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Preface

The subject of probability and random processes is an important one for a variety of
disciplines. Yet, in the author’s experience a first exposure to this subject can cause
difficulty in assimilating the material and even more so in applying it to practical
problems of interest. The goal of this textbook is to lessen this difficulty. To do so
we have chosen to present the material with an emphasis on conceptualization. As
defined by Webster a concept is “an abstract or generic idea generalized from par-
ticular instances.” This embodies the notion that the “idea” is something we have
formulated based on our past experience. This is in contrast to a theorem which
according to Webster is “an idea accepted or proposed as a demonstrable truth.” A
theorem then is the result of many other persons’ past experience, which may or may
not coincide with our own. In presenting the material we prefer to first present “par-
ticular instances” or examples and then generalize using a definition/theorem. Many
textbooks use the opposite sequence, which undeniably is cleaner and more com-
pact, but omits the motivating examples that initially led to the definition/theorem.
Furthermore, in using the definition/theorem-first approach, for the sake of mathe-
matical correctness multiple concepts must be presented at once. This is in opposi-
tion to human learning for which “under most conditions, the greater the number
of attributes to be bounded into a single concept, the more difficult the learning
becomes”!. The philosophical approach of specific examples followed by generaliza-
tions is embodied in this textbook. It is hoped that it will provide an alternative to
the more traditional approach for exploring the subject of probability and random
processes.

To provide motivating examples we have chosen to use MATLAB?, which is a
very versatile scientific programming language. Our own engineering students at the
University of Rhode Island are exposed to MATLAB as Freshmen and continue to
use it throughout their curriculum. Graduate students who have not been previously
introduced to MATLAB easily master its use. The pedagogical utility of using
MATLARB is that

1. Specific computer generated examples can be constructed to provide motivation
for the more general concepts to follow

'Eli Saltz, The Cognitive Basis of Human Learning, Dorsey Press, Homewood, ILL, 1971.
?Registered trademark of TheMathWorks, Inc.



2. Inclusion of computer code within the text allows the reader to interpret the
mathematical equations more easily by seeing them in an alternative form

3. Homework problems based on computer simulations can be assigned to illustrate
and reinforce important concepts

4. Computer experimentation by the reader is easily accomplished
5. Typical results of probabilistic-based algorithms can be illustrated

6. Real-world problems can be described and “solved” by implementing the solution
in code

Many MATLAB programs and code segments have been included in the book. In
fact, most of the figures were generated using MATLAB. The programs that were
used to generate the figures as well as the programs listed within the book can be
accessed at www.??. The use of MATLAB, along with a brief description of its
syntax, is introduced early in the book in Chapter 2. It is then immediately applied
to simulate outcomes of random variables and to estimate various quantities such as
means, variances, probability mass functions, etc. even though these concepts have
not as yet been formally introduced. This chapter sequencing is purposeful and is
meant to expose the reader to some of the main concepts that will follow in more
detail later. Additionally, the reader will then immediately be able to simulate
random phenomena to learn through doing, in accordance with our philosophy. In
summary, we believe that the incorporation of MATLAB into the study of prob-
ability and random processes provides a “hands-on” approach to the subject and
promotes better understanding.

Other pedagogical features of this textbook are the discussion of discrete random
variables first to allow easier assimilation of the concepts followed by a parallel dis-
cussion for continuous random variables. Although this entails some redundancy, we
have found less confusion on the part of the student using this approach. In a similar
vein, we first discuss scalar random variables, then bivariate (or two-dimensional)
random variables, and finally N-dimensional random variables, reserving separate
chapters for each. Most chapters begin with a summary of the important concepts
and point to the main formulas of the chapter and end with a real-world exam-
ple. The latter illustrates the utility of the material just studied and provides a
powerful motivation for further study. It also will, hopefully, answer the ubiquitous
question “Why do we have to study this?”. There are numerous problems in each
chapter to enhance understanding with some answers listed in Appendix E??. The
problems consist of four types. There are “formula” problems, which are simple ap-
plications of the important formulas of the chapter, “word” problems, which require
a problem-solving capability, and “theoretical” problems, which are more abstract
and mathematically demanding, and finally, there are “computer” problems, which
are either computer simulations or the application of computers to facilitate analyt-
ical solutions. A complete solutions manual for all the problems is available from



the author. Finally, we have provided warnings on how to avoid common errors as
well as in-line explanations of equations within the derivations for clarification.

The book was written mainly to be used as a first-year graduate level course in
probability and random processes. As such, we assume that the student has had
some exposure to basic probability and therefore Chapters 77 can serve as a review
and a summary of the notation. We then will cover Chapters 77 on probability and
Chapters 7?7 on random processes. This book can also be used as a self-contained
introduction to probability that can be used at the senior undergraduate level or
graduate level. It is then suggested that Chapters 77 be covered. Finally, this book
is suitable for self-study and so should be useful to the practitioner as well as the
student. The necessary background that has been assumed is a knowledge of cal-
culus, some linear/matrix algebra, and linear systems (necessary only for Chapters
77), although appendices have been provided to summarize the important concepts.

The author would like to acknowledge the contributions of the many people
who over the years have provided stimulating discussions of teaching and research
problems and opportunities to apply the results of that research. Thanks are due
to my colleagues L. Jackson, R. Kumaresan, L. Pakula, and P. Swaszek of the
University of Rhode Island. A debt of gratitude is owed to all my current and former
graduate students. They have contributed to the final manuscript through many
hours of pedagogical and research discussions as well as by their specific comments
and questions. Research sponsors have included??. In particular, Lin Huang and
Cuichun Xu proofread the manuscript and helped with the problem solutions. Lin
Huang also aided with the intricacies of LaTex while Lisa Kay and Jason Berry
helped to demystify the workings of Adobe Illustrator 10.3

Steven M. Kay
University of Rhode Island
Kingston, RI 02881

3Registered trademark of Adobe Systems Inc.
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Chapter 1

Introduction

1.1 What is Probability?

Probability as defined by Webster’s dictionary is “the chance that a given event will
occur.” Examples which we are familiar with are the probability that it will rain the
next day or the probability that you will win the lottery. In the first example, there
are many factors that affect the weather. So many, in fact, that we cannot be certain
that it will or will not rain the following day. Hence, as a predictive tool we usually
assign a number between 0 and 1 (or between 0% and 100%) indicating our degree
of certainty that the event, rain, will occur. If we say that there is a 30% chance
of rain, we believe that if identical conditions prevail, then 3 times out of 10, rain
will occur the next day. Alternatively, we believe that the relative frequency of rain
is 3/10. Note that if the science of meteorology had accurate enough models, then
it is conceivable that we could determine exactly whether rain would or would not
occur. Or we could say that the probability is either 0 or 1. Unfortunately, we have
not progressed that far. In the second example, winning the lottery, our chances of
success, assuming a fair drawing, is just one out of the number of possible lottery
number sequences. In this case, we are uncertain of the outcome, not because of the
inaccuracy of our model, but because the experiment has been designed to produce
uncertain results.

The common thread of these two examples is the presence of a random ezperi-
ment, a set of outcomes, and the probabilities assigned to these outcomes. We will
see later that these attributes are common to all probabilistic descriptions. In the
lottery example, the experiment is the drawing, the outcomes are the lottery num-
ber sequences, and the probabilities assigned are 1/N, where N = total number of
lottery number sequences. Another common thread, which justifies the use of prob-
abilistic methods, is the concept of statistical regularity. Although we may never
be able to predict with certainty the outcome of an experiment, we are, nonethe-
less, able to predict “averages.” For example, the average rainfall in the summer
in Rhode Island is 9.76 inches as shown in Figure 1.1 while in Arizona it is only

13



14 CHAPTER 1. INTRODUCTION

Avefage = 9.76 inches -

1920 1940 1960 1980 2000
Year

Figure 1.1: Annual summer rainfall in Rhode Island from 1895 to 2002
[INOAA/NCDC 2003] .

20

Avefage — 4.40 inches

2
1900 1920 1940 1960 1980 2000
Year

Figure 1.2: Annual summer rainfall in Arizona from 1895 to 2002 [NOAA/NCDC
2003].

4.40 inches as shown in Figure 1.2. It is clear that the decision to plant certain
types of crops could be made based on these averages. This is not to say, however,
that we can predict the rainfall amounts for any given summer. For instance, in
1999 the summer rainfall in Rhode Island was only 4.5 inches while in 1984 the



1.2. TYPES OF PROBABILITY PROBLEMS 15

summer rainfall in Arizona was 7.3 inches. A somewhat more controlled experiment
is the repeated tossing of a fair coin (one that is equally likely to come up heads
or tails). We would expect about 50 heads out of 100 tosses, but of course, we
could not predict the outcome of any one particular toss. An illustration of this
is shown in Figure 1.3. Note that there were 53 heads obtained in this particular

heads
1 bbb debe Heb b ek HeHb iR HeHeHeHE

tails
L e H A B

Outcome
o

0 20 40 60 80 100
Toss

Figure 1.3: Outcomes for repeated fair coin tossings.

experiment. This example, which is of seemingly little relevance to physical reality,
actually serves as a good model for a variety of random phenomena. We will explore
one example in the next section.

In summary, probability theory provides us with the ability to predict the be-
havior of random phenomena in the “long run.” To the extent that this information
is useful, probability can serve as a valuable tool for assessment and decision mak-
ing. Its application is widespread, encountering use in all fields of scientific endeavor
such as engineering, medicine, economics, physics, and others (see references at end
of chapter).

1.2 Types of Probability Problems

Because of the mathematics required to determine probabilities, probabilistic meth-
ods are divided into two distinct types, discrete and continuous. A discrete approach
is used when the number of experimental outcomes is finite (or infinite but count-
able as illustrated in Problem 1.7). For example, consider the number of persons
at a business location that are talking on their respective phones anytime between
9:00 AM and 9:10 AM. Clearly, the possible outcomes are 0,1,..., N, where N is
the number of persons in the office. On the other hand, if we are interested in the
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length of time a particular caller is on the phone during that time period, then the
outcomes may be anywhere from 0 to 7" minutes, where T" = 10. Now the outcomes
are infinite in number since they lie within the set [0,7]. In the first case, since
the outcomes are discrete (and finite), we can assign probabilities to the outcomes
{0,1,...,N}. In the second case, the outcomes are continuous (and therefore infi-
nite) and so it is not possible to assign a nonzero probability to each outcome (see
Problem 1.6).

We will henceforth delineate between probabilities assigned to discrete outcomes
and those assigned to continuous outcomes, with the discrete case always discussed
first. The discrete case is easier to conceptualize and to describe mathematically. It
will be important to keep in mind which case is under consideration since otherwise,
certain paradoxes may result (as well as much confusion on the part of the student!).

1.3 Probabilistic Modeling

Probability models are simplified approximations to reality. They should be detailed
enough to capture important characteristics of the random phenomenon so as to be
useful as a prediction device, but not so detailed so as to produce an unwieldy model
that is difficult to use in practice. The example of the number of telephone callers
can be modeled by assigning a probability p to each person being on the phone
anytime in the given 10 minute interval and assuming that whether one or more
persons is on the phone does not affect the probability of others being on the phone.
One can thus liken the event of being on the phone to a coin toss — if heads, a person
is on the phone and if tails, a person is not on the phone. If there are N = 4 persons
in the office, then the experimental outcome is likened to 4 coin tosses (either in
succession or simultaneously — it makes no difference in the modeling). We can
then ask for the probability that 3 persons are on the phone by determining the
probability of 3 heads out of 4 coin tosses. The solution to this problem will be
discussed in Chapter 4, where it is shown that the probability of £ heads out of NV
coin tosses is given by

Pl = () st —p (L)

()= o

for k =0,1,...,N, and where M! =1-2-3--- M for M a positive integer and by
definition 0! = 1. For our example, if p = 0.75 (we have a group of telemarketers)
and N =4 a compilation of the probabilities is shown in Figure 1.4. It is seen that
the probability that three persons are on the phone is 0.42. Generally, the coin toss
model is a reasonable model for this type of situation. It will be poor, however, if
the assumptions are invalid. Some practical objections to the model might be:

where



1.3. PROBABILISTIC MODELING 17

0.5
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Figure 1.4: Probabilities for N = 4 coin tossings with p = 0.75.

1. Different persons have different probabilities p (an eager telemarketer versus a
not so eager one).

2. The probability of one person being on the phone is affected by whether his
neighbor is on the phone (the two neighbors tend to talk about their planned
weekends), i.e, the events are not “independent”.

3. The probability p changes over time (later in the day there is less phone activity
due to fatigue).

To accommodate these objections the model can be made more complex. In the
end, however, the “more accurate” model may become a poorer predictor if the
additional information used is not correct. It is generally accepted that a model
should exhibit the property of “parsimony” or it should be as simple as possible.

The previous example had discrete outcomes. For continuous outcomes a fre-
quently used probabilistic model is the Gaussian or “bell” shaped curve. For the
modeling of the length of time 7" a caller is on the phone it is not appropriate to
ask for the probability that T" will be ezactly, for example, 5 minutes. This is be-
cause this probability will be zero (see Problem 1.6). Instead, we inquire as to the
probability that 7" will be between 5 and 6 minutes. This question is answered by
determining the area under the Gaussian curve shown in Figure 1.5. The form of
the curve is given by

pr(t) = \/%

and although defined for all ¢, it is physically meaningful only for 0 < ¢ < Tiax,

exp [—%(t—7)2] —00<t< oo (1.2)
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0.5
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Figure 1.5: Gaussian or “bell” shaped curve.

where Ti,ax = 10 for the current example. Since the area under the curve for times
less than zero or greater than Ti,,x = 10 is nearly zero, this model is a reasonable
approximation to physical reality. The curve has been chosen to be centered about
t = 7 to relect an “average” time on the phone of 7 minutes for a given caller. Also,
note that we let ¢t denote the actual value of the random time T'. Now, to determine
the probability that the caller will be on the phone for between 5 and 6 minutes we
integrate pr(t) over this interval to yield

6
P[5 <T <6] = / pr(t)dt = 0.1359. (1.3)
5

The value of the integral must be numerically determined. Knowing the function
pr(t) allows us to determine the probability for any interval. (It is called the proba-
bility density function (PDF) and is the probability per unit length. The PDF will
be discussed in Chapter 10.) Also, it is apparent from Figure 1.5 that phone usage
of duration less than 4 minutes or greater than 10 minutes is highly unlikely. Phone
usage in the range of 7 minutes, on the other hand, is most probable. As before,
some objections might be raised as to the accuracy of this model. A particularly
lasy worker could be on the phone for only 3 minutes, as an example.

In this book we will henceforth assume that the models, which are mathematical
in nature, are perfect and thus can be used to determine probabilities. In practice,
the user must ultimately choose a model that is a reasonable one for the application
of interest.
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1.4 Analysis versus Computer Simulation

In the previous section we saw how to compute probabilities once we were given
certain probability functions such as (1.1) for the discrete case and (1.2) for the
continuous case. For many practical problems it is not possible to determine these
functions. However, if we have a model for the random phenomenon, then we
may carry out the experiment a large number of times to obtain an approximate
probability. For example, to determine the probability of 3 heads in 4 tosses of a
coin with probability of heads being p = 0.75, we toss the coin four times and count
the number of heads, say 1 = 2. Then, we repeat the experiment by tossing the
coin four more times, yielding zo = 1 head. Continuing in this manner we execute
a succession of 1000 experiments to produce the sequence of number of heads as
{z1,22,...,21000}. Then, to determine the probability of 3 heads we use a relative
frequency interpretation of probability to yield
Number of times 3 heads observed
1000 )
Indeed, early on probabilists did exactly this, although extremely tedious. It is
therefore of utmost importance to be able to simulate this process. With the ad-
vent of the modern digital computer this is now possible. A digital computer has
no problem performing a calculation once, 100 times, or 1,000,000 times. What is
needed to implement this approach is a means to simulate the toss of a coin. Fortu-
nately, this is quite easy as most scientific software packages have built in random
number generators. In MATLAB for example, a number in the interval (0,1) can
be produced with the simple statement x=rand(1,1). The number is chosen “at
random” so that it is equally likely to be anywhere in the (0, 1) interval. As a result,
a number in the interval (0,1/2] will be observed with probability 1/2 and a number
in the remaining part of the interval (1/2,1) also with probability 1/2. Likewise, a
number in the interval (0,0.75] will be observed with probability p = 0.75. A com-
puter simulation of the number of persons in the office on the telephone can thus
be implemented with the MATLAB code (see Appendix 2A for a brief introduction
to MATLAB):

P[3 heads] = (1.4)

number=0;
for i=1:4 J, set up simulation for 4 coin tosses
if rand(1,1)<0.75 % toss coin with p=0.75
x(i,1)=1; % head

else
x(1,1)=0; % tail
end
number=number+x(i,1); % count number of heads
end

Repeating this code segment 1000 times will result in a simulation of the previous
experiment.
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Similarly, for a continuous outcome experiment we require a means to generate
a continuum of outcomes on a digital computer. Of course, strictly speaking this is
not possible since digital computers can only provide a finite set of numbers, which
is determined by the number of bits in each word. But if the number of bits is
large enough, then the approximation is adequate. For example, with 64 bits we
could represent 264 numbers between 0 and 1, so that neighboring numbers would
be 276* = 5 x 10720 apart. With this ability MATLAB can produce numbers that
follow a Gaussian curve by the statement x=randn(1,1).

Throughout the text we will use MATLAB for examples and also exercises.
However, any modern scientific software package can be used.

1.5 Some Notes to the Reader

The notation used in this text is summarized in Appendix A??. Note that boldface
type is reserved for vectors and matrices while regular face type will denote scalar
quantities. All other symbolism is defined within the context of the discussion. Also,
the reader will frequently be warned of potential “pitfalls”. Common misconcep-
tions leading to student errors will be described and noted. The pitfall or caution
symbol shown below should be heeded. A

The problems have been divided into four sections: computational or formula
applications, word problems, computer exercises, and theoretical exercises. Compu-
tational or formula (denoted by f) problems are straightforward applications of the
various formulas of the chapter, while word problems (denoted by w) require a more
complete assimilation of the material to solve the problem. Computer exercises (de-
noted by c¢) will require the student to either use a computer to solve a problem
or to simulate the analytical results. This will enhance understanding and can be
based on MATLAB, although equivalent software may be used. Finally, theoretical
exercises (denoted by t) will serve to test the student’s analytical skills as well as
to provide extensions to the material of the chapter. They are more challenging.
Answers to selected problems are given in Appendix E??. Those problems for which
the answers are provided are noted in the problem section with the symbol ().

The version of MATLAB used in this book is 5.2, although newer versions
should provide identical results. Many MATLAB outputs that are used for the
text figures and for the problem solutions rely on random number generation. To
match your results against those shown in the figures and the problem solutions, the
same set of random numbers can be generated by using the MATLAB statements
rand(’state’,0) and randn(’state’,0) at the beginning of each program. These
statements will initialize the random number generators to produce the same set of
random numbers. Finally, the MATLAB programs and code segments given in the
book are indicated by the “typewriter” font, for example, x=randn(1,1).
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There are a number of other textbooks that the reader may wish to consult.
They are listed in the following reference list, along with some comments on their
contents.

Davenport, W.B., Probability and Random Processes, McGraw-Hill, New York,
1970. (Excellent introductory text.)

Feller, W., An Introduction to Probability Theory and its Applications, Vols. 1,
2, John Wiley, New York, 1950. (Definitive work on probability - requires
mature mathematical knowledge.)

Hoel, P.G., S.C. Port, C.J. Stone, Introduction to Probability Theory, Houghton
Mifflin Co., Boston, 1971. (Excellent introductory text but limited to proba-
bility.)

Leon-Garcia, A., Probability and Random Processes for FElectrical Engineering,
Addison-Wesley, Reading, Mass., 1994. (Excellent introductory text.)

Parzen, E., Modern Probability Theory and Its Applications, John Wiley, New York,
1960. (Classic text in probability - useful for all disciplines).

Parzen, E., Stochastic Processes, Holden-Day, San Francisco, 1962. (Most useful
for Markov process descriptions.)

Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-
Hill, New York, 1965. (Classic but somewhat difficult text. Best used as a
reference.)

Ross, S., A First Course in Probability, Prentice-Hall, Upper Saddle River, NJ,
2002. (Excellent introductory text covering only probability.)

Stark, H., J.W. Woods, Probability and Random Processes with Applications to
Signal Processing, Third Ed., Prentice Hall, Upper Saddle River, New Jersey,
2002. (Excellent introductory text but at a somewhat more advanced level.)
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Problems

1.1 (o) (w) A fair coin is tossed. Identify the random experiment, the set of
outcomes, and the probabilities of each possible outcome.

1.2 (w) A card is chosen at random from a deck of 52 cards. Identify the ran-
dom experiment, the set of outcomes, and the probabilities of each possible
outcome.

1.3 (w) A fair die is tossed and the number of dots on the face noted. Identify the
random experiment, the set of outcomes, and the probabilities of each possible
outcome.

1.4 (w) It is desired to predict the average summer rainfall in Rhode Island for
2010. If we use 9.76 inches as our prediction, how much in error might we be,
based on the past data shown in Figure 1.17 Repeat the problem for Arizona
by using 4.40 inches as the prediction.

1.5 (--) (w) Determine whether the following experiments have discrete or contin-
uous outcomes
a. Throw a dart with a point tip at a dartboard
b. Toss a die
c. Choose a lottery number

d. Observe the outdoor temperature using an analog thermometer
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e. Determine the current time in hours, minutes, seconds and AM or PM

1.6 (w) An experiment has N = 10 outcomes that are equally probable. What is
the probability of each outcome? Now let N = 1000 and also N = 1,000,000
and repeat. What happens as N — oo?

1.7 (.-) (f) Consider an experiment with possible outcomes {1,2,3,...}. If we
assign probabilities

Plkl=— k=123,...

to the outcomes, will these probabilties sum to one? Can you have an infinite
number of outcomes but still assign nonzero probabilities to each outcome?
Reconcile these results with that of Problem 1.6.

1.8 (w) An experiment consists of tossing a fair coin four times in succession. What
are the possible outcomes? Now count up the number of outcomes with three
heads. If the outcomes are equally probable, what is the probability of three
heads? Compare your results to that obtained using (1.1).

1.9 (w) Perform the following experiment by actually tossing a coin of your choice.
Flip the coin four times and observe the number of heads. Then, repeat this
experiment 10 times. Using (1.1) determine the probability for £ =0, 1,2, 3,4
heads. Next use (1.1) to determine the number of heads that is most proba-
ble for a single experiment? In your 10 experiments which number of heads
appeared most often?

1.10 (.-) (w) A coin is tossed 12 times. The sequence observed is the 12-tuple
(H,H,T,H H,TH H H H,T,H). Is this a fair coin? Hint: Determine
P[k = 9] using (1.1) assuming a probability of heads of p = 1/2.

1.11 (t) Prove that ch\;o P[k] = 1, where P[k] is given by (1.1). Hint: First prove
the binomial theorem

(@t b)Y = i (z}D Nk

by induction (see Appendix B‘??) Use Pascal’s “triangle” rule
M -1
kE—1

(Alf):() k<0Oand k> M.

where

1.12(t) If f pr(t)dt is the probability of observing T in the interval [a, b], what is
f pT dt?
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1.13 (--) (f) Using (1.2) what is the probability of 7' > 7?7 Hint: Observe that
pr(t) is symmetric about ¢ = 7.

1.14 (.- ) (c) Evaluate the integral

3
1 1,
exp |—=t*| dt
/3 2m p[ 2 ]

by using the approximation

;L:L \/127 exp [—%(nA)Z] A

where L is the integer closest to 3/A (the rounded value), for A = 0.1, A =
0.01, A = 0.001.

1.15 (¢) Simulate a fair coin tossing experiment by modifying the code given in
Section 1.4. Using 1000 repetitions of the experiment, count the number of
times three heads occur. What is the simulated probability of obtaining three
heads in four coin tosses? Compare your results to that obtained using (1.1).

1.16 (c) Repeat Problem 1.15 but instead consider a biased coin with p = 0.75.
Compare your results to Figure 1.4.



Chapter 2

Computer Simulation

2.1 Introduction

Computer simulation of random phenomenon has become an indispensable tool
in modern scientific investigations. So called Monte Carlo computer approaches
are now commonly used to promote understanding for probabilistic problems. In
this chapter we continue our discussion of computer simulation, first introduced in
Chapter 1, and set the stage for its use in later chapters. Along the way we will
examine some well known properties of random events in the process of simulating
their behavior. A more formal mathematical description will be introduced later but
careful attention to the details now, will lead to a better intuitive understanding of
the mathematical definitions and theorems to be presented.

2.2 Summary

This chapter is an introduction to computer simulation of random experiments.
In Section 2.3 there are examples to show how we can use computer simulation
to provide counterexamples, to build intuition, and lend evidence to a conjecture.
However, it cannot be used to prove theorems. In Section 2.4 a simple MATLAB
program is given to simulate the outcomes of a discrete random variable. Section
2.5 gives many examples of typical computer simulations used in probability, in-
cluding probability density function estimation, probability of an interval, average
values of a random variable, probability density functions for transformed random
variables, and scatter diagrams for multiple random variables. Section 2.6 contains
an application of probability to the “real-world” example of a digital communication
system. A brief description of the MATLAB programming language is given in the
Appendix 2A.

25
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2.3 Why Use Computer Simulation?

The use of a computer simulation is valuable in many respects. It can be used
a. to provide counterexamples to proposed theorems

b. to build intuition by experimenting with random numbers

c. to lend evidence to a conjecture.

We now explore these uses by posing the following question. What is the effect of
adding together the numerical outcomes of two or more experiments, i.e., what are
the probabilities of the summed outcomes? Specifically, if Uy represents the outcome
of an experiment in which a number from 0 to 1 is chosen at random and Us is the
outcome of an experiment which is also chosen at random from 0 to 1, what are the
probabilities of X = U; + Us? The mathematical answer to this question is given
in Chapter 1277 (see Example 12.877), although at this point it is unknown to us.
Let’s say that someone asserts that there is a theorem that X is equally likely to be
anywhere in the interval [0, 2]. To see if this is reasonable, we carry out a computer
simulation by generating values of U; and U; and adding them together. Then we
repeat this procedure M times. Next we plot the histogram, which gives the number
of outcomes that fall in each subinterval within [0,2]. As an example of a histogram
consider the M = 8 possible outcomes for X of {1.7,0.7,1.2,1.3,1.8,1.4,0.6,0.4}.
Choosing the four subintervals (also called bins) [0,0.5], (0.5,1], (1,1.5], (1.5,2], the
histogram appears in Figure 2.1. In this example, 2 outcomes were between 0.5 and

3

N
3
T

N
T

=
a
T

Number of outcomes
-

0.5

0.25 0.5 0.75 1 1.25 1.5 1.75 2
Value of X

Figure 2.1: Example of a histogram for a set of 8 numbers in [0,2] interval.

1 and are therefore shown by the bar centered at 0.75. The other bars are similarly
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obtained. If we now increase the number of experiments to M = 1000, we obtain
the histogram shown in Figure 2.2. Now it is clear that the values of X are not
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Figure 2.2: Histogram for sum of two equally likely numbers, both chosen in interval
[0, 1].

equally likely. Values near one appear to be much more probable. Hence, we have
generated a “counterexample” to the proposed theorem, or at least some evidence
to the contrary.

We can build up our intuition by continuing with our experimentation. Attempt-
ing to justify the observed occurrences of X, we might suppose that the probabilities
are higher near one because there are more ways to obtain these values. If we con-
trast the values of X = 1 versus X = 2, we note that X = 2 can only be obtained
by choosing U; = 1 and U = 1 but X = 1 can be obtained from Uy = U; = 1/2
or Uy =1/4,Uy = 3/4 or Uy = 3/4,Uy = 1/4, etc. We can lend credibility to this
line of reasoning by supposing that U; and Us can only take on values in the set
{0,0.25,0.5,0.75,1} and finding all values of U; + Us. In essence, we now look at a
simpler problem in order to build up our intuition. An enumeration of the possible
values is shown in Table 2.1 along with a “histogram” in Figure 2.3. It is clear
now that the probability is highest at X = 1 because the number of combinations
of Uy and Us that will yield X = 1 is highest. Hence, we have learned about what
happens when outcomes of experiments are added together by employing computer
simulation.

We can now try to extend this result to the addition of three or more experi-
mental outcomes via computer simulation. To do so define X3 = Uy + Uy + Uz and
X4 = Uy + Uy + Us + Uy and repeat the simulation. A computer simulation with
M = 1000 trials produces the histograms shown in Figure 2.4. It appears to bear



28 CHAPTER 2. COMPUTER SIMULATION

Us
0.00 0.25 0.50 0.75 1.00
0.00 | 0.00 0.25 0.50 0.75 1.00
0.25 | 0.25 0.50 0.75 1.00 1.25
U; 0.50 | 0.50 0.75 1.00 1.25 1.50
0.75 1 0.75 1.00 1.25 1.50 1.75
1.00 | 1.00 1.25 1.50 1.75 2.00

Table 2.1: Possible values for X = U; + U, for intuition building experiment.

Number of outcomes
o = N w A
[6)] =3 [6)] N [6;] w [6;] N [§;]

] ]

0 025 05 075 1 125 15 175 2
Value of X

Figure 2.3: Histogram for X for intuition building experiment.

out the conjecture that the most probable values are near the center of the [0, 3]
and [0, 4] intervals, respectively. Additionally, the histograms appear more like a bell
shaped or Gaussian curve. Hence, we might now conjecture, based on these com-
puter simulations, that as we add more and more experimental outcomes together,
we will obtain a Gaussian shaped histogram. This is in fact true, as will be proven
later (see central limit theorem in Chapter 1577). Note that we cannot prove this
result using a computer simulation but only lend evidence to our theory. However,
the use of computer simulations indicates what we need to prove, information that
is invaluable in practice. In summary, computer simulation is a valuable tool for
lending credibility to conjectures, building intuition, and uncovering new results.

A Computer simulations cannot be used to prove theorems.
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Figure 2.4: Histograms for addition of outcomes.

In Figure 2.2, which displayed the outcomes for 1000 trials, is it possible that the
computer simulation could have produced 500 outcomes in [0,0.5] and 500 outcomes
in [1.5,2]? The answer is yes, although it is improbable. It can be shown that the
probability of this occuring is

1000\ /1) 00
< 500 ) (§> ~ 2.2 x 107604

(see Problem 12.2777).

/AN

2.4 Computer Simulation of Random Phenomena

In the previous chapter we briefly explained how to use a digital computer to simu-
late a random phenomenon. We now continue that discussion in more detail. Then,
the following section applies the techniques to specific problems ecountered in prob-
ability. As before, we will distinguish between experiments that produce discrete
outcomes from those that produce continuous outcomes.

We first define a random wvariable X as the numerical outcome of the random
experiment. Typical examples are the number of dots on a die (discrete) or the
distance of a dart from the center of a dartboard of radius one (continuous). The
random variable X can take on the values in the set {1,2,3,4,5,6} for the first
example and in the set {r : 0 < r < 1} for the second example. We denote
the random variable by a capital letter, say X, and its possible values by a small
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letter, say x; for the discrete case and z for the continuous case. The distinction is
analogous to that between a function defined as g(x) = 2% and the values y = g(z)
that g(z) can take on.

Now it is of interest to determine various properties of X. To do so we use
a computer simulation, performing many experiments and observing the outcome
for each experiment. The number of experiments, which is sometimes referred to
as the number of trials, will be denoted by M. To simulate a discrete random
variable we use rand, which generates a number at random within the (0, 1) interval
(see Appendix 2A for some MATLAB basics). Assume that in general the possible
values of X are {x1,x9,...,zxN} with probabilities {p1,p2,...,pn}. As an example,
if N = 3 we can generate M values of X by using the following code segment (which
assumes M,x1,x2,x3,pl,p2,p3 have been previously assigned):

for i=1:M
u=rand(1,1);
if u<=pl
x(i,1)=x1;
elseif u>pl & u<=pl+p2
x(i,1)=x2;
elseif u>pl+p2
x(i,1)=x3;
end
end

After this code is executed, we will have generated M values of the random variable
X. Note that the values of X so obtained are termed the outcomes or realizations
of X. The extension to any number N of possible values is immediate. For a
continuous random variable X that is Gaussian we can use the code segment:

for i=1:M
x(i,1)=randn(1,1);
end

or equivalently x=randn (M, 1). Again at the conclusion of this code segment we will
have generated M realizations of X. Later we will see how to generate realizations
of random variables whose PDFs are not Gaussian (see Section 10.977).

2.5 Determining Characteristics of Random Variables

There are many ways to characterize a random variable. We have already alluded to
the probability of the outcomes in the discrete case and the PDF in the continuous
case. To be more precise consider a discrete random variable, such as that describing
the outcome of a coin toss. If we toss a coin and let X be 1 if a head is observed
and let X be 0 if a tail is observed, then the probabilities are defined to be p for
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X =zy=1and 1 —p for X = z9 = 0. The probability p of X =1 can be thought
of as the relative frequency of the outcome of heads in a long succession of tosses.
Hence, to determine the probability of heads we could toss a coin a large number
of times and estimate p by the number of observed heads divided by the number
of tosses. Using a computer to simulate this experiment, we might inquire as to
the number of tosses that would be necessary to obtain an accurate estimate of the
probability of heads. Unfortunately, this is not easily answered. A practical means,
though, is to increase the number of tosses until the estimate so computed converges
to a fixed number. A computer simulation is shown in Figure 2.5 where the estimate

0 500 1000 1500 2000
Number of trials

Figure 2.5: Estimate of probability of heads for various number of coin tosses.

appears to converge to about 0.4. Indeed, the true value (that value used in the
simulation) was p = 0.4. It is also seen that the estimate of p is slightly higher
than 0.4. This is due to the slight imperfections in the random number generator
as well as computational errors. Increasing the number of trials will not improve
the results. We next describe some typical simulations that will be useful to us.
To illustrate the various simulations we will use a Gaussian random variable with
realizations generated using randn(1,1). Its PDF is shown in Figure 2.6.
Example 2.1 - Probability density function

A PDF may be estimated by first finding the histogram and then dividing the
number of outcomes in each bin by M, the total number of realizations, to obtain
the probability. Then to obtain the PDF px(x) recall that the probability of X
taking on a value in an interval is found as the area under the PDF of that interval
(see Section 1.377). Thus,

b
Pla<X <= [ px(o)is (2.1)



32 CHAPTER 2. COMPUTER SIMULATION

px() = Z=exp(=(1/2)2?)

0.05F

Figure 2.6: Gaussian probability density function.

and if a = 29 — Az/2 and b = xp + Az /2, where Az is small, then (2.1) becomes
Plzy — Az/2 < X <1z + Az/2] = px(xo) Az
and therefore the PDF at z = z( is approximately
Plzyg — Az/2 < X < z9+ Azx/2]
Az '

Hence, we need only divide the estimated probability by the bin width Az. Also,
note that as claimed in Chapter 1, px () is seen to be the probability per unit length.
In Figure 2.7 is shown the estimated PDF for a Gaussian random variable as well
as the true PDF as given in Figure 2.6. The MATLAB code used to generate the
figure is also shown.

PX(ﬂUo) ~

&

Example 2.2 - Probability of an interval

To determine Pla < X < b] we need only generate M realizations of X, then count
the number of outcomes that fall into the [a, b] interval and divide by M. Of course
M should be large. In particular, if we let ¢« = 2 and b = oo, then we should obtain
the value (which must be evaluated using numerical integration)

P[X >2] = /200 \/127 exp (—(1/2)2%) = 0.0228

and therefore very few realizations can be expected to fall in this interval. The results
for an increasing number of realizations are shown in Figure 2.8. This illustrates the
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randn(’state’,0)

= 05 x=randn(1000,1) ;
E _ bincenters=[-3.5:0.5:3.5]7;
g 04r z/”\\ 1 bins=length(bincenters);
£ h=zeros(bins,1);
F% 03 for i=1:length(x)
T 02 for k=1:bins
= if x(i)>bincenters(k)-0.5/2 ...
2 ool R . & x(i)<=bincenters(k)+0.5/2
A h(k,1)=h(k,1)+1;
™= 2 1 o0 1 2 3 end
T end
end
pxest=h/(1000%0.5) ;
xaxis=[-4:0.01:4]";
px=(1/sqrt (2*pi))*exp(-0.5*xaxis."2);
Figure 2.7: Estimated and true probability density functions.
M | Estimated P[X > 2] | True P[X > 2] randn(’state’,0)
100 0.0100 0.0228 M=100; count=0;
1000 0.0150 0.0228 x=randn (M, 1);
10,000 0.0244 0.0288 for 1=1:M
100,000 0.0231 0.0288 if x(1)>2
count=count+i1;
end
end

probest=count/M

Figure 2.8: Estimated and true probabilities.

problem with the simulation of small probability events. It requires a large number
of realizations to obtain accurate results. (See Problem 11.4777 on how to reduce
the number of realizations required.)

