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A New Approach to Fourier Synthesis
With Application to Neural Encoding

and Speech Classification
Steven Kay, Fellow, IEEE

Abstract—We describe a novel means of representing signals by
a Fourier decomposition consisting of complex sinusoids with unit
amplitudes and zero phases. The only information necessary to re-
construct the signal from its Fourier components consists of the
“place” information, which specifies the sinusoidal frequencies to
include in the synthesis. This set of frequencies results in a nonuni-
form distribution of sinusoidal frequency components. As such, the
approach provides a means of representing a signal by a set of zeros
and ones, indicating an off-on condition for each frequency com-
ponent. It is conjectured that this might help explain the mecha-
nism of auditory and visual neural encoding of acoustic and visual
stimuli, respectively. As an immediate application of the theory,
a classification experiment is conducted which indicates that the
proposed neural encoding is more robust to noise than traditional
approaches.

Index Terms— Discrete Fourier transforms, multiple speech
classification, speech coding.

I. INTRODUCTION

A LTHOUGH the mechanisms of human hearing have been
studied for many years [1], we still do not understand how

the ear works in totality. The transduction of a sound wave into
a mechanical excitation in the cochlea is fairly well understood,
but how the information is actually encoded and interpreted by
the brain is a mystery. The usual explanation, that the cochlea and
its frequency sensitive hair cells act as a bank of narrowband fil-
ters, appears to be the accepted model. Yet, there remain many
questions as to why a supposedly linear bank of filters acts in
nonlinear ways as described in [11]. For example, it is known
from physiological experiments that as the sound stimulus in-
creases in amplitude, “the fiber tuning curves broaden, activity
will spread to fibers between the peaks” [11]. This is tantamount
to saying that the filter bank consists of a set of filters whose
bandwidths change with the amplitude of the input. Clearly, this
is not possible if the filters are linear and time invariant. Even
more problematic is that the ultimate output of these filters is a
neural firing response, either on or off, i.e., binary, that is trans-
mitted via the auditory nerve to the brain. One wonders whether
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the filter bank model followed by some decision device is the ap-
propriate model or just a convenient one spawned by appealing to
well-known signal models and linear systems theory. The current
state of knowledge in this area is summarized in [2] with other
papers listed in [3]. It appears, however, that many of the model
inconsistencies have still not been resolved.

In this paper we propose a new approach to the synthesis of
a deterministic signal using Fourier frequency components. For
random signals it has been shown that an analogous Fourier
synthesis can be implemented using random frequency sinusoids
[4]. It is worthwhile to contrast the proposed approach with
some of the many available synthesis methods. Typical ones
are wavelets, time-frequency representations, sine-cosine trans-
forms, etc [9]. All these methods rely on synthesizing signals
using a weighted linear combination of fixed basis functions. The
set of basis functions depends upon the transform chosen. In our
approach we use a dense set of basis functions, where each basis
function is either included in the sum or not. No weighting is
used and consequently, the “transform” is nonlinear. A wavelet
transform, for example, maps a signal to a set of weighting coef-
ficients. The sum of two signals produces the sum of weighting
coefficients. The approach to be described, however, produces a
set of zeros and ones as “weights”, with the sum of two signals
producing a different distribution of zeros and ones.

II. THE NEW SYNTHESIS APPROACH

For simplicity we will consider the synthesis of a dis-
crete-time deterministic signal. However, the theory to be
presented allows for an easy extension to continuous time
signals as well as for multidimensional signals. Considering a
discrete-time signal denoted by for , we
have the usual Fourier synthesis integral

(1)

where is the discrete-time Fourier transform given by
for .

What is obvious from (1) and what every signal processing
practitioner knows, is that a Fourier synthesis involves summing
together complex sinusoids with given amplitudes and phases.
However, what is not so obvious is that can be synthesized
with complex sinusoids with unit amplitudes and zero phases.
To do so will require a nonuniform distribution of frequency
components, which entails the use of a Fourier-Stieltjes inte-
gral (see [8] for a introduction to Stieltjes integration and [7]
for Fourier-Stieltjes integration). To make the subsequent dis-
cussion more intuitive consider the Riemann integration of the
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Fig. 1. Alternative viewpoint of Riemann integration.

function shown in Fig. 1. We may view this as the calculation
of , which is

and where is real and positive. Referring to Fig. 1 we see
that the value of the integral is obtained by summing up the areas
of the approximating rectangles. The width of each rectangle is

so the approximate value is
and clearly

as , we will obtain the true value of as a limit.
Alternatively, we can think of a very fine grid of frequencies
over the interval and compute the integral
by placing “markers” with each marker having the same value
of at the frequency locations shown. In the absence of a
marker, we can think of that sinusoidal frequency component as
not appearing or equivalently of having an amplitude of zero.
By using either the customary approach to Riemann integration
as a limit of the areas of rectangles or as the limit of a set of
nonuniformly spaced markers, we obtain the same result.

