude vector, with possibly different elements, s[n] is a known

waveform andw[n] is a Gaussian random vector. Each element ofw[n] is white both in time domain

and in space domain, i.e.

E [wi [n]wi [m]] =











σ2, n = m

0, n 6= m
for any 1 ≤ i ≤ M

and

E [wi [n]wj [n]] =











σ2, i = j

0, i 6= j
for any 0 ≤ n ≤ N − 1

wherewi[n] denotes theith element ofw[n] andE[·] denotes the expectation operator. Since the sensors

are ordered, underH1 only the firstL elements ofA is nonzero.L is referred to as the true model order

underH1. Both L and the value of the firstL elements ofA are unknown. If we assume there arei

nonzero elements inA, the corresponding model of (1) is called modeli and is denoted asMi. Under
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modelMi, A is denoted asAi andAi = [A1, A2, · · · , Ai, 0, 0, · · · , 0]M×1 Clearly, underH0 the data is

from modelM0 and underH1 the data is from modelMi, 1 ≤ i ≤ M . With this modeling, the detection

problem can equivalently be stated as to assign the given data toM0 (H0) or to M1 ∪M2 ∪ · · · ∪MM

(H1).

III. G ENERALIZED L IKELIHOOD RATIO TEST

A. Performance of the GLRT

Firstly, suppose the varianceσ2 is known. SinceL andA are unknown, the GLRT decidesH1 if

LG (X) = max
1≤i≤M

p
(

X; Âi,Mi

)

p (X;M0)
> λ

where X = [x[0],x[1], · · · ,x[N − 1]]T denotes the whole data andp
(

X; Âi,Mi

)

is the probability

density function (PDF) underMi parameterized by the maximum likelihood estimator (MLE)Âi, which

is estimated assumingMi is true. Since ifi ≤ j, Mi can be thought of as a special case ofMj , it

is readily shown that the GLRT will always implement the test statistic based on the maximum model,

i.e. [5]

LG (X) =
p
(

X; ÂM ,MM

)

p (X;M0)
> λ

or equivalently

2 lnLG (X) = 2 ln
p
(

X; ÂM ,MM

)

p (X;M0)
> λ′ (2)

The test statistic of (2) has the PDF [5]

2 lnLG (X) ∼











χ2
M , H0

χ′2M (λ) , H1

(3)

whereχ2
M denotes the chi-squared distribution andχ′2

M (λ) denotes the noncentral chi-squared distribution

with the noncentrality parameterλ. The noncentrality parameter is given by

λ =

ε
M
∑

i=1
A2

i

σ2

where

ε =
N−1
∑

n=0

s2 [n]

is the signal waveform energy. Since only the firstL elements ofA are nonzero, we have

λ =

ε
L
∑

i=1
A2

i

σ2
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With the PDF of the GLRT test statistic of (3), we now show the performance of the GLRT is generally

not optimal and can be improved. SupposeL < M and letK be an integer such thatL ≤ K < M . If

there is a generalized likelihood ratio test based onMK , which decidesH1 if

2 lnLGK
(X) = 2 ln

p
(

X; ÂK ,Mk

)

p (X;M0)
> λ′′ (4)

the PDF of this test statistic is given by

2 lnLGK
(X) ∼











χ2
K , H0

χ′2K (λ) , H1

(5)

We note that if the varianceσ2 is unknown, (2) and (4) should be changed to

2 lnLG (X) = 2 ln
p
(

X; ÂM , σ̂2
M ,MM

)

p
(

X; σ̂2
0,M0

) > λ′

and

2 lnLGK
(X) = 2 ln

p
(

X; ÂK , σ̂2
K ,MK

)

p
(

X; σ̂2
0,M0

) > λ′′

whereσ̂2
i is the MLE ofσ2 underMi. However, asymptotically (3) and (5) still hold [5]. SinceK < M ,

from Theorem 1, which is proved in Appendix I, the detector based on modelMK has better performance

than that of the GLRT, which is based onMM .