&

Example 2.3 - Average value
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It is frequently important to measure characteristics of X in addition to the PDF.
For example, we might be interested only in the average or mean or expected value
of X. If the random variable is Gaussian, then from Figure 2.6 we would expect X
to be zero on the average. This conjecture is easily “verified” by using the sample

1 M
=Ny
M;’

of the mean. The results are shown in Figure 2.9.

mean estimate

M ‘ Estimated mean ‘ True mean randn(’state’,0)
100 0.0479 0 M=100;
1000 —0.0431 0 meanest=0;
10,000 0.0011 0 x=randn(M,1);
100,000 0.0032 0 for i=1:M
meanest=meanest+(1/M)*x (i) ;
end
meanest

Figure 2.9: Estimated and true mean.

Example 2.4 - A transformed random variable

One of the most important problems in probability is to determine the PDF for
a transformed random variable, i.e., one that is a function of X, say X? as an
example. This is easily accomplished by modifying the code in Figure 2.7 from
x=randn(1000,1) to x=randn(1000,1) ;x=x."2;. The results are shown in Figure
2.10. Note that the shape of the PDF is completely different than the original
Gaussian shape (see Example 10.777 for the true PDF). Additionally, we can obtain

the mean of X? by using
M

1
M 2
i=1

as we did in Example 2.3. The results are shown in Figure 2.11.

Example 2.5 - Multiple random variables

Consider an experiment that yields two random variables or the vector random
variable [X; X5]7, where T denotes the transpose. An example might be the choice
of a point in the square {(z,y) : 0 <z < 1,0 < y < 1} according to some procedure.
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Figure 2.10: Estimated PDF of X? for X Gaussian.

randn(’state’,0)

M ‘ Estimated mean ‘ True mean M=100;
100 0.7491 1 meanest=0;
1000 0.8911 1 x=randn(M, 1) ;
10,000 1.0022 1 for i=1:M
100,000 1.0073 1 meanest=meanest+(1/M)*x(i)"2;
end
meanest

Figure 2.11: Estimated and true mean.

This procedure may or may not cause the value of x5 to depend on the value of x.
For example, if the result of many repetitions of this experiment produced an even
distribution of points indicated by the shaded area in Figure 2.12a, then we would
say that there is no dependency between X; and Xs. On the other hand, if the
distribution of points were evenly distributed within the shaded shown in Figure
2.12b, then there is a strong dependency. This is because if, for example, z; = 0.5,
then 25 would have to lie in the interval [0.25,0.75]. Consider next the random

vector
X1
X, |

where U; is generated using rand. The result of M = 1000 realizations is shown in
Figure 2.13a. We say that the random variables X; and X, are independent. Of
course, this is what we expect from a good random number generator. If instead,

Ui
Us
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T2

0.5

T

(a) No dependency

15

15

(P

0.5

0.5
T

(b) Dependency

Figure 2.12: Relationships between random variables.
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then from the plot shown in Figure 2.13b, we would say that the random variables
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2.6 Real-World Example — Digital Communications

In a phase-shift keyed (PSK) digital communication system a binary digit (also
termed a bit), which is either a “0” or a “1”, is communicated to a receiver by
sending either so(t) = Acos(2rFyt + ) to represent a “0” or si(t) = Acos(2nFyt)
to represent a “1”7, where A > 0 [Proakis 1989]. The receiver that is used to decode
the transmission is shown in Figure 2.14. The input to the receiver is the noise

2 (1) Lowpass ;: § >0 — 1

filter <0 p—> 0

Decision device
cos(2mFyt)

Figure 2.14: Receiver for a PSK digital communication system.

corrupted signal or z(t) = s;(t) + w(t), where w(t) represents the channel noise.
Ignoring the effect of noise for the moment, the output of the multiplier will be

1 1
s0(t) cos(2mFyt) = Acos(2nFyt + m) cos(2nFpt) = —A (5 + 5 cos(47rF0t)>
1 1
s1(t) cos(2mFyt) = Acos(2nFyt) cos(2mFyt) = A (5 + 3 cos(47rF0t)>

for a 0 and 1 sent, respectively. After the lowpass filter, which filters out the
cos(4mFyt) part of the signal, and sampler, we have

—% for a 0
% for a 1.

¢ =

The receiver decides a 1 was transmitted if £ > 0 and a 0 if £ < 0. To model the
channel noise we assume that the actual value of £ observed is

¢ = —4 4+ W fora0
- %—l—W foral

where W is a Gaussian random variable. It is now of interest to determine how
the error depends on the signal amplitude A. Consider the case of a 1 having been
transmitted. Intuitively, if A is a large positive amplitude, then the chance that the
noise will cause an error or equivalently, for £ < 0, should be small. This probability,
termed the probability of error and denoted by P, is given by P[A/2 + W < 0].
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Figure 2.15: Probability of error for a PSK communication system.

Using a computer simulation we can plot P, versus A with the result shown in
Figure 2.15. Also, the true P, is shown. (In Example 10.377 we will see how
to analytically determine this probability.) As expected the probability of error
decreases as the signal amplitude increases. With this information we can design
our system by choosing A to satisfy a given probability of error requirement. In
actual systems this requirement is usually about P, = 10~7. Simulating this small
probability would be exceedingly difficult due to the large number of trials required
(but see also Problem 11.4777). The MATLAB code used for the simulation is given
in Figure 2.16.

A=[0.1:0.1:5]7;
for k=1:length(A)
error=0;
for i=1:1000
w=randn(1,1);
if A(k)/2+w<=0
error=error+l;
end
end
Pe(k,1)=error/1000;
end

Figure 2.16: MATLAB code used to estimate the probability of error P, in Figure
2.15.
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Problems

Note: All the following problems require the use of a computer simulation. A
realization of a wniform random variable is obtained by using rand(1,1) while a
realization of a Gaussian random variable is obtained by using randn(1,1).

2.1 (.-) (c) An experiment consists of tossing a fair coin twice. If a head occurs
on the first toss, we let 1 = 1 and if a tail occurs we let z1 = 0. The
same assignment is used for the outcome z9 of the second toss. Defining the
random variable as Y = X;X5, estimate the probabilities for the different
possible values of Y. Explain your results.

2.2 (c) A pair of fair dice is tossed. Estimate the probability of “snake eyes” or a
one for each die?

2.3 (->) (c) Estimate P[—1 < X < 1] if X is a Gaussian random variable. Verify
the results of your computer simulation by numerically evaluating the integral

1
1 1,
exp | —=x° | dz.
/1 2 p( 2 >

Hint: See Problem 1.1477.

2.4 (c) Estimate the PDF of the random variable

12
1
X - . (UZ - 5)

where U; is a uniform random variable. Then, compare this PDF to the
Gaussian PDF or
(€)= = e (—52°)
x) = exp | —=x ) .
bx o p 2

2.5 (c) Estimate the PDF of X = U; — Uy, where U; and Us; are uniform random
variables. What is the most probable range of values?

2.6 (.- ) (c) Estimate the PDF of X = U,U,, where U; and Us are uniform random
variables. What is the most probable range of values?

2.7 (c¢) Generate realizations of a discrete random variable X, which takes on values
1, 2, and 3 with probabilities p; = 0.1, po = 0.2 and p3 = 0.7, respectively.
Next based on the generated realizations estimate the probabilities of obtaining
the various values of X.
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2.8 () (c) Estimate the mean of U, where U is a uniform random variable. What
is the true value?

2.9 (c) Estimate the mean of X + 1, where X is a Gaussian random variable. What
is the true value?

2.10 (c) Estimate the mean of X2, where X is a Gaussian random variable.

2.11 () (c) Estimate the mean of 2U, where U is a uniform random variable.
What is the true value?

2.12 (c¢) It is conjectured that if X; and X» are Gaussian random variables, then
by subtracting them (let Y = X; — X5), the probable range of values should
be smaller. Is this true?

2.13 (--) (c) A large circular dartboard is set up with a “bullseye” at the center of
the circle, which is at the coordinate (0,0). A dart is thrown at the center but
lands at (X,Y), where X and Y are two different Gaussian random variables.
What is the average distance of the dart from the bullseye?

2.14 () (c) Tt is conjectured that the mean of v/U, where U is a uniform random
variable, is vVmean of U. Is this true?

2.15 (¢) The Gaussian random variables X; and X5 are linearly transformed to the
new random variables

Y1 = X;+01X,
Yo = X7 +0.2Xo.
Plot a scatter diagram for Y; and Y5. Could you approximately determine the

value of Y5 if you knew that Y, = 17

2.16 (c,w) Generate a scatter diagram for the linearly transformed random vari-
ables

X1 = U
X = Ui +Us

where U; and Us are uniform random variables. Can you explain why the
scatter diagram looks like a parallelogram? Hint: Define the vectors

X1
X =

[ 1
e =
| 1




PROBLEMS

and express X as a linear combination of e; and es.
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Appendix 2A

Brief Introduction to MATLAB

A brief introduction to the scientific software package MATLAB is contained in this
appendix. Further information is available at the web site www.mathworks.com.
MATLAB is a scientific computation and data presentation language. Its chief ad-
vantage is the use of high-level instructions for matrix algebra and built-in routines
for data processing. In this appendix as well as throughout the text a MATLAB
command is indicated with the typewriter font such as end. MATLAB treats matri-
ces of any size (which includes vectors and scalars as special cases) as elements and
hence matrix multiplication is as simple as C=A*B, where A and B are conformable
matrices. In addition to the usual matrix operations of addition C=A+B, multipli-
cation C=Ax*B, and scaling by a constant ¢ as B=c*A, certain matrix operators are
defined that allow convenient manipulation. For example, assume we first define
the column vector x = [1234]”, where T denotes transpose, by using x=[1:4]".
The vector starts with the element 1 and ends with the element 4 and the colon
indicates that the intervening elements are found by incrementing the start value
by one, which is the default. For other increments, say 0.5 we use x=[1:0.5:4]".
To define the vector y = [12223242]7 we can use the matrix element by element
exponentiation operator .~ to form y=x."2 if x=[1:4]". Similarly, the operators
.* and ./ perform element by element multiplication and division of the matrices,
respectively. For example, if
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Character | Meaning

+ addition (scalars, vectors, matrices)
subtraction (scalars, vectors, matrices)
multiplication (scalars, vectors, matrices)
division (scalars)

exponentiation (scalars, square matrices)
element by element multiplication

./ element by element division

element by element exponentiation

; suppress printed output of operation
specify intervening values

) N ¥

? conjugate transpose (transpose for real vectors, matrices)
line continuation (when command must be split)

% remainder of line interpreted as comment

== logical equals

[ logical or

& logical and

~ = logical not

Table 2A.1: Definition of common MATLAB characters.

then the statements C=A.*B and D=A./B produce the results
1 4
C =
[ 9 16 ]
1 1
D =
respectively. A listing of some common characters is given in Table 2A.1. MATLAB
has the usual built-in functions of cos, sin, etc. for the trigonometric functions,
sqrt for a square root, exp for the exponential function, and abs for absolute value,
as well as many others. When a function is applied to a matrix, the function is
applied to each element of the matrix. Other built-in symbols and functions and
their meanings are given in Table 2A.2.
Any vector that is generated whose dimensions are not explicitly specified is
assumed to be a row vector. For example, if we say x=ones(10), then it will be
designated as the 1 x 10 row vector consisting of all ones. To yield a column vector

use x=ones (10,1).
Loops are implemented with the construction

for k=1:10
x(k,1)=1;
end
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Function Meaning
pi U

i V-1

] V-1

x=zeros(N,1) assigns an N x 1 vector of all zeros to x

x=ones(N,1) assigns an N X 1 vector of all ones to x

x=rand(N,1) generates an N x 1 vector of all uniform random variables
x=randn(N,1) generates an N X 1 vector of all Gaussian random variables

rand(’state’,0) | initializes uniform random number genetator
randn(’state’,0) | initializes Gaussian random number genetator

M=length(x) sets M equal to V if xis N x 1
whos lists all variables and their attributes in current workspace
help provides help on commands, e.g., help sqrt

Table 2A.2: Definition of common MATLAB symbols and functions.

which is equivalent to x=ones(10,1). Logical flow can be accomplished with the
construction

if x>0
y=sqrt (x);
else
y=0;
end

Finally, a good practice is to begin each program or script, which is called an “m”
file (due to its syntax, for example, pdf.m), with a clear all command. This
will clear all variables in the workspace since otherwise, the current program may
inadvertently (on the part of the programmer) use previously stored variable data.

A complete MATLAB program is given below to illustrate how one might com-
pute the samples of several sinusoids of different amplitudes. It also allows the
sinusoids to be clipped. The sinusoid is s(t) = Acos(2rFyt + 7/3), with A = 1,
A=2 and A =4, Fy =1, and ¢t = 0,0.01,0.02,...,10. The clipping level is set
at +3, i.e., any sample above +3 is clipped to +3 and any sample less than —3 is
clipped to —3.

% matlabexample.m

b

% This program computes and plots samples of a sinusoid

% with amplitudes 1, 2, and 4. If desired, the sinusoid can be

% clipped to simulate the effect of a limiting device.

% The frequency is 1 Hz and the time duration is 10 seconds.

% The sample interval is 0.1 seconds. The code is not efficient but
% 1is meant to illustrate MATLAB statements.
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h
clear all % clear all variables from workspace
delt=0.01; % set sampling time interval
FO=1; ' set frequency
t=[0:delt:10]’; % compute time samples 0,0.01,0.02,...,10
A=[1 2 4]1°; % set amplitudes
clip=’yes’; 7% set option to clip
for i=1:length(A) % begin computation of sinusoid samples
s(:,1)=A(i)*cos(2*xpi*FO*t+pi/3); % note that samples for sinusoid
% are computed all at once and
% stored as columns in a matrix
if clip=='yes’ ) determine if clipping desired
for k=1:length(s(:,i)) % note that number of samples given as
% dimension of column using length command
if s(k,1)>3 % check to see if sinusoid sample exceeds 3
s(k,i)=3; % if yes, then clip
elseif s(k,i)<-3 % check to see if sinusoid sample is less
s(k,i)=-3; J than -3 if yes then clip
end
end
end
end
figure 7 open up a new figure window
plot(t,s(:,1),t,s(:,2),t,s(:,3)) % plot sinusoid samples versus time
% samples for all three sinusoids
grid % add grid to plot
xlabel(’time, t’) % label x-axis
ylabel(’s(t)’) % label y-axis
axis([0 10 -4 4]) % set up axes using axis([xmin xmax ymin ymax])
legend(’A=1’,’A=2’,’A=4") Y, display a legend to distinguish
% different sinusoids

The output of the program is shown in Figure 2A.1. Note that the different graphs
will appear as different colors.
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A

Figure 2A.1: Output of MATLAB program matlabexample.m
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Chapter 3

Basic Probability

3.1 Introduction

We now begin the formal study of probability. We do so by utilizing the properties
of sets in conjunction with the aziomatic approach to probability. In particular, we
will see how to solve a class of probability problems via counting methods. These
are problems such as determining the probability of obtaining a royal flush in poker
or of obtaining a defective item from a batch of mostly good items, as examples.
Furthermore, the axiomatic approach will provide the basis for all our further studies
of probability. Only the methods of determining the probabilities will have to be
modified in accordance with the problem at hand.

3.2 Summary

Section 3.3 reviews set theory with Figure 3.1 illustrating the standard definitions.
Manipulation of sets can be facilitated using De Morgan’s laws of (3.6) and (3.7).
The application of set theory to probability is summarized in Table 3.1. Using the
three axioms described in Section 3.4 a theory of probability can be formulated
and a means for computing probabilities constructed. Properties of the probability
function are given in Section 3.5. Additionally, the probability for a union of three
events is given by (3.20). An equally likely probability assignment for a continuous
sample space is given by (3.22) and is shown to satisfy the basic axioms. Section 3.7
introduces the determination of probabilities for discrete sample spaces with equally
likely outcomes. The basic formula is given by (3.24). To implement this approach
for more complicated problems in which brute-force counting of outcomes is not
possible, the subject of combinatorics is described in Section 3.8. Permutations and
combinations are defined and applied to several examples for computing probabili-
ties. Based on these counting methods the hypergeometric probability law of (3.27)
and the binomial probability law of (3.28) are derived in Section 3.9. Finally, an
example of the application of the binomial law to a quality control problem is given

49
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in Section 3.10.

3.3 Review of Set Theory

The reader has undoubtedly been introduced to set theory at some point in his/her
education. We now summarize only the salient definitions and properties that are
germane to probability. A set is defined as a collection of objects, for example,
the set of students in a probability class. The set can be defined either by the
enumeration method, i.e., a listing of the students as

A = {Jane, Bill, Jessica, Fred} (3.1)
or by the description method
A = {students: each student is enrolled in the probability class}

[43%})

where the
numbers or

is read as “such that.” Another example would be the set of natural

B = {1,2,3,...} (enumeration) (3.2)
B = {I:1Iisaninteger and I > 1}  (description).

Each object in the set is called an element and each element is distinct. For example,
the sets {1,2,3} and {1,2, 1,3} are equivalent. There is no reason to list an element
in a set more than once. Likewise, the ordering of the elements within the set is
not important. The sets {1,2,3} and {2,1,3} are equivalent. Sets are said to be
equal if they contain the same elements. For example, if C; = {Fred, Bill} and Cy =
{male members in the probability class}, then C; = C2. Although the description
may change, it is ultimately the contents of the set which is of importance. An
element = of a set A is denoted using the symbolism x € A, and is read as “z is
contained in A”, as for example, 1 € B for the set B defined in (3.2). Some sets
have no elements. If the instructor in the probability class does not give out any
grades of “A”, then the set of students receiving an “A” is D = { }. This is called
the empty set or the null set. It is denoted by () so that D = (). On the other hand,
the instructor may be an easy grader and give out all “A”s. Then, we say that
D = S, where § is called the universal set or the set of all students enrolled in the
probability class. These concepts, in addition to some others, are further illustrated
in the next example.

Example 3.6 - Set concepts

Consider the set of all outcomes of a tossed die. This is

A=1{1,2,3,4,5,6}. (3.3)

The numbers 1,2,3,4,5,6 are its elements, which are distinct. The set of integer
numbers from one to six or B = {I : 1 < T < 6} is equal to A. The set A is also
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the universal set S since it contains all the outcomes. This is in contrast to the set
C = {2,4,6}, which contains only the even outcomes. The set C' is called a subset
of A. A simple set is a set containing a single element, as for example, C' = {1}.

¢

A Element vs. simple set

In the example of the probability class consider the set of instructors. Usually,
there is only one and so the set of instructors can be defined as the simple set
A = {Professor Laplace}. However, this is not the same as the “element” given by
Professor Laplace. A distinction is therefore made between the instructors teaching
probability and an individual instructor. As another example, it is clear that some-
times elements in a set can be added as for example, 2+3=5, but it makes no sense

to add sets as in {2} + {3} = {5}.

More formally, a set B is defined as a subset of a set A if every element in B is also
an element of A. We write this as B C A. This also includes the case of B = A. In
fact, we can say that A= B if AC B and B C A.

Besides subsets, new sets may be derived from other sets in a number of ways.
If § = {—00 <z < oo} (called the set of real numbers), then A = {z: 0 <z <2} is
clearly a subset of S. The complement of A, denoted by A€, is the set of elements
in § but not in A. This is A° = {z : © < 0 or z > 2}. Two sets can be combined
together to form a new set. For example, if

A = {2:0<x<2}
B = {z:1<x<3} (3.4)

then the union of A and B, denoted by A U B, is the set of elements that belong to
A or B or both A and B (so called inclusive or). Hence, AUB = {z : 0 <z < 3}.
This definition may be extended to multiple sets A, As,..., Ay so that the union
is the set of elements for which each element belongs to at least one of these sets.
It is denoted by

N
AjUASUAU---UAN = UAl
i=1
The intersection of sets A and B, denoted by AN B, is defined as the set of elements
that belong to both A and B. Hence, AN B = {z : 1 <z < 2} for the sets of (3.4).
We will sometimes use the shortened symbolism AB to denote ANB. This definition
may be extended to multiple sets Ay, As, ..., Ay so that the intersection is the set
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of elements for which each element belongs to all of these sets. It is denoted by
N
AiNAsNAsN---NAy = ﬂAz
i=1

The difference between sets, denoted by A — B, is the set of elements in A but not
in B. Hence, for the sets of (3.4) A— B = {z : 0 < z < 1}. These concepts can
be illustrated pictorially using a Venn diagram as shown in Figure 3.1. The darkly

(a) Universal set S (b) Set A (c) Set A°

’ ¢

(d) Set AUB (e) Set ANB (f) Set A-B

Figure 3.1: Illustration of set definitions — darkly shaded region indicates the set.

shaded regions are the sets described. The dashed portions are not included in the
sets. A Venn diagram is useful for visualizing set operations. As an example, one
might inquire whether the sets A — B and A N B¢ are equivalent or if

A—B=AnNB" (3.5)

From Figures 3.2 and 3.1f we see that they appear to be. However, to formally prove
that this relationship is true requires one to let C = A — B, D = AN B° and prove
that (a) C C D and (b) D C C. To prove (a) assume that z € A — B. Then, by
definition of the difference set (see Figure 3.1f) 2 € A but z is not an element of B.
Hence, x € A and z must also be an element of B¢ Since D = AN B, £ must be
an element of D. Hence, x € AN B¢ and since this is true for every € A, we have
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o By ¢

Figure 3.2: Using Venn diagrams to “validate” set relations.

that A — B C AN B¢ The reader is asked to complete the proof of (b) in Problem
3.6.

With the foregoing set definitions a number of results follow. They will be useful
in manipulating sets to allow easier calculation of probabilities. We now list these.

1. (A=A

2. AUA=S, ANA° =
3. AUD=A, AnD =1
4. AUS=S,AnS=A
5.8°=0,0°=S.

If two sets A and B have no elements in common, they are said to be disjoint.
The condition for being disjoint is therefore A N B = (). If furthermore, the sets
contain between them all the elements of S, then the sets are said to partition the
universe. This latter additional condition is that AU B = S§. An example of sets
which partition the universe is given in Figure 3.3. Note also that the sets A and A°

Figure 3.3: Sets that partition the universal set.

are always a partitioning of § (why?). More generally, mutually disjoint sets or sets
A1, A, ..., Ay for which A; N A; =0 for all i # j are said to partition the universe
if S = UY | A; (see also Problem 3.9 on how to construct these sets in general). For
example, the set of students enrolled in the probability class, which is defined as the
universe (although of course other universes may be defined such as the set of all
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students attending the given university), is partitioned by
A; = {males} = {Bill, Fred}
Ay = {females} = {Jane, Jessica}.
Algebraic rules for manipulating multiple sets, which will be useful, are

1. AUB=BUA
ANB=BNA commutative properties

2. AUBUC)=(AuB)UC
AN(BNnC)=(AnB)nC associative properties

3. AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUB)N(AUCQC) distributive properties.

Another important relationship for manipulating sets is De Morgan’s law. Re-
ferring to Figure 3.4 it is obvious that

AUB = (4°N BY)° (3.6)

which allows one to convert from unions to intersections. To convert from intersec-
tions to unions we let A = C¢ and B = D¢ in (3.6) to obtain

C°UD® = (CND)

and therefore
CnD=(C°UD°". (3.7)

In either case we can perform the conversion by the following set of rules

A B

(a) Set AUB (b) Set A°nN B¢

Figure 3.4: Tllustration of De Morgan’s law.

1. Change the unions to intersections and the intersections to unions

2. Complement each set
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3. Complement the overall expression.

Finally, we discuss the size of a set. This will be of extreme importance in assign-
ing probabilities. The set {2,4,6} is a finite set, having a finite number of elements.
The set {2,4,6,...} is an infinite set, having an infinite number of elements. In
the latter case, although the set is infinite, it is said to be countably infinite. This
means that “in theory” we can count the number of elements in the set. (We do so
by pairing up each element in the set with an element in the set of natural numbers
or {1,2,3,...}). In either case, the set is said to be discrete. The set may be pic-
tured as points on the real line. In contrast to these sets the set {z : 0 <z <1} is
infinite and cannot be counted. This set is termed continuous and is pictured as a,
line segment on the real line. Another example follows.

Example 3.7 - Size of sets

The sets
111
A = {g, 77 1} finite set - discrete
111 o .
B = <1, CUETEAE countably infinite set - discrete
C = {z:0<z<1} infinite set - continuous

are pictured in Figure 3.5.

grd ond st glament

A\

0 1 0 1 0 1
(a) Finite set, A (b) Countably infinite (c) Infinite continuous
set, B set, C'

Figure 3.5: Examples of sets of different sizes.

3.4 Assigning and Determining Probabilities

In the previous section we reviewed various aspects of set theory. This is because the
concept of sets and operations on sets provide an ideal description for a probabilistic
model and the means for determining the probabilites associated with the model.
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Consider the tossing of a fair die. The possible outcomes comprise the elements
of the set § = {1,2,3,4,5,6}. Note that this set is composed of all the possible
outcomes, and as such is the universal set. In probability theory & is termed the
sample space and its elements S are the outcomes or sample points. At times we may
be interested in a particular outcome of the die tossing experiment. Other times we
might not be interested in a particular outcome, but whether or not the outcome
was an even number, as an example. Hence, we would inquire as to whether the
outcome was included in the set Egyen = {2,4,6}. Clearly, Foyen is a subset of S
and is termed an event. The simplest type of events are the ones that contain only
a single outcome such as F) = {1}, E» = {2}, or Es = {6}, as examples. These are
called simple events. Other events are S, the sample space itself, and () = {}, the
set with no outcomes. These events are termed the certain event and the impossible
event, respectively. This is because the outcome of the experiment must be an
element of S so that S is certain to occur. Also, the event which does not contain
any outcomes cannot occur so that this event is impossible. Note that we are saying
that an event occurs if the outcome is an element of the defining set of that event.
For example, the event that a tossed die produces an even number occurs if it comes
up a 2 or a4 or a 6. These numbers are just the elements of Feye,. Disjoint sets such
as {1,2} and {3,4} are said to be mutually ezxclusive, in that an outcome cannot
be in both sets simultaneously and hence both events cannot occur. The events
then are said to be mutually exclusive. It is seen that probabilistic questions can
be formulated using set theory, albeit with its own terminology. A summary of the
equivalent terms used is given in Table 3.1.

Set theory Probability theory Probability symbol
universe sample space (certain event) | S

element outcome (sample point) S

subset event E

disjoint sets | mutually exclusive events EiNEy=10

null set impossible event 0

simple set simple event E = {s}

Table 3.1: Terminology for set and probability theory.

In order to develop a theory of probability we must next assign probabilities to
events. For example, what is the probability that the tossed die will produce an
even outcome? Denoting this probability by P[FEeyen], we would intuitively say that
it is 1/2 since there are 3 chances out of 6 to produce an even outcome. Note that P
is a probability function or a function that assigns a number between 0 and 1 to sets.
It is sometimes called a set function. The reader is familiar with ordinary functions
such as g(x) = exp(z), in which a number y, where y = g(z), is assigned to each z
for —oo < & < 00, and where each zx is a distinct number. The probability function
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must assign a number to every event, or to every set. For a coin toss whose outcome
is either a head H or a tail 7', all the events are By = {H}, Ey = {T}, E3 = S,
and Fy = (. For a die toss all the events are Fy = 0, E; = {1},...,Es = {6},
Ep = {1, 2}, ooy Esg = {5, 6}, covy Elo3as = {1, 2,3,4, 5}, covy Eosgse = {2, 3,4,5, 6},
Ei93456 = {1,2,3,4,5,6} = S. There are a total of 64 events. In general, if the
sample space has N simple events, the total number of events is 2V (see Problem
3.15). We must be able to assign probabilities to all of these. In accordance with
our intuitive notion of probability we assign a number, either zero or positive, to
each event. Hence, we require that

Axiom 1 P[E] >0 for every event E.

Also, since the die toss will always produce an outcome that is included in § =
{1,2,3,4,5,6} we should require that

Axiom 2 P[S]=1.

Next we might inquire as to the assignment of a probability to the event that the
die comes up either less than or equal to 2 or equal to 3. Intuitively, we would say
that it is 3/6 since

Pl{1,2}U{3}] = P[{1,2}]+ P[{3}]
2 1 1
“stsT

However, we would not assert that the probability of the die coming up either less
than or equal to 3 or equal to 3 is

Pi{1,2,3} U{3}] P[{1,2,3}] + P[{3}]

1 4

3 J—
676 6

This is because the event {1,2,3} U {3} is just {1,2,3} (we should not count the
3 twice) and so the probability should be 1/2. In the first example, the events are
mutually exclusive (the sets are disjoint) while in the second example they are not.
Hence, the probability of an event that is the union of two mutually exclusive events
should be the sum of the probabilities. Combining this axiom with the previous ones
produces the full set of axioms, which we summarize next for convenience.

Axiom 1 P[E] >0 for every event £
Axiom 2 P[S] =1
Axiom 3 P[EU F|= P[E]+ P[F] for E and F mutually exclusive.

Using induction (see Problem 3.17) the third axiom may be extended to
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N
Axiom 3' P|JN, Ej] = ZP[EZ] for all E;’s mutually exclusive.

=1

The acceptance of these axioms as the basis for probability is called the aziomatic
approach to probability. It is remarkable that these three axioms, along with a fourth
axiom to be introduced later, are adequate to formulate the entire theory. We now
illustrate the application of these axioms to probability calculations.

Example 3.8 - Die toss

Determine the probability that the outcome of a fair die toss is even. The event
is Feven = {2,4,6}. The assumption that the die is fair means that each outcome
must be equally likely. Defining E; as the simple event {i} we note that

and from Axiom 2 we must have

6

U

=1

P = P[S] = 1. (3.8)

But since each Ej; is a simple event and by definition the simple events are mutually
exclusive, we have from Axiom 3’ that

6

Uz

=1

6

=> P[E]. (3.9)

=1

P

Next we note that the outcomes are assumed to be equally likely which means that

P[E,]| = P[E3] = --- = P|Eg] = p. Hence, we must have from (3.8) and (3.9) that
6
> PlE]=6p=1
1=1

or P[E;] = 1/6 for all i. We can now finally determine P[Egyen] since Eeyen =
E; U E4 U Eg. By applying Axiom 3’ once again we have
1

1 1 1
P[Eeven]:P[EQUE4UE6]:P[E2]+P[E4]+P[E6]:g—|—— EZE

(=]

¢

In general, the probabilities assigned to each simple event need not be the same, i.e.,
the outcomes of a die toss may not have equal probability. One might have weighted
the die so that the number 6 comes up twice as often as all the others. The numbers
1,2,3,4,5 could still be equally likely. In such a case, since the probabilities of the all
the simple events must sum to one, we would have the assignment P[{i}] =1/7 for
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i=1,2,3,4,5 and P[{6}] = 2/7. In either case, to compute the probability of any
event it is only necessary to sum the probabilities of the simple events that make up
that event. Letting P[{s;}] be the probability of the ith simple event we have that

PlEI= Y Plisil (3.10)

{i:S;€F}

We now simplify the notation by omitting the { } when referring to events. Instead
of P[{1}] we will use P[1]. Another example follows.

Example 3.9 - Defective die toss

A defective die is tossed whose sides have been mistakedly printed with the number
of dots being 1,1,2,2,3,4. The simple events are s1 = 1, S = 1, 83 = 2, §4 = 2,
S5 = 3, S¢ = 4. Even though some of the outcomes have the same number of dots,
they are actually different in that a different side is being observed. Each side is
equally likely to appear. What is the probability that the outcome is less than 37
Noting that the event of interest is {s1, S2, 53,54}, we use (3.10) to obtain

P[E] = Ploutcome < 3] = ZP[Si] = %

¢
The formula given by (3.10) also applies to probability problems for which the sample

space is countably infinite. Therefore, it applies to all discrete sample spaces (see
also Example 3.2).

Example 3.10 - Countably infinite sample space

A habitually tardy person arrives at the theater late by s; minutes, where

si=i i=1,23....

If P[s;] = (1/2)%, what is the probability that he will be more than 1 minute late?
The event is £ = {2,3,4,...}. Using (3.10) we have

-5 (3)-

Using the formula for the sum of a geometric progression (see Appendix B?7)

0 ) ak

g a' = for |a| <1

4 1—a

i—=k

we have that
(3)° 1
PE) =22 = _.

1—3 2
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¢
In the above example we have implicitly used the relationship
o0 o
P JE| =) P[E] (3.11)
i=1 i=1

where E; = {s;} and hence the E;’s are mutually exclusive. This does not automat-
ically follow from Axiom 3’ since N is now infinite. However, we will assume for our
problems of interest that it does. Adding (3.11) to our list of axioms we have

o0
Axiom 4 P|J2, Ej] = ZP[El] for all E;’s mutually exclusive.
i=1

See [Billingsley 1986] for further details.

3.5 Properties of the Probability Function

From the four axioms we may derive many useful properties for evaluating proba-
bilities. We now summarize these properties.
Property 3.1 - Probability of complement event

P[E] = 1 — P[E]. (3.12)

Proof: By definition £ U E¢ = §. Also, by definition £ and E° are mutually
exclusive. Hence,

1 = PI[S] (Axiom 2)
= P[EUE"] (definition of complement set)
P[E] + P[E‘] (Axiom 3)

from which (3.12) follows.

O
We could have determined the probability in Example 3.5 without the use of the
geometric progression formula by using P[E] =1— P[E‘] =1— P[1] =1/2.
Property 3.2 - Probability of impossible event

P[] =o0. (3.13)
Proof: Since ) = S¢ we have
Pl] = P[S°]
= 1—P[S] (from Property 3.1)
= 1-1 (from Axiom 2)

= 0.
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O
We will see later that there are other events for which the probability can be zero.
Thus, the converse is not true.
Property 3.3 - All probabilities are between 0 and 1

Proof:

S = EUES (definition of complement set)
P[S] = P[E]+ P[E‘] (Axiom 3)
1 = P[E]+ P[E°] (Axiom 2)

But from Axiom 1 P[E‘] > 0 and therefore
P[E]=1- P[E| < 1. (3.14)

Combining this result with Axiom 1 proves Property 3.3.
O

Property 3.4 - Formula for P[E U F| where E and F are not mutually
exclusive

P[E U F] = P[E] + P[F] — P|EF). (3.15)

(We have shortened EN F to EF.)
Proof: By the definition of £ — F' we have that EUF = (E — F) U F (see also
Figure 3.1d,f). Also, the events F — F and F are by definition mutually exclusive.
It follows that

P[EUF]=P[E - F|+ P[F] (Axiom 3). (3.16)

But by definition ¥ = (F — F) U EF (draw a Venn diagram) and £ — F and EF
are mutually exclusive. Thus,

P[E) = P|[E — F]+ P[EF]  (Axiom 3). (3.17)

Combining (3.16) and (3.17) produces Property 3.4.

O
The effect of this formula is to make sure that the intersection EF' is not counted
twice in the probability calculation. This would be the case if Axiom 3 were mis-
takenly applied to sets that were not mutually exclusive. In the die example, if we
wanted the probability of the die coming up either less than or equal to 3 or equal
to 3, then we would first define

E = {1,2,3}
F = {3
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so that EF = {3}. Using Property 3.4, we have that

P[EUF|=P[E]|+ P[F| - P|EF| =

| =
[=2)

| W
| =

Of course, we could just as easily have noted that £ U F = {1,2,3} = E and then
applied (3.10). Another example follows.
Example 3.11 - Switches in parallel

A switching circuit shown in Figure 3.6 consists of two potentially faulty switches in
parallel. In order for the circuit to operate properly at least one of the switches must

.

switch 1

|

switch 2

Figure 3.6: Parallel switching circuit.

close to allow the overall circuit to be closed. Each switch has a probability of 1/2 of
closing. The probability that both switches close simultaneously is 1/4. What is the
probability that the switching circuit will operate correctly? To solve this problem
we first define the events E; = {switch 1 closes} and Ey = {switch 2 closes}. The
event that at least one switch closes is £y U Ey. This includes the possibility that
both switches close. Then using Property 3.4 we have

P[E1UE2] = P[E1]+P[E2]—P[E1E2]
_ 1+1 1_3
22 4 4

Note that by using two switches in parallel as opposed to only one switch, the
probability that the circuit will operate correctly has been increased. What do you
think would happen if we had used three switches in parallel? Or if we had used N
switches? Could you ever be assured that the circuit would operate flawlessly? (See
Problem 3.26.)

¢

Property 3.5 - Monotonicity of probability function

Monotonicity asserts that the larger the set, the larger the probability of that set.
Mathematically, this translates into the statement that if £ C F, then P[E] < P[F].
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Proof: If E C F, then by definition ¥ = E U (F — E). Also, E and F — E are
mutually exclusive, again by definition. Hence,

P[F] = P|E|+ P[F—E] (Axiom 3)
> P[E] (Axiom 1).
|
Note that since EF C F and EF C E, we have that P[EF] < P[E] and also that
P[EF] < P[F]. The probability of an intersection is always less than or equal to
the probability of the set with the smallest probability.
Example 3.12 - Switches in series

A switching circuit shown in Figure 3.7 consists of two potentially faulty switches in
series. In order for the circuit to operate properly both switches must close. For the

N R,

switch 1 switch 2

Figure 3.7: Series switching circuit.

same switches as described in Example 3.6 what is the probability that the circuit
will operate properly? Now we need to find P[E; Es]. This was given as 1/4 so that

1 1

Could the series circuit ever outperform the parallel circuit? (See Problem 3.27.)

