
Asymptotically Optimal Detection/ Localization of LPI
Signals of Emitters using Distributed Sensors

Naresh Vankayalapati and Steven Kay

Dept. of Electrical, Computer and Biomedical Engineering

University of Rhode Island

Kingston, RI 02881

ABSTRACT

The interception of low probability of intercept signals has become increasingly difficult due to the availability
of waveform agile transmitters and increased spectral bandwidth. Current detection techniques based on energy
detection ignore the important cross-sensor correlation information. Additionally, existing TDOA/FDOA based
localization techniques pair up the sensors and perform only pair-wise processing which is highly inefficient.
To circumvent this problem we show how to use multiple spatially distributed sensors to detect and localize
an emitter whose waveform is completely unknown. We present the generalized likelihood ratio detector which
optimally combines the multiple sensor information for improved detection. Additionally, as part of the detector
the MLE for target location is available, leading to improved localization.

1. INTRODUCTION

Intercept receivers are becoming increasingly desirable due to their covert nature [1]. In addition intercept
receivers enjoy a higher power density as there is only a one-way power loss at the intercept receiver as compared
to the two-way loss at the transmitting active radar. On the other hand, since the angle of signal arrival and the
signal itself are generally unknown to the interceptor, efficient processing techniques such as matched filtering
cannot be implemented. Also, many modern active radar systems are designed with low probability of intercept
(LPI) features. They incorporate physical attributes such as frequency variability, infrequent scanning, etc. to
reduce the probability of interception by an interceptor and signal design attributes such as low power, wide
bandwidth, etc. to decrease the probability of detection and parameter identification at the interceptor [2]. This
leads to the need for implementing highly efficient detectors and localizers in the interceptor systems.

A simple radar system with a single transmitter and a single receiver both at the same physical location
is called a monostatic radar. In general its performance is inferior to a multistatic radar system. An active
multistatic radar system has one or more transmitters and many spatially separated receiving stations. A passive
multistatic radar consists of only a network of distributed intercepting receivers. Such a system of multiple receive
platforms has a higher probability of intercepting the signals of interest. Also multiple platforms provide more
data samples over a given interval of time which increases the probability of detection. Each of these receive
platforms can have an individual detector to process the received signal. This is called decentralized target
detection. These local decisions at individual receive platforms are communicated to a central processor where
they are processed to arrive at a global decision. Several such decision fusion techniques have been proposed and
used over the years [3, 4]. Despite some practical advantages such as requiring low bandwidth data links between
receive platforms and less processing power, the decentralized detection approach has an obvious performance
loss due to the absence of cross-platform correlation information. On the other hand, centralized detection has
better performance but requires more resources. Large bandwidth data links are required to transfer the received
signals from all the receiving stations to the fusion center. High speed signal processors are required to process
the large amount of data available at the fusion center for real-time detection. Since centralized detection relies
on the cross-platform correlation information, the received signals must be spatially coherent.

When a signal is transmitted by an active device, from here on referred to as the target, it reaches each of
the interceptor receiving stations after a certain amount of time, which is the propagation delay. If the target is
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moving with respect to the receiving station, then there is a Doppler shift in the frequency of the signal. These
propagation delays and Doppler shifts are different at each receiving station and depend on the target location
and velocity. Therefore, using these, the target location and velocity can be estimated. The amplitude and phase
of the signal are also different at each receiving station. Taking all these factors into account and assuming there
is no noise, the complex envelope of the signal that is received at the ith receiving station after sampling is

Ãis̃[n − ni] exp
(

j2πki(n − ni)
N

)

where s̃[n] is the signal emitted by the target, Ãi = Aie
jφi is the change in amplitude and phase, ni is the

propagation delay and ki is the Doppler shift. (For simplicity we assume a discrete-frequency Doppler shift of
ki

N , for some large N .) Note that we are using “∼” to represent complex variables. An important difference
between the detectors in the active radars and the detectors in the intercept receiver systems is that in the active
case the received signal is an echo of the transmitted signal. Thus, the signal can be modeled as known with
unknown parameters. In the intercept detection case, however, the signal itself is unknown. In some cases the
signal is modeled as a stochastic process with unknown parameters [5]. We model the signal as deterministic
and completely unknown, i.e, our signal modeling assumptions coincide with those of Stein [6].

