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Design of Sparse Linear Arrays by Monte Carlo
Importance Sampling

Steven Kay and Supratim Saha

Abstract—The formation of acoustic images in real-time
requires an enormous computational burden. To reduce this
demand the use of sparse arrays for beamforming is mandated.
The design of these arrays for adequate mainlobe width and low
sidelobe level is a difficult nonlinear optimization problem. A
new approach to the joint optimization of sensor placement and
shading weights is discussed. Based on the concept of importance
sampling an optimization method is presented and some examples
given to illustrate its effectiveness.

Index Terms—Acoustic imaging, global optimization methods,
linear arrays, Monte Carlo methods.

I. INTRODUCTION

I N THIS PAPER, we propose a technique to design nonuni-
formly spaced, partially filled linear arrays for narrowband

signals. A partially filled array is one in which the number of
sensors is significantly less than that in a filled array. A filled
array is one in which the sensors are placed every half wave-
length from each other. If the sensors in a partially filled array
are uniformly spaced, grating lobes are produced. These grating
lobes are undesirable in most applications. The grating lobes can
be reduced by placing the sensors nonuniformly [1]. This is the
main motivation behind the design of nonuniformly spaced ar-
rays. Although by nonuniform sensor placement the sidelobe
levels can be reduced, there is no closed form analytical solu-
tion for finding the optimum sensor locations and the shading
weights. This is partly due to the fact that the cost functions used
for optimizing the positions and shading weights are highly non-
linear.

The most commonly used criterion to determine the positions
of sensors in a nonuniformly spaced, partially filled array is the
minimization of peak sidelobe level [2]. However, the use of
this criterion leads to a typical minimax optimization problem,
which does not lend itself to a closed form analytical solution.
Hence, most of the reported approaches, based on minimization
of peak sidelobe level, have been iterative in nature. The major
drawback of an iterative approach is that there is no guarantee
that the design will yield the global optimum. Also, iterative
techniques are generally computationally very intensive.

Dynamic programming [3], simulated annealing [4], genetic
algorithms [5] are some of the iterative techniques which have
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been used for the design of sparse arrays by minimizing the peak
sidelobe level. Dynamic programming results in a8.8-dB peak
sidelobe level for a 3-dB beamwidth of approximately 0.014, for
a 25-element array spaced over a aperture. Simulated an-
nealing results in about a13-dB peak sidelobe level for a 3-dB
beamwidth of 0.0125 and the same number of array elements
and aperture. Simulated annealing [4] achieves a lower sidelobe
level than most other techniques [3], [6] but it requires a judi-
cious choice of temperatures (used as parameters during the it-
erative optimization) for best results. This is another common
drawback of all iterative techniques. They require a good ini-
tial choice of the variables involved in the optimization and a
judicious choice of the algorithm parameters for quick conver-
gence. The most promising approach, based on reported results
is simulated annealing, but there is no guarantee that the global
minimum will be attained.

Our aim in this paper is to develop anoniterativescheme
that jointly optimizes a cost function with respect to both sensor
locations and shading weights to produce a globally optimum
solution. The main application of the proposed array design
method is for acoustic imaging. In this scenario, the background
noise incident on the sensor array is assumed to be spatially
white due to reverberation over all directions. Keeping these
points in mind, we do not resort to the commonly used criterion
of minimizing the peak sidelobe level. Instead, we minimize the
average sidelobe energy, which minimizes the contribution of
the noise power received by the sensors. This is in contrast to
the radar problem of a jammer interference for which the worst
case approach of minimizing the peak sidelobe level is appro-
priate. We show that the problem of minimizing the average
sidelobe energy with respect to sensor positions and shading
weights involves a mixed linear and nonlinear parameter opti-
mization. However, it can be reduced to a separable parameter
optimization problem where the shading weights, which form
the linear parameter vector, become a function of the sensor po-
sitions. The sensor positions are optimized first, and then from
those optimized sensor positions, the optimal shading weight
vector is obtained. A globally optimum solution to this problem
requires a multidimensional grid search for the sensor locations.
However, a grid search can be avoided by resorting to the closed
form solution proposed in [7] to find the coordinates of a global
optimum of a multidimensional function. The method requires
an evaluation of a multidimensional integral, which at first ap-
pears impractical. But such types of integrals can be well ap-
proximated by Monte Carlo techniques [8], [9]. In particular,
importance sampling has been shown to be a very powerful
Monte Carlo technique, allowing multidimensional integrals to
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Fig. 1. Nonuniformly spaced array geometry.