In the case of Fourier synthesis we will sum a set of unit am-
plitude and zero phase sinusoids whose frequencies are nonuni-
formly spaced, with Fig. 1 serving as an example. The fact that
the neighboring frequencies corresponding to a given rectangle
are slightly different for each marker will disappear in the limit as

or as the frequencies become more densely spaced. In
summary, a signal may be constructed and therefore represented
by a set of complex sinusoids, whose amplitudes are one, phases
are zero, and whose frequencies are chosen so that when summed
over each small bin will yield the amplitude of the Fourier
transform. Since the Fourier transform amplitude is in
general not constant, neither is the density of the frequencies.

III. THE MATHEMATICAL DEVELOPMENT:
FOURIER TRANSFORM REAL AND POSITIVE

We restrict the Fourier transform to be real and positive. The
extension to more general Fourier transforms will be described in
Section IV. Hence, we have that , where is real.
First we define the integrated Fourier transform, which may be
thought of as a cumulative distribution function (CDF), although

need not integrate to one over , as

(2)

Because is real and positive, it is easily shown that
must be a strictly monotonically increasing function. That is to

say, for , . Each distinct value of
is associated with a distinct value of . As a result, the inverse
function exists and if , then

(3)

Next, since is absolutely continuous, it is well known that
the derivative of is [8] and this allows us
to write (1) as

(4)

(5)

since . The latter integral is
known as a Stieltjes integral or more specifically, because of
the integrand being , as a Fourier-Stieltjes integral.
It is known to exist for all of bounded variation and an
integrand that is continuous [8]. Since is monotonically
increasing, it will be of bounded variation (assuming is
finite). This will be sufficient for our present purposes but note
that much more general forms of can be accommodated,
including jumps that can model pure sinusoidal components.

Now in (5) we use a change of variables given by .
Since the inverse of exists, we have that and
therefore and since

, we have our final result

(6)

We see that the synthesis of can be effected by “summing”
together unit amplitude, zero phase complex sinusoids with fre-
quencies for . If the integral is
discretized with uniform spacing, then the sinusoidal frequen-
cies are nonuniformly distributed as will be illustrated next. Fi-
nally, the assumption that is finite is easily translated
into the practical constraint

, which of course will be satisfied.

IV. AN EXAMPLE

Assume that , noting that it is real, positive, and
even. It is easily shown that the corresponding signal is given by

(7)

To obtain the alternative representation we first find the inte-
grated Fourier transform as

Setting this equal to to yield , the inverse transfor-
mation becomes



KAY: NEW APPROACH TO FOURIER SYNTHESIS 857

Fig. 2. Discretized frequency components given by (11) for alternative syn-
thesis expression using � � ���.

The synthesis integral becomes from (6)

where the last step is due to the odd symmetry of the sine func-
tion.

In summary, the usual synthesis expression is replaced by
either

(8)

or

(9)

where it is seen that the sinusoids have unit amplitudes, zero
phases, and transformed frequencies given by for

.
Next to show that this produces the same signal, we first

discretize (8) by choosing , where is the number
of frequencies. This yields the Riemann sum approximation of

(10)

where the nonuniform frequencies are

(11)

and span the interval [ 1/2, 1/2]. For these fre-
quencies are shown by dots in Fig. 2. As expected, there are
very few frequencies near since the Fourier transform

is small there but increases rapidly as increases.
The behavior is just the opposite of that shown in Fig. 1 due to
the type of used.

Finally, we synthesize the signal using (10) and (11) for
. The results are shown in Fig. 3. The top plot is the true

signal given by (7) and the bottom plot displays the synthesized
signal.

We have assumed that the Fourier transform was real and
positive. This allowed us to integrate it to yield a strictly
monotonically increasing function. More generally, though, the
Fourier transform has real and imaginary parts, each of which
may not be positive. Integrating these parts then will not pro-
duce a monotonically increasing function that is necessary for
the existence of an invertible distribution function. A standard
approach in this situation is to decompose each real function

Fig. 3. True signal and synthesized signal using� � ��� frequency compo-
nents with unit amplitudes and zero phases.

into its positive and negative parts. This will allow us to extend
the previous results to the more general Fourier transform case.
Mathematically, we have , where

and . Note that this decomposition
is easily accomplished using
and . Next, break up
into its real part and imaginary part and then
break up each of these into its positive and negative parts, i.e.,

. The previous results can now
be applied.