In the next section we give a detailed description of the problem and model it as a statistical hypothesis
test. In Section 3 we find the MLE for target location using the linear model and the GLRT for the described
hypothesis test. In Section 4 we compare the detection performance of the GLRT against some commonly
used detectors and the localization performance of the MLE against the existing TDOA technique. We provide
conclusions in Section 5.

2. PROBLEM DESCRIPTION AND ASSUMPTIONS

The problem we are addressing can be described as follows. We have M intercepting sensors placed at multiple
locations. Each of these sensors collects N time samples in a given interval of time. The total MN samples
that are collected are available for processing at a fusion center. As is usual in practice, we assume N > M .
We further assume that the noise at each of the receiver stations is white Gaussian and also that the noise at a
receiver station is independent from noise at all the other receiver stations. For simplicity we assume that the
variance of noise is σ2 = 1. In situations where the noise does not meet these criteria, the observations can be
pre-whitened [7] before processing so that the above assumptions hold. Now, the task of the detector at the
fusion center is to detect the presence of an unknown signal in the MN observed samples. Once the signal is
detected, the estimator must estimate the location and velocity of the target.

Let s̃[n], n = 0, 1 · · · , N − 1 be the nth complex time sample of the transmitted signal. A time delayed
and Doppler shifted version of this signal and with a different amplitude and phase reaches the sensors. Let
Ãi = Aie

jφi be the change in the amplitude and phase. Let ni be the time delay and ki be the Doppler shift.
Let w̃i[n] be the nth complex time sample of the additive noise at the ith receiver station. If x̃i[n] is the nth
time sample of the observation at the ith receiver station then we can write

x̃i[n] = Ãis̃[n − ni] exp
(

j2πki(n−ni)
N

)
+ w̃i[n] n = 0, 1, · · · , N − 1

i = 0, 1, · · · , M − 1.

When there is no signal, the observation is just noise, x̃i[n] = w̃i[n]. So, the hypothesis test for the detection
problem can be written as

H0 : x̃i[n] = w̃i[n]
H1 : x̃i[n] = Ãis̃[n − ni] exp

(
j2πki(n−ni)

N

)
+ w̃i[n] n = 0, 1, · · · , N − 1

i = 0, 1, · · · , M − 1.

Notice that here we are modeling the received signal as unknown but deterministic with unknown parameters
Ãi, ni, ki, i = 0, 1, · · · , M − 1 and s̃[n], n = 0, 1, · · · , N − 1. Now, if we let ω = exp( j2π

N ) and W̃ be the N × N



matrix W̃ = diag(ω0, ω1, · · · , ωN−1) and let P be an N ×N permutation matrix defined as [P]ij = 1 if i = j + 1
and 0 otherwise, i = 0, 1, · · · , N − 1, j = 0, 1, · · · , N − 1 and [P]0,N−1 = 1, then we can write the hypothesis test
in vector form as follows

H0 : s̃ = 0
H1 : s̃ �= 0

where
x̃i = ÃiPniW̃

ki s̃ + w̃i i = 0, 1, · · · , M − 1

and x̃i =
[

x̃i[0] x̃i[1] · · · x̃i[N − 1]
]T , s̃ =

[
s̃[0] s̃[1] · · · s̃[N − 1]

]T and w̃i =
[

w̃i[0] w̃i[1] · · · w̃i[N − 1]
]T .

Notice that the permutation matrix P circularly shifts s̃ and so the above hypothesis test is only valid when
the discrete time delays are relatively small compared to N . Now let x̃ = [ x̃T

0 x̃T
1 · · · x̃T

M−1 ]T , w̃ =

[ w̃T
0 w̃T

1 · · · w̃T
M−1 ]T , Ã =

[
Ã0 Ã1 · · · ÃM−1

]T
, n =

[
n0 n1 · · · nM−1

]T , k =
[

k0 k1 · · · kM−1

]T

and H̃(Ã,n,k) =
[

(Ã0Pn0W̃
k0)T (Ã1Pn1W̃

k1)T · · · (ÃM−1PnM−1W̃
kM−1)T

]T

. The hypothesis test can
be written as follows

H0 : s̃ = 0
H1 : s̃ �= 0

where
x̃ = H̃(Ã,n,k)s̃ + w̃

and w̃ has a complex normal distribution with zero mean and the identity matrix as the covariance matrix, i.e,
w̃ ∼ CN (0, IMN ), IMN is an MN ×MN identity matrix. Here Ã is M × 1, s̃ is N × 1, n is M × 1, k is M × 1,
and are all assumed unknown.

