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Abstract

The problem of reducing the probability of decision error of an existing binary receiver that is
suboptimal using the ideas of stochastic resonance is solved. The optimal probability density function of
the random variable that should be added to the input is found to be a Dirac delta function, and hence
the optimal random variable is a constant. The constant to be added depends upon the decision regions
and the probability density functions under the two hypotheses, and is illustrated with an example.
Also, an approximate procedure for the constant determination is derived for the mean-shifted binary
hypothesis testing problem.
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1 Introduction

The phenomenon of stochastic resonance has garnered much attention [1-4]. In short, it asserts that
many physical processes in nature can be modeled as a detector over which we normally have no control.
However, the stimulus to the process or equivalently the input to the detector is a quantify over which we
do exert some measure of control. For example, in human image perception it is well known that contrast
enhancement aids recognition of objects seemingly “buried” within the image. Hence, it is of importance
to understand how one can modify the input to enhance the decision process. In stochastic resonance,
the input is modified by adding a random variable or more generally noise. Recently, some approaches
to determine the optimal type of noise to be added to a data set to improve detection performance have
been derived [5]. In this paper we address the similar hypothesis testing problem of attempting to decide
between two hypotheses but where the performance criterion is the probability of decision error. In [5] a
Neyman-Pearson criterion is utilized.

We consider the problem of deciding between two hypotheses Hy and H; that can occur with a priori
probabilities P[Hy] = my and P[H;] = m; = 1 — mp, respectively. Our criterion for performance will be
probability of error P, although the derivation is easily modified to minimize the Bayes’ risk by assigning
costs associated with each decision [6]. It is assumed that the decision regions have already been specified,
that they are not optimal in terms of minimizing P, and that a single data sample z is used to make a
decision. The already specified decision regions may be arbitrary and hence our solution encompasses such
regions as if one would decide H; if z > a or |z| < a as examples. The single sample is usually a test
statistic, i.e., a function of a set of observations, which is a common procedure for decision making. To
improve the performance a “noise sample” ¢ is added to form y = x + ¢ prior to decision making. We allow
¢ to be a random variable and determine the PDF of ¢ that will yield the minimum P,. It is proven next
that the optimal PDF is a Dirac delta function, which leads to the conclusion that the optimal random

variable to be added is o degenerate one, i.e., a constant.

2 Optimal PDF of Additive Noise Sample

To write the probability of error for the original problem we define the decision rule (also called the test

function or critical region indicator function) as

0 decide Hyp
1 decide H;.

p(z) =
Then, we have

P, = P[decide H1|Ho|P[Ho] + Pldecide Ho|H1]P[H1]



= Plp(x) = 1|Ho|mo + Plp(z) = 0|H1]m
=m0 [t @da+m [ (1= pla)p) (o)do

where pi (z), p7* (z) are the probability density functions (PDFs) under Hq and H;, respectively. This can

be rewritten as
0
Po=mi+ [ 4(@)mop (@) - mp (2))do.
—00

Now assume that we modify x by adding ¢ so that the test statistic becomes y = x + ¢, where ¢ is a random

variable independent of z, and whose PDF is pc(c). Since the identical decision rule is to be used, we have

Po=m+ [ pl)mond (o)~ mp} (v))dy.

But
p(y) = /_ o:opé( (y — o)po(c)de
W = [ pi-ope@de

We have then that

P,

= 7r1+/ [/ Py Wopo( —C)—mpf((y—C))dy]pc(C)dc

= m + Ec V_oo ¢(y) 7rop3((y — o) —mpy (y — c)) dy]

mt [ 6w |m [ - epetde—m [ b - dpo(de] dy

where F¢ denotes expected value. Hence, we wish to choose pc(c) so that the slightly more convenient

form
Twe) = Ee | [ ¢ (mpl (v - o)~ moniF (v = )) dy 1)

is maximized. This is done in the next section. We will see that the random variable C' may be chosen as a

constant and therefore we need only maximize the expression within the brackets of (1) over a constant c.
But this is equivalent to shifting ¢(u), the decision region function by —c. Hence, the solution effectively
shifts the decision region by a constant. This suggests that another means for improving performance is
to transform the decision region using a nonlinear transformation (instead of the simple shift). It can be
done by transforming the data sample x using a nonlinear transformation g as g(z). A future paper will

address this alternative and more general approach.



3 Derivation of Optimal PDF for C

It is well known that E¢[g(C)] is maximized by placing all the probability mass at the value of ¢ for
which g(c) is maximized. We assume that the function g(c) has at least one point at which a maximum is

attained. Calling this point ¢y the optimal PDF is then pc(c) = d(c — ¢p), where
cp = arg, max g(c)

or
¢y = arg, max [ () (mp(y = ¢) = mopg (y — ©)) dy.

A slightly more convenient form for g(c) is obtained by letting u = y — ¢ so that
g(c) = / d(u+c) (Wlpi (u) — mopy (u)) du (2)
— 00

which is recognized as a correlation between ¢(u) and 71py (u) — mopy (u). In summary, we should add
the constant ¢ to x, where ¢ is the value that mazimizes the correlation given in (2). Since the decision
function ¢(x) in (2) is completely general, the optimal solution is valid for a given binary decision rule
with any decision region. For example, if the original decision rule were to decide Hy if £ > a, then we
would use ¢(u) =1 for u > a and zero otherwise in (2). If it were to decide H; if |z| < a, then ¢(u) = 1 for
|u| < a, and zero otherwise, then we would use ¢(u) = 1 or |u| < a, and zero otherwise in (2). (Note that if
$(u) = 1 for mp3X (u) — mopil (u) > 0 and zero otherwise, then g(c) is maximized for ¢ = 0. This is because

in this case the decision rule ¢(u) is optimal.) In the next section we solve this for a given example.

