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Design of Sparse Linear Arrays by Monte Carlo
Importance Sampling

Steven Kay and Supratim Saha

Abstract—The formation of acoustic images in real-time been used forthe design of sparse arrays by minimizing the peak
requires an enormous computational burden. To reduce this sidelobe level. Dynamic programming results in&.8-dB peak
demand the use of sparse arrays for beamforming is mandated. gjqe|ope level for a 3-dB beamwidth of approximately 0.014, for
The design of these arrays for adequate mainlobe width and low .
sidelobe level is a difficult nonlinear optimization problem. A a 25_—e|ement array spaced oves@ aF’efture- Simulated an-
new approach to the joint optimization of sensor placement and Nealing results in aboutal3-dB peak sidelobe level for a 3-dB
shading weights is discussed. Based on the concept of importancebeamwidth of 0.0125 and the same number of array elements
sampling an optimization method is presented and some examples and aperture. Simulated annealing [4] achieves a lower sidelobe
given to illustrate its effectiveness. level than most other techniques [3], [6] but it requires a judi-

Index Terms—Acoustic imaging, global optimization methods, cious choice of temperatures (used as parameters during the it-
linear arrays, Monte Carlo methods. erative optimization) for best results. This is another common
drawback of all iterative techniques. They require a good ini-
tial choice of the variables involved in the optimization and a
judicious choice of the algorithm parameters for quick conver-
N THIS PAPER, we propose a technique to design r‘O”U&'ence. The most promising approach, based on reported results

formly spaced, partially filled linear arrays for narrowbangs simulated annealing, but there is no guarantee that the global
signals. A partially filled array is one in which the number ofinimum will be attained.
sensors is significantly less than that in a filled array. A filled oyr aim in this paper is to develop reniterativescheme
array is one in which the sensors are placed every half waygat jointly optimizes a cost function with respect to both sensor
length from each other. If the sensors in a partially filled arrgycations and shading weights to produce a globally optimum
are uniformly spaced, grating lobes are produced. These gratiai tion. The main application of the proposed array design
lobes are undesirable in most applications. The grating lobes ¢agthod is for acoustic imaging. In this scenario, the background
be reduced by placing the sensors nonuniformly [1]. This is th@jise incident on the sensor array is assumed to be spatially
main motivation behind the design of nonuniformly spaced afite due to reverberation over all directions. Keeping these
rays. Although by nonuniform sensor placement the sideloBgints in mind, we do not resort to the commonly used criterion
levels can be reduced, there is no closed form analytical SO§fminimizing the peak sidelobe level. Instead, we minimize the
tion for finding the optimum sensor locations and the Shad”w/erage sidelobe energy, which minimizes the contribution of
weights. This is partly due to the fact that the cost functions usg¢ 1pise power received by the sensors. This is in contrast to
for optimizing the positions and shading weights are highly noge radar problem of a jammer interference for which the worst
linear. case approach of minimizing the peak sidelobe level is appro-

The most commonly used criterion to determine the positiogﬁate_ We show that the problem of minimizing the average
of sensors in a nonuniformly spaced, partially filled array is th§de|obe energy with respect to sensor positions and shading
minimization of peak sidelobe level [2]. However, the use Qfeights involves a mixed linear and nonlinear parameter opti-
this criterion leads to a typical minimax optimization problemuization. However, it can be reduced to a separable parameter
which does not lend itself to a closed form analytical SO|Uti0%ptimization problem where the shading weights, which form
Hence, most of the reported approaches, based on minimizatigg |inear parameter vector, become a function of the sensor po-
of peak sidelobe level, have been iterative in nature. The maigfions. The sensor positions are optimized first, and then from
drawback of an iterative approach is that there is no guaranggse optimized sensor positions, the optimal shading weight
that the design will yield the global optimum. Also, iterativg,ector is obtained. A globally optimum solution to this problem
techniques are generally computationally very intensive.  yequires a multidimensional grid search for the sensor locations.