3. MLE AND GLRT DETECTOR

An estimator that, on the average, yields the true value of the unknown parameter is called an unbiased estimator
[8]. An unbiased estimator that minimizes the variance is a minimum variance unbiased (MVU) estimator. The
Cramer-Rao lower bound (CRLB) places a lower bound on the variance of the unbiased estimator. An estimator
that is unbiased and attains the CRLB is said to be efficient. MVU estimators are difficult to find in many
practical problems. So, other approximately efficient estimators are used. Maximum likelihood estimators (MLE)
are the most popular approximately efficient estimators used for practical problems. MLEs are asymptotically
efficient and easy to find. The MLE for a vector of unknown parameters θ is defined to be the value θ̂ that
maximizes the likelihood function p(x; θ) over the allowable domain for θ.

In hypothesis testing problems where the probability density functions (PDFs) under both the hypotheses
are completely known the Neyman-Pearson (NP) detector is the uniformly most powerful (UMP) detector [9].
When there are unknown parameters in the PDFs, the performance of the NP detector depends on the true
value of these parameters. There are two common ways to deal with these unknown parameters. They can be
modeled as random variables with some PDF and then integrated out or they can be modeled as unknown but
deterministic and replaced with their MLEs. In the GLRT the unknown parameters are replaced by their MLEs
under the different hypotheses. Asymptotically, the GLRT is the uniformly most powerful test among all tests
that are invariant [9]. The likelihood ratio for the previously described hypotheses test is given by

L(x̃) =
p(x̃; s̃, Ã,n,k,H1)

p(x̃;H0)
(1)

If we replace the unknown parameters Ã, s̃, n and k with their respective MLEs ˆ̃A, ˆ̃s, n̂ and k̂ then the GLRT
decides H1 if

LG(x̃) =
p(x̃; ˆ̃s, ˆ̃A, n̂, k̂,H1)

p(x̃;H0)
> γ (2)

The GLRT test statistic can be shown to be [10]

T (x̃) = max
n,k

λmax(B̃(n,k)) (3)



where λmax is the maximum eigenvalue and B̃ is the M × M complex cross-ambiguity matrix (CAM) given by

[B̃]ij = x̃H
i PniW̃

ki(W̃
kj )H(Pnj )H x̃j (4)

and for which H is conjugate transpose. Since B̃ is positive definite, the maximum eigenvalue is real and positive.
Therefore the GLRT decides that a signal is present if the maximum eigenvalue of the CAM, when also maximized
over time delay and Doppler, is greater than a threshold. It should be noticed that the diagonal elements in
the CAM are the energy terms at each of the receivers, i.e, x̃H

i x̃i, and the off-diagonal terms are the complex
cross-ambiguity functions (CAF ) between all the pairs of sensors. For two finite length discrete time complex
signals x̃0[n] and x̃1[n], n = 0, 1, · · · , N−1 the energy in each of the signals is given by Ei =

∑N−1
n=0 |x̃i[n]|2, i = 0, 1

respectively and the CAF is a two dimensional function of differential delay (Δn) and differential Doppler shift
(Δk) between the signals and is defined as

CAF (Δn, Δk) =
N−1∑
n=0

x̃0[n]x̃∗
1[n + Δn] exp

(
j2πΔkn

N

)
(5)

where ∗ represents complex conjugate. It is important to note that the CAM contains CAF terms for all possible
sensor pair combinations and not just a selected set of pairs. So, the CAM can also be written as [B̃]ij = Ei if
i = j and [B̃]ij = CAFij if i �= j where CAFij is the CAF of the observations at sensor i and sensor j. Another
interesting result is that when the correlation information is zero, all the off diagonal terms become zero and so
the maximum eigenvalue is simply the maximum of the energies of the sensors. Hence the GLRT simply reduces
to a type of energy detector.