Theorem 3.1: Suppose there are two detection statisticsT1 andT2. The detection statisticT1 has the

PDF

T1 ∼











χ2
ν1, H0

χ′2
ν1 (λ) , H1

and the detector 1 decides a signal is present ifT1 > γ1. The detection statisticT2 has the PDF

T2 ∼











χ2
ν2, H0

χ′2
ν2 (λ) , H1

and the detector 2 decides a signal is present ifT2 > γ2. Then, if ν1 < ν2, the performance of detector

1 is better than that of detector 2 in a Neyman-Pearson (NP) sense, i.e. for the same false alarm rate

detector 1 has a higher probability of detection than detector 2.

In other words, for this distributed detection problem, ifL < M the GLRT is not optimal. This is

because the GLRT is based onMM and therefore the channels that contain only noise samples are

included in the test statistic. Including these channels will increase the degrees of freedom of the test

statistic, however the noncentrality parameter remains the same.
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B. Improved GLRT

From Theorem 1, any detector based onMi with i > L will have a performance less than the detector

based onML. It is clear that the unknown orderL is critical to the performance of detectors. In order to

improve the GLRT,L can first be estimated and a generalized likelihood ratio testbased on model̂L can

then be conducted. This can be done by using various model order selection criteria [6]. A widely used

criterion is the minimum description length (MDL) criterion, which selects the model that minimizes

MDL (i) = −2 lnLGi
(X) + i lnN, 1 ≤ i ≤ M (6)

The GLRT with estimated model is referred to as “rGLRT” in this paper.

Recently, a multifamily likelihood ratio test (MFLRT) is proposed to modify the GLRT to accommodate

nested PDF families [7]. The MFLRT decidesH1 if

TMFLRT (X) = max
1≤i≤M

{[

LGi
(X) − i

(

ln

(

LGi
(X)

i

)

+ 1

)]

u

(

LGi
(X)

i
− 1

)}

> γ (7)

whereu(·) is the unit step function.

These two revised GLRTs will be compared with the GLRT in Section V.

IV. BAYESIAN APPROACH

A. Approximated Bayesian Approach

Firstly, suppose the varianceσ2 is known. If we are willing to assume Bayesian assumptions, that is

modelMi, 0 ≤ i ≤ M has a prior probabilityπi and under each model inH1, Aj , 1 ≤ j ≤ M has a

prior PDF given asp(Aj |Mj), the optimal NP detector decidesH1 if

p (X|H1)

p (X|H0)
> λ (8)

From the Bayesian assumptions

p (X|H1) =
M
∑

i=1

πip (X|Mi) (9)

Plugging (9) into (8), the detector decidesH1 equivalently if

M
∑

i=1
πip (X|Mi)

p (X|M0)
> λ (10)

where the marginal PDFp(X|Mi) is given by

p (X|Mi) =

∫

p (X,Ai|Mi) dAi

=

∫

p (X|Ai,Mi) p (Ai|Mi) dAi (11)
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As mentioned previously, the true prior PDFs are usually unknown and hard to assume. Furthermore the

integration in (11) may not have a closed form. If the varianceσ2 is unknown
∫

p (X|Ai,Mi) p (Ai|Mi) dAi

should be replaced by
∫∫

p
(

X|Ai, σ
2,Mi

)

p
(

Ai, σ
2|Mi

)

dAidσ2 and it is even more difficult to assume

the prior PDFs as well as calculate the integration.

It is shown in [10] that assuming vague prior PDFs, the marginalPDFp(X|Mi) can be asymptotically

approximated as

p (X|Mi) ≈ const · p
(

X|Âi,Mi

) ∣

∣

∣I

(

Âi

)∣

∣

∣

− 1

2 (2πe)
i

2

where| · | denotes determinant andI
(

Âi

)

is the observed information matrix, or

I

(

Âi

)

= − ∂2 ln p (X|Ai,Mi)

∂Ai∂AT
i

∣

∣

∣

∣

∣

Ai=Âi

For the model given by (1), it can be shown that asymptotically

∣

∣

∣I

(

Âi

)∣

∣

∣ ≈ N i

and therefore

p (X|Mi) ≈ const · p
(

X|Âi,Mi

)