Dynamic programming [3], simulated annealing [4], genetiqowever, a grid search can be avoided by resorting to the closed
algorithms [5] are some of the iterative techniques which haygym solution proposed in [7] to find the coordinates of a global

optimum of a multidimensional function. The method requires

Manuscript received June 19, 2000; revised April 28, 2002. This work w& evaluation of a multidimensional integral, which at first ap-
supported in part by DARPA under the sponsorship of Dr. Theo Kooij. pears impractical. But such types of integrals can be well ap-
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0 =angle ofincidence  of the remainingM/ — 2 sensors and the shading weights for
of a plane wave each of theM sensors by minimizing the average sidelobe

% 0= steering direction ~ ENETGY- Thusgy = 0 andz,—; = L and we optimize with
respect t0{$17 ey .’1]‘]\[_2} and{w07 ey ’U}]\[_l}.

wavefront

W\

: Pl l1l. JOINT OPTIMIZATION OF POSITIONS AND SHADING
N WEIGHTS

Y //

/ As discussed in the introduction, our main area of application

is acoustic imaging, where the background noise is assumed to

o 1 M1 be spatially white due to the presence of spatially distributed re-

" z verberation. Thus, we choose the minimization of average side-
lobe energy rather than peak sidelobe level as the optimization
criterion. The average sidelobe energy is defined as

A
~
\ 4

Fig. 1. Nonuniformly spaced array geometry. 1
J = / B(u) du 2
U

0

be evaluated efficiently. We will use the importance sampling . _ . _ . _
approach to obtain the globally optimum locations and weighté1ereuo is the starting point of the sidelobe region. If the inte-

of the sensors. gral in (2) is approximated by a sum, then it becomes
The paper is organized as follows. In Section Il, we discuss N

the peampattern formulatipn for thg sparse array and the con- T~ Z B(né) 3)

straints to be used. In Section Ill, minimization of average side- —t

lobe energy jointly with respect to sensor locations and shading

weights is described. In Sections IV and V, the use of impowherep = uo/6 andN = 1/6 are assumed to be integers. Thus,

tance sampling to efficiently obtain the sensors locations is déom (1) and (3), we need to minimize

scribed. Section VI contains some simulation results. Finally, in N a1 2

Section VII, we give conclusions and future directions. 7= wiesp (_j2_7r In&)
prd 4 - A 1

(4)

Il. BEAMPATTERN FORMULATION =P
In order for the signal arriving from the look direction to re-
ain unattenuated, we constrai?(0) = Zf‘igl w; = 1.
Iso, recall that we have constrained two sensors to lie at the

ends of the array so thaty = 0 andz,; | = L. Thus, using

Consider alinear array consistingf omni-directional sen-
sors placed along theaxis as shown in Fig. 1. The narrowban
beampatterB(u) can be expressed as

M—1 o 2 wy = 1— Ef\igl w;, (4) reduces to
B(u) = Z w; exp <—J—.17,u> 1)

= A N M-1 M-1 9 2
where thez;s andw;s are the positions and real shading J= (1_ Z wi) + Z Wi eXp <_JT“"6> ®)
weights corresponding to thith sensor, and = sin § — sin 6, n=p =1 =t
where 6 is the angle of arrival of the plane wave afgl is N M1 9 2
the steering direction. The shading weights are constrained to = » |1 — Y w; (1 —exp <_‘j7 a:m6>> ‘ . (6)
satisfy> 1" w; = 1 so thatB(0) = 1. For all possible com- n=p =1

binations off andf,, « can assume only real values between . T L . .
—2 and 2. The beampattern is symmetric with respeat so Now, if 1 =1 -- 1} ,wh|ch IS ofd|me25|oan —pt 1) x1,
that the region of interest becomes< « < 2. We put another ¢ = [wi -+ -war—1]", x = [w1 - 2a7-0]", andH(x) isa(V —

constraint on the sensor locations which has been used in sé‘f’n‘"e1> x (M — 1) matrix defined as shown in (7) at the bottom

of the reported techniques [3], [4]. The constraint is that sens&fsthe next page, then the approximate average sidelobe energy

can occupy only positions which are integral multiples\gp.  Can be expressed as

From a practical standpoint this is indeed reasonable in that J=(1-Hx)80"(1-Hx)H). ®)

too closely spaced sensors result in manufacturing difficulties.