V. POSSIBLE EXPLANATION FOR NEURAL ENCODING

The output of the cochlea in response to an acoustic wave-
form at the input to the ear is a sequence of neuron firings that
are transmitted to the brain. These neuron outputs, which are ei-
ther on or off, can be thought of as the “markers” shown in Fig. 1.
This is the so called “place” information [12]. Only the cochlea
hair cells that are tuned to the frequencies in the waveform pro-
duce a firing rate above the quiescent value. Hence, our model
would seem to be able to explain, at least to some degree, the
cochlear mechanism. For instance, the nonlinear response de-
scribed earlier as a “spreading” of the fiber firings might be due
to the fact that in our model each hair cell can only contribute
a unit of amplitude, and hence for different waveform ampli-
tudes it may be necessary for neighboring hair cells to fire; thus,
adding to the overall amplitude in frequency.

VI. CLASSIFICATION BASED ON NEURAL ENCODING

We next give an application of the proposed neural encoding.
A computer simulation is presented to compare several tradi-
tional methods of speech classification for two voiced speech-
like signals. As such the goal is to compare the probability of
correct classification. To indicate the robustness of the neural
approach we add varying amounts of Laplacian noise to the
signals. The three methods to be compared are the asymptotic
maximum likelihood (ML) method, the cepstral distance metric,
and a method based on neural encoding. The classifiers are all
based on the measured power spectrum in accordance with the
ear being relatively insensitive to phase. This allows the theory
previously described to be applied to a synthesis of the auto-
correlation in terms of its positive Fourier transform, the power
spectral density. Specifically, we consider the two signals whose
power spectral densities are shown in Fig. 4. In accordance with
the ability of the ear to understand sounds of varying levels,
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Fig. 4. Power spectral densities of the two signals used to model two different
voiced speech sounds.

we assume that the signal power is unknown in formulating
the classifiers. The signal spectra are both autoregressive (AR)
spectra with 6 poles and are meant to model typical voiced
speech sounds. However, the AR model is not used as prior in-
formation in any of the classifiers, but only to generate the data.
The classification methods are briefly described next.

The asymptotic (large data record) maximum likelihood
method chooses the signal which maximizes the asymptotic
likelihood function [5]

where is the assumed known power spectrum, normal-
ized to unity power, of the th class (as shown in Fig. 4) and

is the periodogram. This statistic is derived from a random
process AR model and so does not account for the Laplacian
observation noise. Since the overall power of the signal is as-
sumed unknown, it is estimated as part of the statistic. In fact, all
the classifiers produce decisions that are scale invariant, not de-
pending on knowledge of the signal power. The next method uti-
lizes the cepstral measure, a common choice for speech recog-
nition [10]. It chooses the signal that minimizes the cepstral
spectral distance measure

where is the unity power normalized periodogram, which
ideally should be close to in the absence of observa-
tion noise. Finally, the neural classifier chooses the class that
maximizes

where and the ’s are the nonuniformly
spaced frequencies. The neural classifier evaluates the log spec-
trum in accordance with the logarithmic nature of hearing and
uses as input the nonuniformly spaced frequency encoded peri-
odogram. It should be noted that the encoding is nonlinear and
so the addition of noise to the signal is reflected in a nonlinear
way to produce the frequency positions.

Fig. 5. Probability of correct classification of the three classifiers versus SNR.

For the two signals we choose samples and use
a pitch period of samples. To each signal we add
enough Laplacian noise [6] to achieve a given signal-to-noise
ratio (SNR). The probability of correct classification is esti-
mated by generating one of the two signals with equal proba-
bilities, adding the Laplacian noise, and finally determining the
fraction of correct decisions for 1000 independent realizations.
The entire procedure is replicated for each SNR. The results are
shown in Fig. 5. It is clear that of the three classifiers the pro-
posed neural approach is the most robust with respect to SNR.
This is in agreement with the remarkable ability of the ear to
discern different speech sounds even in noisy environments.

VII. CONCLUSIONS

A new method of Fourier synthesis has been presented that
allows the composing sinusoids to have amplitudes of 1 and
zero phases. It is conjectured that such a representation may be
inherent in neural encoding since only impulses are transmitted
to the brain as a result of auditory or visual stimuli. Prelimi-
nary application to classification indicates a marked improve-
ment using neural encoding.
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