&
One last property that is often useful is the probability of a union of more than
two events. This extends Property 3.4. Consider first three events so that we wish
to derive a formula for P[E; U E; U Ej3], which is equivalent to P[(E; U E2) U E3] or
P[E; U (E2 U E3)] by the associative property. Writing this as P[E, U (Ey U E3)] we
have
P[E,UEyUEs] = P[E1U(E;UE3)]
= P[El] + P[EZ U Eg] - P[El (E2 U Eg)] (Property 34)
P[E\] + (P[Es] + P[E3] — P[E>E3))
—P[E\(E2 U E3)] (Property 3.4)
(3.18)
But Fy(E;UE3) = EyE;UE] E3 by the distributive property (draw a Venn diagram)
so that
P[El U FEy U Eg] = P[ElEQ U ElEg]
= P[ElEQ] + P[ElEg] — P[E1E2E3] (Property 34)(319)
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Substituting (3.19) into (3.18) produces

P|E\UE,UEs] = P|E)|+ P|Ey)|+ P[E3|— P|Es 5| — P|Ey Ey) — P|E Es] + P|E, E> Es)
(3.20)
which is the desired result. It can further be shown that (see Problem 3.29)

P[E|Es] + P[E\Es] + P[EyE3] > P|E, Ey Es]

so that
P[El U FEy U Eg] < P[El] + P[EQ] + P[Eg] (321)

which is known as Boole’s inequality or the union bound. Clearly, equality holds if
and only if the E;’s are mutually exclusive. Both (3.20) and (3.21) can be extended
to any finite number of unions [Ross 2002].

3.6 Probabilities for Continuous Sample Spaces

We have introduced the axiomatic approach to probability and illustrated the ap-
proach with examples from a discrete sample space. The axiomatic approach is
completely general and applies to continuous sample spaces as well. However, (3.10)
cannot be used to determine probabilities of events. This is because the simple events
of the continuous sample space are not countable. For example, suppose one throws
a dart at a “linear” dartboard as shown in Figure 3.8 and measures the horizontal
distance from the “bullseye” or center at z = 0. We will then have a sample space

—. . ._.x

~1/2 0 1/2

Figure 3.8: “Linear” dartboard.

S ={z:-1/2 <z <1/2}, which is not countable. A possible approach is to assign
probabilities to intervals as opposed to sample points. If the dart is equally likely
to land anywhere, then we could assign the interval [a, b] a probability equal to the
length of the interval or

Pla<z<bl=b—a —-1/2<a<b<1/2 (3.22)

Also, we will assume that the probability of disjoint intervals is the sum of the
probabilities for each interval. This assignment is entirely consistent with our axioms
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PE] = Pla<z<bl=b—a>0. (Axiom 1)
P[S] = P[-1/2<z<1/2]=1/2—(-1/2) =1.  (Axiom 2)
PIEUF] = Pla<z<bUc<z<d]
= (b—a)+(d—¢) (assumption)
= Pla<z<b+ Plc<z<d]
= P[E]+ P[F] (Axiom 3)

for a < b < ¢ < d so that £ and F are mutually exclusive. Hence, an equally
likely type probability assignment for a continuous sample space is a valid one and
produces a probability equal to the length of the interval. If the sample space does
not have unity length, as for example, a dartboard with a length L, then we should
use

PE] = Length of interval ~ Length of interval‘

- = 2
Length of dartboard L (3.23)

& Probability of a bullseye

It is an inescapable fact that the probability of the dart landing at say = = 0 is
zero since the length of this interval is zero. For that matter the probability of
the dart landing at any one particular point zq is zero as follows from (3.22) with
a = b = xy. The first-time reader of probability will find this particularly disturbing
and argue that “How can the probability of landing at every point be zero if indeed
the dart had to land at some point?” From a pragmatic viewpoint we will seldom
be interested in probabilities of points in a continuous sample space but only in
those of intervals. How many darts are there whose tips have width zero and so
can be said to land at a point? It is more realistic in practice then to ask for the
probability that the dart lands in the bullseye, which is a small interval with some
nonzero length. That probability is found by using (3.22). From a mathematical
viewpoint it is not possible to “sum” up an infinite number of positive numbers of
equal value and not obtain infinity, as opposed to one, as assumed in Axiom 2. The
latter is true for continuous sample spaces, in which we have a uncountably infinite
set, and in discrete sample spaces, which is composed of a infinite but countable
set. (Note that in Example 3.5 we had a countably infinite sample space but the

probabilities were not equal.)

Since the probability of a point event occurring is zero, the probability of any interval
is the same whether or not the endpoints are included. Thus, for our example,
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Pla<z<bl=Pla<z<b=Pla<z<b=Pla<z<b

3.7 Probabilities for Finite Sample Spaces - Equally
Likely Outcomes

We now consider in more detail a discrete sample space with a finite number of
outcomes. Some examples that we are already familiar with are a coin toss, a die
toss, or the students in a class. Furthermore, we assume that the simple events
or outcomes are equally likely. Many problems have this structure and can be
approached using counting methods or combinatorics. For example, if two dice are
tossed, then the sample space is

S={(i,j):i=1,...,6;5=1,...,6}

which consists of 36 outcomes with each outcome or simple event denoted by an
ordered pair of numbers. If we wish to assign probabilities to events, then we need
only assign probabilities to the simple events and then use (3.10). But if all the
simple events, denoted by s;;, are equally likely, then
1 1
Pls::]l = — = —
Isij Ns 36
where Ng is the number of outcomes in §. Now using (3.10) we have for any event
that

PE] = Y Y Plsy]
{(i.4): Si;€E}
- ¥ 5
iy Semy S
Ng
Ns
Number of outcomes in E

= . 3.24
Number of outcomes in S ( )

We will use combinatorics to determine N and Ng and hence P[E].
Example 3.13 - Probability of equal values for two-dice toss
Each outcome with equal values is of the form (i,4) so that

PlE] = Number of outcomes with (i, )
~ Total number of outcomes

There are 6 outcomes with equal values or (7,7) for i = 1,2,...,6. Thus,
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Example 3.14 - A more challenging problem - urns

An urn contains 3 red balls and 2 black balls. Two balls are chosen in succession.
The first ball is returned to the urn before the second ball is chosen. Each ball is
chosen at random, which means that we are equally likely to choose any ball. What
is the probability of choosing first a red ball and then a black ball? To solve this
problem we first need to define the sample space. To do so we assign numbers to the
balls as follows. The red balls are numbered 1,2,3 and the black balls are numbered
4,5. The sample space is then § = {(i,7) : i = 1,2,3,4,5;5 = 1,2,3,4,5}. The
event of interest is £ = {(4,7) : 4 =1,2,3;7 = 4,5}. We assume that all the simple
events are equally likely. An enumeration of the outcomes is shown in Table 3.2.
The outcomes with the asterisks comprise E. Hence, the probability is P[E] = 6/25.
This problem could also have been solved using combinatorics as follows. Since there

j=1]j=2|j=3]|j=4 |j=5
i=1[(,1) | (1,2) | 1,3) | (1,49 | (1,5)"
i=21(2,1) | (2,2) | (23) | (2,49 | (2,5)"
i=31(3,1) | (3,2) | (3,3) | (3,4)* | (3,5)"
i=4|(4,1) | (42) | (43) | (4,4) | 4,5)
i=51(51)|(52) |(53) | (54) | (5,5)

Table 3.2: Enumeration of outcomes for urn problem of Example 3.9.

are 5 possible choices for each ball, there are a total of 52 = 25 outcomes in the
sample space. There are 3 possible ways to choose a red ball on the first draw and 2
possible ways to choose a black ball on the second draw, yielding a total of 3-2 =6
possible ways of choosing a red ball followed by a black ball. We thus arrive at the
same probability.

&

3.8 Combinatorics

Combinatorics is the study of counting. As illustrated in Example 3.9, we often
have an outcome that can represented as a 2-tuple or (z1, 22), where z; can take on
one of Ny values and 29 can take on one of Ny values. For that example, the total
number of 2-tuples in S is N1 Ny = 5-5 = 25, while that in £ is NNy, = 3-2 = 6, as
can be verified by referring to Table 3.2. It is important to note that order matters
in the description of a 2-tuple. For example, the 2-tuple (1,2) is not the same as
the 2-tuple (2, 1) as one may verify by regarding these 2-tuples as coordinates in the
plane. We will frequently be using 2-tuples and more generally r-tuples denoted by
(21,292, ...,2) to describe the outcomes of urn experiments.
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In drawing balls from an urn there are two possible strategies. One method is to
draw a ball, note which one it is, return it to the urn, and then draw a second ball.
This is called sampling with replacement and was used in Example 3.9. However, it
is also possible that the first ball is not returned to the urn before the second one is
chosen. This method is called sampling without replacement. The contrast between
the two strategies is illustrated next.

Example 3.15 - Computing probabilities of drawing balls from urns -
with and without replacement

An urn has k red balls and N — k black balls. If two balls are chosen in succession
and at random with replacement, what is the probability of a red ball followed by a
black ball? We solve this problem by first labeling the & red balls with 1,2,... k
and the black balls as K+ 1,k + 2,...,N. In doing so the possible outcomes of the
experiment can be represented by a 2-tuple (z1,22), where z; € {1,2,..., N} and
zo € {1,2,...,N}. A successful outcome is a red ball followed by a black one so
that the successful event is £ = {(z1,22) : 21 = 1,...,k;2zo = k+1,...,N}. The
total number of 2-tuples in the sample space is Ns = N2, while the total number of
2-tuples in E is Ngp = k(N — k) so that

plE] = £

Note that if we let p = k/N be the proportion of red balls, then P[E] = p(1 — p).
Next consider the case of sampling without replacement. Now since the same ball
cannot be chosen twice in succession, and therefore, z; # 23, we have one fewer
choice for the second ball. Therefore, Ng = N(N — 1). As before, the number of
successful 2-tuples in F is Ng = k(N — k), resulting in

_ k(N-k) kN—-k N
PlEl = N(N-1) N N N-1
N
= r(l =Py

The probability is seen to be higher. Can you explain this? (It may be helpful to
think about the effect of a successful first draw on the probability of a success on
the second draw.) Of course, for large N the probabilities for sampling with and
without replacement are seen to be approximately the same, as expected.

¢
If we now choose r balls without replacement from an urn containing N balls, then
all the possible outcomes are of the form (zi,z29,...,2,), where the z;’s must be

different. On the first draw we have N possible balls, on the second draw we have
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N — 1 possible balls, etc. Hence, the total number of possible outcomes or number
of r-tuples is N(N —1)--- (N —r +1). We denote this by (N),. If all the balls are
selected, forming an N-tuple, then the number of outcomes is

(N)y =N(N —1)---1

which is defined as N! and is termed N factorial. As an example, if there are 3
balls labeled A,B,C, then the number of 3-tuples is 3! =3 -2 -1 = 6. To verify this
we have by enumeration that the possible 3-tuples are (A,B,C), (A,C,B), (B,A,C),
(B,C,A), (C,A,B), (C,B,A). Note that 3! is the number of ways that 3 objects can
be arranged. These arrangements are termed the permutations of the letters A, B,
and C. Note that with the definition of a factorial we have that (N), = N!/(N —r)!.
Another example follows.
Example 3.16 - More urns - using permutations
Five balls numbered 1,2,3,4,5 are drawn from an urn without replacement. What
is the probability that they will be drawn in the same order as their number? Each
outcome is represented by the 5-tuple (z1, 29, 23, 24, 25). The only outcome in E is
(1,2,3,4,5) so that Ny = 1. To find Ns we require the number of ways that the
numbers 1,2,3,4,5 can be arranged or the number of permutations. This is 5!=120.
Hence, the desired probability is P[E] = 1/120.

¢
Before continuing, we give one more example to explain our fixation with drawing
balls out of urns.
Example 3.17 - The birthday problem
A probability class has N students enrolled. What is the probability that at least
two of the students will have the same birthday? We first assume that each student
in the class is equally likely to be born on any day of the year. To solve this
problem consider a “birthday urn” which contains 365 balls. Each ball is labeled
with a different day of the year. Now allow each student to select a ball at random,
note its date, and return it to the urn. The day of the year on the ball becomes
his/her birthday. The probability desired is of the event that two or more students
choose the same ball. It is more convenient to determine the probability of the
complement event or that no two students have the same birthday. Then, using
Property 3.1

Plat least 2 students have same birthday] = 1—P[no students have same birthday].

The sample space is composed of Ng = 365" N-tuples (sampling with replacement).
The number of N-tuples for which all the outcomes are different is Ng = (365)y.
This is because the event that no two students have the same birthday occurs if
the first student chooses any of the 365 balls, the second student chooses any of the
remaining 364 balls, etc., which is the same as if sampling without replacement were
used. The probability is then

(365) v

Plat least 2 students have same birthday] = 1 — .
365N
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This probability is shown in Figure 3.9 as a function of the number of students. It is
seen that if the class has 23 or more students, there is a probability of 0.5 or greater
that two students will have the same birthday.
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Figure 3.9: Probability of at least two students having the same birthday.

A Why this doesn’t appear to make sense?

This result may seem counterintuitive at first, but this is only because the reader

is misinterpreting the question. Most persons would say that you need about 180
people for a 50% chance of two identical birthdays. In contrast, if the question was
posed as to the probability that at least two persons were born on January 1, then
the event would be at least two persons choose the ball labeled “January 1”7 from the
birthday urn. For 23 people this probability is considerably smaller (see Problem
3.38). It is the possibility that the two identical birthdays can occur on any day
of the year (365 possibilities) that leads to the unexpected large probability. To
verify this result the MATLAB program given below can be used. When run, the
estimated probability for 10,000 repeated experiments was 0.5072. The reader may
wish to reread Section 2.4 at this point.

% birthday.m

h

clear all
rand(’state’,0)
BD=[0:365]’;
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event=zeros(10000,1); % initialize to no successful events
for ntrial=1:10000
for i=1:23

x(i,1)=ceil(365*rand(1,1)); % chooses birthdays at random

% (ceil rounds up to nearest integer)

end
y=sort(x); % arranges birthdays in ascending order
z=y(2:23)-y(1:22); ’ compares successive birthdays to each other
w=find(z==0); % flags same birthdays
if length(w)>0

event (ntrial)=1; % event occurs if one or more birthdays same
end
end
prob=sum(event)/10000

/AN

We summarize our counting formulas so far. FEach outcome of an experiment
produces an r-tuple, which can be written as (z1,29,...,2,). If we are choos-
ing balls in succession from an urn containing N balls, then with replacement
each z; can take on one of N possible values. The number of possible r-tuples
is then N". If we sample without replacement, then the number of r-tuples is only
(N)p = N(N—-1)--- (N —r+1). If we sample without replacement and r = N
or all the balls are chosen, then the number of r-tuples is N!. In arriving at these
formulas we have used the r-tuple representation in which the ordering is used in
the counting. For example, the 3-tuple (A,B,C) is different than (C,A,B), which is
different than (C,B,A), etc. In fact, there are 3! possible orderings or permutations
of the letters A, B, and C. We are frequently not interested in the ordering but only
in the number of distinct elements. An example might be to determine the number
of possible sum-values that can be made from one penny (p), one nickel (n), and
one dime (d) if two coins are chosen. To determine this we use a tree diagram as
shown in Figure 3.10. Note that since this is essentially sampling without replace-
ment, we cannot have the outcomes pp, nn, or dd (shown in Figure 3.10 as dashed).
The number of possible outcomes are 3 for the first coin and 2 for the second so
that as usual there are (3)s = 3-2 = 6 outcomes. However, only 3 of these are
distinct or produce different sum-values for the two coins. The outcome (p,n) is
counted the same as (n,p) for example. Hence, the ordering of the outcome does
not matter. Both orderings are treated as the same outcome. To remind us that
ordering is immaterial we will replace the 2-tuple description by the set description
(recall that the elements of a set may be arranged in any order to yield the same
set). The outcomes of this experiment are therefore {p,n}, {p,d}, {n,d}. In effect,
all permutations are considered as a single combination. Thus, to find the number
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p,l
=~ % 6 cents
d
p 11 cents
6 cents
<0
y d
15 cents
P_ 11 cents
- 1 15 cents
o d

choose first choose second

Figure 3.10: Tree diagram enumerating possible outcomes.

of combinations
number of combinationsxnumber of permutations = total number of r-tuple outcomes
or for this example,
number of combinations x 2! = (3)s
which yields
(32 3!
21— 112!

The number of combinations is given by the symbol (g) and is said to be “3 things

=3.

number of combinations =

taken 2 at a time”. Also, (g) is termed the binomial coefficient due to its appearance
in the binomial expansion (see Problem 3.43). In general the number of combinations
of N things taken k at a time is

(]Ij> - (]Zv)k (N ivl!c)!k!'

Example 3.18 - Correct change

If a person has a penny, nickel, and dime in his pocket and selects two coins at
random, what is the probability that the sum-value will be 6 cents. The sample
space is now S = {{p,n}, {p,d}, {n,d}} and £ = {{p,n}}. Thus,

P[6 cents] = P[{p,n}] = %—i
1

3
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Note that each simple event is of the form {-,-}. Also, Ns can be found from the
original problem statement as (g) =3.

¢

Example 3.19 - How probable is a royal flush?

A person draws 5 cards from a deck of 52 freshly shuffled cards. What is the
probability that he obtains a royal flush? To obtain a royal flush he must draw an
ace, king, queen, jack, and ten of the same suit in any order. There are 4 possible
suits that will be produce the flush. The total number of combinations of cards
or “hands” that can be drawn is (552) and a royal flush will result from 4 of these
combinations. Hence,

4
Plroyal flush] = —— = 0.00000154.

(%)

A Ordered versus unordered

It is sometimes confusing that (552) is used for Ns. It might be argued that the

first card can be chosen in 52 ways, the second card in 51 ways, etc. for a total of
(52)5 possible outcomes. Likewise, for a royal flush in hearts we can choose any of
5 cards, followed by any of 4 cards, etc. for a total of 5! possible outcomes. Hence,
the probability of a royal flush in hearts is

5!
(52)5°

Plroyal flush in hearts] =

But this is just the same as 1/ (552) which is the same as obtained by counting
combinations. In essence, we have reduced the sample space by a factor of 5! but
additionally each event is commensurately reduced by 5!, yielding the same proba-
bility. Equivalently, we have grouped together each set of 5! permutations to yield

a single combination.

3.9 Binomial Probability Law

In Chapter 1 we cited the binomial probability law for the number of heads obtained
for N tosses of a coin. The same law also applies to the problem of drawing balls
from an urn. First, however, we look at a related problem that is of considerable
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practical interest. Specifically, consider an urn consisting of a proportion p of red
balls and the remaining proportion 1 — p of black balls. What is the probability of
drawing k red balls in M drawings without replacement? Note that we can associate
the drawing of a red ball as a “success” and the drawing of a black ball as a “failure”.
Hence, we are equivalently asking for the probability of k& successes out of a possible
M successes. To determine this probability we first assume that the urn contains
N balls, of which Ng are red and Np are black. We sample the urn by drawing M
balls without replacement. To make the balls distinguishable we label the red balls
as 1,2,..., Nk and the black ones as Ng + 1, Ng + 2,..., N. The sample space is

S ={(z1,22,...,2pm) : z; = 1,..., N and no two z;’s are the same}.

We assume that the balls are selected at random so that the outcomes are equally
likely. The total number of outcomes is Ng = (N)y;. Hence, the probability of
obtaining k red balls is

(3.25)

Npg is the number of M-tuples that contain k distinct integers in the range from
1 to Np and M — k distinct integers in the range Np + 1 to N. For example,
if Np, =3, Ng = 4 (and hence N = 7), M = 4, and k = 2, the red balls are
contained in {1,2,3}, the black balls are contained in {4,5,6,7} and we choose 4
balls without replacement. A successful outcome has two red balls and two black
balls. Some successful outcomes are (1,4,2,5), (1,4,5,2), (1,2,4,5), etc. or (2,3,4,6),
(2,4,3,6), (2,6,3,4), etc. Hence, N is the total number of outcomes for which two
of the z;’s are elements of {1,2,3} and two of the z;’s are elements of {4,5,6,7}. To
determine this number of successful M-tuples we

1. Choose the k positions of the M-tuple to place the red balls. (The remaining
positions will be occupied by the black balls.)

2. Place the Ny red balls in the £ positions obtained from step 1.

3. Place the Np black balls in the remaining M — k positions.

Step one is accomplished in (]\,;[ ) ways since any permutation of the chosen positions

produces the same set of positions. Step two is accomplished in (Ng), ways and
step three is accomplished in (Np)p;—x ways. Thus, we have that

Ng = (f) (Nr)k(NB) M—k (3.26)

M!

= W(NR)k(NB)M—k

() ()
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so that finally we have from (3.25)
M (AR (B
e () ()

_ —<A’ZR> <1‘]”VB’“>. (3.27)

This law is called the hypergeometric law and describes the probability of k& successes
when sampling without replacement is used. If sampling with replacement is used,
then the binomial law results. However, instead of repeating the entire derivation
for sampling with replacement, we need only assume that N is large. Then, whether
the balls are replaced or not will not affect the probability. To show that this is
indeed the case, we start with the expression given by (3.26) and note that for N
large and M < N, then (N)j; ~ N™. Similarly, we assume that M < Ng and
M < Np and make similar approximations. As a result we have from (3.25) and
(3.26)

Q

PIF] k)  NM

-G

Letting Nr/N = p and Ng/N = (N — Ngr)/N = 1 —p, we have at last the binomial
law

(M) NENMF

Pl = (3 ) - (3.28)

To summarize, the binomial law not only applies to the drawing of balls from urns
with replacement but also applies to the drawing of balls without replacement if the
number of balls in the urn is large. We next use our results in a quality control
application.

3.10 Real-world Example — Quality Control

A manufacturer of electronic memory chips produces batches of 1000 chips for ship-
ment to computer companies. To determine if the chips meet specifications the
manufacturer initially tests all 1000 chips in each batch. As demand for the chips
grows, however, he realizes that it is impossible to test all the chips and so proposes
that only a subset or sample of the batch be tested. The criterion for acceptance
of the batch is that at least 95% of the sample chips tested meet specifications. If
the criterion is met, then the batch is accepted and shipped. This criterion is based
on past experience of what the computer companies will find acceptable, i.e., if the
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batch “yield” is less than 95% the computer companies will not be happy. The
production manager proposes that a sample of 100 chips from the batch be tested
and if 95 or more are deemed to meet specifications, then the batch is judged to be
acceptable. However, a quality control supervisor argues that even if only 5 of the
sample chips are defective, then it is still quite probable that the batch will have
not have a 95% yield and thus be defective.

The quality control supervisor wishes to convince the production manager that
a defective batch can frequently produce 5 or fewer defective chips in a chip sample
of size 100. He does so by determining the probability that a defective batch will
have a chip sample with 5 or fewer defective chips as follows. He first needs to
assume the proportion of chips in the defective batch that will be good. Since
a good batch has a proportion of good chips of 95%, a defective batch will have
a proportion of good chips of less than 95%. Since he is quite conservative, he
chooses this proportion as exactly p = 0.94, although it may actually be less. Then,
according to the production manager a batch is judged to be acceptable if the sample
produces 95,96,97,98.99, or 100 good chips. The quality control supervisor likens
this problem to the drawing of 100 balls from an “chip urn” containing 1000 balls.
In the urn there are 1000p good balls and 1000(1 — p) bad ones. The probability of
drawing 95 or more good balls from the urn is given approzimately by the binomial
probability law. We have assumed that the true law, which is hypergeometric due
to the use of sampling without replacement, can be approximated by the binomial
law, which assumes sampling with replacement. See Problem 3.48 for the accuracy
of this approximation.

Now the defective batch will be judged as acceptable if there are 95 or more
successes out of a possible 100 draws. The probability of this occurring is

100

Plk > 95] = Z (120> pF(1 = p) 100k

k=95

where p = 0.94. The probability P[k > 95] versus p is plotted in Figure 3.11.
For p = 0.94 we see that the defective batch will be accepted with a probability
of about 0.45 or almost half of the defective batches will be shipped. The quality
control supervisor is indeed correct. The production manager does not believe the
result since it appears to be too high. Using sampling with replacement, which
will produce results in accordance with the binomial law, he performs a computer
simulation (see Problem 3.49). Based on the simulated results he reluctantly accepts
the supervisor’s conclusions. In order to reduce this probability the quality control
supervisor suggests changing the acceptance strategy to one in which the batch
is accepted only if 98 or more of the samples meet the specifications. Now the
probability that the defective batch will be judged as acceptable is

100
Plk > 98] = Z (120) pF(1 — p)l00—k

k=98
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0.9 0.91 0.92 0.93 0.94 0.95

Figure 3.11: Probability of accepting a defective batch versus proportion of good
chips in the defective batch — accept if 5 or fewer bad chips in a sample of 100.

where p = 0.94, the assumed proportion of good chips in the defective batch. This
produces the results shown in Figure 3.12. The acceptance probability for a defective
batch is now reduced to only about 0.05.

There is a price to be paid, however, for only accepting a batch if 98 or more of
the samples are good. Many more good batches will be rejected than if the previous
strategy were used (see Problem 3.50). This is deemed to be a reasonable tradeoff.
Note that the supervisor may well be advised to examine his initial assumption
about p for the defective batch. If for instance, he assumed that a defective batch
could be characterized by p = 0.9, then according to Figure 3.11, the production
manager’s original strategy would produce a probability of less than 0.1 of accepting
a defective batch.

References

Billingsley, P., Probability and Measure, J. Wiley, New York, 1986.

Ross, S., A First Course in Probability, Prentice Hall, Upper Saddle River, NJ,
2002.

Problems

3.1 (.-) (w) The universal set is given by S = {z : —00 < z < oo} (the real line).
IfA={z:2>1} and B = {z: 2 <2}, find the following:
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0.9}
0.8f
0.7
(@]
Nl0.6F
0.4f
0.3f
0.2t

0.1F /

0.9 0.91 0.92 0.93 0.94 0.95

Figure 3.12: Probability of accepting a defective batch versus proportion of good
chips in the defective batch — accept if 2 or fewer bad chips in a sample of 100.

a. A° and B¢
b. AUBand ANB
c. A—Band B— A

3.2 (w) Repeat Problem 3.1 if S = {z : z > 0}.

3.3 (w) A group of voters go to the polling place. Their names and ages are Lisa,
21, John, 42, Ashley, 18, Susan, 64, Phillip, 58, Fred, 48, and Brad, 26. Find
the following sets
a. Voters older than 30
b. Voters younger than 30
c. Male voters older than 30
d. Female voters younger than 30
e. Voters that are male or younger than 30

f. Voters that are female and older than 30
Next find any two sets that partition the universe.

3.4 (w) Given the sets A; = {x: 0 <z < i} fori=1,2,...,N, find UY,A4; and
NN, A;. Are the A;’s disjoint?

3.5 (w) Prove that the sets A ={z: 2z > —1} and B = {z : 22 + 2 > 0} are equal.
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3.6 (t) Prove that if z € AN B°, then z € A — B.

3.7()(w) If S ={1,2,3,4,5,6}, find sets A and B that are disjoint. Next find
sets C and D that partition the universe.

38(w) If S = {(z,y) : 0 <z <land0 <y < 1}, find sets A and B that are
disjoint. Next find sets C' and D that partition the universe.

3.9 (t) In this problem we see how to construct disjoint sets from ones that are not
disjoint so that their unions will be the same. We consider only three sets and
ask the reader to generalize the result. Calling the nondisjoint sets A, B, C
and the union D = AU B U C, we wish to find three disjoint sets Fy, Fs, and
FE3 so that D = E; U Ey U E3. To do so let

E, = A
Es = B-—E
Es = C-— (E1 U Eg)
Using a Venn diagram explain this procedure. If we now have sets A1, As, ..., AN,

explain how to construct N disjoint sets with the same union.

3.10 (--) (f) Replace the set expression AUBUC with one using intersections and
complements. Replace the set expression AN BN C with one using unions and
complements.

3.11 (w) The sets A, B, and C are subsets of S = {(z,y) : 0 <z <land 0<y <
1}. They are defined as

A = {(zy:e<1/20<y<1)

B = {(&,y):e>1/20<y<1}

C = {(z,y):0<z <1,y <1/2}.
Explicitly determine the set AU (BN C)¢ by drawing a picture of it as well as
pictures of all the individual sets. For simplicity you can ignore the edges of

the sets in drawing any diagrams. Can you represent the resultant set using
only unions and complements?

3.12 (.- ) (w) Give the size of each set and also whether it is discrete or continuous.
If the set is infinite, determine if it is countably infinite or not.

a. A = {seven-digit numbers}

b. B={z:2z=1}

c. C={z:0<z<land1/2<z <2}
d. D={(z,y): 2> +y* =1}
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e. E={r:2>+3z+2=0}

f. F = {positive even integers}

3.13 (w) Two dice are tossed and the number of dots on each side that come up
are added together. Determine the sample space, outcomes, impossible event,
three different events including a simple event, and two mutually exclusive
events. Use appropriate set notation.

3.14 (.- ) (w) The temperature in Rhode Island on a given day in August is found
to always be in the range from 30° F to 100° F. Determine the sample space,
outcomes, impossible event, three different events including a simple event,
and two mutually exclusive events. Use appropriate set notation.

3.15 (t) Prove that if the sample space has size N, then the total number of events
(including the impossible event and the certain event) is 2. Hint: There are
(],Z ) ways to choose an event with k£ outcomes from a total of N outcomes.

Also, use the binomial formula

o= 35 (V) ar

k=0
which was proven in Problem 1.1177.

3.16 (w) An urn contains 2 red balls and 3 black balls. The red balls are labeled
with the numbers 1 and 2 and the black balls are labeled as 3, 4, and 5. Three
balls are drawn without replacement. Consider the events that

A = {a majority of the balls drawn are black}
B = {the sum of the numbers of the balls drawn > 10}.

Are these events mutually exclusive? Explain your answer.

3.17 (t) Prove Axiom 3’ by using mathematical induction (see Appendix B) and
Axiom 3.

3.18 (--) (w) A roulette wheel has numbers 1 to 36 equally spaced around its
perimeter. The odd numbers are colored red while the even numbers are
colored black. If a spun ball is equally likely to yield any of the 36 numbers,
what is the probability of a black number, of a red number? What is the
probability of a black number that is greater than 247 What is the probability
of a black number or a number greater than 247

3.19 (--) (c) Use a computer simulation to simulate the tossing of a fair die. Based
on the simulation what is the probability of obtaining an even number? Does
it agree with the theoretical result? Hint: See Section 2.4.
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3.20 (w) A fair die is tossed. What is the probability of obtaining an even number,
an odd number, a number that is even or odd, a number that is even and odd?

3.21 (.-) (w) A dieis tossed that yields an even number with twice the probability
of yielding an odd number. What is the probability of obtaining an even
number, an odd number, a number that is even or odd, a number that is even

and odd?

3.22 (w) If a single letter is selected at random from {A, B, C'}, find the probability
of all events. Recall that the total number of events is 2V, where N is the

number of simple events. Do these probabilities sum to one? If not, why not?
Hint: See Problem 3.15.

3.23 (.») (w) A number is chosen from {1,2,3,...} with probability

Pli] =

P T ILCIEN IS

Find P[i > 4.
3.24 (f) For a sample space S = {0,1,2,...} the probability assignment

Pli] = exp(-2)

is proposed. Is this a valid assignment?

3.25 (.-) (w) Two fair dice are tossed. Find the probability that only one die
comes up a 6.

3.26 (w) A circuit consists of N switches in parallel (see Example 3.6 for N = 2).
The sample space can be summarized as S = {(z1,22,...,2N) : z; = s or {},
where s indicates a success or the switch closes and f indicates a failure or
the switch fails to close. Assuming that all the simple events are equally
likely, what is the probability that a circuit is closed when all the switches are
activated to close? Hint: Consider the complement event.

3.27 (..) (w) Can the series circuit of Figure 3.7 ever outperform the parallel cir-
cuit of Figure 3.6 in terms of having a higher probability of closing when both
switches are activated to close? Assume that switch 1 closes with probability

p, switch 2 closes with probability p, and both switches close with probability
.

3.28 (w) Verify the formula (3.20) for P[E, U Ey U E3] if By, E9, E3 are events that
are not necessarily mutually exclusive. To do so use a Venn diagram.
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3.29 (t) Prove that

P[EIEQ] + P[ElEg] + P[EQEg] > P[ElEQEg]

3.30 (w) A person always arrives at his job between 8:00 AM and 8:20 AM. He is
equally likely to arrive anytime within that period. What is the probability
that he will arrive at 8:10 AM? What is the probability that he will arrive
between 8:05 and 8:10 AM?

3.31 (w) A random number generator produces a number that is equally likely to
be anywhere in the interval (0,1). What are the simple events? Can you use
(3.10) to find the probability that a generated number will be less than 1/27?
Explain.

3.32 (w) If two fair dice are tossed, find the probability that the same number will
be observed on each one. Next, find the probability that different numbers
will be observed.

3.33 (.-) (w) Three fair dice are tossed. Find the probability that 2 of the numbers
will be the same and the third will be different.

3.34 (w,c) An urn contains 4 red balls and 2 black balls. Two balls are chosen at
random and without replacement. What is the probability of obtaining one
red ball and one black ball in any order? Verify your results by enumerating
all possibilities using a computer evaluation.

3.35 (.- ) (f) Rhode Island license plate numbers are of the form GR315 (2 letters
followed by 3 digits). How many different license plates can be issued?

3.36 (f) A baby is to be named using four letters of the alphabet. The letters can
be used as often as desired. How many different names are there? (Of course,
some of the names may not be pronounceable).

3.37 (c) It is difficult to compute N! when N is large. As an approximation, we
can use Stirling’s formula, which says that for large N

N!~ V2rNVH1/2 exp(—N).

Compare Stirling’s approximation to the true value of N! for N =1,2,...,100
using a digital computer. Next try calculating the exact value of N! for N =
200 using a computer. Hint: Try printing out the logarithm of N! and compare
it to the logarithm of its approximation.

3.38 (.- ) (t) Determine the probability that in a class of 23 students two or more
students have birthdays on January 1.
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3.39 (c) Use a computer simulation to verify your result in Problem 3.38.

3.40 (--) (w) A pizza can be ordered with up to four different toppings. Find the
total number of different pizzas (including no toppings) that can be ordered.
Next, if a person wishes to pay for only two toppings, how many two-topping
pizzas can he order?

3.41 (f) How many subsets of size three can be made from {A, B,C, D, E}?

3.42 (w) List all the combinations of two coins that can be chosen from the follow-
ing coins: one penny (p), one nickel (n), one dime (d), one quarter (q). What
are the possible sum-values?

3.43 (f) The binomial theorem states that

=3 (V) ars

k=0

Expand (a + b)3 and (a + b)* into powers of a and b and compare your results
to the formula.

3.44 (.-) (w) A deck of poker cards contains an ace, king, queen, jack, 10, 9, 8,
7, 6, 5,4, 3, 2 in each of the four suits, hearts (h), clubs (c), diamonds (d),
and spades (s), for a total of 52 cards. If 5 cards are chosen at random from
a deck, find the probability of obtaining 4 of a kind, as for example, 8-h, 8-c,
8-d, 8-s, 9-c. Next find the probability of a flush, which occurs when all five
cards have the same suit, as for example, 8-s, queen-s, 2-s, ace-s, 5-s.

3.45 (w) A class consists of 30 students, of which 20 are freshmen and 10 are
sophomores. If 5 students are selected at random, what is the probability that
they will all be sophomores?

3.46 (w) An urn containing an infinite number of balls has a proportion p of red
balls, and the remaining portion 1 — p of black balls. Two balls are chosen at
random. What value of p will yield the highest probability of obtaining one
red ball and one black ball in any order?

3.47 (w) An urn contains an infinite number of coins that are either two-headed or
two-tailed. The proportion of each kind is the same. If we choose M coins at
random, explain why the probability of obtaining k heads is given by (3.28)
with p = 1/2. Also, how does this experiment compare to the tossing of a fair
coin M times?

3.48 (c) Compare the hypergeometric law to the binomial law if N = 1000, M =
100, p = 0.94 by calculating the probability P[k] for £k = 95,96,...,100.
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Hint: To avoid computational difficulties of calculating N! for large N, use
the following strategy to find z = 1000!/900! as an example.

1000 900

y = In(z) = In(1000!) — In(900!) = > "In(i) — Y In(i)
i=1 i=1

and then z = exp(y). Alternatively, for this example you can cancel out the
common factors in the quotient of z and write it as = (1000)199, which is
easier to compute. But in general, this may be more difficult to set up and
program.