For given locations and velocities of the sensors, the delays and Doppler shifts are functions of the target
location and velocity. Therefore, the delay and Doppler shift vectors can be written as

n = f(xT , yT , zT )

k = g(xT , yT , zT , vxT
, vyT

, vzT
)

where f and g are M -dimensional functions. Using the invariance property of the MLE, we have

n̂ = f(x̂T , ŷT , ẑT )

k̂ = g(x̂T , ŷT , ẑT , v̂xT
, v̂yT

, v̂zT
)

where (x̂T , ŷT , ẑT ) and (v̂xT
, v̂yT

, v̂zT
) are the MLEs of target position and velocity. Putting these in eq (1) we

have

T (x̃) = max
xT ,yT ,zT ,vxT

,vyT
,vzT

λmax(B̃(xT , yT , zT , vxT
, vyT

, vzT
)) (6)

Therefore, we have simultaneously estimated the target location and velocity as well.

4. PERFORMANCE OF THE GLRT AND THE MLE

4.1 Detection

We compared the performance of the GLRT against two commonly used detectors. One detector computes
the energy of the observations individually at each sensor and when the energy at any one sensor exceeds a
predetermined threshold, the target is declared as present. In mathematical terms, if Ei, i = 0, 1, · · · , M − 1
are the energies of the observations at the M sensors, then the detector decides that a target is present if
max{E0, E1, · · · , EM−1} > γE . This is called the maximum energy detector. It can be noticed that this detector
is based solely on the energy information. The other detector is one that is based solely on the cross-sensor
correlation information. Here a sensor is fixed as the reference sensor and the CAF s are computed between
observations from the reference sensor and all the other sensors. When the maximum magnitude over possible



delay and Doppler shifts of any one of these CAF s exceeds a threshold, the target is declared as present. In
mathematical terms, assume sensor 0 is the reference sensor and Δni = (ni − n0) and Δki = (ki − k0) are the
difference in delay and Doppler at sensor i and sensor 0 respectively. Then if

|CAFi| = max
Δni, Δki

∣∣∣∣∣
N−1∑
n=0

x̃0[n]x̃∗
i [n + Δni] exp

(
j2πΔkin

N

)∣∣∣∣∣ , i = 0, 1, · · · , M − 1

are the maximum magnitudes over delay and Doppler of the CAF s between sensor 0 and all the other sensors,
then a target is declared as present if max{|CAF1|, |CAF2|, · · · , |CAFM−1|} > γCAF . This is referred to as
pair-wise maximum CAF detector.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Distance in Kilometers

D
is

ta
n
c
e
 i
n
 K

ilo
m

e
te

rs

Sensors

Target

Figure 1. Physical placement of the sensors and the target position used for simulation.

For the purpose of simulation a set of 11 sensors were placed in a configuration as shown in Figure 1. To
simplify the computations we assumed that the target is stationary and so the Doppler shift is zero. However,
delays are incorporated. As most LPI signals have noise-like properties we used a realization of a Gaussian
random process for the signal but once generated was fixed throughout the simulation. White Gaussian noise
was also used as the additive noise at the sensors. We collected 32 samples at each of the sensors. The signal-
to-noise ratio (SNR), which is the ratio of the energy in the signal to the noise power at each sensor, averaged
over all the sensors was about 6.5 dB, i.e., if Esi = |Ãi|2

∑N−1
n=0 |s̃[n]|2 is the energy of the signal at the ith sensor

and σ2
i is the noise variance at the ith sensor, then the signal to noise ratio averaged over M sensors is given

by 10 log
(

1
M

∑M−1
i=0

Esi

σ2
i

)
. Here we assumed a single target and the maximization of the GLRT test statistic

was done over (x, y). We used a grid search to maximize the test statistic and searched over a 50km × 50km
region. The comparison receiver operating characteristics (ROC) curves are shown in Figure 2. It can be noticed
that the performance of the GLRT is very much better than either of the two commonly used detectors. For
a probability of false alarm PFA = 0.01 the probability of detection PD is about 0.1 for the maximum energy
detector and the pair-wise maximum CAF detector but is 0.5 for the GLRT. Therefore, the GLRT which is a
function of the energy at each sensor combined with the cross-sensor correlation is better than detectors that
are solely based on either energy or cross-sensor correlation. Holt and Altes arrive at similar conclusion in [11]
and [12].