be evaluated efficiently. We will use the importance sampling
approach to obtain the globally optimum locations and weights
of the sensors.

The paper is organized as follows. In Section II, we discuss
the beampattern formulation for the sparse array and the con-
straints to be used. In Section III, minimization of average side-
lobe energy jointly with respect to sensor locations and shading
weights is described. In Sections IV and V, the use of impor-
tance sampling to efficiently obtain the sensors locations is de-
scribed. Section VI contains some simulation results. Finally, in
Section VII, we give conclusions and future directions.

II. BEAMPATTERN FORMULATION

Consider a linear array consisting of omni-directional sen-
sors placed along theaxis as shown in Fig. 1. The narrowband
beampattern can be expressed as

(1)

where the s and s are the positions and real shading
weights corresponding to theth sensor, and ,
where is the angle of arrival of the plane wave and is
the steering direction. The shading weights are constrained to
satisfy so that . For all possible com-
binations of and , can assume only real values between

2 and 2. The beampattern is symmetric with respect toso
that the region of interest becomes . We put another
constraint on the sensor locations which has been used in some
of the reported techniques [3], [4]. The constraint is that sensors
can occupy only positions which are integral multiples of .
From a practical standpoint this is indeed reasonable in that
too closely spaced sensors result in manufacturing difficulties.
As a result of this constraint on the positions of the sensors,

, and thus for optimizing any function of
, the range of that needs to be tested is . It is

also possible to use the design method described in Section III
without a constraint on the minimum spacing between sensors.
However, in this case, the minimization of sidelobe energy
must be done over the interval . We place two
sensors at the ends of the array to maintain the aperture width
and hence the desired beamwidth, and determine the locations

of the remaining sensors and the shading weights for
each of the sensors by minimizing the average sidelobe
energy. Thus, and and we optimize with
respect to and .

III. JOINT OPTIMIZATION OF POSITIONS AND SHADING

WEIGHTS

As discussed in the introduction, our main area of application
is acoustic imaging, where the background noise is assumed to
be spatially white due to the presence of spatially distributed re-
verberation. Thus, we choose the minimization of average side-
lobe energy rather than peak sidelobe level as the optimization
criterion. The average sidelobe energy is defined as

(2)

where is the starting point of the sidelobe region. If the inte-
gral in (2) is approximated by a sum, then it becomes

(3)

where and are assumed to be integers. Thus,
from (1) and (3), we need to minimize

(4)

In order for the signal arriving from the look direction to re-
main unattenuated, we constrain .
Also, recall that we have constrained two sensors to lie at the
ends of the array so that and . Thus, using

, (4) reduces to

(5)

(6)

Now, if , which is of dimension ,
, , and is a

matrix defined as shown in (7) at the bottom
of the next page, then the approximate average sidelobe energy
can be expressed as

(8)

Minimizing in (8) over and is a mixed linear–nonlinear
parameter optimization problem, whereis the linear parameter
and is the nonlinear parameter. However, this can be reduced
to a separable optimization problem, where the optimalis a
function of the optimal [10], the latter being found first. Since

and are real and is complex, the and which jointly
minimize in (8) are given by

Real Real (9)
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and

(10)

where

Real Real

Real (11)

(see the proof in the Appendix).
To find requires a multidimensional grid search, which is

not practical. Iterative techniques require a good initial guess
for the parameter and are also not guaranteed to converge
to the global optimum. However, Pincus [7] showed that for
such problems, it is possible to obtain a closed form solution
for the parameter that yields theglobaloptimum. Based on the
theorem given by Pincus thethat yields theglobalmaximum
of , is given by

(12)

If we let and the normalized version of
be

then, the function is nonnegative and has all the prop-
erties of a probability density function (PDF), although strictly
speaking, it is not a PDF sinceis not random. We term
a pseudo-PDF in . With this definition, the optimal which
minimizes in (11) is

(13)

for some large value of. Intuitively, as , the function
becomes a multidimensional Dirac delta function cen-

tered at the location of the maximum of . Thus, (13) yields
the location of the maximum.