3.49 (--) (c) A defective batch of 1000 chips contains 940 good chips and 60 bad

chips. If we choose a sample of 100 chips, find the probability that there will be
95 or more good chips by using a computer simulation. To simpify the problem
assume sampling with replacement for the the computer simulation and the
theoretical probability. Compare your result to the theoretical prediction in
Section 3.10.

3.50 (c) For the real-world problem discussed in Section 3.10 use a computer simu-

lation to determine the probability of rejecting a good batch. To simpify your
code assume sampling with replacement. A good batch is defined as one with
a probability of obtaining a good chip of p = 0.95. The two strategies are to
accept the batch if 95 or more of the 100 samples are good and if 98 or more
of the 100 samples are good. Explain your results. Can you use Figures 3.11
and 3.12 to determine the theoretical probabilities?



Chapter 4

Conditional Probability

4.1 Introduction

In the previous chapter we determined the probabilities for some simple experi-
ments. An example was the die toss that produced a number from one to six “at
random”. Hence, a probability of 1/6 was assigned to each possible outcome. In
many real-world “experiments”, the outcomes are not completely random since we
have some prior knowledge. For instance, knowing that it has rained the previous
two days might influence our assignment of the probability of sunshine for the follow-
ing day. Another example is to determine the probability that an individual chosen
from some general population weighs more than 200 1bs., knowing that his height
exceeds 6 ft. This motivates our interest in how to determine the probability of an
event, given that we have some prior knowledge. For the die tossing experiment
we might inquire as to the probability of obtaining a four, if it is known that the
outcome is an even number. The additional knowledge should undoubtedly change
our probability assignments. For example, if it is known that the outcome is an
even number, then the probability of any odd-numbered outcome must be zero. It
is this interaction between the original probabilities and the probabilities in light of
prior knowledge that we wish to describe and quantify, leading to the concept of a
conditional probability.

4.2 Summary

Section 4.3 motivates and then defines the conditional probability as (4.1). In doing
so the concept of a joint event and its probability are introduced as well as the
marginal probability of (4.3). Conditional probabilities can be greater than, less than
or equal to the ordinary probability as illustrated in Figure 4.2. Also, conditional
probabilities are true probabilities in that they satisfy the basic axioms and so
can be manipulated in the usual ways. Using the law of total probability (4.4) the
probabilities for compound experiments are easily determined. When the conditional

85
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probability is equal to the ordinary probability, the events are said to be statistically
independent. Then, knowledge of the occurrence of one event does not change the
probability of the other event. The condition for two events to be independent is
given by (4.5). Three events are statistically independent if the conditions (4.6)—
(4.9) hold. Bayes theorem is defined by either (4.13) or (4.14). Embodied in the
theorem are the concepts of a prior probability (before the experiment is conducted)
and a posterior probability (after the experiment is conducted). Conclusions may
be drawn based on the outcome of an experiment as to whether certain hypotheses
are true. When an experiment is repeated multiple times and the experiments
are independent, the probability of a joint event is easily found via (4.15). Some
probability laws that result from the independent multiple experiment assumption
are the binomial (4.16), the geometric (4.17), and the multinomial (4.19). For
dependent multiple experiments (4.20) must be used to determine probabilities of
joint events. If, however, the experimental outcomes probabilities only depend on
the previous experimental outcome, then the Markov condition is satisfied. This
results in the simpler formula for determining joint probabilities given by (4.21).
Also, this assumption leads to the concept of a Markov chain, an example of which
is shown in Figure 4.8. Finally, in Section 4.7 an example of the use of Bayes theorem
to detect the presence of a cluster is investigated.

4.3 Joint Events and the Conditional Probability

In formulating a useful theory of conditional probability we are led to consider
two events. Event A is our event of interest while event B represents the event
that embodies our prior knowledge. For the fair die toss example described in the
introduction, the event of interest is A = {4} and the event describing our prior
knowledge is an even outcome or B = {2,4,6}. Note that when we say that the
outcome must be even, we do not elaborate on why this is the case. It may be
because someone has observed the outcome of the experiment and conveyed this
partial information to us. Alternatively, it may be that the experimenter loathes
odd outcomes, and therefore, keeps tossing the die until an even outcome is obtained.
Conditional probability does not address the reasons for the prior information, only
how to accommodate it into a probabilistic framework. Continuing with the fair
die example, a typical sequence of outcomes for a repeated experiment is shown in
Figure 4.1. The odd outcomes are shown as dashed lines and are to be ignored.
From the figure we see that the probability of a 4 is about 9/25 = 0.36, or about
1/3, using a relative frequency interpretation of probability. This has been found
by taking the total number of 4’s and dividing by the total number of 2’s, 4’s, and
6’s. Specifically, we have that

Ny _ 9

N 25
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Figure 4.1: Outcomes for repeated tossing of a fair die.

Another problem might be to determine the probability of A = {1,4}, knowing that
the outcome is even. In this case, we should use Nonp/Np to make sure we only
count the outcomes that can occur in light of our knowledge of B. If an outcome is
not in B, then that outcome will not be included in A N B and will not be counted
in Nonp. Now letting S = {1,2,3,4,5,6} be the sample space and Ng its size, the
probability of A given B is

Nanp _ "2 P[ANB]
Ny e P[B]

This is termed the conditional probability and is denoted by P[A|B] so that we have

as our definition
P[AN B]

P[B]
Note that to determine it, we require P[A N B] which is the probability of both A
and B occurring or the probability of the intersection. Intuitively, the conditional
probability is the proportion of time A and B occurs divided by the proportion of
time that B occurs. The event B = {2,4,6} comprises a new sample space and is
sometimes called the reduced sample space. The denominator term in (4.1) serves to
normalize the conditional probabilities so that the probability of the reduced sample
space is one (set A = B in (4.1)). Returning to the die toss, the probability of a 4,
given that the outcome is even, is found as

PlA|B] = (4.1)

ANB = {44n{2,4,6} ={d} =4
B = {2,4,6)
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Wi W Ws Wa W P[H]]
100-130  130-160 160-190 190-220 220-250
H, 5-54" | 0.08 0.04 0.02 0 0 0.14
Hy 547-5'8" | 0.06 0.12 0.06 0.02 0 0.26
Hs 58"-6" |0 0.06 0.14 0.06 0 0.26
Hy 6647 |0 0.02 0.06 0.10 0.04 0.22
Hs 6476’8 | 0 0 0 0.08 0.04 0.12

Table 4.1: Joint probabilities for heights and weights of college students.

and therefore

PIANB] _ PA]

PAIBL = —pm1 = Pla)
_ 1/6 _ 1
SO

as expected. Note that P[A N B] and P[B] are computed based on the original
sample space, S.

The event AN B is usually called the joint event since both events must occur
for a nonempty intersection. Likewise, P[A N B] is termed the joint probability, but
of course, it is nothing more than the probability of an intersection. Also, P[A]
is called the marginal probability to distinguish it from the joint and conditional
probabilities. The reason for this terminology will be discussed shortly.

In defining the conditional probability of (4.1) it is assumed that P[B] # 0. Oth-
erwise, theoretically and practically, the definition would not make sense. Another
example follows.

Example 4.20 - Heights and weights of college students

A population of college students have heights H and weights W which are grouped
into ranges as shown in Table 4.1. The table gives the joint probability of a student
having a given height and weight, which can be denoted as P[H;NW;]. For example,
if a student is selected, the probability of his/her height being between 5’4” and 5’8”
and also his/her weight being between 130 lbs. and 160 1bs. is 0.12. Now consider the
event that the student has a weight in the range 130-160 lbs. Calling this event A
we next determine its probability. Since A = {(H,W) : H = Hy,...,Hs; W = Wa},
it is explicitly

A = {(H1,W2), (H2, Ws), (H3, W2), (H4, Ws), (Hs5, W2)}

and since the simple events are by definition mutually exclusive, we have by Axiom
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3’ (see Section 3.4)

5
PIA] = Y P[(H;,W2)] = 0.04 + 0.12 + 0.06 + 0.02 + 0
=1
24.

.

e

Next we determine the probability that a student’s weight is in the range of 130-160
Ibs., given that the student has height less than 6’. The event of interest A is the
same as before. The conditioning event is B = {(H,W) : H = Hy,Hy, H3; W =
Wi, ..., W5} so that AN B = {(Hl, Ws), (Ha, W), (Hs, WQ)} and

P[ANB] 0.04+0.12+0.06
P[B]  0.14+0.26 + 0.26
= 0.33.

P[AB] =

We see that is it more probable that the student has weight between 130 and 160
lbs. if it is known beforehand that his/her height is less than 6’. Note that in finding

P[B] we have used
3 5

PIB] =) Pl(H;,W)) (4.2)
i=1 j=1
which is determined by first summing along each row to produce the entries shown
in Table 4.1 as P[H;]. These are given by

5

P[H;] = P[(H;,W;)] (4.3)
j=1

and then summing the P[H;|’s for i = 1,2,3. Hence, we could have written (4.2)

equivalently as
3

P[B] =) P[H,].
i=1
The probabilities P[H;] are called the marginal probabilities since they are written
in the margin of the table. If we were to sum along the columns, then we would
obtain the marginal probabilities for the weights or P[W;]. These are given by

5

PlW;] = ZP[(HiaWj)]-

It is important to observe that by utilizing the information that the student’s
height is less than 6’, the probability of the event has changed, in this case, it has
increased from 0.24 to 0.33. It is also possible that the opposite may occur. If we
were to determine the probability that the student’s weight is in the range 130-160
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Ibs., given that he/she has a height greater than 6’, then defining the conditioning
event as B = {(H,W) : H= Hy,Hs;W = Wy,..., W5} and noting that AN B =
{(H4, Wg), (H5, WQ} we have
0.02+0
PIAIBL = o
= 0.058.

Hence, the conditional probability has now decreased with respect to the uncondi-
tional probability or P[A].

¢
In general we may have
P[A|B] > P[A]
P[A|B] < P[A]
P[A|B] = P[A].

3/4 N B \\. \\
1/2 \\\§_ 1/2 B 1/2 — B

1 1 1

(a) (b) ()
2/3 = P[A|B] > P[A]=1/2  1/3=P[A|B]< P[A]=1/2 1/2 = P[A|B] = P[4] =1/2

Figure 4.2: Illustration of possible relationships of conditional probability to ordi-
nary probability.

it states that the probability of an event A is the same whether or not we know that
B has occurred. In this case, the event A is said to be statistically independent of
the event B. In the next section, we will explore this further.

Before proceeding, we wish to emphasize that a conditional probability is a true
probability in that it satisfies the axioms described in Chapter 3. As a result, all the
rules that allow one to manipulate probabilities also apply to conditional probabili-
ties. For example, since Property 3.1 must hold, it follows that P[A¢|B] = 1—P[A|B]
(see also Problem 4.10). To prove that the axioms are satisfied for conditional prob-
abilities we first assume that the axioms hold for ordinary probabilities. Then,
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Axiom 1
P[AN B]

PAIB) = =5

>0

since P[JAN B] > 0 and P[B] > 0.

Axiom 2
P[S N Bj B P[B]

PISIBI==p5r = i)

=1.

Axiom 3 If A and C are mutually exclusive events, then

P[(AUC) N B]

P[AUC|B] = PIB] (definition)
_ P[(AnB)U(CnNB)] N
= PIB] (distributive property)
_ P[AnB]+ P[CNB] (Axiom 3 for ordinary probability,
B P[B] ANnC=0= (ANnB)N(CNB)=0)
= PJA|B] + P[C|B] (definition of conditional probability).

Conditional probabilities are useful in that they allow us to simplify probability
calculations. One particularly important relationship based on conditional proba-
bility is described next. Consider a partitioning of the sample space S. Recall that
a partition is defined as a group of sets B, Bs,..., By such that § = UZ-]LBi and
B; N Bj =0 for i # j. Then we can rewrite the probability P[A] as

P[A] = P[ANS] =P [AN (UL, B))].
But by a slight extension of the distributive property of sets, we can express this as
P[A] = P[(ANB;) U(ANBy) U---U (AN By)].

Since the B;’s are mutually exclusive, then so are the A N B;’s, and therefore
N
P[A]=> P[ANB|]
i=1

or finally

PA =Y PIAIBIPIB). (4.4)

This relationship is called the law of total probability. Its utility is illustrated next.
Example 4.21 - A compound experiment

Two urns contain different proportions of red and black balls. Urn 1 has a pro-
portion py of red balls and a proportion 1 — p; of black balls whereas urn 2 has
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proportions of py and 1 — py of red balls and black balls, respectively. A compound
experiment is performed in which an urn is chosen at random, followed by the se-
lection of a ball. We would like to find the probability that a red ball is selected.
To do so we use (4.4) with A = {red ball selected}, B; = {urn 1 chosen}, and
By = {urn 2 chosen}. Then

Plred ball selected] = P[red ball selected|urn 1 chosen]P[urn 1 chosen]
+P[red ball selected|urn 2 chosen]P[urn 2 chosen]

= Pl% +p2% = %(Pl + p2).

A Do B; and B; really partition the sample space?

To verify that the application of the law of total probability is indeed valid for this

problem, we need to show that By U By = S and B; N By = (. In our description
of By and By we refer to the choice of an urn. In actuality, this is shorthand for all
the balls in the urn. If urn 1 contains balls numbered 1 to Ny, then by choosing urn
1 we are really saying that the event is that one of the balls numbered 1 to N; is
chosen and similarly for urn 2 being chosen. Hence, since the sample space consists
of all the numbered balls in urns 1 and 2, it is observed that the union of B; and
B5 is the set of all possible outcomes or the sample space. Also, By and By are
mutually exclusive since we choose urn 1 or urn 2 but not both.

Example 4.22 - Probability of error in a digital communication system

Some more examples follow.

In a digital communication system a “0” or “1” is transmitted to a receiver. Typi-
cally, either bit is equally likely to occur so that a prior probability of 1/2 is assumed.
At the receiver a decoding error can be made due to channel noise, a 0 may be mis-
taken for a 1 and vice-versa. Defining the probability of decoding a 1 when a 0
is transmitted as € and a 0 when a 1 is transmitted also as e, we are interested in
the overall probability of an error. A probabilistic model summarizing the relevant
features is shown in Figure 4.3. Note that the problem at hand is essentially the
same as the previous one. If urn 1 is chosen, then we transmit a 0 and if urn 2
is chosen, we transmit a 1. The effect of the channel is to introduce an error so
that even if we know which bit was transmitted, we do not know the received bit.
This is analogous to not knowing which ball was choosen from the given urn. The
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0 L=
Choose €

Oorl €
1 > 1
P[0] = P[1]=1/2 1—¢€
transmit receive

Figure 4.3: Probabilistic model of a digital communication system.

probability of error is from (4.4)

Plerror] = Plerror|0 transmitted] P[0 transmitted]
+Plerror|l transmitted]P[1 transmitted]

_ .1 1 _
= €5 T €5 =€

¢
Conditional probabilities can be quite tricky, in that they sometimes produce coun-
terintuitive results. A famous instance of this is the Monty Hall or Let’s Make a
Deal problem.
Example 4.23 - Monty Hall problem
About 30 years ago there was a television game show called “Let’s Make a Deal”.
The game show host, Monty Hall, would present the contestant with three closed
doors. Behind one door was a new car, while the others concealed less desireable
prizes, for instance, farm animals. The contestant would first have the opportunity
to choose a door, but it would not be opened. Monty would then choose one of the
remaining doors and open it. Since he would have knowledge of which door led to
the car, he would always choose a door to reveal one of the farm animals. Hence,
if the contestant had chosen one of the farm animals, Monty would then choose the
door that concealed the other farm animal. If the contestant had chosen the door
behind which was the car, then Monty would choose one of the other doors, both
concealing farm animals, at random. At this point in the game, the contestant was
faced with two closed doors, one of which led to the car and the other to a farm
animal. The contestant was given the option of either opening the door she had
originally chosen or deciding to open the other door. What should she do? The
answer, surprisingly, is that by choosing to switch doors she has a probability of 2/3
of winning the car! If she stays with her original choice, then the probability is only
1/3. Most people would say that irregardless of which strategy she decided upon,
her probability of winning the car is 1/2.
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Table 4.2: Joint probabilities (P[C;, M;] = P[M;|C;]P[C;]) for contestant’s initial
and Monty’s choice of doors. Winning door is 1.

To see how these probabilities are determined first assume she stays with her
original choice. Then, since the car is equally likely to be placed behind any of
the three doors, the probability of her winning the car is 1/3. Monty’s choice of
a door is irrelevant since her final choice is always the same as her initial choice.
However, if as a result of Monty’s action a different door is selected by the contes-
tant, then the probability of winning becomes a conditional probability. We now
compute this by assuming that the car is behind door one. Define the events C; =
{contestant initially chooses door i} for i = 1,2,3 and M; = {Monty opens door j}
for j = 1,2,3. Next we determine the joint probabilities P[C;, M;] by using

P[C;, M| = P[M;|C;|P[C;].

Since the winning door is never chosen by Monty, we have P[M;|C;] = 0. Also,
Monty never opens the door initially chosen by the contestant so that P[M;|C;] = 0.
Then, it is easily verified that

P[M,|C5] = P[M;5|Cy] =1 (contestant chooses losing door)
1

P[M;|Ci] = P[My|Cy] = 5 (contestant chooses winning door)
and P[C;] = 1/3. The joint probabilities are summarized in Table 4.2. Since
the contestant always switches doors, the winning events are (2,3) (the contestant
initially chooses door 2 and Monty chooses door 3) and (3,2) (the contestant initially
chooses door 3 and Monty chooses door 2). As shown in Table 4.2 (the entries with
asterisks), the total probability is 2/3. This may be verified directly using

Plfinal choice is door 1] = P[Mj3|Cs|P[Cs] + P[M2|C3]P[Cs]
= P[CQ, Mg] + P[Cg, MQ].

Alternatively, the only way she can lose is if she initially chooses door one since she
always switches doors. This has a probability of 1/3 and hence her probability of
winning is 2/3. In effect, Monty, by eliminating a door, has improved her odds!

¢
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4.4 Statistically Independents Events

Two events A and B are said to be statistically independent (or sometimes just

independent) if P[A|B] = P[A]. If this is true, then

P[AN B]
P[B]

which results in the condition for statistical independence of

P[AN B] = P[A|P[B]. (4.5)

P[A|B] = = P[A]

An example is shown in Figure 4.2c. There, the probability of A is unchanged if we
know that the outcome is contained in the event B. Note, however, that once we
know that B has occurred, the outcome could not have been in the uncross-hatched
region of A but must be in the cross-hatched region. Knowing that B has occurred
does in fact affect the possible outcomes. However, it is the ratio of P[A N B] to
P[B] that remains the same.

Example 4.24 - Statistical independence does not mean one event does
not affect another event

If a fair die is tossed, the probability of a 2 or a 3 is P[A = {2,3}] = 1/3. Now
assume we know that the outcome is an even number or B = {2,4,6}. Recomputing
the probability

_ PlAnB] _ P[{2}]
PIABL = “pEr = Bl 6]
_ %:PM}

Hence, A and B are independent. Yet, knowledge of B occurring has affected the
possible outcomes. In particular, the event A N B = {2} has half as many elements
as A, but the reduced sample space 8’ = B also has half as many elements.

&
The condition for the event A to be independent of the event B is P[AN B] =
P[A]P[B]. Hence, we need only know the marginal probabilities or P[A], P[B] to
determine the joint probability P[A N B]. In practice, this property turns out to be
very useful. Finally, it is important to observe that statistical independence has a
symmetry property, as we might expect. If A is independent of B, then B must be
independent of A since

P[BlA] = ﬂ%%ﬂ. (definition)
= PlANB] (commutative property)
P[A]
_ P[A]P[B] -
= A (A is independent of B)
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and therefore B is independent of A. Henceforth, we can say that the events A and
B are statistically independent of each other, without further elaboration.

A Statistically independent events are different than mutually ex-
clusive events

If A and B are mutually exclusive and B occurs, then A cannot occur. Thus,
P[A|B] = 0. If A and B are statistically independent and B occurs, then P[A|B] =
P[A]. Clearly, the probabilities P[A|B] are only the same if P[A] = 0. In general
then, the conditions of mutually exclusivity and independence must be different
since they lead to different values of P[A|B]. A specific example of events that
are both mutually exclusive and statistically independent is shown in Figure 4.4.
Finally, the two conditions produce different relationships, namely

B\ 11

Figure 4.4: Events that are mutually exclusive (since A N B = () and independent
(since P[AB] =0 and P[A]P[B] =0-P[B] =0).

P[AUB] = P[A]l+ P[B] mutually exclusive events
P[ANB] = P[A]|P[B] statistically independent events.

See also Figure 4.2¢ for statistically independent but not mutually exclusive events.
Can you think of a case of mutually exclusive but not independent events?

Consider now the extension of the idea of statistical independence to three events.
Three events are defined to be independent if the knowledge that any one or two
of the events has occurred does not affect the probability of the third event. For
example, one condition is that P[A|B N C] = P[A]. We will use the shorthand
notation P[A|B,C] to indicate that this is the probability of A given that B and
C has occurred. Note that if B and C has occurred, then by definition BC' has
occurred. The full set of conditions is

P[A|B] = P[A|C] = P[A|B,C] = P|A]
P[B|A] = P[B|C]= P[B|A,C]= P[B]
P[C|A] = P[C|B] = P[C|A, B] = P[C).
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These conditions are satisfied if and only if

P[AB] = P[A]P|B] (4.6)
P[AC] = PJAP[C] (4.7)
P[BC] = P[B|P[C] (4.8)
P[ABC] = P[AP|B|P|C). (4.9)

If the first three conditions (4.6)-(4.8) are satisfied, then the events are said to be
pairwise independent. They are not enough, however, to ensure independence. The
last condition (4.9) is also required since without it we could not assert that

P[A|B,C] = P[A|BC] (definition of B and C occurring)
P[AB
= % (definition of conditional probability)
P[ABC]
= (from (4.8))
P[B]P[C]
P[A]P[B]P[C]
= - (from (4.9))
P[B]P[C]
= P[4]
and similarly for the other conditions (see also Problem 4.20 for an example). In
general, events E1, Fs, ..., Ey are defined to be statistically independent if
P[E;E;] = PI[E;|P|E,] LF ]
P|E,E,E, = P|E|P[E;|P[E] it Ak
P[E\E,---Ey] = P[E||P[BEs] - P[Ey].

Although statistically independent events allow us to compute joint probabilities
based on only the marginal probabilities, we can still determine joint probabilities
without this property. Of course, it becomes much more difficult. Consider three
events as an example. Then, the joint probability is

P[ABC| = P[A|B,C|P[BC]
= P[A|B,C]P[B|C]P|[C]. (4.10)

This relationship is called the probability chain rule. One is required to determine
conditional probabilities, not always an easy matter. A simple example follows.
Example 4.25 - Tossing a fair die - once again
If we toss a fair die, then it is clear that the probability of the outcome being 4 is
1/6. We can, however, rederive this result by using (4.10). Letting

A = {even number} = {2,4,6}

B = {numbers > 2} ={3,4,5,6}

C = {numbers < 5} = {1,2,3,4}
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we have that ABC = {4}. These events can be shown to be dependent (see Problem
4.21). Now making use of (4.10) and noting that BC' = {3,4} it follows that

P[ABC] = P[A|B,C]P|B|C]P[C]

(a7) (578) (&) =&

4.5 Bayes Theorem

The definition of conditional probability leads to a famous and sometimes contro-
versial formula for computing conditional probabilities. Recalling the definition, we
have that

P[A|B] = % (4.11)
and PIAB
P[B|A] = ]L[A]] (4.12)
Upon substitution of P[AB] from (4.11) into (4.12)
pioya = P a

This is called Bayes theorem. By knowing the marginal probabilities P[A], P[B]
and the conditional probability P[A|B], we can determine the other conditional
probability P[B|A]. The theorem allows us to perform “inference” or to assess
(with some probability) the validity of an event when some other event has been
observed. For example, if an urn containing an unknown composition of balls is
sampled with replacement and produces an outcome of 10 red balls, what are we to
make of this? One might conclude that the urn contains only red balls. Yet, another
individual might claim that the urn is a “fair” one, containing half red balls and
half black balls, and attribute the outcome to luck. To test the latter conjecture we
now determine the probability of a fair urn given that 10 red balls have just been
drawn. The reader should note that we are essentially going “backwards” — usually
we compute the probability of choosing 10 red balls given a fair urn. Now we are
given the outcomes and wish to determine the probability of a fair urn. In doing so
we believe that the urn is fair with probability 0.9. This is due to our past experience
with our purchases from urn.com. In effect, we assume that the prior probability of
B = {fair urn} is P[B] = 0.9. If A = {10 red balls drawn}, we wish to determine
P[B|A], which is the probability of the urn being fair after the experiment has been
performed or the posterior probability. This probability is our reassessment of the
fair urn in light of the new evidence (10 red balls drawn). Let’s compute P[B|A]
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which according to (4.13) requires knowledge of the prior probability P[B] and the
conditional probability P[A|B]. The former was assumed to be 0.9 and the latter is
the probability of drawing 10 successive red balls from an urn with p = 1/2. From
our previous work this is given by the binomial law as

PIAIB] = Plk=10]= (f) Ph(1_ )Mk

10\ /(1" /1\* /1"
- ()G 6)-6)
We still need to find P[A]. But this is easily found using the law of total probability
as

P[A] = P[A|B]|P[B]+ P[A|B‘|P[B“]
P[A|B)P|B] + P[A|B*|(1 - P[B))
and thus only P[A|B¢] need to be determined (and which is not equal to 1 — P[A|B]
as is shown in Problem 4.9). This is the conditional probability of drawing 10 red

balls from a unfair urn. For simplicity we will assume that an unfair urn has all red
balls and thus P[A|B¢] = 1. Now we have that

10
PlA] = (%) (0.9) + (1)(0.1)

and using this in (4.13) yields
10
(z) (09

10 =
(3) (0.9 + (1)(0.1)
The posterior probability (after 10 red balls have been drawn) that the urn is fair
is only 0.0087. Our conclusion would be to reject the assumption of a fair urn.

Another way to quantify the result is to compare the posterior probability of the
unfair urn to the probability of the fair urn by the ratio of the latter to the former.

This is called the odds ratio and it is interpreted as the odds against the hypothesis
of a fair urn. In this case it is

P[B|A] =

P[B|A] 1 - 0.0087
dds = =
Y= PBIA] T 0.0087

It is seen from this example that based on observed “data”, prior beliefs embodied
in P[B] = 0.9 can be modified to yield posterior beliefs or P[B|A] = 0.0087. This
is an important concept in statistical inference [Press 2003].

In the previous example, we used the law of total probability to determine the
posterior probability. More generally, if a set of B;’s partition the sample space,
then Bayes theorem can be expressed as

P[By|A] = f[A|B’“]P[B’“] k=1,2,...,N. (4.14)
2.i=1 PIA|Bi|P[Bi]

= 113.
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The denominator in (4.14) serves to normalize the posterior probability so that the
conditional probabilities sum to one or

N

> PB4l = 1.

k=1

In many problems one is interested in determining whether an observed event
or effect is the result of some cause. Again the backwards or inferential reasoning is
implicit. Bayes theorem can be used to quantify this connection as illustrated next.

Example 4.26 - Medical diagnosis
It is known that 0.001% of the general population has a certain type of cancer. A
patient visits a doctor complaining of symptoms that might indicate the presence
of this cancer. The doctor performs a blood test that will confirm the cancer with
a probability of 0.99 if the patient does indeed have cancer. However, the test also
produces false positives or says a person has cancer when he does not. This occurs
with a probability of 0.2. If the test comes back positive, what is the probability
that the person has cancer?

To solve this problem we let B = {person has cancer}, the causitive event, and
A = {test is positive}, the effect of that event. Then, the desired probability is

P[A|B]P[B]
P[A|B]P[B] + P[A|B<|P[B]

(0.99)(0.00001)
(0.99)(0.00001) + (0.2)(0.99999)

P[B|A]

=4.95 % 107°.

The prior probability of the person having cancer is P[B] = 1075 while the posterior
probability of the person having cancer (after the test is performed and found to
be positive) is P[B]A] = 4.95 x 10~°. With these results the doctor might be hard
pressed to order additional tests. This is quite surprising, and is due to the prior
probability assumed, which is quite small and therefore tends to nullify the test
results. If we had assumed that P[B] = 0.5, for indeed the doctor is seeing a patient
who is complaining of symptoms consistent with cancer and not some person chosen
at random from the general population, then

(0.99)(0.5)

PIBlA] = (0.99)(0.5) + (0.2)(0.5)

= 0.83

which seems more reasonable (see also Problem 4.23). The controversy surrounding
the use of Bayes theorem in probability calculations can almost always be traced
back to the prior probability assumption. Bayes theorem is mathematically correct
— only its application is sometimes in doubt!

¢



4.6. MULTIPLE EXPERIMENTS 101

4.6 Multiple Experiments

4.6.1 Independent Subexperiments

An experiment that was discussed in Chapter 1 was the repeated tossing of a coin.
We can alternatively view this experiment as a succession of subezperiments, with
each subexperiment being a single toss of the coin. It is of interest to investigate the
relationship between the probabilities defined on the experiment and those defined
on the subexperiments. To be more concrete assume a coin is tossed twice in suc-
cession and we wish to determine the probability of the event A = {(H,T)}. Recall
that the notation (H,T) denotes an ordered 2-tuple and represents a head on toss 1
and a tail on toss 2. For a fair coin it was determined to be 1/4 since we assumed
that all 4 possible outcomes were equally likely. This seemed like a reasonable as-
sumption. However, if the coin had a probability of heads of 0.99, we might not
have been so quick to agree with the equally likely assumption. How then are we
to determine the probabilities? Let’s first consider the experiment to be composed
of two separate subexperiments with each subexperiment having a sample space
S!' = {H,T}. The sample space of the overall experiment is obtained by forming
the cartesian product, which for this example is defined as

S = S'xs!
= {(i,j):ieSjes"}
= {(HvH)v(HvT)v(TvH)v(TvT)}'

It is formed by taking an outcome from S' for the first element of the 2-tuple and an
outcome from S* for the second element of the 2-tuple and doing this for all possible
outcomes. It would be exceedingly useful if we could determine probabilities for
events defined on S from those probabilities for events defined on S'. In this way
the determination of probabilities of very complicated events could be simplified.
Such is the case if we assume that the subexperiments are independent. Continuing
on, we next calculate P[A] = P[(H,T)] for a coin with an arbitrary probability of
heads p. This event is defined on the sample space of 2-tuples, which is S. We can,
however, express it as an intersection

{(H,T)} = {(# H),(H,T)}n{(HT),(T,T)}
{heads on toss 1} N {tails on toss 2}
= HiNT.

We would expect the events H; and T5 to be independent of each other. Whether a,
head or tail appears on the first toss should not affect the probability of the outcome
of the second toss and vice-versa. Hence, we will let P[(H,T)] = P[H;|P[T5] in
accordance with the definition of statistically independent events. We can determine
P[H,] either as P[{(H, H), (H,T)}], which is defined on S or equivalently due to the
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independence assumption as P[{H}], which is defined on S!. Note that P[{H}] is
the marginal probability and is equal to P[{H, H}| + P[{H,T}|. But the latter was
specified to be p and therefore we have that

P[Hi] = p
Pl = 1-p

and finally,
P[(H,T)] = p(1 —p).

For a fair coin we recover the previous value of 1/4, but not otherwise.

Experiments that are composed of subexperiments whose probabilities of the
outcomes do not depend on the outcomes of any of the other subexperiments are
defined to be independent subexperiments. Their utility is to allow calculation of joint
probabilities from marginal probabilities. More generally, if we have M independent
subexperiments, with A; an event described for experiment %, then the joint event
A=A NAyN---N Ay has probability

P[A] = P[4]P[As] - P[Ay). (4.15)

Apart from the differences in sample spaces upon which the probabilities are defined,
independence of subexperiments is equivalent to statistical independence of events
defined on the same sample space.

4.6.2 Bernoulli Sequence

The single tossing of a coin with probability p of heads is an example of a Bernoulli
trial. Consecutive independent Bernoulli trials comprise a Bernoulli sequence. More
generally, any sequence of M independent subexperiments with each subexperiment
producing two possible outcomes is called a Bernoulli sequence. Typically, the
subexperiment outcomes are labeled as 0 and 1 with the probability of a 1 being p.
Hence, for a Bernoulli trial P[0] = 1—p and P[1] = p. Several important probability
laws are based on this model.

Binomial Probability Law

Assume that M independent Bernoulli trials are carried out. We wish to determine
the probability of k& 1’s (or successes). Each outcome is an M-tuple and a successful
outcome would consist of £ 1’s and M — k£ 0’s in any order. Thus, each successful
outcome has a probability of p*(1—p)™~* due to independence. The total number of
successful outcomes is the number of ways k 1’s may be placed in the M-tuple. This

is known from combinatorics to be (]\,;‘[ ) (see Section 3.877). Hence, by summing

up the probabilities of the successful simple events, which are mutually exclusive,
we have

Plk] = (f) PFPL—pMFt  k=01,...,M (4.16)
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which we immediately recognize as the binomial probability law. We have previously
encountered the same law when we chose at random M balls from an urn with
replacement and desired the probability of obtaining &k red balls. The proportion of
red balls was p. In that case, each subexperiment was the choosing of a ball and all
the subexperiments were independent of each other. The binomial probabilities are
shown in Figure 4.5 for various values of p.

0.35 ; ; ‘ ; 0.35
0.3} 1 0.3
0.25f : 0.25
= 0.2f 1 = 02
A A
0.15f 1 0.15
0.1} : 0.1
0.05f 1 0.05
L] 1. L]
0 2 4 6 8 10 0 4 6 8
k k
(a) M =10,p=10.5 (b) M =10, p=0.7

Figure 4.5: The binomial probability law for different values of p.

Geometric Probability Law

Another important aspect of a Bernoulli sequence is the appearance of the first
success. If we let k£ be the Bernoulli trial for which the first success is observed, then
the event of interest is the simple event (ff,...,fs), which is a k-tuple with the first
k — 1 elements all f’s. The probability of the first success at trial & is

Pkl=1-p)*1p k=12,... (4.17)

where 0 < p < 1. This is called the geometric probability law. The geometric
probabilities are shown in Figure 4.6 for various values of p. It is interesting to note
that the first success is always most likely to occur on the first trial or for k = 1.
This is true even for small values of p, which is somewhat counterintuitive. However,
upon further reflection, for the first success to occur on trial £ = 1 we must have
a success on trial 1 and the outcomes of the remaining trials are arbitrary. For a
success on trial £ = 2, for example, we must have a failure on trial 1 followed by a
success on trial 2, with the remaining outcomes arbitrary. This additional constraint
reduces the probability. It will be seen later, though, that the average number of
trials required for a success is 1/p, which is more in line with our intuition. An

10
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k k
(a) p=0.25 (b)p=10.5

Figure 4.6: The geometric probability law for different values of p.

example of its use follows.
Example 4.27 - Telephone calling

A fax machine dials a phone number which is typically busy 80% of the time.
The machine dials it every 5 minutes until the line is clear and the fax is able to
be transmitted. What is the probability that the fax machine will have to dial the
number 9 times? The number of times the line is busy can be considered the number
of failures with each failure having a probability of 1 — p = 0.8. If the number is
dialed 9 times, then the first success occurs for £ = 9 and

P[9] = (0.8)%(0.2) = 0.0336.

&

A useful property of the geometric probability law is that it is memoryless. Assume
it is known that no successes occurred in the first m trials. Then, the probability of
the first success at trial m+1[ is the same as if we had started the Bernoulli sequence
experiment over again and determined the probability of the first success at trial [
(see Problem 4.34).

4.6.3 Multinomial Probability Law

Consider an extension to the Bernoulli sequence in which the trials are still inde-
pendent but the outcomes for each trial may take on more than two values. For
example, let S' = {1,2,3} and denote the probabilities of the outcomes 1,2, and 3
by p1, p2, and p3, respectively. As usual, the assignment of these probabilities must
satisfy Z?lez- = 1. Also, let the number of trials be M = 6 so that a possible
outcome might be (2,1,3,1,2,2), and its probability is pap1psp1p2pe = p3p3ps. The
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multinomial probability law specifies the probability of obtaining k1 1’s, k2 2’s, and
ks 3’s, where ki + ko + k3 = M = 6. In the current example, k1 = 2, ks = 3, and
ks = 1. Successful outcomes are (2,1,3,1,2,2), (1,2,3,1,2,2), (1,2,1,2,2,3), etc.,
with each outcome having a probability of p%p%p%,. The total number of successful
outcomes will be the total number of distinct 6-tuples that can be made with the
numbers 1,1,2,2,2.3. If the numbers to be used were all different, then the total
number of 6-tuples would be 6! or all permutations. However, since they are not,
some of these permutations will be the same. For example, we can arrange the 2’s
3! ways and still have the same 6-tuple. Likewise, the 1’s can be arranged 2! ways

without changing the 6-tuple. As a result, the total number of distinct 6-tuples is

6!
213111

(4.18)

which is called the multinomial coefficient. (See also Problem 4.36 for another way
to derive this.) It is sometimes denoted by

6
2,3,1)"

Finally, for our example the probability of the sequence exhibiting two 1’s, three

2’s, and one 3 is
6! 5 3
mpﬂbpiz-
This can be generalized to the case of M trials with N possible outcomes for each

trial. The probability of ki 1’s, kg 2’s,..., ky N's is

M

Plky,ko,... kn] = (/ﬁ .

kN>p]f1p§2---pI]c\,N ki +k+---+kn=M
(4.19)
and where sz\; p; = 1. This is termed the multinomial probability law. Note that if

N = 2, then it reduces to the binomial law (see Problem 4.37). An example follows.