As a result of this constraint on the positions of the sensofginimizing .J in (8) overd andx is a mixed linear—nonlinear
B(1 + u) = B(1 — u), and thus for optimizing any function of parameter optimization problem, wheis the linear parameter
B(u), the range of. that needs to be tested(s< « < 1. Itis andx is the nonlinear parameter. However, this can be reduced
also possible to use the design method described in Sectiondlla separable optimization problem, where the optifhisl a
without a constraint on the minimum spacing between sensdigaction of the optimak [10], the latter being found first. Since

However, in this case, the minimization of sidelobe energyand1 are real and(x) is complex, thé andx which jointly
must be done over the interval < « < 2. We place two minimize.J in (8) are given by

sensors at the ends of the array to maintain the aperture width )
and hence the desired beamwidth, and determine the locations 8 = [Real(H” (%) H (%))] ~ Real(H" (x))1  (9)
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and can achieve good results without using direct integration [11].
. A straightforward Monte Carlo integration approximation can
X = arg max L(x) (10) e defined as
h 1 XM
where o
X =47 z_: Xk (14)

L(x) = 1"Rea(H(x)) [Real(H” (x)H(x))] "

.Rea|(HH(x)) 1 (11) wherex;, is the kth realization of the vectox distributed ac-
cording toL’(x). Computingx by (14) requires generation of
(see the proof in the Appendix). x ~ L'(x). The symbok means “is distributed according to”
To find x requires a multidimensional grid search, which iand indicates that has the pseudo-PDF(x). For the problem
not practical. Iterative techniques require a good initial guessinterest in this paper, generation of the veestor L'(x) may
for the parametex and are also not guaranteed to convergeot be easy, a%’(x) is a highly nonlinear function of. So,
to the global optimum. However, Pincus [7] showed that fasven though direct integration can be bypassed by using (14),
such problems, it is possible to obtain a closed form solutigieneration ok ~ L’(x) may again demand integration. As a
for the parametex that yields theylobaloptimum. Based on the result, we do not use (14) to computeRather, we use impor-
theorem given by Pincus thethat yields theglobal maximum tance sampling [11], as described in the next section.
of L(x), is given by
IV. IMPORTANCE SAMPLING

A

J - [ ziexp(pL(x)) dx
i = lim T [exp(pL(x)) dx To compute a multidimensional integral of the type given in
i=1,2, ..., M—2. (12) (13),importance sampling has been shown to be a powerful tool.
The approach is based on the observation that integrals of the
If we let L'(x) = exp(pL(x)) and the normalized version ofform [ h(x)L’(x) dx can be expressed as

L' (x) be 7
T/ _ (X) _
exp pL(x)) dx / h(x)L'(x)dx = / h(x) %) g(x)dx (15)

- [ exp(pL(x)) dx where g(x) is assumed to possess all the properties of a
PDF. Then, the right-hand side of (15) can be expressed as
e expected value df(x)(L’(x)/g(x)), with respect to the
eudo-PDFj(x). The functiong(x) is called the normalized
importance function. UnlikeL’(x), which in general is a
complicated function ofx, g(x) can be chosen to be some
simple function ofx, so that realizations ok can be easily
/ /m T i=1,2,... M—2 (13) generated. Then, the value_ of t_he integral in (15) can be found
by the Monte Carlo approximation