(

N

2πe

)− i

2

(12)

Plugging the above into (10) we have

M
∑

i=1
πiconst · p

(

X|Âi,Mi

) (

N
2πe

)− i

2

p (X|M0)
> λ′

or
M
∑

i=1

πi

(

N

2πe

)− i

2

LGi
(X) > λ′′ (13)

Whenσ2 is unknown, similarly we have

p (X|Mi) ≈ const · p
(

X|Âi, σ̂
2
i ,Mi

)

(

N

2πe

)− i+1

2

and (13) is still valid. The detector given by (13) is referredto as “aBayesian” in the simulations of

Section V.

B. An Exact Bayesian Detector

In order to make a comparison to the approximated Bayesian detector in the simulations in Section V,

in this subsection we provide a set of Bayesian prior PDFs that result in a detector with a closed form.
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Supposeσ2 is known, and underMi, the i elements ofAi are independent and identically distributed,

or

p (Ai|Mi) =
i
∏

k=1

p (Ak) (14)

Assume under any modelMi, 1 ≤ i ≤ M

p (Ak) =
1

√

2πσ2
Ak

exp

(

− 1

2σ2
Ak

(Ak − µk)
2

)

, 1 ≤ k ≤ i (15)

Denotingxk = [Xk[0], Xk[1], · · · , Xk[N − 1]]T as the data vector from channelk, because each channel

is independent to other channels we have

p (X|Mi)

p (X|M0)
=

i
∏

k=1

p (xk|Mi)

p (xk|M0)
(16)

Denoting p(xk|Mi)
p(xk|M0)

asR (xk), with the assumed prior PDFs, after some algebra we have

R (xk) =

√

σ2

Nσ2
Ak

+ σ2
exp





N2σ2
Ak

(x̄k)
2 + 2Nµkx̄kσ

2 − Nµ2
kσ

2

2σ2
(

Nσ2
Ak

+ σ2
)



 (17)

wherexk denotes the mean of the data from sensork, given as

x̄k =
1

N

N−1
∑

n=0

Xk [n]

From (10) and (16) the Bayesian detector decidesH1 if

M
∑

i=1

πi

i
∏

k=1

R (xk) > λ (18)

V. COMPUTERSIMULATIONS

In this section the previously discussed detectors are compared via computer simulations. We note,

these detectors are derived from different origins and havequiet different properties. The performance

of each detector requires further investigation. This section only serves to give some examples of these

detectors and to show the GLRT can be improved.

A. Known Variance

Define the SNR of channelk as

SNRk = 10 log 10

(

εA2
k

σ2

)

With this definition, when SNRk ≥ 20dB all methods yield pretty good results. Therefore the main

concern is the situation when SNRk < 20dB, i.e. when |Ak| <
√

100σ2

ε
. Hence we assumeσ2

Ak
=
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100σ2

9ε
, 1 ≤ k ≤ i for p(Ak) given by (15), so that3σAk

=
√

100σ2

ε
and for most values thatAk will take

the SNRk is less than20dB. Since the SNRk for each sensor is the same, we simply denote it as SNR.

We also assumeµk = 0, 1 ≤ k ≤ i for p(Ak) and the priorsπi, 1 ≤ i ≤ M are all equal.

Now, all the assumptions required for the exact Bayesian detector given by (17) and (18) are made.

If all these assumptions are true, the exact Bayesian detector is optimal. However, since in practice the

assumptions are rarely completely true, the Bayesian approach is only to find a realizable detector and

we hope the detector will be robust. That is when the true priors and prior PDFs are not the same as

the assumptions, the detector still has satisfactory performance. In the simulation the true priors under

H1 are set to equal, which is the same as the assumed priors. However, the trueAk takes fixed value, in

other wordsAk is deterministic.

