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ABSTRACT

This paper describes a vector space approach to solving the
multidimensional (m-D) Yule-Walker equations for an ar-
bitrary region of support. This approach leads to a solution
that is simple to implement.

1. INTRODUCTION

Two-dimensional (2-D) autoregressive (AR) modelling has
found applicationsin image processing, sonar, and other ar-
eas. 3-D and higher dimensional AR modelling hasasyet to
be extensively studied but applications to signals that vary
in time, frequency, and space can easily be envisioned.

2. PROBLEM STATEMENT

The Yule-Walker equations in one dimension can be very
conveniently represented in matrix format (see Kay [1]).
The matrix approach works well because the region of sup-
port (ROS) for thefilter parameters of a1-D AR processisa
line segment, which leadsto a set of Yule-Walker equations
that can easily be put into a matrix format. This convenient
representation leads to relatively simple algorithms that are
easily implemented in MATLAB or C.

2-D AR models, on the other hand, can be put into ama-
trix format but the representation is less natural and more
forced. This is caused by the 2-D ROS, which leads to a
much more complicated set of linear equations[1],[2]. Less
insight is gained from the matrix format and coding is more
difficult. Forcing 3-D and higher dimensional models into
a matrix format is even more strained and leads to an ex-
tremely difficult implementation.

The motivation in using a vector space approach is that
it leads to a natural method of representing the m-D Yule-
Walker equations. Thisis because vector spaces easily gen-
eralize to higher dimensions. The vector space method also
aids on€e's intuition in developing and coding algorithms.

Christopher P. Carbone

Naval Undersea Warfare Center
Division Newport, RI 02841
(emalil: carbonecp@npt.nuwc.navy.mil)

3. SOLVING THE MULTIDIMENSIONAL
YULE-WALKER EQUATIONS

Consider an m-D AR process.
z[n) = - > alklzn — k] + u[n] (1)
kes!,

wheren = [ny ny ... ny,]7, S’ istheregion of support
for alk], and u[n] is white noise. The m-D Yule Walker
equations are found as follows

E[z[n]z*[n —1]] =

— Y alkE[z[n — Klz*[n — 1)) + E[uln]z*[n — 1]l (2)
kes!,

Defining the autocorrelation function as

rz[K] = E[z*[n]z[n + K]]

we have from (2) that
rolll ==Y alklrs[l —k] €S, ©)
kes:,
This assumes that E[u[n]z*[n — I]] = 0 for | € S],. Note

from (1) that z[n — 1] for | € S, constitutes the "past”,
which is uncorrelated with u[n]. Also from (1)

2

] (4)

where S,,, = S/, |J{k = 0} and a[0] = 1. This can be
shown to reduce to

o?=E [ Z alk]z[n — k]x*[n]}

KeSm

= > alkjr,[—k]. )

keSm

> alklz[n K]

keSm

Efjuln]]”] = E [




As aresult (3) and (5) can be combined to yield the com-
plete set of Yule-Walker equations

> alK]r[l — k] = o%3[] for | € Sy, (6)

keSS,
1 1=0
ol = {o | £0.

Letting b[k] = a[K]/o?, this becomes

> blklre[l = K] = [I] I € Sp. @

keSm

We can view (7) as a linear transformation, which trans-
forms the vector b[k] into the vector 4[k]. We represent this
transformation symbolically as

L{b[k]} = d[k]. ®)

where

Note that the domain and range spaces are the same since
blk] € V, 0[k] € V whereV is the space of complex se-
guences defined on S,,,.To appreciate the generality of (8)
we give a few examples. In Figure 1a we show the usual
ROS for the parameters of a 1-D AR process (a[0] = 1
isincluded asit is for the following examples). In Figure
1b the ROS is shown for a 2-D quarter plane, in Figure 1c
the ROS is shown for a 2-D nonsymmetric half plane and
finally, in Figure 1d the ROS is shown for a 3-D nonsym-
metric half space. The process parametersare all defined by
blk] = alk]/a? fork € S,,.

c

Fig. 1. lllustration of Common Regions of Supportsfor AR
Process Parameters

Now consider v as a vector in V. The dimension of V
is equal to the number of elementsin S,,, and is denoted
by |S,.|. For example from Figure 1ab,c,d we have that
|S1] =5, [S2] = 6, |S2]| = 13, and | S5| = 14, respectively.