Now, the optimal requires the evaluation of an ( )-di-
mensional integral, which is difficult to implement in practice.
However, since is a pseudo-PDF, we can interpretas
the expected value of , where the expectation is calculated
with respect to the pseudo-PDF . It has been shown that
for this type of problem, Monte Carlo approximation techniques

can achieve good results without using direct integration [11].
A straightforward Monte Carlo integration approximation can
be defined as

(14)

where is the th realization of the vector distributed ac-
cording to . Computing by (14) requires generation of

. The symbol means “is distributed according to”
and indicates that has the pseudo-PDF . For the problem
of interest in this paper, generation of the vector may
not be easy, as is a highly nonlinear function of . So,
even though direct integration can be bypassed by using (14),
generation of may again demand integration. As a
result, we do not use (14) to compute. Rather, we use impor-
tance sampling [11], as described in the next section.

IV. I MPORTANCESAMPLING

To compute a multidimensional integral of the type given in
(13), importance sampling has been shown to be a powerful tool.
The approach is based on the observation that integrals of the
form can be expressed as

(15)

where is assumed to possess all the properties of a
PDF. Then, the right-hand side of (15) can be expressed as
the expected value of , with respect to the
pseudo-PDF . The function is called the normalized
importance function. Unlike , which in general is a
complicated function of can be chosen to be some
simple function of , so that realizations of can be easily
generated. Then, the value of the integral in (15) can be found
by the Monte Carlo approximation

(16)

where is the th realization of the vector distributed ac-
cording to the pseudo-PDF . The value of needed for a
good approximation depends on the choice of. Typically,
should be chosen similar to , as this reduces the variance
of the estimate given by (16). However, another important point
to keep in mind when choosing is that it should be simple
enough so that can be easily generated [12], [13] .

...
...

...
...

(7)
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We explain in the next section how to choose for the posi-
tion and shading weight optimization problem described in this
paper.

V. OPTIMIZATION BY IMPORTANCESAMPLING

For the problem of interest, was shown to be

Real Real Real

(17)

where now depends on as per (11).
Since the length of the array is, it follows that .
As a result, the s are restricted to lie in a finite interval. Thus,
the s can be considered to have the properties of a circular
random variable [14]. The expected value ofwith respect to
the circular pseudo-PDF is obtained using the circular
mean definition

(18)

where denotes the operation of finding the angle of the com-
plex number. The use of (18) instead of (13) eliminates a poten-
tial bias in [15], [16]. The key idea in defining a circular mean
is to average position vectors. Hence, if are realiza-
tions of a random point on the circumference of a circle
of unit radius in the complex plane, then the sample mean of the
data is defined as [14]

(19)

Thus, is defined from (16) and (19) as

(20)

for , where is the th realization of the
sensor position vector. Note that since we need only find the
angle of the complex quantity in (20), an equivalent estimator is

(21)

since the normalization factors cancel out. This observa-
tion is quite important in that it simplifies the computation
greatly. We no longer need to find the normalization constants

and .
Finally, we have as our estimate

(22)

where

(23)

and is given by (17) and for some appropriate as
described next.

Having expressed the estimate of the positions in (22), we
need to choose an appropriate importance function which
will allow to be generated easily. From (17), we observe that
if Real is replaced by a diagonal matrix whose diagonal
elements are the same as the diagonal elements of Real ,
then becomes separable in thes. This is the key step in
obtaining the importance function. Thus, we replace the argu-
ment of the exponential in (17) by

Real Real Real

(24)

where . Thus, is chosen as

Real Real

Real (25)

and from (24), we obtain the importance function , which
is now separable in the s or

(26)

where . It should
be noted that is a function of only, be-
cause is constrained to lie at the right end of the array
or . Furthermore, the function is a function of
the discrete variables s, as the sensors can occupy only those
positions which are integral multiples of .