Since the detection performance only depends on the energy ofthe signal waveform, we simply let

s[n] = 1, 0 ≤ n ≤ N − 1 andσ2 = N , so that ε
σ2 = 1. The number of sensorsM is set to be5. With

the parameters, it can be shown that

LGi
(X) = exp

(

1

2

(

i
∑

k=1

x̄2
i

))

We compare the receiver operating characteristics (ROC) curves of the GLRT given by (2), the rGLRT

with model selected by the MDL, the MFLRT given by (7), the approximated Bayesian detector given by

(13) and the exact Bayesian detector given by (17) and (18). When SNR= 6 or Ak = 2 the performances

of detectors of 5000 realizations are shown in Fig. 1, and whenSNR= 12 or Ak = 4 the performances

of detectors of 5000 realizations are shown in Fig. 2. For relatively low SNR case, it can be seen in

the Fig. 1 that the Bayesian detector, aBayesian detector andthe MFLRT are better than the GLRT for

all region of the ROC curve. The rGLRT are better than GLRT for theregion of the ROC curve where

PFA > 0.04. For relatively high SNR case, it can be seen in the Fig. 2 that the GLRT is the worst for all

region of the ROC curve. Comparing Fig. 1 and Fig. 2, it is seen that the aBayesian detector has very

similar performance to the exact Bayesian detector. It is also seen from Fig. 1 and Fig. 2, when SNR

is low, the rGLRT is close to the GLRT, which is the worst detector, and when SNR is high rGLRT is

the best detector. Compared with the rGLRT, the MFLRT is more robust. Actually, it can be shown the

MFLRT has some minimax properties, which will be addressed in afuture work.

B. Unknown Variance

When the varianceσ2 is unknown, it can be shown

LGi
(X) =

(

σ̂2
0

σ̂2
i

)
MN

2
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Fig. 1. ROC curves of the detectors in relatively low SNR (known variance).
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Fig. 2. ROC curves of the detectors in relatively high SNR (known variance).

.

where

σ̂2
k =

1

NM

N−1
∑

n=0





k
∑

i=1

(Xi [n] − x̄i)
2 +

M
∑

j=k+1

(Xj [n])2
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Because in this case, it is even more difficult to assume valid prior PDFs, we only compare the other4

detectors. When SNR= 6 the performances of detectors of 5000 realizations are shown in Fig. 3, and

when SNR= 12 the performances of detectors of 5000 realizations are shown in Fig. 4. For relatively

0 0.05 0.1 0.15 0.2 0.25 0.3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
FA

P
D

ROC curves from 5000 trials; SNR = 6; M = 5

MFLRT

Glrt

aBayesian

rGLRT

Fig. 3. ROC curves of the detectors in relatively low SNR (unknown variance).

.

low SNR case, it can be seen in the Fig. 3 that the aBayesian detector and the MFLRT are better than

the GLRT for all region of the ROC curve. The rGLRT are better thanthe GLRT for the region of the

ROC curve wherePFA > 0.04. For relatively high SNR case, it can be seen in the Fig. 4 that the GLRT

is the worst for all region of the ROC curve. The minimax property of the MFLRT can also be observed

comparing Fig. 3 and Fig. 4.

VI. CONCLUSIONS ANDDISCUSSION

We have investigated the GLRT and the Bayesian approach for centralized composite distributed

detection. In particular, In particular, we have proved that the performance of GLRT is poor and can be

improved for this problem. An approximated Bayesian detector has also been proposed based on vague

prior PDFs, and therefore the marginal PDF can be obtained without integration. As a result, the detector

always has a closed form.

In our exposition, we assume the sensors have already been ordered with respect to their importance.

Therefore when there areM sensors, onlyM + 1 models need to be considered. When the original data
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Fig. 4. ROC curves of the detectors in relatively high SNR (unknown variance).

.

from sensors are not ordered, forM sensors we have to consider2M models as in [4]. This will greatly

increase the computational load. Alternatively, some preliminary processing can be conducted to order

the sensors and similar techniques as in [11] can be used. However, the performance degradation as a

result of ordering needs further investigation.

REFERENCES

[1] R. R. Tenney and N. R. Sandell Jr., “Detection with distributed snesors,” IEEE Trans. Aerospace Elect. Syst.,, vol. AES-17,

pp. 501-510, July 1981.