4 The Gaussian Mixture Example

We now consider the problem described in [4] but instead choose the probability of error criterion. The
problem is to decide between p{ (z) and piX (z) = p{ (z — A), where A > 0 is a DC level that is known and

the noise PDF is the Gaussian or normal mixture
X 1 2 1 2
po (@) = SN (@3 ,0%) + SN (25 —p, 07) (3)

where

N(z;p,0%) =

1 1 )
Vano? P [T

The original decision rule is to choose Hi if > 0 so that ¢(x) = us(x), where ug(x) is the unit step

function. Additionally, we assume equal a priori probabilities so that myp = 71 = 1/2. As a result, we have



from (2) that

0@ = 5 [ s+ )i ) - o (w)du
= 3/ 0w~ )
= S10-F(=0) ~ (1~ (=)
= (R0 - Fi(~)

where Fj is the cumulative distribution function of z under the hypothesis H;. For our problem we have

that p{X (z) = p{’ (x — A) and so Fy(z) = Fy(x — A). Thus,

9(0) = 5 (Fo(—c) — Fo—c — 4)
and differentiating and setting equal to zero produces

py (=€) = py (—c = A)
or equivalently since pg( (x) is even, we have the general requirement
Py (€) = py (¢ + A). (4)
Using (3) produces
$c; p, 0%) + $le; —p, 0%) = dle + Ay, 0%) + Ple + A5 —p, 0%)

which upon simplification yields the equation

exp(uc/o?) + exp(—puc/o?) = exp[—c(A — p)/o? — A?/(20%) 4+ pA/o?]
+exp[—c(A + p)/o? — A?/(20%) — pA/o?].

For =3, 0% =1, and A =1 we have
exp(3c) + exp(—3c) = exp(2c + 5/2) + exp(—4c — 7/2).

The exact value of ¢ found through a numerical search is ¢ = 2.5000, which could also be found by ignoring
the terms exp(—3c¢) and exp(—4c — 7/2) since these are nearly zero for this value of ¢. Another solution
is found by ignoring the other set of terms to yield ¢ = —3.5. Note that either of these choices causes
the PDFs of 4 ¢ under Hy and H; to cross at the origin. See Figures 1 and 2. If we did not have the
right-most Gaussian mode, then the choice of ¢ = 2.5 would result in a maximum likelihood (ML) receiver,

which is optimum [6]. This is because a maximum likelihood receiver chooses the hypothesis whose PDF



value is larger. In our case the fized decision regions are Ry = {z : x > 0} for H; and Ry = {z : z < 0}
for Ho as shown in Figure 1. These decision regions are not optimal. The optimal ML decision regions
are indicated in Figure 1 as R and Rj. Therefore, the region in « for which R; # R}, which corresponds

to the dark PDF lines, will result in incorrect decisions. By the addition of ¢, however, the extent of this

incorrect decision region is reduced, as indicated in Figure 2.

05 T T .

asT @ )
04 ‘ |

0.351

03

0.25

02

0.15

01

0.05f

-10

_——_————O

--1‘--

Figure 1: Original PDFs. The left-most PDF modes cross at z = —2.5, which is indicated by the dashed

vertical line. The fized decision regions are indicated by R; while the optimal ML decision regions are

indicated by R;.

It is instructive to also plot the probability of error versus ¢ or equivalently the probability of correct
decision P, = 1 — P, versus c. This is shown in Figure 3. Note that as expected the probability of a correct
decision is maximized at ¢ = 2.5 and also at ¢ = —3.5. This type of curve is normally associated with the
phenomenon of stochastic resonance, although here we see that it is not unimodal. This result is unlike
that reported in [1-3] and so debunks the common assumption that adding too much noise will degrade

performance. The latter is only true if the performance curve is unimodal.
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Figure 2: PDFs after ¢ = 2.5 is added to z. The fized decision regions are indicated by R; while the optimal

ML decision regions are indicated by R}

5 A Simple Approximation

In some cases we can simplify the determination of ¢ rather than having to solve (4). Consider again the
case when 1y = 7 = 1/2 and p7*(z) = p{’ (z — A). This is an equal a priori probability and mean-shifted
decision problem. Furthermore, assume that A > 0 and A is small. Finally, assume that the decision is to

choose H; if y > 0. Then, we have that in (2)

wip () — ol (0) = 3 (o e~ A) — pf ()
X’LL
~ 1 <p3f ()~ 2L 4 (u>>
_ ldpy(u)
- el

where we have used a first-order Taylor expansion in A about A = 0. Therefore,

 1dp{(u) Al "

o0 = [ st |5
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Figure 3: Probability of correct decision versus the value of the constant ¢ to be added to data sample.

The dashed lines are at ¢ = —3.5 and ¢ = 2.5.

e
= AP (00) — p§ (~0]

1
= 51‘1105((—0)

du

by noting that the PDF must converge to zero as its argument goes to infinity. Hence, to maximize g(c)
we need only find the location of the maximum of pi (z). In practice, since knowledge of the PDFs is
usually lacking, this result will simplify the required knowledge necessary for implementation. Armed with
actual data one should then be able to estimate the most probable value of the PDF under Hy. Then, the
optimal value of c is the negative of this. For example, in the Gaussian mixture example, we have maxima
of p{ (z) at approximately z = 43 so that the optimal value of c is also £3. This is very close to our

previous results of ¢ = —3.5 and ¢ = 2.5 and will be exact as A — 0.
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