L'(x) = T

then, the functionL’(x) is nonnegative and has all the prop
erties of a probability density function (PDF), although stnctl
speaking, it is not a PDF sineeis not random. We term’(x)

a pseudo-PDF ix. With this definition, the optimak which
minimizesL(x) in (11) is

for some large value of. Intuitively, asp — oo, the function 1 M I/ (xz)

L'(x) becomes a multidimensional Dirac delta function cen- i > h(xi (16)
tered at the location of the maximum bfx). Thus, (13) yields

the location of the maximum. wherex;, is the kth realization of the vectox distributed ac-

Now, the optimal requires the evaluation of adn{ — 2)-di- cording to the pseudo-PDf x). The value of\ needed for a
mensional integral, which is difficult to implement in practicegood approximation depends on the choicg.dfypically, g(x)
However, sincel’(x) is a pseudo-PDF, we can interprigtas  should be chosen similar ’(x), as this reduces the variance
the expected value of;, where the expectation is calculatedf the estimate given by (16). However, another important point
with respect to the pseudo-PDF (x). It has been shown thatto keep in mind when choosingx) is that it should be simple
for this type of problem, Monte Carlo approximation techniquemnough so thak ~ g(x) can be easily generated [12], [13] .

[ 1—exp <—j 2771' 1E1p5> e 1—exp (—j 2% :L‘M_2p5> 1—exp <—j 2771' Lp5> ]

2 2T 2
1—exp <—J 77r xl(p—i-l)é) <+ l—exp <—_] M- (p—|—1)6> 1—exp <—J TT L(p+1)6)
(7)

2 2 2
1—exp (—j Tﬂ- m1N6> - l—exp (—j Tﬂ- 1'M_2N5> 1—exp (—j Tﬂ- LN6>
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We explain in the next section how to cho@ge) for the posi- and L’(x) is given by (17) and for some appropriatéx) as
tion and shading weight optimization problem described in thtkescribed next.
paper. Having expressed the estimate of the positions in (22), we
need to choose an appropriate importance fungfior) which

V. OPTIMIZATION BY |IMPORTANCE SAMPLING will allow x to be generated easily. From (17), we observe that
if Real H H) is replaced by a diagonal matrix whose diagonal
elements are the same as the diagonal elements of lRE&L),

1 thenL’(x) becomes separable in thes. This is the key step in

L'(x) = exp [plTRea(H) (Real(H*H)) " Real(H") 1] obtainigg)the importance function. Thus, we replace the argu-
17) ment of the exponential in (17) by

For the problem of interest,(x) was shown to be

), 117 RealH) [din (Real(H" H))] ~'Real(H") 1

whereH now depends ox = [z1---zp-1]7 as per (11

Since the length of the array I, it follows that0 < z; < L. M-l N o -

As aresult, ther;s are restricted to lie in a finite interval. Thus, =p Z Z 2 <1 — cos (— a:m6>> (24)
the z;s can be considered to have the properties of a circular i=1 n=p

random variable [14]. The expected valuerpfwith respect to
the circular pseudo-PDH.’(x) is obtained using the circular
mean definition

wherez ;1 = L. Thus,g(x) is chosen as
9(x) = exp [ p17RealH) [diag (Real(HH)) |
1 _

where/ denotes the operation of finding the angle of the conand from (24), we obtain the importance functigix), which
plex number. The use of (18) instead of (13) eliminates a potas-now separable in the;s or

tial bias inz; [15], [16]. The key idea in defining a circular mean Vel N

is to average position vectors. Hencdif ..., 0, are realiza- 1 2

tions of a random pointxp(j6) on the circumference of a circle g(x) = exp [p Z Z 2 (1 T eos (T xmé))]

of unit radius in the complex plane, then the sample mean of the =t on=r

data is defined as [14] M-—1
= ] exp(pI(z:)) (26)
_ 1 M i=1
0=/— exp(j0k). 19
M ,;1 () (19) wherel(z;) = Y20 (1/2) (1 — cos((27/A)z;n8)). It should
be noted thay(x) is a function ofxzy, ..., 3,2 only, be-
Thus,i; is defined from (16) and (19) as causez,,_1 is constrained to lie at the right end of the array

orza—1 = L. Furthermore, the functiog(x) is a function of

the discrete variables;s, as the sensors can occupy only those
(20) o . ; .