[2] R. Viswanathan and P. K. Varshney, “Distributed detection with multiple sensors-Part I: Fundamentals,”Proceedings of

the IEEE,, vol. 85, pp. 54-63, Jan. 1997.

[3] R. S. Blum, S. A. Kassam and H. V. Poor, “Distributed detection with multiple sensors-Part II: Advanced Topics,”

Proceedings of the IEEE,, vol. 85, pp. 64-79, Jan. 1997.

[4] B. Baygun and A. O. Hero III, “Optimal Simultaneous Detection and Estimation Under a False Alarm Constraint,”IEEE

Trans. Inform. Theory,, vol. 41, pp. 688-703, may 1995.

[5] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Upper Saddle River, NJ: Prentice-Hall, 1998.

[6] P. Stoica and Y. Selen, “Model-Order Selection-A review of information criterion rules,”IEEE Signal Processing Magzine,,

vol. 21, pp. 36-47, July 2004.

[7] S. M. Kay, “The Multifamily Likelihood Ratio Test for Multiple Signal Model Detection,” IEEE Signal Process. Letters,,

vol. 12, no. 5, pp. 369-371, may 2005.



12

[8] L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Trans. Signal Process.,, vol. 46, no. 8, pp. 2146-2157,

Aug. 1994.

[9] O. Zeitouni, J. Ziv and N. Merhav, “When is the generalized likelihoodratio test optimal,”IEEE Trans. Inform. Theory,,

vol. 38, pp. 1597-1602, Sept. 1992.

[10] P. M. Djuric, “Asymptotic MAP criteria for model selection,”IEEE Trans. Signal Process.,, vol. 46, no. 10, pp. 2726-2735,

Oct. 1998.

[11] R. R. Hocking, “The analysis and selection of variables in linear regression,”Biometrics,, 32, pp. 1-49, Mar. 1976.

[12] A. Gelman, J. Carlin, H. Stern and D. RubinBayesian Data Analysis, London, U.K.: Chapman & Hall, 1995.

APPENDIX I

PROOF OFTHEOREM 1

Sinceν1 < ν2, consider a hypothesis testing problem, in which,

H0 : x [1] ∼ χ2
ν1, x [2] ∼ χ2

ν2−ν1

H1 : x [1] ∼ χ′2
ν1 (λ) , x [2] ∼ χ2

ν2−ν1

andx[1] is independent ofx[2] in each hypothesis. The optimal NP detector decidesH1 if [5]

p
χ′

2

ν1(λ) (x[1]) pχ2
ν2−ν1

(x[2])

pχ2
ν1

(x[1]) pχ2
ν2−ν1

(x[2])
=

pχ′2
ν1(λ) (x[1])

pχ2
ν1

(x[1])
> γ

Plugging in the expression of the PDF ofχ2
ν1 andχ′2

ν1 (λ) yields [5]

1
2

(

x[1]
λ

)
ν1−2

4 exp
[

−1
2 (x[1] + λ)

] ∞
∑

k=0

(

1

2

√
λx[1]

)2k+ ν1
2

−1

k!Γ( ν1

2
+k)

1

2
ν1
2 Γ( ν1

2
)
x[1]

ν1

2
−1 exp

(

−1
2x[1]

) > γ

The above expression can be simplified to
∞
∑

k=0

ckx[1]k > γ

with all positive ck
′s. Sincex[1] ≥ 0 ,

∞
∑

k=0
ckx [1]k is a monotonically non-decreasing function ofx[1],

the detector decidesH1 equivalently if

TNP ([x[1], x[2]]) = x[1] > γ′ (19)

This is the optimal detector in the NP sense. Now consider another detector which decidesH1 if

TG ([x[1], x[2]]) = x[1] + x[2] > γ′′

This detector is different from the optimal detector (19) andtherefore it has a poorer performance. Since

TNP ∼











χ2
ν1, H0

χ′2
ν1 (λ) , H1
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and

TG ∼











χ2
ν2, H0

χ′2
ν2 (λ) , H1

The theorem is proved by lettingT1 = TNP andT2 = TG.