A. Generation of

Due to separability of in the s as seen in (26), the
sensor positions can be considered independent random vari-
ables. We denote the function of the scalar vari-
able as (with a slight abuse of notation). As a result we
have that the importance function becomes the separable func-
tion . This makes the generation of thes
quite simple. The only constraint on thes is that they should
be distinct. Such a constraint is necessary, because in generating
a sensor location vector, two of the generated locations may turn
out to be nearly the same. This violates the implicit assumption
that the sensor locations are distinct. If this occurs, the matrix

will be singular. In this proposed approach, the condition
of distinct sensor locations and hence a full rankis required
in order to determine the sensor locations. We implicitly assume
this in ordering in the algorithm to be
described.

Next, we show how to generate a realization of the vector.
First we generate the position by generating ,
and then using the inverse transformation
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Fig. 2. Beampattern for a 3-dB beamwidth ofu = 0:0125:

Fig. 3. Shading weights versus sensor locations for the beampattern of Fig. 2.

, where is the cumulative distribution
function of defined as

(27)

where denotes the largest integer less than or equal to.
This is a standard method for generating a sample distributed
according to a given PDF. Once is generated as an in-
tegral multiple of , is generated by first generating

. Then,

. Note that generating is this way guarantees
. In a similar way three disjoint intervals are found

based on and . is then generated uniformly in the union
of the three intervals, and thus, is generated. The process is
continued until is generated.

B. Steps of the Optimization

1) Find

(28)
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for and obtain the normalized im-
portance function as

(29)

Here, has been chosen as 0.001.
2) Compute the cumulative distribution function as

.
3) Generate a realization of the vector, say , using the

procedure described in the previous section, and obtainsuch
realizations.

4) Compute theth position , for to using

(30)

where (31), shown at the bottom of the page, holds. The matrix
is defined in (7). The value of should in theory be in-

finity for a global optimum solution [7]. However, in practice
should be chosen as large as possible. The choice ofin (31) has
to be made in such a way that there is little computational error,
owing to the extremely large numerical values of both the nu-
merator and denominator. Hence it is advisable to obtain
from the following expression rather than (31):

Real Real

Real (32)

From experimentation it was found thatin the range of
produced satisfactory results in that there was no fur-

ther decrease in the average sidelobe energy asincreased. For
values higher than 0.14, the terms in (31) became too large for
machine precision. Thus, we used in our simulations.
It should be noted that the choice ofis highly problem depen-
dent.

5) The shading weight vector is found
as

Real Real (33)

and .

VI. SIMULATION RESULTS

A sparse array was designed for 25 sensors placed over a
spatial aperture of or a 25% filled array. This is a standard
example which has been used for designing narrowband sparse
arrays [3], [4], [6]. The length of the array used in our simulation
example is 50 units. As a result, . Also, note that the 3-dB

TABLE I
POSITIONS AND SHADING WEIGHTS FOR

DESIGN OFFIG. 2 BEAM PATTERN

beamwidth for a filled array is about radians or
.

A total of realizations were carried out to obtain
the optimal positions from (30) using importance sampling. The
beampattern obtained for a 3-dB beamwidth of 0.0125 is
shown in Fig. 2. In order to obtain this beamwidth it was deter-
mined by “trial and error” that one should choose .
Hence, in (7) is used. The average sidelobe energy
(in decibels) for the beampattern is15.35 dB. The beampat-
tern is different from the ones obtained by minimizing the peak
sidelobe level as in [4] and [6], where the sidelobes are more
uniform. From Fig. 2, it can be observed that there are 3 local
sidelobe peaks which exceed10 dB with the remaining local
peaks all below 10 dB. In Fig. 3, a plot of the shading weights
versus the sensor locations is shown and they are tabulated in
Table I. The average sidelobe energy using the technique pro-
posed in [4] was 15.18 dB for a 3-dB beamwidth of 0.0155,

Real Real Real
(31)
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Fig. 4. Beampattern for an increased 3-dB beamwidth ofu = 0:037:

Fig. 5. Plot of average sidelobe energy versus 3-dB beamwidth.

whereas our technique produced16.01 dB for the same 3-dB
beamwidth.