Example 4.28 - A version of scrabble

A person chooses 9 letters at random from the English alphabet with replacement.
What is the probability that she will be able to make the word “committee”? Here
we have that the outcome on each trial is one of 26 letters. To be able to make the
word she needs k. = 1,k. = 2,k; = 1,k,, = 2,k, = 1,k = 2, and Ekyther = 0. We
have denoted the outcomes as c,e,i,m,o0,t, and “other”. *“Other” represents the
remaining 20 letters so that N = 7. Thus, the probability is from (4.19)

P[kc:]-ake:27ki:17km:27k0217kt:27kother:0]:

9 1\? /20\°
1,2,1,2,1,2,0 /] \ 26 26
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since pe = pe = Pi = Pm = Po = Pt = 1/26 and pother = 20/26 due to the assumption
of “at random” sampling and with replacement. This becomes

P[kczl,ke:2,ki:1,km:2,k021,kt:2,k0ther:0] =

9! 1)?
() —835x 107"
112112111210! (26) 83510

4.6.4 Nonindependent Subexperiments

When the subexperiments are independent, the calculation of probabilities can be
greatly simplified. An event that can be written as A = Ay N AN ---N Ay can be
found via

P[A] = P[A1]P[As] - - P[An]

where each P[A4;] can be found by considering only the individual subexperiment.
The assumption of independence can sometimes be unreasonable. Then, the prob-
ability would be found by using the chain rule (see (4.10) for M = 3)

P[A] = P[An|Ani1, ..., A)P[Api—1|Anr_a, ..., Ar] -+ P[As|A1]P[A1].  (4.20)

Such would be the case if a Bernoulli sequence were composed of nonindependent
trials as illustrated next.

Example 4.29 - Dependent Bernoulli trials

Assume that we have two coins. One is fair and the other is weighted to have
a probability of heads of p # 1/2. We begin the experiment by first choosing at
random one of the two coins and then tossing it. If it comes up heads, we choose
the fair coin to use on the next trial. If it comes up tails, we choose the weighted
coin to use on the next trial. We repeat this procedure for all the succeeding trials.
One possible sequence of outcomes is shown in Figure 4.7a for the weighted coin
having p = 1/4. Also shown is the case when p = 1/2 or a fair coin is always used,
so that we are equally likely to observe a head or a tail on each trial. Note that in
the case of p = 1/4 (see Figure 4.7a), if the outcome is a tail on any trial, then we
use the weighted coin for the next trial. Since the weighted coin is biased towards
producing a tail, we would expect to again see a tail, and so on. This accounts for
the long run of tails observed. Clearly, the trials are not independent.

¢

If we think some more about the previous experiment, we realize that the depen-
dency between trials is due only to the outcome of the (i — 1)t trial affecting the
outcome of the ith trial. In fact, once the coin has been chosen, the probabilities
for the next trial are either P[0] = P[1] = 1/2 if a head occurred on the pre-
vious trial or P[0] = 3/4,P[1] = 1/4 if the previous trial produced a tail. The
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(a) M =100, p =0.25 (b) M =100, p=0.5

Figure 4.7: Dependent Bernoulli sequence for different values of p.
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Figure 4.8: Markov state diagram.

previous outcome is called the state of the sequence. This behavior may be sum-
marized by the state probability diagram shown in Figure 4.8. The probabilities
shown are actually conditional probabilities. For example, 3/4 is the probability
P[tail on ith toss|tail on 4 — 15 toss] = P[0]0], and similarly for the others. This
type of Bernoulli sequence, in which the probabilities for trial ¢ depend only on the
outcome of the previous trial, is called a Markov sequence. Mathematically, the
probability of the event A; on the ith trial given all the previous outcomes can be
written as

PA;|A; 1, Ai o,...,A1] = P[A;]A; 4]
Using this in (4.20) produces

P[A] = P[Arm|Ap—1)P[Ap—1|Ap—2] - - - P[Ag| A1) P[A4]. (4.21)
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The conditional probabilities P[A;|A;_1] are called the state transition probabilities,
and along with the initial probability P[A;], the probability of any joint event can
be determined. For example, we might wish to determine the probability of N = 10
tails in succession or of the event A = {(0,0,0,0,0,0,0,0,0,0)}. If the weighted
coin was actually fair, then P[A] = (1/2)!° = 0.000976, but if p = 1/4, we have by
letting A; = {0} for i =1,2,...,10 in (4.21)

10
PlA] = (H P[AAAi_l]) PlAL].
i=2
But P[A;|A;_1] = P[0]|0] = P[tails|weighted coin] = 3/4 for i = 2,3,...,10. Since
we initially choose one of the coins at random, we have

P[A,] = PJ0] = PJtail|weighted coin]P[weighted coin]
+ P[tail[fair coin]P[fair coin]

- OE-O-

PlA] = (ﬁ %) (g) — 0.0469

1=2

Thus, we have that

or about 48 times more probable than if the weighted coin were actually fair. Note
that we could also represent the process by using a trellis diagram as shown in Figure
4.9. The probability of any sequence is found by tracing the sequence values through

3/4 3/4
outcome 0 /

5/8
choose coin __

and toss
3/8
outcome 1
1 /2 2 1/2 3 i (toss number)

Figure 4.9: Trellis diagram.

the trellis and multiplying the probabilities for each branch together, along with the
initial probability. Referring to Figure 4.9 the sequence 1,0,0 has a probability of
(3/8)(1/2)(3/4). The foregoing example is a simple case of a Markov chain. We will
study this modeling in much more detail in Chapter 77.
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4.7 Real-world Example — Cluster Recognition

In many areas an important problem is the detection of a “cluster.” Epidemiology
is concerned with the incidence of a greater than expected number of disease cases
in a given geographic area. If such a situation is found to exist, then it may indicate
a problem with the local water supply, as an example. Police departments may
wish to focus their resources on areas of a city which exhibit an unusually high
incidence of crime. Portions of a remotely sensed image may exhibit an increased
number of noise bursts. This could be due to a group of sensors that are driven
by a faulty power source. In all these examples, we wish to determine if a cluster
of events has occurred. By cluster, we mean that more occurrences of an event
are observed than would normally be expected. An example could be a geographic
area which is divided into a grid of 50 x 50 cells as shown in Figure 4.10. It is

50 N N ]

45 )

40

35

30 o

25 |

20 -

15 -

Figure 4.10: Geographic area with incidents shown as black squares - no cluster
present.

seen that an event or “hit”, which is denoted by a black square, occurs rather
infrequently. In this example, it occurs 29/2500=1.16% of the time. Now consider
Figure 4.11. We see that the shaded area appears to exhibit more hits than the
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Figure 4.11: Geographic area with incidents shown as black squares - possible cluster
present.

expected 145 x 0.0116 = 1.68 number. One might be inclined to call this shaded
area a cluster. But how probable is this cluster? And how can we make a decision
to either accept the hypothesis that this area is a cluster or to reject it. To arrive
at a decision we use a Bayesian approach. It computes the odds ratio against the
occurrence of a cluster (or in favor of no cluster) which is defined as

P[no cluster|observed datal

dds = .
oA Plcluster|observed datal

If this number is large, typically much greater than one, we would be inclined to
reject the hypothesis of a cluster, and otherwise, to accept it. We can use Bayes the-
orem to evaluate the odds ratio by letting B = {cluster} and A = {observed data}.
Then,

_ P[B°|A] _ P[A|B|P[B]

~ P[B|A]  PIA|BIP[B]

Note that P[A] is not needed since it cancel outs in the ratio. To evaluate this we
need to determine P[B], P[A|B¢], P[A|B]. The first probability P[B] is the prior

odds



4.7. REAL-WORLD EXAMPLE - CLUSTER RECOGNITION 111

probability of a cluster. Since we believe a cluster is quite unlikely, we assign a
probability of 10° to this. Next we need P[A|B¢] or the probability of the observed
data if there is no cluster. Since each cell can take on only one of two values,
either a hit or no hit, and if we assume that the outcomes of the various cells are
independent of each other, we can model the data as a Bernoulli sequence. For this
problem, we might be tempted to call it a Bernoulli array but the determination
of the probabilities will of course proceed as usual. If M cells are contained in the
supposed cluster area (shown as shaded in Figure 4.11 with M = 145), then the
probability of & hits is given by the binomial law

Pl = () -t

Next must assign values to p under the hypothesis of a cluster present and no
cluster present. From Figure 4.10 in which we did not suspect a cluster, the relative
frequency of hits was about 0.0116 so that we assume p,. = 0.01 when there is
no cluster. When we believe a cluster is present, we assume that p. = 0.1 in
accordance with the relative frequency of hits in the shaded area of Figure 4.11,
which is 11/145=0.07. Thus,

M
P[A|B] = PJobserved data|no cluster| = ( i >pflc(1 — )M F

145

= P[k = 11|no cluster] = ( 1

) (0.01)'1(0.99)"3*

M
P[A|B] = P|observed datalcluster] = < k >p’c“(1 —pe)MF

14
= P[k = 11|cluster] = ( 115> (0.1)*(0.9)13

which results in an odds ratio of

B (0.01)!1(0.99)134(1 — 1079) B
odds = (0.1)11(0.9) % (10 6 = 3.52.

Since the posterior probability of no cluster is 3.52 times larger than the posterior
probability of a cluster, we would reject the hypothesis of a cluster present. However,
the odds against a cluster being present are not overwhelming. In fact, the computer
simulation used to generate Figures 4.11 employed p = 0.01 for the unshaded region
and p = 0.1 for the shaded cluster region. The reader should be aware that it is
mainly the influence of the small prior probability of a cluster, P[B] = 10~°, that
has resulted in the greater than unity odds ratio and a decision to reject the cluster
present hypothesis.
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Problems

4.1 (f) If B C A, what is P[A|B]? Explain your answer.

4.2 (o) (f) A point z is chosen at random within the interval (0,1). If it is known
that = > 1/2, what is the probability that z > 7/87?

4.3 (w) A coin is tossed three times with each 3-tuple outcome being equally likely.
Find the probability of obtaining (H,T, H) if it is known that the outcome
has 2 heads. Do this by 1) using the idea of a reduced sample space and 2)
using the definition of conditional probability.

4.4 (w) Two dice are tossed. Each 2-tuple outcome is equally likely. Find the
probability that the number that comes up on die 1 is the same as the number
that comes up on die 2 if it is known that the sum of these numbers is even.

4.5 (=) (f) An urn contains 3 red balls and 2 black balls. If two balls are chosen
without replacement, find the probability that the second ball is black if it is
known that the first ball chosen is black.

4.6 (f) A coin is tossed 11 times in succession. Each 11-tuple outcome is equally
likely to occur. If the first 10 tosses produced all heads, what is the probability
that the 11*" toss will also be a head?

4.7 (o) (w) Using Table 4.1, determine the probability that a college student will
have a weight greater than 190 lbs. if he/she has a height exceeding 5'8”. Next,
find the probability that a student’s weight will exceed 190 lbs.

4.8 (w) Using Table 4.1, find the probability that a student has weight less than
160 lbs. if he/she has height greater than 5’4”. Also, find the probability that
a student’s weight is less than 160 Ibs. if he/she has height less than 54”. Are
these two results related?

4.9 (t) Show that the statement P[A|B]+ P[A|B¢] =1 is false. Use Figure 4.2a to
provide a counterexample.

4.10 (t) Prove that for the events A, B,C, which are not necessarily mutually ex-
clusive,

P[AU B|C] = P[A|C] + P[B|C] — P|AB|C).
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4.11 (.- ) (w) A group of 20 patients afflicted with a disease agree to be part of a
clinical drug trial. The group is divided up into two groups of 10 subjects each,
with one group given the drug and the other group given sugar water, i.e., this
is the control group. The drug is 80% effective in curing the disease. If one
is not given the drug, there is still a 20% chance of a cure due to remission.
What is the probability that a randomly selected subject will be cured?

4.12 (w) A new bus runs on Sunday, Tuesday, Thursday, and Saturday while an
older bus runs on the other days. The new bus has a probability of being on
time of 2/3 while the older bus has only a probability of 1/3. If a passenger
chooses an arbitrary day of the week to ride the bus, what is the probability
that the bus will be on time?

4.13 (w) A digital communication system transmits one of the three values —1,0, 1.
A channel adds noise to cause the decoder to sometimes make an error. The
error rates are 12.5% if a —1 is transmitted, 75% if a 0 is transmitted, and
12.5% if a 1 is transmitted. If the probabilities for the various symbols being
transmitted are P[—1] = P[1] = 1/4 and P[0] = 1/2, find the probability of
error. Repeat the problem if P[—1] = P[0] = P[1] and explain your results.

4.14 (.- ) (w) A sample space is given by § = {(z,y) : 0 < 2 < 1,0 <y < 1}.
Determine P[A|B] for the events

A = {(z,y):y<22,0<zr<1/2and y <2—-2z,1/2<z <1}
B = {(z,y):1/2<z<1,0<y<1}.
Are A and B independent?
4.15 (w) A sample space is given by § = {(z,y) : 0 <z < 1,0 <y < 1}. Are the
events

A = {(z,y):y<a}
B = {(z,y):y<1—-ux}

independent? Repeat if B = {(z,y) : © < 1/4}.

4.16 (t) Give an example of two events that are mutually exclusive but not inde-
pendent. Hint: See Figure 4.4.

4.17 (t) Consider the sample space S = {(z,y,2) : 0 <z <1,0<y<1,0<2z<
1}, which is the unit cube. Can you find three sets that are independent?
Hint: See Figure 4.2c.

4.18 (t) Show that if (4.9) is satisfied for all possible events, then pairwise inde-
pendence follows. In this case all events are independent.
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4.19 (o> ) (f) It is known that if it rains, there is a 50% chance that a sewer will
overflow. Also, if the sewer overflows, then there is a 30% chance that the road
will flood. If there is a 20% chance that it will rain, what is the probability
that the road will flood?

4.20 (w) Consider the sample space S = {1,2,3,4}. Each simple event is equally
likely. If A = {1,2}, B = {1,3},C = {1,4}, are these events pairwise indepen-
dent? Are they independent?

4.21 (.- ) (w) In Example 4.6 determine if the events are pairwise independent.
Are they independent?

4.22 (--) (w) An urn contains 4 red balls and 2 black balls. Two balls are chosen
in succession without replacement. If it is known that the first ball drawn is
black, what are the odds in favor of a red ball being chosen on the second
draw?

4.23 (w) In Example 4.7 plot the probability that the person has cancer given that
the test results are positive, i.e., the posterior probability, as a function of the
prior probability P[B]. How is the posterior probability that the person has
cancer related to the prior probability?

4.24 (w) An experiment consists of two subexperiments. First a number is chosen
at random from the interval (0,1). Then, a second number is chosen at random
from the same interval. Determine the sample space S? for the overall exper-
iment. Next consider the event A = {(z,y) : 1/4 <z <1/2,1/2 <y < 3/4}
and find P[A]. Relate P[A] to the probabilities defined on S' = {u: 0 < u <
1}, where S! is the sample space for each subexperiment.

4.25 (w,c) A fair coin is tossed 10 times. What is the probability of a run of exactly
5 heads in a row? Do not count runs of 6 or more heads in a row. Now verify
your solution using a computer simulation.

4.26 (o) (w) A lady claims that she can tell whether a cup of tea containing
milk had the tea poured first or the milk poured first. To test her claim an
experiment is set up whereby at random the milk or tea is added first to an
empty cup. This experiment is repeated 10 times. If she correctly identifies
which liquid was poured first 8 times out of 10, how likely is it that she is
guessing? See [Salsburg 2001] for a further discussion of this famous problem.

4.27 (f) The probability P[k] is given by the binomial law. If M = 10, for what
value of p is P[3] maximum? Explain your answer.

4.28 (--) (f) A sequence of independent subexperiments is conducted. Each subex-
periment has the outcomes “success”, “failure”, or “don’t know”. If P[success] =
1/2 and Plfailure] = 1/4, what is the probability of 3 successes in 5 trials?



PROBLEMS 115

4.29 (c¢) Verify your results in Problem 4.28 by using a computer simulation.

4.30 (w) A drunk wanders aimlessly along a path by going forward one step with
probability 1/2 and going backward one step with probability 1/2. After 10
steps what is the probability that he has moved 2 steps forward?

4.31 (f) Prove that the geometric probability law (4.17) is a valid probability as-
signment.

4.32 (w) For a sequence of independent Bernoulli trials find the probability of the
first failure at the kth trial for £k =1,2,....

4.33 (.- ) (w) For a sequence of independent Bernoulli trials find the probability
of the second success occurring at the kth trial.

4.34 (t) Consider a sequence of independent Bernoulli trials. If it is known that
the first m trials resulted in failures, prove that the probability of the first
success occurring at m + [ is given by the geometric law with k£ replaced by
[. In other words, the probability is the same as if we had started the process
over again after the mth failure. There is no memory of the first m failures.

4.35 (f) An urn contains red, black, and white balls. The proportion of red is 0.4,
the proportion of black is 0.4, and the proportion of white is 0.2. If 5 balls
are drawn with replacement, what is the probability of 2 red, 2 black, and 1
white in any order?

4.36 (t) We derive the multinomial coefficient for N = 3. This will yield the number
of ways that an M-tuple can be formed using k1 1’s, ko 2’s and k3 3’s. To do
so choose kq places in the M-tuple for the 1’s. There will be M — k; positions
remaining. Of these positions choose k; places for the 2’s. Fill in the remaining
ks = M — k1 — ko positions using the 3’s. Using this result, determine the
number of different M digit sequences with k; 1’s, ke 2’s, and k3 3’s.

4.37 (t) Show that the multinomial probability law reduces to the binomial law for
N =2.

4.38 (--) (w,c) An urn contains 3 red balls, 3 black balls, and 3 white balls. If
6 balls are chosen with replacement, how many of each color is most likely?
Hint: You will need a computer to evaluate the probabilities.

4.39 (w,c) For the problem discussed in Example 4.10 change the probability of
heads for the weighted coin from p = 0.25 to p = 0.1. Redraw the Markov
state diagram. Next, using a computer simulation generate a sequence of
length 100. Explain your results.

4.40 () (f) For the Markov state diagram shown in Figure 4.8 with an initial
state probability of P[0] = 3/4, find the probability of the sequence 0,1,1,0.
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4.41 (f) A two-state Markov chain (see Figure 4.8) has the state transition probabil-
ities P[0|0] = 1/4, P[0|1] = 3/4 and the initial state probability of P[0] = 1/2.
What is the probability of the sequence 0,1,0,1,07

4.42 (w) A digital communication system model is shown in Figure 4.12. It consists
of two sections with each one modeling a different portion of the communi-
cation channel. What is the probability of a bit error? Compare this to the
probability of error for the single section model shown in Figure 4.3, assuming
that e < 1/2, which is true in practice. Note that Figure 4.12 is a trellis.

0
Choose

Oorl

P[0] = P[1] = 1/2

Figure 4.12: Probabilistic model of a digital communication system with two sec-
tions.

4.43 (.-) (f) For the trellis shown in Figure 4.9 find the probability of the event
A =1{(0,1,0,0), (0,0,0,0)}.



Chapter 5

Discrete Random Variables

5.1 Introduction

Having been introduced to the basic probabilistic concepts in Chapters 3 and 4,
we now begin their application to solving problems of interest. To do so we define
the random variable. It will be seen to be a function, also called a mapping, of the
outcomes of a random experiment to the set of real numbers. With this association
we are able to use the real number description to quantify items of interest. In
this chapter we describe the discrete random variable, which is one that takes on
a finite or countably infinite number of values. Later we will extend the definition
to a random variable that takes on a continuum of values, the continuous random
variable. The mathematics associated with a discrete random variable are inherently
simpler and so conceptualization is facilitated by first concentrating on the discrete
problem. The reader has already been introduced to the concept of a random
variable in Chapter 2 in an informal way and hence may wish to review the computer
simulation methodology described therein.

5.2 Summary

The random variable, which is a mapping from the sample space into the set of
real numbers, is formally discussed and illustrated in Section 5.3. In Section 5.4
the probability of a random variable taking on its possible values is given by (5.2).
Next the probability mass function is defined by (5.3). Some important probability
mass functions are summarized in Section 5.5. They include the Bernoulli (5.5), the
binomial (5.6), the geometric (5.7), and the Poisson (5.8). The binomial probability
mass function can be approximated by the Poisson as shown in Figure 5.8 if M — oo
and p — 0, with Mp remaining constant. This motivates the use of the Poisson
probability mass function for traffic modeling. If a random variable is transformed
to a new one via a mapping, then the new random variable has a probability mass
function given by (5.9). Next the cumulative distribution function is introduced and

117
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is given by (5.10). It can be used as an equivalent description for the probability
of a discrete random variable. Its properties are summarized in Section 5.8. The
computer simulation of discrete random variable is revisited in Section 5.9 with the
estimate of the probability mass function and the cumulative distribution function
given by (5.14) and (5.15),(5.16), respectively. Finally, the application of the Poisson
probability model to determining the resources required to service customers is
described in Section 5.10.

5.3 Definition of Discrete Random Variable

We have previously used a coin toss and a die toss as examples of a random ex-
periment. In the case of a die toss the outcomes comprised the sample space
S =1{1,2,3,4,5,6}. This was because each face of a die has a dot pattern con-
sisting of 1, 2, 3, 4, 5, or 6 dots. A natural description of the outcome of a die toss
is therefore the number of dots observed on the face that appears upward. In effect,
we have mapped the dot pattern into the number of dots in describing the outcome.
This type of experiment is called a numerically-valued random phenomenon since the
basic output is a real number. In the case of a coin toss the outcomes comprise the
nonnumerical sample space S = {head,tail}. We have, however, at times replaced
the sample space by one consisting only of real numbers such as Sx = {0,1}, where
a head is mapped into a 1 and a tail is mapped into a 0. This mapping is shown
in Figure 5.1. For many applications this is a convenient mapping. For example, in

7

S

Figure 5.1: Mapping of the outcome of a coin toss into set of real numbers.

a succession of M coin tosses, we might be interested in the total number of heads
observed. With the defined mapping of

N 0 S1 = tail
X(si) = { 1 Sy =head
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we could represent the number of heads as Zf\il X(s;), where s; is the outcome of
the ith toss. The function that maps S into Sx and which is denoted by X(-) is
called a random variable. It is a function that takes each outcome of S (which may
not necessarily be a set of numbers) and maps it into the subset of the set of real
numbers. Note that as previously mentioned in Chapter 2, a capital letter X will
denote the random variable and a lower case letter x its value. This convention for
the coin toss example produces the assignment

X(SZ'):J?i i:1,2

where 81 = tail and thus z; = 0, and S» = head and thus zo = 1. The name
random variable is a poor one in that the function X (-) is not random but a known
one and usually one of our own choosing. What is random is the input argument s;
and hence the output of the function is random. However, due to its long-standing
usage in probability we will retain this terminology.

Sometimes it is more convenient to use a particular random variable for a given
experiment. For example, in Chapter 2 we described a digital communication system
called a PSK system. A bit is communicated using the transmitted signals

s(t) = —Acos2nFyt for a0
- Acos2nFyt for al.

Usually a 1 or a 0 occurs with equal probability so that the choice of a bit can be
modeled as the outcome of a fair coin tossing experiment. If a head is observed, then
a 1 is transmitted and a 0 otherwise. As a result, we could represent the transmitted
signal with the model

si(t) = X (8;) A cos 2w Fyt

where s; = tail and s» = head and hence we have the defined random variable

-1 s =tail
Xlsi) = { +1 sy = head.

This random variable is a convenient one for this application.

In general, a random wvariable is a function that maps the sample space S into a
subset of the real line. The real line will be denoted by R (R = {—o00 < z < oo}). For
a discrete random variable this subset is a finite or countably infinite set of points.
The subset forms a new sample space which we will denote by Sx, and which is
illustrated in Figure 5.2. A discrete random variable may also map multiple elements
of the sample space into the same number as illustrated in Figure 5.3. An example
would be a die toss experiment in which we were only interested in whether the
outcome is even or odd. To quantify this outcome we could define

0 ifs; =1,3,5 dots
X( ")_{ 1 ifs;=2,4,6 dots.
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X (s3)
. S3 09—
S X (s2)
. ’_\wl’ )
° \ g ® >
Z2 T3
Sl.___
/ SX:{xl,:L‘Q,:L‘g,,...}

S = {51,52,53, .. }

Figure 5.2: Discrete random variable as a one-to-one mapping of a countably infinite
sample space into set of real numbers.

X
s (s3)
[ ]
S5 X(s2)
[ ] xl .
Y L 4 >
T2
. X (81)
Sl.___

/ SX:{xl’xQ’x?n'"}

S = {81,82,83, .. }

Figure 5.3: Discrete random variable as a many-to-one mapping of a countably
infinite sample space into set of real numbers.

This type of mapping is usually called a many-to-one mapping while the previous
one is called a one-to-one mapping. Note that for a many-to-one mapping we cannot
recover the outcome of S if we know the value of X (s). But as already explained,
this is of little concern since we initially defined the random variable to output the
item of interest. Lastly, for numerically-valued random experiments in which s is
contained in R, we can still use the random variable approach if we define X (s) = s
for all s. This allows the concept of a random variable to be used for all random
experiments, with either numerical or nonnumerical outputs.

5.4 Probability of Discrete Random Variables

We would next like to determine the probabilities of the random variable taking on
its possible values. In other words what is the probability P[X(s;) = z;] for each
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z; € Sx. Since the sample space S is discrete, the random variable can take on at
most a countably infinite number of values or X(s;) = z; for i = 1,2,.... It should
be clear that if X (-) maps each s; into a different x; (or X(-) is one-to-one), then
because s; and z; are just two different names for the same event

PIX(s) = zi] = P[{si : X(s8i) = @i}] = P[{si}] (5.1)

or we assign a probability to the random variable equal to that of the simple event
in S that yields that value. If, however, there are multiple outcomes in § that map
into the same value x; (or X(-) is many-to-one) then

PX(s) =z] = Pl{s;: X(s5) = i}]
= > Plsil (5.2)

{5:X(8j)=m:}

since the s;’s are simple events in S and therefore mutually exclusive. It is said
that the events {X = xz;}, defined on Sx, and {s; : X(s;) = #;}, defined on S,
are equivalent events. As such they are assigned the same probability. Note that
the probability assignment (5.2) subsumes that of (5.1) and that in either case we
can summarize the probabilities that the random variable takes on by defining the
probability mass function (PMF) as

px[zi] = P[X(s) = z;] (5.3)

and use (5.2) to evaluate it from a knowledge of the mapping. It is important to
observe that in the notation px[z;] the subscript X refers to the random variable and
also the [-] notation is meant to remind the reader that the argument is a discrete
one. Later, we will use () for continuous arguments. In summary, the probability
mass function is the probability that the random variable X takes on the value z;
for each possible z;. An example follows.

Example 5.30 - Coin toss - one-to-one mapping

The experiment consists of a single coin toss with a probability of heads equal to
p. The sample space is S = {head,tail} and we define the random variable as

(0 s = tail
X(s:) = { 1 s; = head.

The PMF is therefore from from (5.3) and (5.1)

pxl0] = PIX(s)=0] =
pxll] = P[X(s)=1
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Example 5.31 - Die toss - many-to-one mapping

The experiment consists of a single fair die toss. With a sample space of § =
{1,2,3,4,5,6} and an interest only in whether the outcome is even or odd we define

the random variable
0 ifi=1,3,5
X(si) _{ 1 ifi=2,4,6.

Thus, using (5.3) and (5.2) we have the PMF

) = PX)=0= 3 Pls)=;
7=2,4,6

¢
The use of (5.2) may seem familiar and indeed it should. We have summed the
probabilities of simple events in S to obtain the probability of an event in S using
(3.10)?7. Here, the event is just the subset of S for which X(s) = x; holds. The
introduction of a random variable has quantified the events of interest!
Finally, because PMFs px|[z;] are just new names for the probabilities P[X(s) =
x;] they must satisfy the usual properties:

Property 5.6 - Range of values

0 <pxlz] <1

O
Property 5.7 - Sum of values
M
pr [z;] =1 if Sx consists of M outcomes
i=1
oo
pr [x;] = 1 if Sx is countably infinite.
i=1
[l

We will frequently omit the s argument of X to write px[z;] = P[X = z].

Once the PMF has been specified all subsequent probability calculations can be
based on it, without referring back to the original sample space S. Specifically, for
an event A defined on Sx the probability is given by

PXeAl= Y pxlzi (5.4)
{i:z;€A}
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An example follows.
Example 5.32 - Calculating probabilities based on the PMF

Consider a die whose sides have been labeled with two sides having 1 dot, two
sides having 2 dots, and two sides having 3 dots. Hence, S = {s1,89,...,86} =
1 dot, 1 dot, 2 dots, 2 dots, 3 dots, 3 dots}. Then if we are interested in the prob-
abilities of the outcomes displaying either 1,2, or 3 dots, we would define a random
variable as

1 i=1,2
X(s)={ 2 i=3,4
3 i=5,6.

It easily follows then that the PMF is from (5.2)

WMZMMZWMZé

Now assume we are interested in the probability that a 2 or 3 occurs or A = {2, 3}.
Then from (5.4) we have

2

PIX € {2,3}] = px[2] +px[3] = 5.

There is no need to reconsider the original sample space S and all probability cal-
culations of interest are obtainable from the PMF.

¢

5.5 Important Probability Mass Functions

We have already encountered many of these in Chapter 4. We now summarize these
in our new notation. Since the sample spaces Sx consist of integer values we will
replace the notation z; by k, which indicates an integer.

5.5.1 Bernoulli

pﬂmz{;‘ijg (5.5)

The PMF is shown in Figure 5.4 and is recognized as a sequence of numbers which is
nonzero only for the indices k = 0, 1. It is convenient to represent the Bernoulli PMF
using the shorthand notation Ber(p). With this notation we replace the description
that “X is distributed according to a Bernoulli random variable with PMF Ber(p)”
by the shorthand notation X ~ Ber(p), where ~ means “is distributed according
to.”



124 CHAPTER 5. DISCRETE RANDOM VARIABLES

0.9f
08}
07}
=06}
Zos|
0.4}
03}
0.2}
0.1}

k

Figure 5.4: Bernoulli probability mass function for p = 0.25.

5.5.2 Binomial

pxlk] = <]I\f>pk(l—p)M_k k=0,1,..., M. (5.6)

The PMF is shown in Figure 5.5. The shorthand notation for the binomial PMF is

0.35
0.3r
0.25F

0.2r

0.15f
0.1t
0.05¢
. ! S

Figure 5.5: Binomial probability mass function for M = 10,p = 0.25.

=
=
=)

2

bin(M, p). The peak of the PMF can be shown to be given by [(M + 1)p], where [z]
denotes the largest integer less than or equal to = (see Problem 5.7).
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5.5.3 Geometric

pxlbl =1 -p'p  k=12,.... (5.7)
The PMF is shown in Figure 5.6. The shorthand notation for the geometric PMF

0.6
05F
0.4
=3
>
0.3}
0.2
0.1f I :
. l L1 1
0 1 2 3 4 2; 6 7 8 9 10

Figure 5.6: Geometric probability mass function for M = 10,p = 0.25.
is geom(p).

5.5.4 Poisson

k
k!
where A > 0. The PMF is shown in Figure 5.7 for several values of A. Note that
the maximum occurs at [A] (see Problem 5.11). The shorthand notation is Pois(A).

px|k] = exp(—A) kE=0,1,2,... (5.8)

5.6 Approximation of the Binomial PMF by the Pois-
son PMF

The binomial and Poisson PMFs are related to each other under certain condi-
tions. This relationship helps to explain why the Poisson PMF is used in various
applications, primarily traffic modeling as described further in Section 5.10. The re-
lationship is as follows. If in a binomial PMF, we let M — oo as p — 0 such that the
product A = Mp remains constant, then bin(M,p) — Pois(A). Note that A = Mp
represents the expected or average number of successes in M Bernoulli trials (see
also Chapter 6 for definition of expectation). Hence, by keeping the average num-
ber of successes fixed but assuming more and more trials with smaller and smaller
probabilities of success on each trial, we are led to a Poisson PMF. As an example,
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05 ‘ ‘ ‘ ‘ 05
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Figure 5.7: The Poisson probability mass function for different values of .

a comparison is shown in Figure 5.8 for M = 10,p = 0.5 and M = 100,p = 0.05.
This result is primarily useful since Poisson PMF's are easier to manipulate and also

03 ‘ ‘ 0.3
0.25} . : 0.25}
1
= 02f vl R = 0.2f ‘
% 1 g 1<— binomial % 02 .
[ I | [ ||
2,0.15f . ,0.15}
'[' l«— Poisson I
T LI 1 | [ I I I | |
01r rhfr e 0.17 O O [ TR ‘
| I I I O ] Py pnpn
0.05f L LA L L ] l - 0.05¢ e p 1 ]I . 1
Py pppnhn (O T L I L I 1 O (]
0 IIIIIIIIIIIT’--- O.TIIIIIIIIIIrl’ln--
0 5 10 15 0 5 10 15
k
(a) M =10,p=0.5 (b) M =100,p = 0.05

Figure 5.8: The Poisson approximation to the binomial probability mass function.

arise in the modeling of point processes as described in Chapter 77.

To make this connection we have for the binomial PMF with p = A\/M — 0 as
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M — oo (and X fixed)

pxlk] = (f) p*(1—p)M*

- W—L%m(%)k(“%)w

(M), A* (1= A/

kU MF (1 —X/M)*
N (M) (1= x/M)M
k' MF (1= X/M)F
But for a fixed k, as M — oo, we have that (M),/M* — 1. Also, for a fixed k,
(1 — A/M)* — 1 so that we need only find the limit of g(M) = (1 — A/M)M as
M — oo. This is shown in Problem 5.15 to be exp(—A) and therefore

)\k
px[k] — ﬁexp(—k).
Also, since the binomial PMF is defined for £ = 0,1,..., M, as M — oo the limiting
PMF is defined for £k = 0,1,.... This result can also be found using characteristic

functions as shown in Chapter 6.

5.7 Transformation of Discrete Random Variables

It is frequently of interest to be able to determine the PMF of a transformed random
variable. Mathematically, we desire the PMF of the new random variable Y = g(X),
where X is a discrete random variable. For example, consider a die whose faces are
labeled with the numbers 0,0,1,1,2,2. We wish to find the PMF of the number
observed when the die is tossed, assuming all sides are equally likely to occur. If
the original sample space is composed of the possible cube sides that can occur, so
that Sx = {1,2,3,4,5,6}, then the transformation appears as shown in Figure 5.9.
Specifically, we have that

y1=0 ife=x1=1orx=x9=2
Y=¢ y=1 ifz=x3=30orx=x4=4
ys=2 ifx=x5=>5o0rx=ux5=56.

Note that the transformation is many-to-one. Since sets such as {y : y = y; = 0}
and {z : * = z; = 1, = zy = 2}, for example, are equivalent, they should be
assigned the same probability. Thus, using the property that the events {X = z;}
are simple events defined on Sy, we have that

px[l]+px[2] =3 i=1
pyly) =< pxBl+pxdl=1% i=
px[5] +px[6] =3 i=3.
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\

Seoa”r N -

1772 3774 56
Sx = cube sides Sy = numbers on sides

Figure 5.9: Transformation of discrete random variable.

In general, we have that

pylyl= > pxlzl. (5.9)

{7:9(z5)=y:}

We just sum up the probabilities for all the values of X = z; that are mapped
into Y = y;. This is reminescent of (5.2) in which the transformation was from
the objects s; defined on § to the numbers x; defined on Sx. In fact, it is nearly
identical except that we have replaced the objects that are to be transformed by
numbers, i.e., the x;’s. Some examples of this procedure follow.

Example 5.33 - One-to-one transformation of Bernoulli random variable
If X ~ Ber(p) and Y = 2X — 1, determine the PMF of Y. The sample space for X
is Sx = {0,1} and consequently that for Y is Sy = {—1,1}. It follows that z; = 0

maps into y; = —1 and z9 = 1 maps into yo = 1. As a result, we have from (5.9)
py[=1] = px[0]=1-p
py[l] = px[l]=p.