positions which are integral multiples af 2.

yl

Ié:k)) exp(j2m[xx]i)

Q|

M

11

s L,L
T or Mkz_:1

fori = 1,..., M — 2, wherex;, is thekth realization of the A- Generation ok
sensor position vector. Note that since we need only find theDue to separability of;(x) in the x;s as seen in (26), the
angle of the complex quantity in (20), an equivalent estimatorsensor positions can be considered independent random vari-
ables. We denote the functiaxp(pl(z)) of the scalar vari-

. 11 Y L' (xy) . ablez asg(z) (with a slight abuse of notation). As a result we

Vi Z 9(x1) exp(j2m[xz]i) 1) have that the importance function becomes the separable func-
b=t tion g(x) = [T2;" g(x:). This makes the generation of thes

since the normalization factors cancel out. This observ@Uite simple. The only constraint on thes is that they should
tion is quite important in that it simplifies the computatiorPe distinct. Such a constraintis necessary, because in generating
greatly. We no longer need to find the normalization constari$$€nsor location vector, two of the generated locations may turn

[ [L(x)dxand [ --- [ g(x)dx. out to be nearly the same. This violates the implicit assumption
Finally, we have as our estimate that the sensor locations are distinct. If this occurs, the matrix
HYH will be singular. In this proposed approach, the condition
1 1 M of distinct sensor locations and hence a full r&fhks required
L; = 5 L3f w(xy) exp(j2m[xx];) (22) in order to determine the sensor locations. We implicitly assume
k=1 this in orderingr; < zo < --- < zp7_» in the algorithm to be
described.
where

Next, we show how to generate a realization of the vetor
First we generate the positian by generating:; ~ UJ0, 1],
and then using the inverse transformation = G~!(u;) =

w(x) = (23)
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Fig. 2. Beampattern for a 3-dB beamwidth:ofy;, = 0.0125.
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Fig. 3. Shading weights versus sensor locations for the beampattern of Fig. 2.

arg, min(u; —G(z)), whereG () is the cumulative distribution x5 = G~'(us). Note that generating; is this way guarantees

function ofg defined as x1 # x2. In a similar way three disjoint intervals are found
] 2] based o, andzs. ug is then generated uniformly in the union
B = B & exp(pl(&;)) of the three intervals, and thus; is generated. The process is
G(z) = Z 9(&) = VASRTYNEN @7 continued untikzy;_, is generated.
=0 =03 exp(pl(6r))
k=0

B. Steps of the Optimization
where[z] denotes the largest integer less than or equal.to 1) Find
This is a standard method for generating a sample distributed
according to a given PDF. Once, is generated as an in-
tegral multiple of \/2, z-» is generated by first generating I(z) =
up ~ U[0, G(z1 = (A/2)] U [0, G(z1 + (A/2))]]. Then,
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forz = A/2, A\, ..., L — (\/2) and obtain the normalized im- TABLE |
portance function as POSITIONS AND SHADING WEIGHTS FOR
DESIGN OFFIG. 2 BEAM PATTERN
() = exp(pl(x)) ‘ (29) “position _weight
; exp(pl()) 0.0  0.0393
Here,6 has been chosen as 0.0_01._ _ _ ;'g g'gzzz

2) Compute the cumulative distribution function@éz) = ’ )

[2L/A] — 3.5 0.0402

=0 9(k(A/2)).