In Fig. 4, we show a beampattern obtained by increasing the
3-dB beamwidth by about a factor of 3. The value of
required to yield this beamwidth was 0.034, again determined
by “trial and error.” Note that the number of sensors remain the
same as before, being 25, and the length of the array is the same,
being . The increase in beamwidth allows the sidelobe
energy to be lower as some of the energy can now be located in
the mainlobe. The average sidelobe energy for this beampattern

was found to be 24 dB. Thus, with an increase in the main-
lobe width, the sidelobe energy goes down by about 10 dB. The
peak sidelobes are also reduced compared to the previous ex-
ample. To get an idea of the variation of the average sidelobe
energy with the mainlobe width, we plot average sidelobe en-
ergy versus the 3-dB beamwidth in Fig. 5. It is clear from the
plot that the average sidelobe energy decreases with increasing
mainlobe width, as expected.

Fig. 6 shows the average sidelobe energy for a given 3-dB
beamwidth against the number of realizations, for 3 different
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Fig. 6. Plot of average sidelobe versus number of importance sampling realizations.

Fig. 7. Beampattern obtained by reducing sidelobe energy for a limited azimuth.

values of . From this plot it is clear that only around 1500
Monte Carlo realizations are necessary for the design to con-
verge to the optimum solution. It can be observed that the min-
imum average sidelobe energy does not change forbetween

0.12 and 0.14. Also, it has been observed that by varyingin
the range (0.11, 0.14) there is no change in the final sensor lo-
cations. Thus it can be concluded that the design converges to
the global optimum.
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Fig. 8. Design results (beampatterns) comparing random array and importance sampling.

(a)

(b)

Fig. 9. Design resulst (shading weights versus sensor locations) for random array and importance sampling.

To illustrate the utility of the technique for cases when no
acoustic energy arrives outside of given azimuthal sector, we
show in Fig. 7 the beampattern obtained by minimizing the av-
erage sidelobe energy in the range . The average

sidelobe energy is reduced to25.69 dB, without any increase
in mainlobe width.

Finally, to compare the design results of the proposed tech-
nique with that of a random array, we show in Fig. 8, a beampat-
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tern overlaid with that of a beampattern obtained for a typical
random array. In order to make a fair comparison the beamwidth
of the random array was first determined. Then, the appropriate
value of was determined for the optimal array so that its
beamwidth matched that of the random array. Hence, the resul-
tant beampattern is slightly different than that shown in Fig. 2,
where the value of used was slightly different. The shading
weights versus sensor locations for the proposed technique and
the uniformly shaded random array and are shown in Fig. 9.

VII. CONCLUSION

We have developed a method for designing a nonuniformly
spaced linear array by minimizing the average sidelobe energy.
The design is guaranteed to converge to the global optimum. It
jointly optimizes over the shading weights as well as the sensor
locations. The technique is also computationally modest, com-
pared to conventional iterative techniques. The proposed ap-
proach can be extended to planar arrays and is currently under
investigation.

APPENDIX

DERIVATION OF IN (11)

Let

(34)

where , and is real, is real, and is complex. Ex-
panding we have

(35)

Since , we have

(36)
Now, where
and . Expressing the last term in (36) as a
function of and we have

Real

(37)

As is skew-symmetric, the last term in (37) is zero since
. Now

Real Real
(38)

For a given and hence a given , is

Real Real (39)

Setting the derivative of with respect to the vector to zero,
we obtain

Real Real (40)

For this , becomes

Real Real

Real (41)

Minimizing , with respect to is thus equivalent to a maxi-
mization of

Real Real Real
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