Note that this mapping is particularly simple since it is one-to-one. A slightly more
complicated example is next.

¢

Example 5.34 - Many-to-one transformation
Let the transformation be Y = g(X) = X? which is defined on the sample spaces
Sx = {-1,0,1} so that Sy = {0,1}. Clearly, g(z;) = m? = 0 only for z; = 0.
Hence,

py (0] = px[0].

1 for ; = —1 and z; = 1. Thus, using (5.9) we have
py[ll = Y pxlay)

{zja3=1}

= px[-1] +px[l].

2 _

However, g(z;) = z;
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Note that we have determined py|y;] by summing the probabilities of all the z;’s
that map into y; via the transformation y = g(x). This is in essence the meaning of
(5.9).

¢

Example 5.35 - Many-to-one transformation of Poisson random variable
Now consider X ~ Pois(\) and define the transformation ¥ = ¢g(X) as

v — 1 if X =k iseven
1 =1 if X =k is odd.

To find the PMF for Y we use
_ _ .| P[Xiseven] k=1
py[F] =PIV =k = { P[X isodd] k=—L
We need only determine py[1] since py[—1] = 1 — py[1]. Thus, from (5.9)

o0

py(l] = > pxli]

7=0 and even
00 .
bV

7=0 and even

To evaluate the infinite sum in closed form we use the following “trick”

= by I AN 1 (N
- = = - + = 3
Z ! ! Z !
j=0 and even J: 2 j=0 J: 2 j=0 J:
= S exp(N) + 5 exp(—N)
= 3 exp 5 exp

since the Taylor expansion of exp(z) is known to be Z]ﬁo 27 /4! (see Problem 5.22).
Finally, we have that

py[l] = exp(=2A) %exp()\)—l—%exp(—)\) :%(l—i-exp(—Q)\))
py[-1] = l—py[l]Z%(l—exp(—ZA)).

5.8 Cumulative Distribution Function

An alternative means of summarizing the probabilities of a discrete random variable
is the cumulative distribution function (CDF). It is sometimes referred to more
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succinctly as the distribution function. The CDF for a random variable X and
evaluated at z is given by P[{real numbers 2’ : ' < z], which is the probability
that X lies in the semi-infinite interval (—oo, z]. It is therefore defined as

Fx(z)=P[X <z] —o0o<z< o0. (5.10)

It is important to observe that the value X = z is included in the interval. As an
example, if X ~ Ber(p), then the PMF and the corresponding CDF are shown in
Figure 5.10. Because the random variable takes on only the values 0 and 1, the CDF

12 — ‘ ‘ 12
1 1 | T
=08 1=-p 508 ,__: 7
T <
.06 k06 :
i1 —
04+ 04 | p
b I
02 02 [
|
0 * * * 0 : :
0 1 2 4 6 8 0 1 2 4 6 8
k T
(a) PMF (b) CDF

Figure 5.10: The Bernoulli probability mass function and cumulative distribution
function for p = 0.25.

changes its value only at these points, where it jumps. The CDF can be thought of
as a “running sum” which adds up the probabilities of the PMF starting at —oo and
ending at +00. When the value x of Fy (z) encounters a nonzero value of the PMF,
the additional mass causes the CDF to jump, with the size of the jump equal to the
value of the PMF at that point. For example, referring to Figure 5.10b, at = 0 we
have Fx(0) = px[0] = 1—p = 3/4 and at z = 1 we have Fx(1) = px[0] +px[l] =1,
with the jump having size px[1] = p = 1/4. Another example follows.

Example 5.36 - CDF for geometric random variable

Since px[k] = (1 — p)*~'p for k = 1,2,..., we have the CDF

0 <l

_ )
Fle) = 1-p)7'p z>1

=1
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where [z] denotes the largest integer not exceeding x. This evaluates to

0 r<l1
) 1<z <2
Px@ =90 pra-pp 2<2<3
etc.

The PMF and CDF are plotted in Figure 5.11 for p = 0.5. Since the CDF jumps at

12— 1.2
1 1 0937 !
0.875
=08 = 08f 0.75; :
< s !
|
2.0.6 05 k06 05
0.4 0.4r |
0.25 |
0.2 0.125 027 !
T 0.0625 |
0 °. °. T ® 'Y Py 0 | ; ;
2 -1 0 1 2 3 4 5 6 7 8 2 -1 0 1 2 3 4 5 6 7 8
k z
(a) PMF (b) CDF

Figure 5.11: The geometric probability mass function and cumulative distribution
function for p = 0.5.

each nonzero value of the PMF and the jump size is that value of the PMF, we can
recover the PMF from the CDF. In particular, we have that

px[z] = Fx(z¥) — Fx(27)

where 1 denotes a value just slightly larger than z and 2~ denotes a value just
slightly smaller than x. Thus, if Fx(z) does not have a discontinuity at z the
value of the PMF is zero. At a discontinuity the value of the PMF is just the
jump size as previously asserted. Also, because of the definition the CDF, i.e.,
that Fx(z) = P[X < z] = P[X < z or X = z], the value of Fx(z) is the value
after the jump. The CDF is said to be right-continuous which is sometimes stated
mathematically as limx_map Fx(xz) = Fx(zo) at the point x = x.

&
From the previous example we see that the PMF and CDF are equivalent descrip-
tions of the probability assignment for X. FKEither one can be used to find the
probability of X being in an interval (even an interval of length zero). For example,
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to determine P[3/2 < X < 7/2] for the geometric random variable

P P <X < Z] = px[2] +px[3]

0

as is evident by referring to Figure 5.11b. We need to be careful, however, to
note whether the endpoints of the interval are included or not. This is due to the
discontinuities of the CDF. Because of the definition of the CDF as the probability
of X being within the interval (—oo, 2], which includes the right-most point, we have
for the interval (a, b]

Pla < X <b] = Fx(b") — Fx(a™). (5.11)

Also, the other intervals (a,b), [a,b), and [a,b] will in general have different prob-
abilities than that given by (5.11). From Figure 5.11b and (5.11) we have as an
example that

P2 < X <3]=Fx(3") = Fx(2") = px[3] = (1 —p)°p = 0.125
but
P2 <X <3]=Fx(3") = Fx(27) = (1 —p)p+ (1 —p)*p = 0.375.

From the definition of the CDF and as further illustrated in Figures 5.10 and
5.11 the CDF has several important properties. They are now listed and proven.
Property 5.8 - CDF is between 0 and 1

0<Fx(z)<1 —00 <z <00

Proof: Since by definition Fx(z) = P[X < z] is a probability for all z, it must lie
between 0 and 1.
U

Property 5.9 - Limits of CDF as z — —oco and as z — o

lim Fy(z) = 0
Tr—r—00
xllglr—looFX(x) = L

Proof:
lim Fy(z) = P[{s: X(s) < —00}] = P[] = 0

Tr——0Q

since the values that X (s) can take on do not include —oo. Also,

lim Fy(z) = P[{s: X(s) < +o0}] = P[S] = 1

r—+400
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since the values that X (s) can take on are all included on the real line.

Property 5.10 - CDF is monotonically increasing

A monotonically increasing function g(-) is one in which for every z1 and z2 with
z1 < xa, it follows that g(x1) < g(z2) or the function increases or stays the same as
the argument increases (see also Problem 5.29).

Proof:
Fx(z2) P[X < x9] (definition)
= PI(X <z)U(z1 < X < 19)]
= P[X <x1]+ Plz1 < X < 19] (Axiom 3)
= Fx(z1)+ Plz1 < X <] > Fx(z1). (definition and Axiom 1)

Alternatively, if A = {—o0 < X <z} and B = {—o0 < X < z9} with 27 < z9,
then A C B. From Property 3.5 (montonicity) Fx(z2) = P[B] > P[A] = Fx(z1).
O

Property 5.11 - CDF is right-continuous

By right-continuous is meant that as we approach the point xy from the right, the
limiting value of the CDF should be the value of the CDF at that point. Mathe-
matically, it is expressed as

Lim Fx((II) = Fx((II()).

+
I*}l’o

Proof:
The proof relies on the continuity property of the probability function. It can be
found in [Ross 2002].

O
Property 5.12 - Probability of interval found using the CDF
Pla < X <b] = Fx(b) — Fx(a) (5.12)
or more explicitly to remind us of possible discontinuities
Pla < X <b] = Fx(b") — Fx(a™). (5.13)

Proof:
Since for a < b

{0 < X <b}={-0< X <a}U{a<X <b}
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and the intervals on the right-hand-side are disjoint (mutually exclusive events), by
Axiom 3
Pl—00o < X <b]=P[-00< X <a]+ Pla< X <]

or rearranging terms we have that

Pla< X <b] = P[-00 < X <b] — P[~00 < X < a] = Fx(b) — Fx(a).

5.9 Computer Simulation

In Chapter 2 we discussed how to simulate a discrete random variable on a digital
computer. In particular, Section 2.477 presented some MATLAB code. We now
continue that discussion to show how to simulate a discrete random variable and
estimate its PMF and CDF. Assume that X can take on values in Sx = {1,2,3}
with a PMF
pr =02 ifz=21=1
pxlr] =< p2=06 ifx=u1z9=2
p3=0.2 ifz=2x3=23.

The PMF and CDF are shown in Figure 5.12. The code from Section 2.4 for gener-

1.2 1.2
1 ~ 1 —
|
=08 : : : : : o8t : : : — ]
] = i
0.6 0.6} |
|
0.4 ~ : 0.4 [
|
0.2 0.2 —
[ ] '
0 0 :
e 0 1 2 3 4 2 - 0 1 2 3 4
k T
(a) PMF (b) CDF

Figure 5.12: The probability mass function and cumulative distribution function for
computer simulation example.

ating M realizations of X is

for i=1:M
u=rand(1,1);
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if u<=0.2
x(i,1)=1;

elseif u>0.2 & u<=0.8
x(i,1)=2;

elseif u>0.8
x(i,1)=3;

end

end

Recall that U is a random variable whose values are equally likely to fall within the
interval (0,1). It is called the uniform random variable and is described further in
Chapter 107?. Now to estimate the PMF px[k] = P[X = k] for k = 1,2,3 we use
the relative frequency interpretation of probability to yield

_ Number of outcomes equal to k

px[k] = i k=1,23. (5.14)

For M = 100 this is shown in Figure 5.13a. Also, the CDF is estimated for all z via

- Number of outcomes < z
Fx(z) = 7 — (5.15)
or equivalently by
Fx(z)= > pxl[k] (5.16)
{k:k<z}

and is shown in Figure 5.13b. For finite sample spaces this approach to simulate
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1
1 1 +—
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0.24
0.17 017 |
0.2 I ] 0.2 — ]
|
0 0 !
2 -1 0 1 2 3 4 2 -4 0 1 2 3 4
k T
(a) PMF (b) CDF

Figure 5.13: The estimated probability mass function and corresponding estimated
cumulative distribution function.
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a discrete random variable is adequate. But for infinite sample spaces such as for
the geometric and Poisson random variables a different approach is needed. See
Problem 5.30 for a further discussion.

Before concluding our discussion we wish to point out a useful property of CDF's
which simplifies the computer generation of random variable outcomes. Note from
Figure 5.12b with u = Fy(z) that we can define an inverse CDF as z = Fy'(u)
where

1 if0<u<0.2
r=F'(u)=¢{ 2 if0.2<u<08
3 if08<ux<l

or we choose the value of z as shown in Figure 5.14. But if u is the outcome

12
1, N @
1 —
54—
i
>
0.4, N N N | N
I
0.2) —
|
U L
0 1 2 3 4
X

Figure 5.14: Relationship of inverse CDF to generation of discrete random variable.
Value of u is mapped into value of z.

of a uniform random variable U on (0,1), then this procedure is identical to that
implemented in the previous MATLAB program used to generate realizations of X.
This is not merely a coincidence but can be shown to follow from the definition
of the CDF. Although little more than a curiousity now, it will become important
when we simulate continuous random variables in Chapter 10.

5.10 Real-World Example - Servicing Customers

A standard problem in many disciplines is the allocation of resources to service
customers. It occurs in determining the number of cashiers needed at a store,
the computer capacity needed to service download requests, and the amount of
equipment necessary to service phone customers, as examples. In order to service
these customers in a timely manner, it is necessary to know the distribution of
arrival times of their requests. Since this will vary depending on many factors
such as time of day, popularity of a file request, etc., the best we can hope for is
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a determination of the probabilities of these arrivals. As we will see shortly, the
Poisson probability PMF is particularly suitable as a model. We now focus on the
problem of determining the number of cashiers needed in a supermarket.

A supermarket has one express lane open from 5 to 6 PM on weekdays (Monday
through Friday). This time of the day is usually the busiest since people tend to
stop on their way home from work to buy groceries. The number of items allowed
in the express lane is limited to ten so that the average time to process an order
is fairly constant at about 1 minute. The manager of the supermarket notices that
there is frequently a long line waiting and hears customers grumbling about the
wait. To improve the situation he decides to open additional express lanes during
this time period. If he does, however, he will have to “pull” workers from other jobs
around the store to serve as cashiers. Hence, he is reluctant to open more lanes than
necessary. He hires Professor Poisson to study the problem and tell him how many
lanes should be opened. The manager tells Professor Poisson that there should be
no more than one person waiting in line 95% of the time. Since the processing time
is 1 minute, there can be at most two arrivals in each time slot of 1 minute length.
He reasons that one will be immediately serviced and the other will only have to
wait a maximum of 1 minute. After a week of careful study, Professor Poisson tells
the manager to open two lanes from 5 to 6 PM. Here is his reasoning.

First Professor Poisson observes the arrivals of customers in the express lane
on a Monday from 5 to 6 PM. The observed arrivals are shown in Figure 5.15,
where the arrival times are measured in seconds. On Monday there are a total of

+ + +++H++ 0 W+ HE HHE - R

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

Figure 5.15: Arrival times at one express lane on Monday (a ‘4’ indicates an arrival).

80 arrivals. He repeats his experiment on the following four days (Tuesday through
Friday) and notes total arrivals of 68, 70, 59, and 66 customers, respectively. On
the average there are 68.6 arrivals, which he rounds up to 70. Thus, the arrival rate
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is 1.167 customers per minute. He then likens the arrival process to one in which
the 5 to 6 PM time interval is broken up into 3600 time slots of 1 second each. He
reasons that there is at most 1 arrival in a given time slot and there may be no
arrivals in that time slot. (This of course would not be valid if for instance, two
friends did their shopping together and arrived at the same time.) Hence, Professor
Poisson reasons that a good arrival model is a sequence of independent Bernoulli
trials, where 0 indicates no arrival and 1 indicates an arrival in each 1 second time
slot. The probability p of a 1 is estimated from his observed data as the number
of arrivals from 5 to 6 PM divided by the total number of time slots in seconds.
This yields p = 70/3600 = 0.0194 for each one second time slot. Instead of using
the binomial PMF to describe the number of arrivals in each 1 minute time slot
(for which p = 0.0194 and M = 60), he decides to approximate it using his favorite
PMF, the Poisson model. Therefore, the probability of k arrivals (or successes) in
a time interval of 60 seconds would be

)\k
k!
where the subscripts on X and A are meant to remind us that we will initially
consider the arrivals at one express lane. The value of A1 to be used is Ay = Mp,
which is estimated as A, = Mp = 60(70/3600) = 7/6. This represents the expected
number of customers arriving in the 1 minute interval. According to the manager’s
requirements, within this time interval there should be at most 2 customers arriving
95% of the time. Hence, we require that

pxik] =exp(=\) 7+ kE=0,1,... (5.17)

P[X,; <2]= prl ] > 0.95.
But from (5.17) this becomes
1
P[X) < 2] = exp(— 1) (1 A+ 5A%> —0.88

using Ay = 7/6. Hence, the probability of 2 or fewer customers arriving at the
express lane is not greater than 0.95. If a second express lane is opened, then the
average number of arrivals at each lane during the one minute time interval will be
halved to 35. Therefore, the Poisson PMF for the number of arrivals at each lane
will be characterized by Ao = 7/12. Now however there are two lanes and two sets
of arrivals. Since the arrivals are modeled as independent Bernoulli trials, we can
assert that

P[2 or fewer arrivals at both lanes] = P[2 or fewer arrivals at lane 1]
-P[2 or fewer arrivals at lane 2]
= P2 or fewer arrivals at lane 1]?
= P[X; <2
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so that

9 2
P[2 or fewer arrivals at both lanes] = (Z PX, [k])
k=0

1 2
[exp(—AQ) (1 + Ao + §A§>] =0.957

which meets the requirement. An example is shown for one of the two express lanes
with an average number of customer arrivals per minute of 7/12 in Figure 5.16 and
Figure 5.17, with the latter an expanded version of the former. The dashed vertical
lines in Figure 5.17 indicate 1 minute intervals. There are no 1 minute intervals
with more than 2 arrivals, as we expect.

+++ + e+ + + ++
0 500 1000 1500 2000 = 2500 3000 3500
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Figure 5.16: Arrival times at one of the two express lanes (a ‘+’ indicates an arrival).
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Problems

5.1 (w) Draw a picture depicting a mapping of the outcome of a die toss, i.e., the
pattern of dots that appear, to the numbers 1,2,3,4,5,6.

5.2 (w) Repeat Problem 5.1 for a mapping of the sides that display 1,2, or 3 dots
to the number 0 and the remaining sides to the number 1.
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0O 200 400 600 800 1000 1200 1400 1600 1800
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Figure 5.17: Expanded version of Figure 5.16 (a ‘+’ indicates an arrival). Time
slots of 60 seconds are shown by dashed lines.

5.3 (w) Consider a random experiment for which S = {s; : 5, =4, 1 =1,2,...,10}
and the outcomes are equally likely. If a random variable is defined as X (s;) =
s?, find Sy and the PMF.

5.4 (.-) (w) Consider a random experiment for which § = {s; : s, = —3,—-2,-1,0,1,2,3}
and the outcomes are equally likely. If a random variable is defined as X (s;) =
s?, find Sy and the PMF.

5.5 (w) A man is late for his job by s; = 7 minutes, where i = 1,2,.... If P[s;] =
(1/2)" and he is fined $0.50 per minute, find the PMF of his fine. Next find
the probability that he will be fined more than $10.

5.6 (o) (w) If px[k] = ap® for k = 2,3,... is to be a valid PMF, what are the
possible values for « and p?

5.7 (t) The maximum value of the binomial PMF occurs for the unique value k& =
[(M + 1)p], where [z] denotes the largest integer less than or equal to z, if
(M +1)p is not an integer. If, however, (M + 1)p is an integer, then the PMF
will have the same maximum value at k = (M + 1)p and k = (M + 1)p — 1.
For the latter case when (M + 1)p is an integer you are asked to prove this
result. To do so first show that

(M+1)p—k

pX[k]/pX[k_l]:1+ k(l—p)

5.8 (.-) (w) At a party a large barrel is filled with 99 gag gifts and 1 diamond ring,
all enclosed in identical boxes. Each person at the party is given a chance to



PROBLEMS 141

pick a box from the barrel, open the box to see if the diamond is inside, and if
not, to close the box and return it to the barrel. What is the probability that
at least 19 persons will choose gag gifts before the diamong ring is selected?

5.9 (f,c) If X is a geometric random variable with p = 0.25, what is the probability
that X > 47 Verify your result by performing a computer simulation.

5.10 (c) Using a computer simulation to generate a geom(0.25) random variable
determine the average value for a large number of realizations. Relate this to
the value of p and explain the results.

5.11 (t) Prove that the maximum value of a Poisson PMF occurs at k£ = [A]. Hint:
See Problem 5.7 for the approach.

5.12 (w,c) If X ~ Pois()), plot P[X > 2] versus A and explain your results.

5.13 (--) (c) Use a computer simulation to generate realizations of a Pois(\) ran-
dom variable with A = 5 by approximating it with a bin(100,0.05) random
variable. What is the average value of X7

5.14 (.-) (w) If X ~ bin(100,0.01), determine px[5]. Next compare this to the
value obtained using a Poisson approximation.

5.15 (t) Prove the following limit

lim g(M) = lim (1 + %)M = exp(z).

M—o0 M—o0

To do so note that the same limit is obtained if M is replaced by a continuous
variable, say u, and that one can consider Ing(u) since the logarithm is a
continuous function. Hint: Use L’hospitals rule.

5.16 (f,c) Compare the PMFs for Pois(1) and bin(100,0.01) random variables.

5.17 (c) Generate realizations of a Pois(1) random variable by using a binomial
approximation.

5.18 (.- ) (c¢) Compare the theoretical value of P[X = 3] for the Poisson random
variable to the estimated value obtained from the simulation of Problem 5.17.

5.19 (f) If X ~ Ber(p), find the PMF for Y = —X.

5.20 (o-) (f) If X ~ Pois()), find the PMF for Y = 2X.
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5.21 (f) A discrete random variable X has the PMF

(% Ul —1
b=

px[z) =14 § z3=0
=3

\ % 175:]_.

If Y =sin7X, find the PMF for Y.

5.22 (t) In this problem we derive the Taylor expansion for the function g(z) =
exp(z). To do so note that the expansion about the point z = 0 is given by

n

X g(n)
g(z) =7 ,( 0 g
n=0

where ¢(®(0) = g(0) and g(™(0) is the nth derivative of g(z) evaluated at
z = 0. Prove that it is given by

® ..n
x
exp(z) = Z g
n=0 "
5.23 (f) Plot the CDF for
1 —
1 =1
1 _
Lk=

5.24 (w) A horizontal bar of negligible weight is loaded with three weights as shown
in Figure 5.18. Assuming that the weights are concentrated at their center
locations, plot total mass of the bar starting at the left end (where z = 0
meters) to any point on the bar. How does this relate to a PMF and a CDF?

5 kg
lkg

!

=

kg
ﬂ
0o 1 2 3 4

6 meters

Figure 5.18: Weightless bar supporting three weights.

5.25 (f) Find and plot the CDF of Y = —X if X ~ Ber(}).
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5.26 (.- ) (w) Find the PMF if X is a discrete random variable with the CDF

0
[z]

Fx(fL‘): 5

._.
8 © 8
VN A
cer o
IN
o

5.27 (w) Is the following a valid CDF? If not, why not, and how could you modify
it to become a valid one?

0 z<2
Py () : 2<z<3
xTr) =
X % I<r<4
1 =>4

5.28 (.-) (f) If X has the CDF shown in Figure 5.11b, determine P[2 < X < 4]
from the CDF?

5.29 (t) Prove that the function g(z) = exp(z) is a monotonically increasing func-
tion by showing that g(x2) > g(z1) if zo > 1.

5.30 (c) Estimate the PMF for a geom(0.25) random variable for £ = 1,2,...,20
using a computer simulation and compare it to the true PMF. Also, estimate
the CDF from your computer simulation.

5.31 (.- ) (f,c) The arrival rate of calls at a mobile switching station is 1 per second.
The probability of & calls in a T" second interval is given by a Poisson PMF
with A = arrival rate X T. What is the probability that there will be more
than 100 calls placed in a 1 minute interval?



144 CHAPTER 5. DISCRETE RANDOM VARIABLES



Chapter 6

Expected Values for Discrete
Random Variables

6.1 Introduction

The probability mass function (PMF) discussed in Chapter 5 is a complete descrip-
tion of a discrete random variable. As we have seen, it allows us to determine prob-
abilities of any event. Once the probability of an event of interest is determined,
however, the question of its interpretation arises. Consider for example, whether
there is adequate rainfall in Rhode Island to sustain a farming endeavor. The past
history of yearly summer rainfall was shown in Figure 1.1 and is repeated in Figure
6.1a for convenience. Along with it, the estimated PMF of this yearly data is shown
in Figure 6.1b (see Section 5.9 for a discussion on how to estimate the PMF). For
a particular crop we might need a rainfall of between 8 and 12 inches. This event
has probability 0.5278, obtained by Z/ﬁs px|k] for the estimated PMF shown in
Figure 6.1b. Is this adequate or should the probability be higher? Answers to such
questions are at best problematic. Rather we might be better served by ascertaining
the average rainfall since this is closer to the requirement of an adequate amount
of rainfall. In the case of Figure 6.1a the average is 9.76 inches, and is obtained by
summing all the yearly rainfalls and dividing by the number of years. Based on the
given data it is a simple matter to estimate the average value of a random variable
(the rainfall in this case). Some computer simulation results pertaining to averages
have already been presented in Example 2.3. In this chapter we address the topic of
the average or expected value of a discrete random variable and study its properties.

6.2 Summary

The expected value of a random variable is the average value of the outcomes of
a large number of experimental trials. It is formally defined by (6.1). For discrete
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Figure 6.1: Annual summer rainfall in Rhode Island and its estimated probability
mass function.

random variables with integer values it is given by (6.2) and some examples of its
determination given in Section 6.4. The expected value does not exist for all PMF's
as illustrated in Section 6.4. For functions of a random variable the expected value
is easily computed via (6.5). It is shown to be a linear operation in Section 6.5.
Another interpretation of the expected value is as the best predictor of the outcome
of an experiment as shown in Example 6.3. The variability of the values exhibited by
a random variable is quantified by the variance. It is defined in (6.6) with examples
given in Section 6.6. Some properties of the variance are summarized in Section
6.6 as Properties 1 and 2. An alternative way to determine means and variances of
a discrete random variable is by using the characteristic function. It is defined by
(6.10) and for integer valued random variables it is evaluated using (6.12), which
is a Fourier transform of the PMF. Having determined the characteristic function,
one can easily determine the mean and variance by using (6.13). Some examples of
this procedure is given in Section 6.7, as is some further important properties of the
characteristic function. An important property is that the PMF may be obtained
from the characteristic as an inverse Fourier transform as expressed by (6.19). In
Section 6.8 an example is given to illustrate how to estimate the mean and variance
of a discrete random variable. Finally, Section 6.9 describes the use of the expected
value to reduce the average code length needed to store a symbol in a digital format.
This is called data compression.
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6.3 Determining Averages from the PMF

We now discuss how the average of a discrete random variable can be obtained from
the PMF. To motivate the subsequent definition we consider the following game of
chance. A barrel is filled with US dollar bills with denominations of $1, $5, $10,
and $20. The proportion of each denomination bill is the same. A person playing
the game gets to choose a bill from the barrel, but must do so while blindfolded. He
pays $10 to play the game, which consists of a single draw from the barrel. After he
observes the denomination of the bill, the bill is returned to the barrel and he wins
that amount of money. Will he make a profit by playing the game many times?
A typical sequence of outcomes for the game is shown in Figure 6.2. His average
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Figure 6.2: Dollar winnings for each play.

winnings per play is found by adding up all his winnings and dividing by the number
of plays V. This is computed by

| N
= — €
N;’

where z; is his winnings for play . Alternatively, we can compute Z using a slightly
different approach. From Figure 6.2 the number of times he wins &k dollars (where
k =1,5,10,20) is given by Nj, where

N, = 13
Ny = 13
N = 10
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As a result, we can determine the average winnings per play by

1-Ni+5-N5+10- Nijg+20- Ny

T N1 + N5 + Nig + Nag

Ny N5 N Noy

- 1.1 25 qp. 210 4 9. 2420
N +5- N + 10 - N + 20 - N
13 13 10 14

= 1 4520410 > +20- —
50+ 50+ 50+ 50

= 9.16

since N = Ny + N5 + Nyp + Nog = 50. If he were to play the game a large number
of times, then as N — oo we would have Ny/N — px/[k], where the latter is just
the PMF for choosing a bill with denomination k, and results from the relative
frequency interpretation of probability. Then, his average winnings per play would
be found as

r — 1- px[ ]+5 px[5]+10 px[10]+20-px[20]

1
= 15453 LT —+20 -
=9

where px[k] = 1/4 for k = 1,5, 10,20 since the proportion of bill denominations in
the barrel is the same for each denomination. It is now clear that “on the average”
he will lose $1 per play. The value which the average converges to is called the
expected value of X, where X is the random variable that describes his winnings for
a single play and takes on the values 1,5,10,20. The expected value is denoted by
E[X]. For this example, the PMF as well as the expected value is shown in Figure
6.3. The expected value is also called the expectation of X, the average of X, and
the mean of X. With this example as motivation we now define the expected value
of a discrete random variable X as

= Z Tipx 2] (6.1)

where the sum is over all values of z; for which px[z;] is nonzero. It is determined
from the PMF and as we have seen coincides with our notion of the outcome of an
experiment in the “long run” or “on the average.” The expected value may also be
intepreted as the best prediction of the outcome of a random experiment for a single
trial (to be described in Example 6.3). Finally, the expected value is analogous to
the center of mass of a system of linearly arranged masses as illustrated in Problem
6.1.
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Figure 6.3: PMF and expected value dollar bill denomination chosen.

6.4 Expected Values of Some Important Random Vari-
ables

The definition of the expected value was given by (6.1). When the random variable
takes on only integer values, we can rewrite it as

E[X]= ) kpx[k]. (6.2)
k=—00

We next determine the expected values for some important discrete random variables
(see Chapter 4 for a definition of the PMFs).

6.4.1 Bernoulli

If X ~ Ber(p), then the expected value is

1
BIX] = > kpx[k]
k=0
= 0-(1-p)+1-p

Note that E[X] need not be a value that the random variable takes on. In this case,
it is between X =0 and X = 1.
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6.4.2 Binomial
If X ~ bin(M,p), then the expected value is

M
BIX] = > kpx[k]
k=0

= kf:ok (f) PP —p)MF.

To evaluate this in closed form we will need to find an expression for the sum.
Continuing we have that

M
E[X] = Z (MM,L),k,p (1—p)"*
M
— MPZ ) 1) k—l(l_p)M—l—(k—l)
=

and letting M’ = M — 1, k' = k — 1, this becomes

ElX] = Mpz k,, k,,p F1—pMHt

_ M M’ k’l_ M’*k’
= pz )P (=p)
k'=0

since the summand is just the PMF of a bin(M’,p’) random variable. Therefore, we
have that E[X] = Mp for a binomial random variable. This derivation is typical in
that we attempt to manipulate the sum into one whose summands are the values of
a PMF and so the sum must evaluate to one. Intuitively, we expect that if p is the
probability of success for a Bernoulli trial, then the expected number of successes
for M independent Bernoulli trials (which is binomially distributed) is Mp.

6.4.3 Geometric
If X ~ geom(p), the the expected value is
o0
S
k=1

To evaluate this in closed form, we need to modify the summand to be a PMF,
which in this case will produce a geometric series. To do so we use differentiation
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by first letting ¢ = 1 — p to produce
EX] = p) —q
X = vy
d =
= Pd—q;Q-

But since 0 < ¢ < 1 we have upon using the formula for the sum of a geometric
series or > oo, qF = q/(1 — q) that

e = v (75)

The expected number of Bernoulli trials until the first success (which is geometrically
distributed) is E[X] = 1/p. For example, if p = 1/10, then on the average it takes
10 trials for a success, an intuitively pleasing result.

6.4.4 Poisson

If X ~ Pois(A), then it can be shown that E[X] = A. The reader is asked to
verify this in Problem 6.5. Note that this result is consistent with the Poisson
approximation to the binomial PMF since the approximation constrains Mp (the
expected value of the binomial random variable) to be A (the expected value of the
Poisson random variable).

A Not all PMFs have expected values

Discrete random variables with a finite number of values always have expected
values. In the case of a countably infinite number of values, a discrete random
variable may not have an expected value. As an example of this, consider the PMF

4/72
px|k] = 22 k=1,2,.... (6.3)

This is a valid PMF since it can be shown to sum to one. Attempting to find the
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expected value produces

since 1/k is a harmonic series which is known not to summable (meaning that
the partial sums do not converge). Hence, the random variable described by the
PMF of (6.3) does not have a finite expected value. It is even possible for a sum
Sore o kpx[k] that is composed of positive and negative terms to produce different
results depending upon the order in which the terms are added together. In this
case the value of the sum is said to be ambiguous. These difficulties can be avoided,
however, if we require the sum to be absolutely summable or if the sum of the
absolute values of the terms is finite [Gaughan 1975]. Hence we will say that the
expected value exists if

BIX[| = 3 [klpa[k] < .
k=00

In Problem 6.6 a further discussion of this point is given.

1. It is located at the “center” of the PMF if the PMF is symmetric about some
point (see Problem 6.7).

Lastly, note the following properties of the expected value.

2. It does not generally indicate the most probable value of the random variable
(see Problem 6.8).

3. More than one PMF may have the same expected value (see Problem 6.9).

6.5 Expected Value for a Function of a Random Vari-
able

The expected value may easily be found for a function of a random variable X if the
PMF px|z;] is known. If the function of interest is Y = g(X), then by the definition
of expected value

ElY] = Z Yipy i) (6.4)

But as shown in Appendix 6A we can avoid having to find the PMF for Y by using
the much more convenient form

Elg(X)] = Zg(ﬂﬂi)PX[!Ez‘]- (6.5)
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Otherwise, we would be forced to determine py[y;] from px[z;] and ¢g(X) using
(5.9)?77. This result proves to be very useful, especially when the function is a
complicated one such as g(x) = sin[(7/2)z] (see Problem 6.10). Some examples
follow.

Example 6.37 - A linear function

If g(X) = aX + b, where a and b are constants, then

E[g(X)] = FElaX +1]
= Z(axi +b)px[z;]  (from (6.5))

i
= a)_ wpx[n]+b) pxlwi
= aE[X]+Db (definition of E[X] and PMF values sum to one.)

In particular, if we set @ = 1, then E[X + b] = E[X] + b. This allows us to set the
expected value of a random variable to any desired value by adding the appropriate
constant to X. Finally, a simple extension of this example produces

Ela191(X) + a292(X)] = a1 E[91(X)] + a2 E[ga(X)]

for any two constants a1 and as and any two functions g; and g, (see Problem 6.11).
It is said that the expectation operator E is linear.

¢
Example 6.38 - A nonlinear function
Assume that X has a PMF given by
1
pX[k]:g k=0,1,2,3,4
and determine E[Y] for Y = g(X) = X?2. Then, using (6.5) produces
4
EX?] = > Kpxl[k]
k=0
4
- 2w
k=0
= 6.
¢
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From the previous example with g(X) = X2, we had that E[g(X)] = E[X?] = 6 but
g(E[X]) = (E[X])? = 22 = 4 # E[g(X)]. Tt is said that the expectation operator
does not commute (or we cannot just take E[g(X)] and interchange the E and g) for
nonlinear functions. This manipulation is valid, however, for linear (actually affine)
functions as Example 6.1 demonstrates. Henceforth, we will use the notation E?[X]
to replace the more cumbersome (E[X])?.

Example 6.39 - Predicting the outcome of an experiment

It is always of great interest to be able to predict the outcome of an experiment
before it has occurred. For example, if the experiment were the summer rainfall in
Rhode Island in the coming year, then a farmer would like to have this information
before he decides upon which crops to plant. One way to do this is to check the
Farmer’s almanac, but its accuracy may be in dispute! Another approach would be
to guess this number based on the PMF (statisticians, however, use the more formal
term “predict” or “estimate” which sounds better). Denoting the prediction by the
number b, we would like to choose a number so that on the average it is close to the
true outcome of the random variable X. To measure the error we could use = — b,
where x is the outcome, and to account for positive and negative errors equally we
could use (z — b)2. This squared error may at times be small and at other times
be large, depending on the outcome of X. What we want is the average value of
the squared error. This is measured by E[(X — b)?], and is termed the mean square
error (MSE). We denote it by mse(b) since it will depend on our choice of b. A
reasonable method for choosing b is choose the value that minimizes the MSE. We
now proceed to find that value of b.

mse(b) = E[(X —b)]
E[X? — 2bX 4 V°]
[X
[X

E[X?] - 2bE[X] + E[b*]  (linearity of E(-))
= E[X? - 2bE[X]+ V? (expected value of constant is the constant).

To find the value of b that minimizes the MSE we need only differentiate the MSE,
set the derivative equal to zero, and solve for b. This is because the MSE is a
quadratic function of b whose minimum is located at the stationary point. Thus,
we have

dmse(b)
db

which produces the minimizing or optimal value of b given by b,y = E[X]. Hence,
the best predictor of the outcome of an experiment is the expected value or mean
of the random variable. For example, the best predictor of the outcome of a die
toss would be 3.5. This result provides another interpretation of the expected value.

= —2E[X]+2b=0
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The expected value of a random variable is the best predictor of the outcome of the
ezperiment, where “best” is to be interpreted as the value that minimizes the MSE.