The fact that GLRT uses both the energy and cross-correlation information is demonstrated in Figure 3.
Here, the same emitter signal was used for the two cases of M = 2 and M = 11. A total of 32 samples were
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Figure 2. Comparison of GLRT against the maximum energy detector and the pair-wise maximum CAF detector
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Figure 3. GLRT vs maximum energy detector for the two cases of M=2 and M=11.

collected. It should be noticed that when M = 2 the GLRT does only slightly better than the energy detector
as there is very little cross-correlation information but when M is increased to 11 the performance of GLRT
exceeds that of energy detector considerably. The average SNR at each sensor in the case where M = 2 is 4.96
dB while when M = 11 it is 6.61 dB. In real world, as the signal travels from the target to the sensor the signal
power is attenuated, which is called the propagation loss. In our simulation, while generating the observations
at each sensor, we accounted for the propagation loss due to spreading when computing the Ãis. Due to the



physical setup that we have chosen, as we increased the number of sensors, the newly added sensors were placed
closer to the target and so the average SNR per sensor increased.

4.2 Localization

The localization performance of the MLE is compared against the existing time-difference of arrival (TDOA)
based localization technique, from hereon referred to as TDOA approach. In the TDOA approach, the sensors
are grouped into pairs. From the possible

(
M
2

)
pairs a set of pairs is chosen. The CAF for each pair is

computed and the τ̂d that maximizes the CAF is the estimate for the TDOA between that pair of sensors.
Since we are assuming that the sensors and the target are stationary, the Doppler shift is zero and we need
only use cross-correlation instead of CAF . The time difference estimates are computed for the chosen M − 1
pairs {(0, 1), (0, 2), · · · , (0, M − 1)} to obtain the M − 1 estimates (τ̂d1 , τ̂d2 , · · · , τ̂dM−1). The true delays (τd) are
computed as a function of the target location for each of the M − 1 pairs of sensors as follows. For the sensor
pair (i, j) and assuming a plane geometry

τd =
1
c

(√
(xi − xT )2 + (yi − yT )2 −

√
(xj − xT )2 + (yj − yT )2

)

where (xi, yi) and (xj , yj) are the locations of the ith and jth sensor and (xT , yT ) is the location of the target.
c is the speed of light. The difference in the estimated and computed delays is computed as the error

J(xT , yT ) =
M−1∑
i=1

(τdi
− τ̂di

)2

The values of target location (x̂T , ŷT ) that minimize J are the estimates of the target location. Figures 4 and
5 show the scatter plots for the TDOA approach and the MLE respectively for an average signal to noise ratio
of 11dB. The MLE requires maximization of the eigenvalue and the TDOA requires minimization of the error.
These optimizations were performed using grid search over a 24km × 24km region around the true target location
which is at xT = 15, yT = 20 km. This is represented as a box in the figures. From these figures it is very clear
that the MLE outperforms the TDOA approach. A total of 1000 simulations was run to generate the scatter
plot. The mean and covariance of the target location estimates using both the TDOA and MLE approaches were
computed. These were used to generate the error ellipses which are shown in Figure 6. It can be noticed that
the TDOA is extremely biased.

5. CONCLUSIONS

We have modeled the problem of detection and localization of LPI signals and derived the GLRT detector and
the MLE for target location and velocity for the model. We have shown that the GLRT uses both the energy
and the cross-sensor correlation and thus outperforms the currently used detectors which only use either the
energy or the cross correlation. While finding the GLRT, the MLE of the target location and velocity are also
simultaneously computed. It is shown that the MLE outperforms the existing TDOA approach which pairs up
the sensors and performs an inefficient pair-wise processing. We are also investigating the possibility of extending
this technique to the detection of multiple targets.
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