3) Generate a realization of the vectorsayx;,, using the 45 0.0404
procedure described in the previous section, and olitasuch 5.5  0.0406
realizations. 6.5  0.0407

4) Compute theth positionz;, fori = 1to M — 2 using 75 0.0409

1 1 X 85  0.0410

Bi= - lor > wixy) exp(j2m(xei) (30) 100 0.0411

k=1 1.0 0.0411

where (31), shown at the bottom of the page, holds. The matrix 120 0.0412

H(x) is defined in (7). The value gf should in theory be in- 135  0.0414

finity for a global optimum solution [7]. However, in practige

should be chosen as large as possible. The chojegdB1) has 145 00414

to be made in such a way that there is little computational error, 160 0.0412

owing to the extremely large numerical values of both the nu- 17.0  0.0412

merator and denominator. Hence it is advisable to obtgiy, ) 185  0.0412

from the following expression rather than (31): 200  0.0409

. 22.0  0.0407

w(xy) = exp | p1"RealH(xy)) [Real(H"” (x)H(xx))] 935  0.0405

26.0  0.0399

— ) = ; 2 290 0.0392

‘Real(H" (x;)) ; pI(fxili)| - (32) 330 0.0381

From experimentation it was found thatn the range of).1 < 395 0.0361
p < 0.14 produced satisfactory results in that there was no fur- 900 00325

ther decrease in the average sidelobe energyimseased. For

values higher than 0.14, the terms in (31) became too large fmamwidth for a filled array is about/L = 0.02 radians or
machine precision. Thus, we used= 0.14 in our simulations. w34 = 0.01.

It should be noted that the choicemfs highly problem depen- A total of M = 1500 realizations were carried out to obtain

dent. the optimal positions from (30) using importance sampling. The
5) The shading weight vectér = [w; - - -wy,—;]7 is found beampattern obtained for a 3-dB beamwidthys of 0.0125 is
as shown in Fig. 2. In order to obtain this beamwidth it was deter-

. oo 1 o mined by “trial and error” that one should choagsge= 0.013.
0 = [Real(H" (x)H (%))] "Real(H" (%))1  (33) Hence,in (76 = 0.013 is used. The average sidelobe energy
andwy = 1 — 241_1 w: (in decibels) for the beampattern-sl5.35 dB. The beampat-
=1 tern is different from the ones obtained by minimizing the peak
sidelobe level as in [4] and [6], where the sidelobes are more
uniform. From Fig. 2, it can be observed that there are 3 local
A sparse array was designed for 25 sensors placed ovesidelobe peaks which exceedlO dB with the remaining local
spatial aperture d¥0A or a 25% filled array. This is a standardpeaks all below-10 dB. In Fig. 3, a plot of the shading weights
example which has been used for designing narrowband sparsesus the sensor locations is shown and they are tabulated in
arrays [3], [4], [6]. The length of the array used in our simulatiomable |. The average sidelobe energy using the technique pro-
example is 50 units. As a result,= 1. Also, note that the 3-dB posed in [4] was-15.18 dB for a 3-dB beamwidth of 0.0155,

VI. SIMULATION RESULTS

exp [plTRea(H(xk)) [Real(H (x;)H(xy))] " Rea(HH(xk)n}
w(xp) = T (31)
[T explpl([xx]:)]

i=1
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Fig. 5. Plot of average sidelobe energy versus 3-dB beamwidth.

whereas our technique produced6.01 dB for the same 3-dB was found to be-24 dB. Thus, with an increase in the main-
beamwidth. lobe width, the sidelobe energy goes down by about 10 dB. The
In Fig. 4, we show a beampattern obtained by increasing theak sidelobes are also reduced compared to the previous ex-
3-dB beamwidthu; g5 by about a factor of 3. The value afy ample. To get an idea of the variation of the average sidelobe
required to yield this beamwidth was 0.034, again determinedergy with the mainlobe width, we plot average sidelobe en-
by “trial and error.” Note that the number of sensors remain tleegy versus the 3-dB beamwidth in Fig. 5. It is clear from the
same as before, being 25, and the length of the array is the saptat, that the average sidelobe energy decreases with increasing
beingL = 50\. The increase in beamwidth allows the sidelobmainlobe width, as expected.
energy to be lower as some of the energy can now be located ifrig. 6 shows the average sidelobe energy for a given 3-dB
the mainlobe. The average sidelobe energy for this beampatteeamwidth against the number of realizations, for 3 different
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Fig. 6. Plot of average sidelobe versus number of importance sampling realizations.
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Fig. 7. Beampattern obtained by reducing sidelobe energy for a limited azimuth.