¢

6.6 Variance and Moments of a Random Variable

Another function of a random variable that yields important information about its
behavior is that given by g(X) = (X — E[X])%. Whereas E[X] measures the mean
of a random variable, E[(X — E[X])?] measures the average squared deviation from
the mean. For example, a uniform discrete random variable whose PMF is

1

px[kl = o3

k=-M,-M+1,...,.M

is easily shown to have a mean of zero for any M. However, as seen in Figure 6.4 the
variability of the outcomes of the random variable becomes larger as M increases.
This is because the PMF for M = 10 can have values exceeding those for M = 2.
The variability is measured by the variance which is defined as

var(X) = E[(X — E[X])?]. (6.6)

Note that the variance is always greater than or equal to zero. It is determined from
the PMF using (6.5) with g(X) = (X — E[X])? to yield

var(X) = 3 (@; — BIX])?px [, (6.7)

i

For the current example, E[X] = 0 due to the symmetry of the PMF about £ = 0
so that

var(X) = Z 7 px|[zi]

— ZkZM

M
k):
But it can be shown that
M
Zk2 _ M(M +1)2M + 1)
6

k=1
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Figure 6.4: Illustration of effect of width of PMF on variability of outcomes.

which yields

2 M(M+1)(2M +1)
OM + 1 6
M(M +1)
—

var(X) =

Clearly, the variance increases with M, or equivalently with the width of the PMF, as
is also evident from Figure 6.4. We next give another example of the determination
of the variance and then summarize some results for several common PMFs.

Example 6.40 - Variance of Bernoulli random variable



6.6. VARIANCE AND MOMENTS OF A RANDOM VARIABLE 157

Values PMF E[X] var(X) dx(w)
. 1 M(M+1) | sin[(2M+1)w/2]
Uniform k=—M,...M SATT 0 3 (;r]l\4+1) sin[fz/Z]
Bernoulli | k=0,1 pF(1 —p)l=Fk p p(1 —p) | pexp(jw)+(1-p)

S

Binomial | k=0,1,...,M (]‘,f) pr(1—pMF p | Mp(1 —p) | pexp(iw)+(1-p))"
1

i - — p)k—1 1 1-p P
Geometric | k=1,2,... (L—p)*'p 5 2 SP(Fe)=(=p)
Poisson k=0,1,... exp(—A) ’)c—'f A A exp[A(exp(jw)—1)]

Table 6.1: Properties of discrete random variables.

If X ~ Ber(p), then since E[X] = p, we have

var(X) = Z(xi—E[X])QPX[QUi]

1
= Y (k—p)*px[k]
k=0
(0—p)*(L—p)+ (1 —p)°p
p(1 —p).

&

It is interesting to note that the variance is minimized and equals zero if p = 0 or
p = 1. Also, it is maximized for p = 1/2. Can you explain this? Common PMFs
with their means, variances, and characteristic functions (to be discussed in Section
6.7) are listed in Table 6.1. The reader is asked to derive some of these entries in
the Problems.

An alternative useful expression for the variance can be developed based on the
properties of the expectation operator. We have that

var(X) = E[(X - E[X])*)
= E[X?-2XE[X]+ E*[X]]
E[X?] - 2B[X]E[X] + E*[X]

where the last step is due to linearity of the expectation operator and the fact that
E[X] is a constant. Hence

var(X) = E[X?] — E*[X]
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and is seen to depend on E[X] and E[X?]. In the case where E[X] = 0, we have
the simple result that var(X) = E[X?]. This property of the variance along with
some others is now summarized.

Property 6.13 - Alternative expression for variance

var(X) = E[X?] — E*[X] (6.8)
0

Property 6.14 - Variance for random variable modified by a constant
For ¢ a constant

var(c) = 0
var(X +¢) = var(X)
var(cX) = c?var(X)

O
The reader is asked to verify Property 6.2 in Problem 6.21.

The expectations E[X] and E[X?] are called the first and second moments of
X, respectively. The term moment has been borrowed from physics where F[X] is
called the center of mass or moment of mass (see also Problem 6.1). In general,
the nth moment is defined as E[X"] and exists (meaning that the value can be
determined unambiguously and is finite) if F[|X|"] is finite. The latter is called the
n absolute moment. It can be shown that if E[X*] exists, then E[X"] exists for
r < s (see Problem 6.23). As a result, if E[X?] is finite, then E[X] exists and by
(6.8) the variance will also exist. In summary, the mean and variance of a discrete
random variable will exist if the second moment is finite.

A variant of the notion of moments are the central moments. They are defined as
E[(X — E[X])"], in which the mean is first subtracted from X before the n moment
is computed. They are useful in assessing the average deviations from the mean. In
particular, for n = 2 we have the usual definition of the variance. See also Problem
6.26 for the relationship between the moments and central moments.

A Variance is nonlinear operator

The variance of a random variable does not have the linearity property of the
expectation operator. Hence, in general

var(g1(X) + g2(X)) = var(g1 (X)) + var(g2(X)) is not true.

Just consider var(X + X), where E[X] = 0 as a simple example.

AN
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As explained previously, an alternative interpretation of E[X] is as the best predictor
of X. Recall that this predictor is the constant b,y = F[X] when the mean square
error is used as a measure of error. We wish to point out that the minimum mse is
then

msemin = E[(X - bopt)2]
= B[(X - E[X])’]
= var(X). (6.9)

Thus, how well we can predict the outcome of an experiment depends on the variance
of the random variable. As an example, consider a coin toss with a probability of
heads (X = 1) of p and of tails (X = 0) of 1 —p or a Bernoulli random variable. We
would predict the outcome of X to be by, = E[X] = p and the minimum mse is
the variance which from Example 6.4 is msepin, = p(1 —p). This is plotted in Figure
6.5 versus p. It is seen that the minimum mse is smallest when p =0 or p = 1 and
largest when p = 1/2 or most predictable for p = 0 and p = 1 and least predictable
for p = 1/2. Can you explain this?

0.3

0.25f

0.2r

0.15f

Minimum mse

0.05f

p

Figure 6.5: Measure of unpredictability of the outcome of a coin toss.

6.7 Characteristic functions

Determining the moments E[X"] of a random variable can be a difficult task for
some PMFs. An alternative method which can be considerably easier is based on
the characteristic function. Additionally, the characteristic function can be used to
examine convergence of PMFs, as for example in the convergence of the binomial
PMF to the Poisson PMF, and to determine the PMF for a sum of independent
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random variables, which will be examined in Chapter 77?7. In this section we dis-
cuss the use of the characteristic function for the calculation of moments and to
investigate the convergence of a PMF.

The characteristic function for a random variable X is defined as
¢x (w) = Elexp(jwX)] (6.10)

where j is the square root of —1 and where w takes on a suitable range of values.
Note that the function g(X) = exp(jwX) is complex but by defining E[g(X)] =
Efcos(wX) +jsin(wX)] = E[cos(wX)]+ jE[sin(wX)], we can apply (6.5) to the real
and imaginary parts of ¢x(w) to yield

¢px(w) = Elexp(juX)]
= FEfcos(wX) + jsin(wX)]
= FElcos(wX)] + jE[sin(wX)]
= Z cos(wz;)px|xi] + 7 Z sin(wz;)px %]

) )

= Zexp(iji)px[xi]. (6.11)

)

To simplify the discussion, yet still be able to apply our results to the important
PMFs, we assume that the sample space Sy is a subset of the integers. Then (6.11)
becomes

¢x(w) = Y exp(jwk)px[k]
k=—00
or rearranging
bxw) = 3 pxlkexp(jwk) (6.12)
k=—00

where px[k] = 0 for those integers not included in Sx. For example, in the Poisson
PMF the range of summation in (6.12) would be £ > 0. In this form, the char-
acteristic function is immediately recognized as being the Fourier transform of the
sequence px[k] for —oo < k < oco. Its definition is slightly different than the usual
Fourier transform, called the discrete-time Fourier transform, which uses the func-
tion exp(—jwk) in its definition [Jackson 1991]. As a Fourier transform it exhibits
all the usual properties. In particular, the Fourier transform of a sequence is pe-
riodic with period of 27w (see Property 6.4 for a proof). As a result, we need only
examine the characteristic function over the interval —m < w < 7, which is defined
to be the fundamental period. For our purposes the most useful property is that we
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can differentiate the sum in (6.12) “term by term” or

Wx@) LS K exp(juh)
= Z pX[k]%exp(jwk).
k=—00

The utility in doing so is to produce a formula for E[X]. Carrying out the differen-
tiation

d [e%¢]
¢jl(agw) - kZOOPX [k]jk exp(jwk)
so that
1d¢X( ) 00
= k k
J odw |, kzoo px k]
= FE[X].

In fact, repeated differentiation produces the formula for the nth moment as

(6.13)

w=0

All the moments that exist may be found by repeated differentiation of the charac-
teristic function. An example follows.

Example 6.41 - First two moments of geometric random variable

Since the PMF for a geometric random variable is given by px[k] = (1 —p)¥~!p for
k=1,2,..., we have that

o0

¢x(w) = Y px[klexp(jwk)

k=1

= Y (1—p)*'pexp(jwk)
k=1

(0]
kf
pexp(jw) > [(1 —p) exp(jw)]* .
k=1

But since |(1 — p) exp(jw)| < 1, we can use the result

o0 o
sz—1zzzk:

k=1 k=0
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for z a complex number with |z| < 1 to yield the characteristic function
bx(w) = pexp(jw)
1—[(1 - p)exp(jw)]

o D
= oo ge) (1 p) (6.14)

Note that as claimed the characteristic function is periodic with period 27. To find
the mean we use (6.13) with n = 1 to produce

mx = SR
_ L —j exp(—jw)
- jP( 1) lexp(—jw) — (1 = p)]2 |,y (6.15)
RN
T (6.16)

which agrees with our earlier results based on using the definition of expected value.
To find the second moment and hence the variance using (6.8)

1 d2¢X(w)
2 _
E[X*] = ]—2 I .
pd  exp(—jw)

(from (6.15))

j dw Jexp(—jw) — (1 = p)I? |,y
p D*(—j) exp(—jw) — exp(—jw)2D(—j) exp(—jw)
J D*

w=0

where D = exp(—jw) — (1 — p). Since D|,=9 = p, we have that

- ()25

2p — p?
2 1
P> p
so that finally we have
var(X) = E[X?] - E*[X]
2 1 1
p> p p?
_ Ll-p
p
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As a second example, we consider the binomial PMF.
Example 6.42 - Expected value of binomial PMF

We first determine the characteristic function as

dx(w) = Y px[klexp(jwk)
k=—o00
M
= > ()t etion
k=0
u k M—k
M )
= kZ:O ( L ) pex[;(]w) 1;;0 (6.17)
= (a+b)M (binomial theorem)
= [pexp(jw) + (1 —p)]". (6.18)

The expected value then follows as

j dw -0

w=

BlX] = ld¢x(w)

1 . L
= M [pexp(jw) + (1 — p)]" 'pj exp(jw)| ,_,

which is in agreement with our earlier results. The variance can be found by using
(6.8) and (6.13) for n = 2. It is left as an exercise to the reader to show that (see
Problem 6.29)

var(X) = Mp(1 —p).

¢

The characteristic function for the other common PMFs are given in Table 6.1.
Some important properties of the characteristic function are

Property 6.15 - Characteristic function always exists since |px (w)| < 0o
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Proof:
oo
ox (@)l = | Y px[Fexp(jwk)
k=—00
o
: (magnitude of sum of complex numbers
<
- kZ [px[k] exp(jwk)] cannot exceed sum of magnitudes)
=—00
= > lpx[K] (lexp(jwk)| = 1)
k=—00
= Y pxlk (px[k] > 0)
k=—00
= 1.
O
Property 6.16 - Characteristic function is periodic with period 27
Proof: For m an integer
¢x(w+2mm) = Z px|k] explj(w + 2mm) k]
k=—00
= Z px k] exp[jwk] exp[j2mmk]
k=—o00
R : (since exp(j2mmk) =1
N kz px [K] expljwk] for mk an integer)
=—00
= ¢x(w).
O

Property 6.17 - The PMF may be recovered from the characteristic
function
Given the characteristic function, we may determine the PMF using

dw

— — 00 < k < 0. (6.19)
27

™
px[k] = [ éx(w)exp(—jwk)

—T
Proof: Since the characteristic function is the Fourier transform of a sequence (al-
though its definition uses a +7j instead of the usual —j), it has an inverse Fourier
transform. Although any interval of length 27 may be used to perform the integra-
tion in the inverse Fourier transform, it is customary to use [—m, ] which results in

(6.19).
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g

Property 6.18 - Convergence of characteristic functions guarantees con-
vergence of PMFs

This property says that if we have a sequence of characteristic functions, say ¢g?) (w),
which converges to a given characteristic function say ¢x (w), then the corresponding
sequence of PMFs, say pg?) [k], must converge to a given PMF say px[k], where
px[k] is given by (6.19). The importance of this theorem is that it allows us to
approximate PMFs by simpler ones if we can show that the characteristic functions
are approximately equal. An illustration is given next. This theorem is known at
the continuity theorem of probability. Its proof is beyond the scope of this text but
can be found in [Pollard 2002].

O
We recall the approximation of the Poisson PMF to the binomial PMF under the
conditions that p — 0 and M — oo with Mp = X fixed (see Section 5.677). To show
this using the characteristic function approach (based on Property 6.6) we let X
denote a binomial random variable. Its characteristic function is from (6.18)

¢x, () = [pexp(jw) + (1 —p)]"
and replacing p by A\/M we have

by, (@) = [ﬁexp(ij(l—%)]M
_ [1 +A(exp(}y\';a)—1)]M

S exp[A(exp(jw) — 1)] (see Problem 5.1577, results are also
p Py valid for a complex variable)

as M — oo. For a Poisson random variable Xp we have that

Pxp(w) = ZeXp —exp(ka)

o [A
_ expl(— Z exp jw
k=0
(using results from Problem
= exp(—A)exp[Aexp(jw)] 5.22 which also hold for a
complex variable)

— exp[A(exp(jw) — ).
Since ¢x, (w) = ¢xp(w) as M — oo, by Property 6.6, we must have that px,[k] —
pxp|k] for all k. Hence, under the stated conditions the binomial PMF becomes the

Poisson PMF as M — oo. This was previously proven by other means in Section
5.677. Our derivation here though is considerably simpler.
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6.8 Estimating Means and Variances

As alluded to earlier, an important aspect of the mean and variance of a PMF is
that they are easily estimated in practice. We have already briefly discussed this in
Chapter 2 where it was demonstrated how to do this with computer simulated data
(see Example 2.377). We now continue that discussion in more detail. To illustrate
the approach we will consider the PMF shown in Figure 6.6a. Since the theoretical

0.5 T T " . . 6
0.4 51 1
w0
'4_5 O 4 M 4 p
0.3 g
Y £3
=
0.2t o
2
T ARt
0 0
2 4

3 5 6 0 10 ?0 30 40 50
k Trial number

(a) PMF (b) Simulated data

Figure 6.6: PMF and computer generated data used to illustrate estimation of mean
and variance.

expected value or mean is given by

BIX] = kpx[k]
k=1

then by the relative frequency interpretation of probability we can use the approxi-

mation N
pxk] =~ Wk

where Ni is the number of trials in which a k& was the outcome and N is the total
number of trials. As a result, we can estimate the mean by

5
k=1

The “hat” will always denote an estimated quantity. But kIV is just the sum of all
the k& outcomes that appear in the N trials and therefore 22:1 kN is the sum of
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all the outcomes in the IV trials. Denoting the latter by Zl]\il x;, we have as our
estimate of the mean

N
E[X] = % > @ (6.20)
=1

where z; is the outcome of the ith trial. Note that we have just reversed our line of

reasoning used in the introduction to motivate the use of E[X] as the definition of

the expected value of a random variable. Also, we have previously seen this type of

estimate in Example 2.3 where it was referred to as the sample mean. It is usually

denoted by z. For the data shown in Figure 6.6b we plot the szglgle mean in Figure

6.7a versus N. Note that as N becomes larger, we have that E[X] — 3 = E[X].
The true variance of the PMF shown in Figure 6.6a is computed as

var(X) = E[X?] - E%[X]
5
= > Kpx[k] - E*[X]
k=1

which is easily shown to be var(X) = 1.2. Tt is estimated as
var(X) = B[X?] - (E[X)’

and by the same rationale as before we use

— 1 N
E[X?) =+ >
=1

so that our estimate of the variance becomes

— 1Y &Y
var(X) = N Zw? - (ﬁ sz> . (6.21)
=1 =1

This estimate is shown in Figure 6.7b as a function of N. Note that as the number of
trials increases the estimate of variance converges to the true value of var(X) = 1.2.
The MATLAB code used to generate the data and estimate the mean and variance
is given in Appendix 6B. Also, in that appendix is listed the MATLAB subprobram
PMFdata.m which allows easier generation of the outcomes of a discrete random
variable. In practice, it is customary to use (6.20) and (6.21) to analyze real-world
data as a first step in assessing the characteristics of an unknown PMF.

6.9 Real-World Example - Data Compression

The digital revolution of the past 20 years has made it commonplace to record and
store information in a digital format. Such information consists of speech data in
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6 2
51
1.5¢ 394 19
b :
4+ — 1999 (19904 )
=) =
L 3t % 1
X >
2 L
0.5}
l L
0 0
0 10 20 30 40 50 0 10 20 30 40 50
N, Number of trials N, Number of trials
(a) Estimated mean (b) Estimated variance

Figure 6.7: Estimated mean and variance for computer data shown in Figure 6.6.

telephone transmission, music data stored on compact discs, video data stored on
digital video discs, and facsimile data, to name but a few. The amount of data
can become quite large so that it is important to be able to reduce the amount of
storage required. The process of storage reduction is called data compression. We
now illustrate how this is done. To do so we simplify the discussion by assuming
that the data consists of a sequence of the letters A,B,C,D. One could envision these
letters as representing the chords of a rudimentary musical instrument for example.
The extension to the entire English alphabet consisting of 26 letters will be apparent.
Consider a typical sequence of 50 letters

AAAAAAAAAAABAAAAAAAAAAAAA

AAAAAACABADAABAAABAAAAAAD. (6.22)
To encode these letters for storage we could use the two-bit code
A — 00
B — 01
C — 10
D — 11 (6.23)

which would then require a storage of 2 bits per letter for a total storage of 100
bits. However, as seen above the typical sequence is characterized by a much larger
probability of observing an “A” as opposed to the other letters. In fact, there are
43 A’s, 4 B’s, 1 C, and 2 D’s. It makes sense then to attempt a reduction in storage
by assigning shorter code words to the letters that occur more often, in this case, to
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the “A”. As a possible strategy, consider the code assignment

A - 0

B — 10

C — 110

D — 111 (6.24)

Using this code assignment for our typical sequence would require only 1-43 + 2 -
443-143-2 =60 bits or 1.2 bits per letter. The code given by (6.24) is called
a Huffman code. 1t can be shown to produce less bits per letter “on the average”
[Cover, Thomas 1991].

To determine actual storage savings we need to determine the average length of
the code word per letter. First we define a discrete random variable that measures
the length of the code word. For the sample space S = {A,B,C,D} we define the
random variable

1 81:A
2 82:B
X(Sl): 3 83:C
3 S4:D

which yields the code length for each letter. The probabilities used to generate the
sequence of letters shown in (6.22) are P[A] = 7/8, P[B] = 1/16, P[C] = 1/32,
P[D] = 1/32. As a result the PMF for X is

7
8
pxlkl=¢ 5 k=2
L
16
The average code length is given by

3
BIX] = Y kpxlk]
k=1

7 1 1
= 1.242.— .
87L 16+3 16

= 1.1875 bits per letter.

This results in a compression ratio of 2 : 1.1875 = 1.68 or we require about 40% less
storage.

It is also of interest to note that the average code word length per letter can be
reduced even further. However, it requires more complexity in coding (and of course
in decoding). A fundamental theorem due to Shannon, who in many ways laid the
groundwork for the digital revolution, says that the average code word length per
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letter can be no less than [Shannon 1948]

4
1
H= lzzl P[s;]log, Pisi bits per letter. (6.25)

This quantity is termed the entropy of the source. Additionally, he showed that a
code exists that can attain, to within any small deviation, this minimum average
code length. For our example, the entropy is

7 11 11 |
H = 21 o lo ~ o
82778 T 16 82 /16 33 82 7/32 T 33 82732

= 0.7311 bits per letter.

Hence, the potential compression ratio is 2 : 0.7311 = 2.73 for about a 63% reduc-
tion.

Clearly, it is seen from this example that the amount of reduction will depend
critically upon the probabilities of the letters occuring. If they are all equally likely
to occur, then the minimum average code length is from (6.25) with P[s;] = 1/4

1
H=4 ( log, 1/4> 2 bits per letter.

In this case no compression is possible and the original code given by (6.23) will be
optimal. The interested reader should consult [Cover and Thomas 1991] for further
details.
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Figure 6.8: Weightless bar supporting four weights.

Problems

6.1 (w) The center of mass of a system of masses situated on a line is the point at
which the system is balanced. That is to say that at this point the sum of the
moments, where the moment is the distance from center of mass times mass,
is zero. If the center of mass is denoted by CM, then

M
> (zi — CM)m; =0
i=1
where z; is the position of the ith mass along the z direction and m; is its
corresponding mass. First solve for CM. Then, for the system of weights
shown in Figure 6.8 determine the center of mass. How is this analogous to
the expected value of a discrete random variable?

6.2 (--) (f) For the discrete random variable with PMF

1
px[k]zm k=0,1,...,9

find the expected value of X.

6.3 (w) A die is tossed. The probability of obtaining a 1, 2, or 3 is the same. Also,
the probability of obtaining a 4, 5, or 6 is the same. However, a 5 is twice as
likely to be observed as a 1. For a large number of tosses what is the average
value observed?

6.4 (.- ) (f) A coin is tossed with the probability of heads being 2/3. A head is
mapped into X = 1 and a tail into X = 0. What is the expected outcome of
this experiment?

6.5 (f) Determine the expected value of a Poisson random variable. Hint: Differ-
entiate Y o, A¥/k! with respect to A.

6.6 (t) Consider the PMF px[k] = (2/m)/k? for k =...,—1,0,1,.... The expected

value is defined as
[o¢]

B[X]= Y kpxl[k]

k=—00
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which is actually shorthand for

where the L and U represent “lower” and “upper”, respectively. This may be

written as
Ny

-1
EX]= lim > kpx[k] —i—N[lJiglookaX[k]
k=1

Np——00
L k=N,

where the limits are taken independently of each other. For E[X] to be unam-
biguous and finite both limits must be finite. Show that the expected value
for the given PMF does not exist. If, however, we were to constrain Ny = Ny,
show that the expected value is zero. Note that if N;, = Ny, we are re-
ordering the terms before performing the sum since the partial sums become
2,16:71 kpx|[k], Zi:q kpx|[k], etc. But for the expected value to be unam-
biguous, the value should not depend on the ordering. If a sum is absolutely
summable, any ordering will produce the same result [Gaughan 1975], hence
our requirement for the existence of the expected value.

6.7 (t) Assume that a discrete random variable takes on the valuesk = ..., —1,0,1,...
and that its PMF satisfies px[m + i] = px[m — i], where m is a fixed integer
and 7 = 1,2,.... This says that the PMF is symmetric about the point z = m.
Prove that the expected value of the random variable is E[X]| = m.

6.8 (.- ) (t) Give an example where the expected value of a random variable is not
its most probable value.

6.9 (t) Give an example of two PMFs that have the same expected value.

6.10 (f) A discrete random variable X has the PMF px[k] = 1/5 for k =0,1,2,3,4.
If Y =sin[(7/2)X], find E[Y] using (6.4) and (6.5). Which way is easier?

6.11 (t) Prove the linearity property of the expectation operator
Bla191(X) + a292(X)] = a1 E[g1(X)] + a2 E[g2(X)]
where a; and ay are constants.

6.12 (- ) (f) Determine E[X?] for a geom(p) random variable using (6.5). Hint:
You will need to differentiate twice.

6.13 (--) (t) Can E[X?] ever be equal to E?[X]? If so, when?
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6.14 (.- ) (w) A discrete random variable X has the PMF

px[k] =

o[ 0ol#> 0oIN) 0o

If the experiment that produces a value of X is conducted, find the minimum
mean square error predictor of the outcome? What is the minimum mean
square error of the predictor?

6.15 (.- ) (c) For Problem 6.14 use a computer to simulate the experiment for
many trials. Compare the estimate to the actual outcomes of the computer
experiment. Also, compute the minimum mean square error and compare it
to the theoretical value obtained in Problem 6.14.

6.16 (w) Of the three PMFs shown in Figure 6.9, which one has the smallest vari-
ance? Hint: You do not need to actually calculate the variances.

0.7 0.7 0.7
0.6 0.6 0.6
=05 : =05 : =05

ol il o]

Q04 N .04 N .04
0.3 0.3 0.3 ‘
0

Figure 6.9: PMFs for Problem 6.16.

6.17 (w) If Y = aX + b, what is the variance of Y in terms of the variance of X?

6.18 (f) Find the variance of a Poisson random variable. See the hint for Problem
6.12.

6.19 (f) For the PMF given in Problem 6.2 find the variance.

6.20 (.- ) (f) Find the second moment for a Poisson random variable by using the
characteristic function results shown in Table 6.1.
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6.21 (t) If X is a discrete random variable and c is a constant, prove the following
properties of the variance:

var(c) = 0
var(X +¢) = var(X)
var(cX) = c?var(X).

6.22 (t) If a discrete random variable X has var(X) = 0, prove that X must be
a constant c¢. This provides a converse to the property that if X = ¢, then
var(X) = 0.

6.23 (t) In this problem we prove that if E[X®] exists, meaning that E[|X|*] < oo,
then E[X"] also exists for 0 < r < s. Provide the explanations for the following
steps:

a. For |z| <1, |z|" <1

b. For |z| > 1, |z|" < |z|*

c. For all |z|, |z|" < |z]° + 1

d. BX["] =2 |l "pxle] < 32i(lwil® + Dpxla] = B[ X|"]+ 1 < 0.

6.24 (f) If a discrete random variable has the PMF px[k] = 1/4 for k = —1 and
px[k] = 3/4 for k =1, find the mean and variance.

6.25 (t) A symmetric PMF satisfies the relationship px[—k] = px[k] for k =
...,—1,0,1,.... Prove that all the odd order moments, E[X"] for n odd,
are zero.

6.26 (.- ) (t) A central moment of a discrete random variable is defined as
E[(X — E[X])"], for n a positive integer. Derive a formula that relates the
central moment to the usual moments. Hint: You will need the binomial
formula.

6.27 () (t) If Y = aX + b, find the characteristic function of Y in terms of that
for X. Next use your result to prove that E[Y] = aE[X] + b.

6.28 (.- ) (f) Find the characteristic function for the PMF px[k] = 1/5 for k =
—2.-1,0,1,2.

6.29 (f) Determine the variance of a binomial random variable by using the prop-
erties of the characteristic function. You can assume knowledge of the char-
acteristic function for a binomial random variable.

6.30 (f) Determine the mean and variance of a Poisson random variable by using
the properties of the characteristic function. You can assume knowledge of
the characteristic function for a Poisson random variable.
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6.31 (f) Which PMF px[k] for k = ...,—1,0,1,... has the characteristic function
dx (w) = cosw?

6.32 (=) (c) For the random variable described in Problem 6.24 perform a com-
puter simulation and estimate its mean and variance. How does it compare to
the true mean and variance?
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Appendix 6A

Derivation of E|g(X)| Formula

Assume that X is a discrete random variable taking on values in Sx = {z1,x2,...}
with PMF px[z;]. Then, if Y = g(X) we have from the definition of expected value

ElY]= Z Yipy [yi] (6A.1)

where the sum is over all y; € Sy. Note that it is assumed that the y; are distinct
(all different). But from (5.9)7?

pylyi) = Z px[;]. (6A.2)
{zj:g(zj)=yi}

To simplify the notation we will define the indicator function, which indicates
whether a number z is within a given set A, as

1 z€A
0 otherwise.

Iy(z) = {

Then (6A.2) can be rewritten as
o.¢]
pylyi] = pr[xj]f{o}(yi —g(z5))
j=1

since the sum will include the term px[z;] only if y; — g(z;) = 0. Using this, we
have from (6A.1)

EY] = Y ui Y pxlelloy(yi — g(z;))
i g=l1

o0

= Z Z?/if{o}(yi—g(xj)) px[xj]-

j=1

177
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Now for a given j, g(z;) is a fixed number and since the y;’s are distinct, there is
only one y; for which y; = g(z;). Thus, we have that

Z%’I{O} (yi — g(z;)) = g(x;)

and finally



Appendix 6B

MATLAB Code Used to
Estimate Mean and Variance

Figures 6.6 and 6.7 are based on the following MATLAB code.

% PMFdata.m

b

% This program generates the outcomes for N trials
% of an experiment for a discrete random variable.
% Uses the method of Section 5.9.

% It is a function subprogram.

yA

% Input parameters:

yA

% N - number of trials desired

% xi - values of x_i’s of discrete random variable (M x 1 vector)
% pX - PMF of discrete random variable (M x 1 vector)
yA

% Output parameters:

yA

% x - outcomes of N trials (N x 1 vector)

yA

function x=PMFdata(N,xi,pX)

M=length(xi) ;M2=1length(pX);

if M"=M2
message=’xi and pX must have the same dimension’

end

for k=1:M ; 7 see Section 5.9 and Figure 5.14 for approach used here
if k==

179
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bin(k,1)=pX(k); % set up first interval of CDF as [0,pX(1)]

else
bin(k,1)=bin(k-1,1)+pX(k); % set up succeeding intervals
% of CDF
end

end
u=rand(N,1); % generate N outcomes of uniform random variable

for i=1:N % determine which interval of CDF the outcome lies in
% and map into value of xi
if u(i)>0&u(i)<=bin(1)
x(1,1)=xi(1);
end
for k=2:M
if u(i)>bin(k-1)&u(i)<=bin(k)
x(1,1)=xi(k);
end
end
end



Chapter 7

Multiple Discrete Random
Variables

7.1 Introduction

In Chapter 5 we introduced the concept of a discrete random variable as a mapping
from the sample space S = {s;} to a countable set of real numbers (either finite
or countably infinite) via a transformation X (s;). In effect, the mapping yields
useful numerical information about the outcome of the random phenomenon. In
some instances, however, we would like to measure more than just one attribute
of the outcome. For example, consider the choice of a student at random from a
population of college students. Then, for the purpose of assessing the student’s
health we might wish to know his/her height, weight, blood pressure, pulse rate,
etc. All these measurements and others are used by a physician for a disease risk
assessment. Hence, the mapping from the sample space of college students to the
important measurements of height and weight, for example, would be H(s;) = h;
and W (s;) = w;, where H and W represent the height and weight of the student
selected. In Table 4.1 we summarized a hypothetical set of probabilities for heights
and weights. The table is a two-dimensional array that lists the probabilities P[H =
h; and W = w;]. This information can also be displayed in a three-dimensional
format as shown in Figure 7.1, where we have associated the center point of each
interval of height and weight given in Table 4.1 with the probability displayed. These
probabilities were termed joint probabilities. In this chapter we discuss the case of
multiple random variables. For example, the height and weight could be represented

H

w
and as such, its value is located in the plane (also called R?). We will initially
describe the simplest case of two random variables but all concepts are easily ex-

as a 2 X 1 random vector

181
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Figure 7.1: Joint probabilities for heights and weights of college students.

tended to any finite number of random variables (see Chapter 9 for this extension).
As we will see throughout our discussions, the new and very important concept
will be the dependencies between the multiple random variables. Questions such
as “Can we predict a person’s height from his weight?” naturally arise and can be
addressed once we extend our description of a single random variable to multiple
random variables.

7.2 Summary

The concept of jointly distributed discrete random variables is illustrated in Figure
7.2. Two random variables can be thought of as a random vector and assigned a joint
PMF px y|zi,y;] as described in Section 7.3, and which has Properties 7.1 and 7.2.
The joint PMF may be obtained if the probabilities on the original experimental
sample space is known by using (7.2) and as illustrated in Example 7.1. Once
the joint PMF is specified, the probability of any event concerning the random
variables is determined via (7.3). The marginal PMFs of the two random variables,
which are the probabilities of each random variable taking on its possible values, is
obtained from the joint PMF using (7.5) and (7.6). However, the joint PMF is not
uniquely determined from the marginal PMFs. The joint CDF is defined by (7.7)
and evaluated using (7.8). It has the usual properties as summarized via Properties
7.3-7.6. Random variables are defined to be independent if the probabilities of
all the joint events can be found as the product of the probabilities of the single
events. If the random variables are independent, then the joint PMF factors as in
(7.11). Given a joint PMF, independence can be established by determining if the
PMF factors. Conversely, if we know the random variables are independent, and
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we are given the marginal PMFs, then the joint PMF is found as the product of
the marginals. The joint PMF of a transformed vector random variable is given by
(7.12) and illustrated in Example 7.6. The PMF for the sum of two independent
discrete random variables can be found using (7.22) or via characteristic functions
using (7.24). The expected value of a function of two random variables is found
from (7.28). Also, the variance of the sum of two random variables is given by
(7.33) and involves the covariance, which is defined by (7.34). The interpretation of
the covariance is given in Section 7.8 and is seen to provide a quantification of the
knowledge of the outcome of one random variable on the probability of the other.
Independent random variables have a covariance of zero, but the converse is not
true. In Section 7.9 linear prediction of one random variable based on observation
of another random variable is explored. The optimal linear predictor is given by
(7.41). A variation of this prediction equation results in the important parameter
called the correlation coefficient (7.43). It quantifies the relationship of one random
variable with another. However, a nonzero correlation does not indicate a causal
relationship. The joint characteristic function is introduced in Section 7.10 and
is defined by (7.45) and evaluated by (7.46). It is shown to provide a convenient
means of determining the PMF for a sum of independent random variables. In
Section 7.11 a method to simulate a random vector is described. Also, methods to
estimate joint PMFs, marginal PMFs, and other quantities of interest are given.
Finally, in Section 7.12 an application of the methods of the chapter to disease risk
assessment is described.

7.3 Jointly Distributed Random Variables

We consider two discrete random variables that will be denoted by X and Y. As
alluded to in the introduction, they represent the functions that map an outcome
of an experiment s; to a value in the plane. Hence, we have the mapping

for all s; € S. An example is shown in Figure 7.2 in which the experiment consists
of the simultaneous tossing of a penny and a nickel. The outcome in the sample
space § is represented by a TH for example, if the penny comes up tails and the
nickel comes up heads. Explicitly, the mapping is
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A

HH o——>_ | Y

TH o '1\

S

Figure 7.2: Example of mapping for jointly distributed discrete random variables.

0
ifSi:TT
_0_
0]
if s; = TH
X(s4) ) 1]
Y(s) | | [1]
ifs; =HT
_0_
.
if s; = HH.
\ -1-

Two random variables that are defined on the same sample space S are said to be
jointly distributed. In this example, the random variables are also discrete random
variables in that the possible values (which are actually 2 x 1 vectors) are countable.
In this case there are just four vector values. These values comprise the sample
space which is the subset of the plane given by

oo LTI

We can also refer to the two random variables as the single random vector [X YT,
where T' denotes the vector transpose. Hence, we will use the terms multiple random
variables and random vector interchangeably. The values of the random vector will
be denoted either by (x,y), which is an ordered pair or a point in the plane, or by
[zy]", which denotes a two-dimensional vector. These notations will be synonomous.

The size of the sample space for discrete random variables can be finite or count-
ably infinite. In the example of Figure 7.2, since X can take on 2 values, denoted
by Nx = 2, and Y can take on 2 values, denoted by Ny = 2, the total number
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of elements in Sxy is NxNy = 4. More generally, if X can take on values in
Sx = {z1,22,...,2n, } and Y can take on values in Sy = {y1,92,...,Yn, }, then
the random vector can take on values

SX,Y:SX XSYZ{((IIZ',yj):i:1,2,...,Nx;j:1,2,...,Ny}

for a total of Nxy = NxNy values. This is shown in Figure 7.3 for the case of
Nx = 4 and Ny = 3. The notation A x B, where A and B are sets, denotes a
cartesian product set. It consists of all ordered pairs (a;,b;), where a; € A and
b; € B. If either Sx or Sy is countably infinite, then the random vector will also

Y )
A
ysl o e ° °
yo| @ @ ° ° Sxy = Sx x Sy
Sy
yi| o o ° °
: x
1 T2 T3 T4

Sx

Figure 7.3: Example of sample space for jointly distributed discrete random vari-
ables.

have a countably infinite set of values.

Just as we defined the PMF for a single discrete random variable in Chapter 5
as px|z;] = P[X(s8) = z;], we can define the joint PMF (or sometimes called the
bivariate PMF) as

px,y[xi,yj] :P[X(S) :xi,Y(S) :yj] 7, = 1,2,...,Nx;j = 1,2,...,Ny.