Thenatural basisfor Vis{ei, ez, ..., €g,,}, Wheree; has
alinits:" position and 0 otherwise. To solve (8) for bk]
we first define an inner product as

<vw>= Y Y vlklrg[l = KJw[l]. ©)

KESm 1€Sm

To verify that thisisavalid inner product we note that 7. [| —
k] can be written as

rz[l — K] = E[z"[K]z[l]] (10)
and as aresult
<vw>=  E|[Y Y v[k]x*[k]xmw*m]
KES, €S,
= E|) oka'k > x[l]w*u]]
keSS, €S,

from which the usual properties of theinner product follow.
Assume we can find an orthonormal basis for V or

{’Ul7 V2y vy U\Sm|} where < Vi, Vj >= 517' so that
D D wilkrall =Kol = {(1’ W
KESyn 1€, t=J-

Since bk] € V we can represent it as alinear combination
of basis vectors, bk] = Z‘zi ’;‘ Biv;[K] and the Yule-Walker
equations then become from (7)

|Sm|
S8 vkl -kl =6l] 1€Sn.  (12)
i=1 keSS,

Now multiply by v[l] for each | € S,,, and sumto yield

[Sm |
S80S wlklr K3 = 37 v l1sl] (13)
i=1  KESm IESH =
or
[Sml
S Bi<viv> =Y wilel. (14)
i=1 1€Sm
But < v; y U > = (Sij,S)thaI
B = > vila[l] (15)

|eS’Nl
forj=1,2,...,|Sn|. Therefore,

|Sm|

bkl =Y > wr[I16[1]viK]. (16)

i=11€Sy,



Findly, since > .o vf[l6]l] = v
comes

*[0], the solution be-

|Sim
bk] = > vi[Ojuilk]. (17)

We have assumed that we can find an orthonormal basis
for V. To obtain this basis for V a Gram-Schmidt (GS) or-
thogonalization is performed on {ey, e, ..., ¢s,,|} Which
produces {v1, vz, ..., v|g,,}- It proceeds as follows:

€1

leal]

v =

andfork =2,3,...,|Sn]

k—1
_ § < >
Vi = Ck 2:11 €k, Vi Yi . (18)
lew — 2 imt <ew, vi > v

It is important to realize that no matrix inversions are re-
quired. The principal source of computation is due to the
need to compute inner products. However, these are easily
done as follows. Theinner products can be computed as

<v,w> = ZZ Tml_k m
kKESm 1€Sm
= > wil] > oklrall — k.
1€Sm keSm
Let z[l] = >y, vIKlrz[l —K]. Then,

<v,w >= Zw [1z]]

1€Sm

To calculate the above we shift the r,, array and then per-
form an element by element array multiply and sum.

4. RESULTS

We will go through two examples to demonstrate some re-
sults and suggest how to use MATLAB to solve the Yule-
Walker equations. For thefirst example, wewill usethe sep-
arable 3-D AR(1,1,1) process with QP ROS that was used
by Choi (see[3])

x[ny1, ne,ng] = 0.9z[ny — 1,12, n3] + 0.88x[ny, ng — 1, ng]
+ 0.95z[n1,n2,ng — 1] — 0.7920z[n; — 1,n5 — 1, ng]
—0.8550x[n; — 1,n9,n3 — 1] — 0.8360x[n1,ny — 1,n3 — 1]
+0.7524x[n; — 1,n2 — 1,n3 — 1] + u[ni, n2, ng).
The autocorrelation function is

o[k, ko, ks] = 0.91F110.88k210.951ks], (19)

To use the theory developed in this paper to find the AR
parameters the following steps must be coded.

1. Determine the ROS and hence indices of the AR pa-
rameters in the ROS.

2. With the indices of the AR parameters determine the
correlations needed in . [I — K] (see 9).

3. Use the Gram-Schmidt process of (18) to find an or-
thonormal basis using the inner product in (9).

4. The AR parameters are found directly from (17).

Using the above we obtain

a|0,0,0] = 1.0000

a[l,0,0] = —0.9000
al0,1,0] = —0.8800
al0,0,1] = —0.9500
a[l,1,0] = 0.7920

[0,0,0]
[1,0,0] =
[0,1,0] =
[0,0,1] =
[1,1,0]
a[1,0,1] = 0.8550

al0,1,1] = 0.8360

all,1,1] = —0.7524

which isthe correct result.

For the next example we use another 3-D AR(1,1,1) pro-
cess but thistimeit is non-separable and hasthe NSHP ROS
asin Figure 1d.

=0.80z[n; — 1,n2 + 1,n3 + 1]
+0.50z[ny — 1,n9 —

x[nh na, ns]

The vector space method resultsin

a[0,0,0] = 1.0000
afl,—1,—1] = —0.8000
a[l,1,1] = —0.5000

the rest of the parameters are zero, as expected.

5. CONCLUSIONS

In this paper we have developed a simple method to solve
the m-dimensional Yule-Walker equations with an arbitrary
region of support. No matrix inversions are required and
coding is easily accomplished. A complete implementation
in MATLAB is available upon request.
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