values ofp. From this plot it is clear that only around 15000.12 and 0.14. Also, it has been observed that by varyiirg
Monte Carlo realizations are necessary for the design to cdhe range (0.11, 0.14) there is no change in the final sensor lo-

verge to the optimum solution. It can be observed that the mications. Thus it can be concluded that the design converges to
imum average sidelobe energy does not change fuetween the global optimum.
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Fig. 8. Design results (beampatterns) comparing random array and importance sampling.
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Fig. 9. Design resulst (shading weights versus sensor locations) for random array and importance sampling.

To illustrate the utility of the technique for cases when nsidelobe energy is reduced +25.69 dB, without any increase
acoustic energy arrives outside of given azimuthal sector, Wwemainlobe width.
show in Fig. 7 the beampattern obtained by minimizing the av- Finally, to compare the design results of the proposed tech-
erage sidelobe energy in the rarigél < » < 0.3. The average nigue with that of a random array, we show in Fig. 8, a beampat-
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tern overlaid with that of a beampattern obtained for a typicMinimizing .J, with respect tax is thus equivalent to a maxi-
random array. In order to make a fair comparison the beamwidttization of

of the random array was first determined. Then, the appropriateyT

value of uy was determined for the optimal array so that its
beamwidth matched that of the random array. Hence, the resul-
tant beampattern is slightly different than that shown in Fig. 2,
where the value ofiy used was slightly different. The shading [1]
weights versus sensor locations for the proposed technique anﬂl
the uniformly shaded random array and are shown in Fig. 9.

[3]

VIl. CONCLUSION

We have developed a method for designing a nonuniformly[#!
spaced linear array by minimizing the average sidelobe energy.
The design is guaranteed to converge to the global optimum. I{5]
jointly optimizes over the shading weights as well as the sensor
locations. The technique is also computationally modest, com-g;
pared to conventional iterative techniques. The proposed ap-
proach can be extended to planar arrays and is currently unde[r7]
investigation.

8]
APPENDIX
DERIVATION OF L(x) IN (11) 9]
Let [10]
J=(y —H(x)0)"(y - H(x)f) (34) 1y
wherey = 1, and is realf is real, andH(x) is complex. Ex- (12
panding/ we have [13]
J=y"y—0"H" (x)y —y"H(x)0+6"H" ()H(x)0. (35) (14
Sincey"H(x)0 = [y"H(x)8" = 6" H” (x)y, we have [15]
J=yTy —0"H" (x)y — 6"H" (x)y + 0" H" (x)H(x)0.
(36) 18]
Now, H (x)H(x) = A(x) + jB(x) whereA(x) = AT (x)
andB(x) = —B”(x). Expressing the last term in (36) as a

function of A(x) andB(x) we have
J=yTy—6" (H¥(x)+H"(x)) y+0" A(x)0+ ;0" B(x)0
=yTy—20"Real(H” (x)) y+60" A(x)0+ 50" B(x)6.
(37)

As B(x) is skew-symmetric, the last term in (37) is zero sinc
0"B(x)0 = (1" B(x)0)” = 0" B(x)70 = —0" B(x)#. Now

J =y'y —20"Real(H" (x)) y + 6" Real(H (x)H(x)) 6.

RealH(x)) [Real(H" (x)H(x))] "' RealH” (x))y.
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