Note that the set of all outcomes s for which X (s) = z;,Y (s) = y; is the same as
the set of outcomes for which
Yj

so that for the random vector to have the value [z;y;]7, both X(s) = z; and Y (s) =
yj must be satisfied. Thus, the comma used in the statement X (s) = z;, Y (s) = y; is
to be read as “and.” An example of the joint PMF for students’ heights and weights
is given in Figure 7.1 in which we set X = height and Y = weight and the vertical
axis represents px,y[z;,y;]. To verify that a set of probabilities as in Figure 7.1 can

X(s)
Y(s)
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be viewed as a joint PMF we need only verify the usual properties of probability.
Assuming Nx and Ny are finite, these are:
Property 7.19 - Range of values of joint PMF

OSPX,Y[a:uy]]S]- 'L.:]-727"'7NX;].:1727"'7NY-

O
Property 7.20 - Sum of values of joint PMF
Nx Ny
S pxylmiy) =1
i=1 j=1
O

and similarly for a countably infinite sample space. For the coin toss example of
Figure 7.2 we require that

0<pxy[0,0] <1
0 S pX,Y[Oa ]-] S 1
0<pxy[l,0]<1
0 SpX,Y[la]-] S 1
and
11
SN pxyligl =1
i=0 j=0

Many possibilities exist. For two fair coins that do not interact as they are tossed
(i.e., they are independent) we might assign px y[i,j] = 1/4 for all ¢ and j. For two
coins that are weighted but again do not interact with each other as they are tossed,
we might assign

(1-p)? i=0,j=0

(I—pp 1=0,j=1

p(l—p) i=1,j=0

p? i=1,j=1

px,y[i,j] =

if each coin has a probability of heads of p. It is easily shown that Properties 7.1
and 7.2 hold for any 0 < p < 1. In obtaining these values for the joint PMF we have
used the concept of equivalent events, which allows us to determine probabilities
for events defined on Sy y from those defined on the original sample space S. For
example, since the events TH and (0, 1) are equivalent as seen in Figure 7.2, we have
that

1]

pX,y[O, 1] = P[X(S) = 0, Y(S)
0,Y(s;) =1}] (equivalent event in S)

P[{SZ : X(Sl) =
P[s; = TH] (mapping is one-to-one)

= (I-pp (independence)
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where we have assumed independence of the penny and nickel toss subexperiments
as in Section 4.6.177.

In general, the procedure to determine the joint PMF from the probabilities
defined on § depends on whether the random variable mapping is one-to-one or
many-to-one. For a one-to-one mapping from S to Sx y we have

pxylzi,y)l = PIX(s) =,Y(s) =yl
= Pl{s: X(s) =x;,Y(s) = y;}]
P[{si}] (7.1)

where it is assumed that sy, is the only solution to X (s) = z; and X(s) = y;. For a
many-to-one transformation the joint PMF is found as

pxy[Ti,yj] = > P[{sk}]. (7.2)

{k: X (Sk)=2i,Y (Sk)=y; }

This is the extension of (5.1)?7 and (5.2)?? to a two-dimensional random vector.
An example follows.

Example 7.43 - Two dice toss with different colored dice

A red die and a blue die are tossed. The die that yields the larger number is chosen.
If they both have the same number, the red die is chosen. The numerical outcome
of the experiment is defined to be 0 if the blue die is chosen and 1 if the red die is
chosen, along with its corresponding number of dots. The random vector is therefore
defined as

Y - 0 blue die chosen
- 1 red die chosen

Y = number on chosen die.

The outcomes of the experiment can be represented by (i,7) where 7 = 0 for blue,
i = 1 for red, and j is the number of dots observed. What then is px y[1,3], for
example? To determine this we first list all outcomes in Table 7.1 for each number of
dots observed on the red and blue dice. It is seen that the mapping is many-to-one.
For example, if the red die displays 6 dots, then the outcome is the same, which is
(1,6), for all possible blue outcomes. To determine the desired value of the PMF,
we assume that each outcome in S is equally likely and therefore is equal to 1/36.
Then, from (7.2)

pxy[l,3] = > P{si}]

{k:X(Sk)=1,Y(Sk)=3}
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blue=1 | blue=2 | blue=3 | blue=4 | blue=5 | blue=6
red=1 | (1,1) (0,2) (0,3) (0,4) (0,5) (0,6)
red=2 | (1,2) (1,2) (0,3) (0,4) (0,5) (0,6)
red=3 | (1,3) (1,3) (1,3) (0,4) (0,5) (0,6)
red=4 | (1,4) (1,4) (1,4) (1,4) (0,5) (0,6)
red=5 | (1,5) (1,5) (1,5) (1,5) (1,5) (0,6)
red=6 | (1,6) (1,6) (1,6) (1,6) (1,6) (1,6)

Table 7.1: Mapping of outcomes in S to outcomes in Sy y. The outcomes of (X,Y)
are (7,7), where i indicates the color of the die with more dots (red=1, blue=0), j
indicates the number of dots on that die.

since there are three outcomes of the experiment in S that map into (1,3). They
are (red=3,blue=1), (red=3,blue=2), and (red=3,blue=3).

¢
Finally, as in the case of a single random variable we can use the joint PMF to
compute probabilities of events defined on Sxy» = Sx X Sy. For the event A C Sx v,
the probability is

P[(X,Y) € A] = > px.y [T, ;- (7.3)
{0.5):(mi sy ) €A}
Once we have knowledge of the joint PMF, we no longer need to retain the underlying
sample space S of the experiment. All our probability calculations can be made
concerning values of (X,Y’) by using (7.3).

7.4 Marginal PMFs and CDFs

If the joint PMF is known, then the PMF for X, i.e., px[z;], and the PMF for Y,
i.e., pyly;], can be determined. These are termed the marginal PMFs. Consider
first the determination of px|z;]. Since {X = z;} does not specify any particular
value for Y, the event {X = x;} is equivalent to the joint event {X = z;,Y € Sy }.
To determine the probability of the latter event we assume the general case of a
countably infinite sample space. Then, (7.3) becomes

P(X,Y)eAl= Y > pxylzoyl (7.4)

i—1 j—1

Next let A = {z}} x Sy, which is illustrated in Figure 7.4 for ¥ = 3. Then, we have
P[(X,Y)E{(L‘k}XSY] = P[X:(L‘k,YESY]
= P[X = (L‘k]

= px[zg]
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A= {273} X SY

y . . .

A . . .
yS [ ] [} [ ] e o o
y2 [} [ @ °© o o
Y1 [ ] [ ] @ o o o

> x
1 T2 I3 T4

Figure 7.4: Determination of marginal PMF value px[z3] from joint PMF
Px,v[%i,y;] by summing along y direction.

so that from (7.4) with ¢ = k only
o
px[zr] = pxyle ys) (7.5)
j=1

and is obtained for £ = 3 by summing the probabilities along the column shown
in Figure 7.4. The terminology “marginal” PMF originates from the process of
summing the probabilities along each column and writing the results in the margin
(below the z axis), much the same as the process for computing the marginal prob-
ability discussed in Section 4.377. Likewise, by summing along each row or in the z
direction we obtain the marginal PMF for Y as

Py [yk] = ZPX,Y[:Ei,yk]- (7.6)
-1

In summary, we see that from the joint PMF we can obtain the marginal PMFs.
Another example follows.

Example 7.44 - Two coin toss

As before we toss a penny and a nickel and map the outcomes into a 1 for a head
and a 0 for a tail. The random vector is (X,Y’), where X is the random variable
representing the penny outcome and Y is the random variable representing the nickel
outcome. The mapping is shown in Figure 7.2. Consider the joint PMF

L i=0,j=0

1 . .
.. g 1=0,7=1

/L? — . .
pX,Y[ ]] % 2217]20
T i=1j=1
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Then, the marginal PMFs are given as

1 1 1 1 .
. . gtg=7 =0
) = Tperteil={ 13017
=0 its=1 =
1 1 1 3 .
—+—:— ]:0
. o 8 T17™38
pyli] = ZPX,Y[ZJ]:{ 1,1 _5 .
iz sta=x J=1

As expected, i, px[i] = 1 and Z}:o py[j] = 1. We could also have arranged the
joint PMF and marginal PMF values in a table as shown in Table 7.2. Note that

0

.
|

J 1 | pxli]

IO

Q@|w | W= ool
|t | NI~ ool

Table 7.2: Joint PMF and marginal PMF values for Examples 7.2 and 7.4.

the marginal PMFs are found by summing across a row (for px) or a column (for
py) and are written in the “margins.”

¢

A Joint PMF cannot be determined from marginal PMFs

Having obtained the marginal PMFs from the joint PMF, we might suppose we
could reverse the process to find the joint PMF from the marginal PMFs. However,
this is not possible in general. To see why, consider the joint PMF summarized in
Table 7.3. The marginal PMFs are the same as the ones shown in Table 7.2. In

j=0 j=1]pxli
_ 1 3 1
i1=0] 3 16 1
] = 5 7 3
16 16 4
Py (] 3 s

Table 7.3: Joint PMF values for “caution” example.

fact, there are an infinite number of joint PMF's that have the same marginal PMFs.
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Hence,
joint PMF = marginal PMFs

but
marginal PMFs % joint PMF.

/N

A joint cumulative distribution function (CDF) can also be defined for a random
vector. It is given by
FX,Y(iE,y) :P[X S(I,‘,ng] (77)

and can be found explicitly by summing the joint PMF as
Fxy(z,y)= Y.  pxyle,yl. (7.8)

An example is shown in Figure 7.5, along with the joint PMF. The marginal CDF's
can be easily found from the joint CDF as

Fx(z) = PX<z]=P[X <zY <oo|=Fxy(z,)
Fy(y) = PY <y]=P[X <o0,Y <y]=Fxy(o0,y).

The joint CDF has the usual properties which are:
Property 7.21 - Range of values

0<Fxy(z,y) <1

O
Property 7.22 - Values at “endpoints”
Fxy(—o00,—00) = 0
FX,y(OO, OO) =
O
Property 7.23 - Monotonically increasing
Fxy(z,y) monotonically increases as « and/or y increases.
O

Property 7.24 - “Right” continuous

As expected, the joint CDF takes the value after the jump. However, in this case
the jump is a line discontinuity as seen for example in Figure 7.5b. After the jump
means as we move in the northeast direction in the z-y plane.
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pX,Y[Z.aj]

(a) Joint PMF (b) Joint CDF

Figure 7.5: Joint PMF and corresponding joint CDF.

O
The reader is asked to verify some of these properties in Problem 7.17. Finally, to
recover the PMF we can use

pxylziyl = Fxy (@, u)) = Fxy(z,97) — Fxy(«7,4) + Fxy(z7,y57). (7.9)

The reader should verify this formula for the joint CDF shown in Figure 7.5b. In
particular, consider the joint PMF at the point (z;,y;) = (2,2) to see why we need
four terms.

7.5 Independence of Multiple Random Variables

Consider the experiment of tossing a coin and then a die. The outcome of the coin
toss is denoted by X and equals 0 for a tail and 1 for a head. The outcome for
the die is denoted by Y, which takes on the usual values 1,2,3,4,5,6. In determining
the probability of the random vector (X,Y’) taking on a value, there is no reason
to believe that the probability of ¥ = y; should depend on the outcome of the coin
toss. Likewise, the probability of X = z; should not depend on the outcome of the
die toss (especially since the die toss occurs at a later time). We expect that these
two events are independent. The formal definition of independent random wvariables
X and Y is that they are independent if all the joint events on Sy y- are independent.
Mathematically X and Y are independent random variables if for all events A C Sx
and B C Sy

P[X € A)Y € B] = P[X € A|P[Y € B]. (7.10)

The probabilities on the right-hand-side of (7.10) are defined on Sy and Sy, re-
spectively (see Figure 7.3 for an example of the relationship of Sx,Sy to Sxy).
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The utility of the independence property is that the probabilities of joint events
may be reduced to probabilites of “marginal events” (defined on Sx and Sy ), which
are always easier to determine. Specifically, if X and Y are independent random
variables, then it follows from (7.10) that

px,v [T, y;] = px[xilpy[y;] (7.11)

as we now show. If A = {z;} and B = {y;}, then the left-hand-side of (7.10)
becomes

PIX €AY €B] = PX=u,Y =y

= px,y[Ti )]
and the right-hand-side of (7.10) becomes
P[X € AP[Y € B] = px[zi]py[y;]-

Hence, if X and Y are independent random wvariables, the joint PMF factors into
the product of the marginal PMFs. Furthermore, the converse is true — if the joint
PMF factors, then X and Y are independent. To prove the converse assume that
the joint PMF factors according to (7.11). Then for all A and B we have

P[X €AY eB] = Z Z X,y [T, yj) (from (7.3))
{i:x;€A} {j:y;€B}
= Z Z px|[zilpy [yj] (assumption)
{i:xiGA} {j:ijB}
= > pxlz] Y. pyly)]
{i:wi€A} {:y;€B}
= P[X € A]PY € B].

We now illustrate the concept of independent random variables with some examples.

Example 7.45 - Two coin toss - independence

Assume that we toss a penny and a nickel and that as usual a tail is mapped into
a 0 and a head into a 1. If all outcomes are equally likely or equivalently the joint
PMF is given in Table 7.4, then the random variables must be independent. This is
because we can factor the joint PMF as

prestidl = (3) (3) = pxliori

for all ¢ and j for which px y[i,j] is nonzero. Furthermore, the marginal PMFs
indicate that each coin is fair since px[0] = px[1] = 1/2 and py[0] = py[l] = 1/2.
¢
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]
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Table 7.4: Joint PMF and marginal PMF values for Example 7.3.

Example 7.46 - Two coin toss - dependence

Now consider the same experiment but with a joint PMF given in Table 7.2. We
see that pxy[0,0] = 1/8 # (1/4)(3/8) = px[0]py[0] and hence X and Y cannot
be independent. If two random variables are not independent, they are said to be
dependent

¢

Example 7.47 - Two coin toss - dependent but fair coins
Consider the same experiment again but with the joint PMF given in Table 7.5.
Since px,y[0,0] = 3/8 # (1/2)(1/2) = px[0]py[0], X and Y are dependent. However,

]

j=0 j=1

’\@
Nl Nof— | ™S
—

~
N | 0ol oolw
Nl | ooleo ool

Table 7.5: Joint PMF and marginal PMF values for Example 7.5.

by examining the marginal PMFs we see that the coins are fair since p = 1/2 and
therefore we might conclude that the random variables were independent. This is
incorrect and underscores the fact that the marginal PMFs do not tell us much
about the joint PMF. The joint PMF of Table 7.4 also has the same marginal PMFs
but there X and Y were independent.

¢
Finally, note that if the random variables are independent, the joint CDF factors
as well. This is left as an exercise to the student (see Problem 7.20). Intuitively, if
X and Y are independent random variables, then knowledge of the outcome of X
does not change the probabilities of the outcomes of Y. This means that we cannot
predict Y based on knowing that X = z;. Our best predictor of Y is just E[Y],
as described in Example 6.377. When X and Y are dependent, however, we can
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improve upon the predictor E[Y] by using the knowledge that X = z;. How we
actually do this is described in Section 7.9.

7.6 Transformations of Multiple Random Variables

In Section 5.7?7 we have seen how to find the PMF of Y = ¢(X) if the PMF of X
is given. It is determined using

pylvl= > pxlzjl.
{i:9(zj)=vi}
We need only sum the probabilities of the x;’s that map into y;. In the case of

two discrete random variables X and Y that are transfomed into W = g(X,Y’) and
Z = h(X,Y), we have the similar result

pwzlwizl= Y > pxyleew]  i=12,...,Nw;j=12,...,Ng

{wotzzmn}
(7.12)
where Ny and/or Nz may be infinite. An example follows.
Example 7.48 - Independent Poisson random variables
Assume that the joint PMF is given as the product of the marginal PMFs, where
each marginal PMF is a Poisson PMF. Then,

Ay
kU1

Note that X ~ Pois(Ax), Y ~ Pois(Ay) and X and Y are independent random
variables. Consider the transformation

pX,Y[k,l] :eXp[—(Ax—i-)\y)] k=0,1,...;1=0,1,... (7.13)

W = g(X,Y)=X
7 = hX,Y)=X+Y. (7.14)

The possible values of W are those of X, which are 0,1,..., and the possible values
of Z are also 0,1,.... According to (7.12), we need to determine all (k,[) so that

g(xkayl) = wy
h(xk,yl) = Zj. (7.15)
But z and y; can be replaced by k and [, respectively, for £k = 0,1,... and [ =

0,1,.... Also, w; and z; can be replaced by ¢ and j, respectively, for ¢ = 0,1,... and
j=0,1,.... The transformation equations become

glk,l) = 1
h(k,0l) = j
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which from (7.14) become

1 = k

j = k+I1.
Solving for (k,l) for the given (i,j) desired, we have that k =4 and [ = j —i > 0,
which is the only solution. Note that from (7.13) the joint PMF for X and Y is

nonzero only if [ = 0,1,.... Therefore, we must have [ > 0 so that [ = 5 — i > 0.
From (7.12) we now have

pwzli,j] = YS T pxylk]

k=0 [=0
{(k,1):k=i,l=j—i>0}
= pxy[i,j — duliulj — ] (7.16)

where u[n] is the discrete unit step function defined as

0 n=...,—-2,-1
ull =91 o1

Finally, then we have upon using (7.13)

AE AT
pwzli,j] = exp[—(Ax + /\y)]ﬁu{i]u[j — 1] (7.17)
A M i =0,1,...
— eXp[—(Ax—Fky)]ﬁ j:li il (7.18)
&

A Use the discrete unit step function to avoid mistakes

As we have seen in the preceding example, the discrete unit step function was
introduced to designate the region of the w-z plane over which pyy, [, j] is nonzero.
A common mistake in problems of this type is to disregard this region and assert
that the joint PMF given by (7.18) is nonzero over 4 = 0,1,...;5 = 0,1,.... Note,
however, that the transformation will generally change the region over which the
new joint PMF is nonzero. It is as important to determine this region as it is to
find the analytical form of py, 7. To avoid possible errors it is advisable to replace
(7.13) at the outset by

A
k!

px vk, l] = exp[—(Ax + Ay)] u[k]u[l].
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Then, the use of the unit step functions will serve to keep track of the nonzero PMF
regions before and after the transformation. See also Problem 7.25 for another

example.

We sometimes wish to determine the PMF of Z = h(X,Y) only, which is a trans-
formation from (X,Y’) to Z. In this case, we can use an auziliary random variable.
That is to say, we add another random variable W so that the transformation be-
comes a transformation from (X,Y’) to (W, Z) as before. We can then determine
pw,z[w;, z;] by once again using (7.12), and then pz, which is the marginal PMF,
can be found as

pzlzl= > pwazlwi ] (7.19)
{i:w; ESw }

As we have seen in the previous example, we will first need to solve (7.15) for z; and
y;. To facilitate the solution we usually define a simple auxiliary random variable
such as W = X.

Example 7.49 - PMF for sum of independent Poisson random variables
(continuation of previous example)

To find the PMF of Z = X +Y from the joint PMF given by (7.13), we use (7.19)
with W = X. We then have Sy = Sx = {0,1,...} and

pzlil = > pwazlij] (from (7.19)) (7.20)
=0

Ay

W’U,[Z]U[j —14] (from (7.17))

= > exp[-(Ax +Ay)]
=0

and since ufi] =1 for i =0,1,... and u[j —i| =1for i =0,1,...,7 and u[j —i] =0
for 4 > 7, this reduces to

i=0,1,....

o PUB i
pz[j] = Zexp[—()\x + AY)]W
=0

Note that Z can take on values j = 0,1,... since Z = X +Y and both X and Y
take on values in {0,1,...}. To evaluate this sum we can use the binomial theorem



198 CHAPTER 7. MULTIPLE DISCRETE RANDOM VARIABLES

as follows

J

pali) = el + 0l 3

J : o
= exp[—(AXHY)]]l'Z (-Z) i\

T i=0
1 .
= exp[—(Ax + Ay)]ﬁ Ax + Ay)’ (use binomial theorem)

= exp(—A)% (let A= Ax + Ay)

for 5 = 0,1,.... This is recognized as a Poisson PMF with A = Ax + Ay. By this
example then, we have shown that if X ~ Pois(Ax), Y ~ Pois(\y), and X and
Y are independent, then X + Y ~ Pois(Ax + Ay). This is called the reproducing
PMF property. It is also extendible to any number of independent Poisson random
variables that are added together.

o
The formula given by (7.20) when we let pw z[i,j] = pxy[i,j — ¢] from (7.16) is
valid for the PMF of the sum of any two discrete random variables, whether they
are independent or not. Summarizing, if X and Y are random variables that take
on integer values from —oo to +00, then Z = X + Y has the PMF

pzlil = Y pxylij —il. (7.21)

1=—00

This result says that we should sum all the values of the joint PMF such that the
x value, which is 4, and the y value, which is 5 — 4, sums to the z value of j. In
particular, if the random variables are independent, then since the joint PMF must
factor, we have the result

pzlil = Y pxlilpyli — . (7.22)

1=—00

But this summation operation is a discrete convolution [Jackson 1990]. It is usually
written succinctly as pz = px % py, where x denotes the convolution operator. This
result suggests that the use of Fourier transforms would be a useful tool since a
convolution can be converted into a simple multiplication in the Fourier domain.
We have already seen in Chapter 5 that the Fourier transform (defined with a +7)
of a PMF px|[k] is the characteristic function ¢x(w) = Elexp(jwX)]. Therefore,
taking the Fourier transform of both sides of (7.22) produces

$z(w) = ¢x (w)py (w) (7.23)
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and by converting back to the original sequence domain, the PMF becomes

pzli] = FH {x (w)ey (w)} (7.24)

where F~! denotes the inverse Fourier transform. An example follows.

Example 7.50 - PMF for sum of independent Poisson random variables
using characteristic function approach

From Section 6.777 we showed that if X ~ Pois()), then

¢x (w) = exp [A(exp(jw) — 1)]

and thus using (7.23) and (7.24)

pzlil = F~ {exp[Ax(exp(jw) — 1)] exp Ay (exp(jw) — 1)}
= FH{exp [(Ax +Ay)(exp(jw) — )]}

But the characteristic function in the braces is that of a Poisson random variable.
Using Property 6.5 we see that Z ~ Pois(Ax + Ay). The use of characteristic func-
tions for the determination of the PMF for a sum of independent random variables
has considerably simplified the derivation.

&

In summary, if X and Y are independent random variables with integer values, then
the PMF of Z = X +Y is given by

pzlk] = F ' {¢x(w)ey(w)}

= [ ox(@pr () exp(—juk) o

o (7.25)

When the sample space Sx,y is finite, it is sometimes possible to obtain the
PMF of Z = g(X,Y) by a direct calculation, thus avoiding the need to use (7.19).
The latter requires one to first find the transformed joint PMF py 7. To do so we

1. Determine the finite sample space Sz
2. Determine which sample points (z;,y;) in Sxy map into each z;, € Sz
3. Sum the probabilities of those (z;,y;) sample points to yield pz[z].
Mathematically, this is equivalent to
pzla = DY) pxyley) (7.26)
{(i:9):2k=g(zi,y;)}

An example follows.

Example 7.51 - Direct computation of PMF for transformed random
variable, Z = g(X,Y)
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Consider the transformation of the random vector (X,Y’) into the scalar random
variable Z = X2 + Y2, The joint PMF is given by

2 i=0,j=0

1 . .
L v =17=0

. g =17

Z? = . .
px.y[t, ] L0 =1
S i=1j=1

To find the PMF for Z first note that (X,Y) takes on the values (7, j) = (0,0), (1,0),
(0,1),(1,1). Therefore, Z must take on the values z;, = i2 + j2 = 0,1,2. Then from
(7.26)

pz0] = Y Y pxylid]

{(:9):0=i>+52}

0 0
= > pxylij)

i=0 j=0
3
= pxy[0,0] = 3
and similarly
2
pz[1] = pxy[0,1]+pxy[1,0] = 3
3
pz[2] = pxy[l,1]= 3

7.7 Expected Values

In addition to determining the PMF of a function of two random variables, we
are frequently interested in the average value of that function. Specifically, if Z =
g(X,Y’), then by definition its expected value is

E[Z] = Zzipz[zi]- (7.27)

To determine E[Z] according to (7.27) we need to first find the PMF of Z and
then perform the summation. Alternatively, by a similar derivation to that given in
Appendix 6A, we can show that a more direct approach is

BIZ1 =Y glwiyj)px.ylzi ). (7.28)
P
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To remind us that we are using pxy as the averaging PMF, we will modify our
previous notation from E[Z] to Ex y[Z], where of course, Z depends on X and Y.
We therefore have the useful result that the expected value of a function of two
random variables is

Exylg(X,Y)] =YY glwi yj)px.y(zi,y;]- (7.29)
v

Some examples follow.
Example 7.52 - Expected value of a sum of random variables
IfZ=g9g(X,Y)=X+Y, then

Exy[X+Y] = Z Z(ﬂii + yj)px v|Ti, yj]
(2
= Z Z Tipx,y %, y;) + Z Z yipx,y[zi, yj]
i g i g
= ZIBZ pr,y[l“z',yj] +Zyj ZPX,Y[wi,yj] (from (7.6))
j TN

3

px [zi] pv[y;]
= Ex[X]+ Ey[Y] (definition of expected value).

Hence, the expected value of a sum of random variables is the sum of the expected
values. Note that we now use the more descriptive notation Ex[X] to replace E[X]
used previously.

¢
Similarly

ExylaX +bY] =aEx[X]|+ bEy[Y]

and thus as we have seen previously for a single random variable, the expectation
Exy is a linear operation.

Example 7.53 - Expected value of a product of random variables

If g(X,Y) = XY, then

Exy[XY] =Y mypx.ylziys
i

We cannot evaluate this further without specifying px y. If, however, X and Y are
independent, then since the joint PMF factors, we have

Exy[XY] = Zinyjpx[wi]py[yj]

= Z Tipx %] Z yipy [y;]
i J

= Ex[X]Ey]Y]. (7.30)
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More generally, we can show by using (7.29) that if X and Y are independent, then
(see Problem 7.30)

Exylg(X)h(Y)] = Ex|[g(X)]Ey [h(Y)]. (7.31)

¢

Example 7.54 - Variance of a sum of random variables
Consider the calculation of var(X + Y'). Then, letting Z = g(X,Y) = (X +Y —
Exy[X +Y])?, we have

var(X +Y)
= Ey[Z] (definition of variance)
= Exy[g(X,Y)] (from (7.28))

lg

= Exy[(X+Y — Exy[X +Y])?%
[
[

= Exy[[(X — Ex[X]) + (Y — Ey[Y])]*]
= Exy[(X — Ex[X])? +2(X — Ex[X]))(Y — Ey[Y))
+ (Y — Ey[Y))?]
= Ex[(X — Ex[X])’] + 2Exy[(X — Ex[X])(Y — Ey[Y])]
+ Ey[(Y — Ey[Y])?] (linearity of expectation)

= var(X) +2Exy[(X — Ex[X])(Y — Ey[Y])] + var(Y) (definition of variance)
where we have also used Ex y[g(X)] = Ex[¢g(X)] and Ex y[h(Y)] = Ey[h(Y)] (see
Problem 7.28). The cross-product term is called the covariance and is denoted by
cov(X,Y') so that
cov(X,Y) = Exy[(X — Ex[X])(Y — Ey[Y])]. (7.32)

Its interpretation is discussed in the next section. Hence, we finally have that the
variance of a sum of random variables is

var(X +Y) = var(X) + var(Y) + 2cov(X,Y). (7.33)
Unlike the expected value or mean, the variance of a sum is not in general the sum
of the variances. It will only be so when cov(X,Y) = 0. An alternative expression
for the covariance is (see Problem 7.34)

cov(X,Y) = Exy[XY] — Ex[X]Ey[Y] (7.34)

which is analogous to Property 6.177 for the variance.
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7.8 Joint Moments

Joint PMFs describe the probabilistic behavior of two random variables completely.
At times it is important to answer questions such as “If the outcome of one random
variable is a given value, what can we say about the outcome of the other random
variable? Will it be about the same or have the same magnitude or have no relation-
ship to the other random variable?” For example, in Table 4.1 which lists the joint
probabilities of college students having various heights and weights, there is clearly
some type of relationship between height and weight. It is our intention to quantify
this type of relationship in a succinct and meaningful way as opposed to a listing
of probabilities of the various height-weight pairs. The concept of the covariance
allows us to accomplish this goal. Note from (7.32) that the covariance is a joint
central moment. To appreciate the information that it can provide we refer to the
three possible joint PMFs depicted in Figure 7.6. The possible values of each joint
PMF are shown as solid circles and each possible outcome has a probability of 1/2.
In Figure 7.6a if X =1, then Y =1, and if X = —1, then Y = —1. The relationship

) ) Yy
A . A . A )
1+ ,o', ‘e 1 \\ 1T ,o',
—— S > T | h R } > T | M <~ } > T
S P 1 -1 ! 1.2 ~1
s 1+ 14+ Tw A & RN
(a) pxy[ — 1,-1] = (b) pxy[l,-1] = (c) pxy[L,1] =
px,y[1,1] =1/2 px,y[— 1,1 =1/2 px,v[l,—1] =1/2

Figure 7.6: Joint PMFs depicting different relationships between the random vari-
ables X and Y.

is Y = X. Note, however, that we cannot determine the value of Y until after the
experiment is performed and we are told the value of X. If X = z;, then we know
that Y = X = x,. Likewise, in Figure 7.6b we have that ¥ = —X and so if X = 1,
then Y = —z1. However, in Figure 7.6c if X = 1, then Y can equal either +1 or
—1. On the average if X = 1, we will have that ¥ = 0 since Y = £1 with equal
probability. To quantify these relationships we form the product XY, which can
take on the values +1, —1, and +£1 for the joint PMFs of Figures 7.6a, 7.6b, and
7.6¢, respectively. To determine the value of XY on the average we define the joint
moment as Ex y[XY]. From (7.29) this is evaluated as

Exy[XY] =Y mypx.ylziys) (7.35)
i
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The reader should compare the joint moment with the usual moment for a single
random variable Ex[X] = )", z;px[z;]. For the joint PMFs of Figure 7.6 the joint

moment is
2 2
Exy[XY] = Y Y miypx.ylziy)]
i=1 j=1
1 1 .

= (1)(1)5 + (—1)(—1)5 =1 (for PMF of Figure 7.6a)
1 1

= (J(=D5+(-1)(1)5==1 (for PMF of Figure 7.6b)
1 1

= (1)(—1)5 + (1)(1)5 =0 (for PMF of Figure 7.6¢)

as we might have expected.
In Figure 7.6a note that Ex[X] = Ey[Y] = 0. If they are not, as for the joint
PMF shown in Figure 7.7 in which Ex y[XY] = 2, then the joint moment will

Y
A
2 1 o
.
.
.
.
14 .
.
.
.
Re
| Lz
= T —
. 1 2
.

Figure 7.7: Joint PMF for nonzero means with equally probable outcomes.

depend on the values of the means. It is seen that even though the relationship
Y = X is preserved, the joint moment has changed. To nullify this effect of having
nonzero means influence the joint moment it is more convenient to use the joint

central moment
Exy[(X — Ex[X])(Y — Ey[Y])] (7.36)

which will produce the desired +1 for the joint PMF of Figure 7.7. This quantity
is recognized as the covariance of X and Y so that we denote it by cov(X,Y). As
we have just seen the covariance may be positive, negative, or zero.

If X and Y are independent random variables, then from (7.31) we have

cov(X,Y) = Exy[(X — Ex[X])(Y — Ey[Y])]
= Ex[X - Ex[X]|Ey[Y — Ey[Y]] = 0. (7.37)

Hence, independent random variables have a covariance of zero. This also says that
for independent random variables the variance of the sum of random variables is the
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sum of the variances, i.e., var(X +Y) = var(X) +var(Y) (see (7.33)). However, the
covariance may still be zero even if the random variables are not independent — the
converse is not true. Some other properties of the covariance are given in Problem

7.34.

A Independence implies zero covariance but zero covariance does
not imply independence

Consider the joint PMF which assigns equal probability of 1/4 to each of the four
points shown in Figure 7.8. The joint and marginal PMFs are tabulated in Table
7.6. For this joint PMF the covariance is zero since

Y

A

¢ (0,1)

Figure 7.8: Joint PMF of random variables having zero covariance but which are
dependent.

j=-1 j=0 j=1]px[i
i=-1 0 1 0 :
=0 | &0 b
i = 0 1 0 :
prlil | % 3

Table 7.6: Joint PMF values.

st =1 (D) +o(2) +1(2) =0
and thus from (7.34)
cov(X,Y) = Exy[XY]

1 1
= > djpxy[if) =0

i=—1j=—1
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since either = or y is always zero. However, X are Y are dependent because
px,v[1,0] = 1/4 but px[lpy[0] = (1/4)(1/2) = 1/8. Alternatively, we may ar-
gue that the random variables must be dependent since Y can be predicted from X.
For example, if X = 1, then surely we must have Y = 0.

More generally the joint k-/th moment is defined as

BExy[ X' =" afyipxy(zi, yj] (7.38)
iJ
for K = 1,2,...;1 = 1,2,..., when it exists. The joint k-Ith central moment is

defined as

Exy[(X — Ex[X)*(Y = By [Y])'] = > (i — Ex[X)*(y; — By [Y])'px,v[wi, )]
i

(7.39)
for k=1,2,...;1=1,2,..., when it exists.

7.9 Prediction of a Random Variable Outcome

The covariance between two random variables has an important bearing on the
predictability of Y based on knowledge of the outcome of X. We have already seen
in Figures 7.6a,b that Y can be perfectly predicted from X as Y = X (see Figure
7.6a) or as Y = —X (see Figure 7.6b). These are extreme cases. More generally, we
seek a predictor of Y that is linear (actually affine) in X or

A~

Y=aX+b

where the “hat” indicates an estimator. The constants a and b are to be chosen so
that “on the average” the observed value of Y, which is az + b if the experimental
outcome is (z,y), is close to the observed value of Y, which is y. To determine these
constants we shall adopt as our measure of closeness the mean square error (MSE)
criterion described previously in Example 6.377. It is given by

mse(a,b) = Exy[(Y —Y)?]. (7.40)

Note that since the predictor Y depends on X, we need to average with respect
to X and Y. Previously, we let Y = b, not having the additional information of
the outcome of another random variable. It was found in Example 6.3 that the
optimal value of b, i.e., the value that minimized the MSE, was bop, = Ey[Y] and
therefore Y = Ey [Y]. Now, however, we presume to know the outcome of X. With
the additional knowledge of the outcome of X we should be able to find a better
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predictor. To find the optimal values of @ and b we minimize (7.40) over a and b.
Before doing so we simplify the expression for the MSE. Starting with (7.40)

mse(a,b) = Exy[(Y —aX —b)?]
= Exy[(Y —aX)?—2b(Y —aX) + b
= BExy[Y?-2aXY +a’X? - 2bY + 2abX + b°
= FBy[V?] - 2aExy[XY]+ d’Ex[X?] — 2bEy[Y] + 2abEx [X] + b2

To find the values of ¢ and b that minimize the function mse(a, b), we determine a
stationary point by partial differentiation. Since the function is quadratic in ¢ and
b, this will yield the minimizing values of ¢ and b. Using partial differentiation and
setting each partial derivative equal to zero produces

&n%éa’b) = 2B\ y[XY]+ 20Ex[X?] + 2bEx[X] =0
&n%((f’b) —2Ey[Y] + 2aEx[X] +2b=0

and rearranging yields the two simultaneous linear equations

Ex[X?la+ Ex[X]b = Exy[XY]
Ex[X]a+b = Ey[Y]

The solution is easily shown to be

Exy[XY] - Ex[X]Ey[Y] - COV(X,Y)

Gopt,

Ex[X?] — E%[X] ~ var(X)
bops = Ey[Y]— aopEx|X] = By[Y]— %EX[X]

so that the optimal linear prediction of Y given the outcome X = x is

Y = Gopt T + bopt
_ cov(X,Y) cov(X,Y)
= T(X)m—i-Ey[Y]— ) Ex[X]
or finally Yy
¥ = By + Y k), (7.41)

var(X)

Note that we refer to Y = aX + b as a predictor but Y = az + b as the prediction,
which is the value of the predictor. As expected, the prediction of Y based on X = x
depends on the covariance. In fact, if the covariance is zero, then Y = Ey[Y], which
is the best linear predictor of Y without knowledge of the outcome of X. In this
case, X provides no information about Y. An example follows.
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Figure 7.9: Joint PMF (shown as solid circles having equal probabilities) and best
linear prediction of Y when X = z is observed (shown as dashed line).

Example 7.55 - Predicting one random variable outcome from knowledge
of second random variable outcome

Consider the joint PMF shown in Figure 7.9a as solid circles where all the outcomes
are equally probable. Then, Sxyy = {(0,0),(1,1),(2,2),(2,3)} and the marginals
are found by summing along each direction to yield

T i=0
pxlij=4 1 i=1
T i=2
Pg=0
1 .
. 1 J=1
=91 7_,
1 J=
T J=3.

As a result, we have from the marginals that Ex[X] = 5/4, Ey[Y] = 3/2, Ex[X?] =
9/4, and var(X) = Ex[X?] — E%[X] = 9/4 — (5/4)? = 11/16. From the joint PMF
we find that Exy[XY] = (0)(0)1/4 + (1)(1)1/4 + (2)(2)1/4 + (2)(3)1/4 = 11/4,
which results in cov(X,Y) = Exy[XY]| — Ex[X|Ey[Y] = 11/4 — 5/4(3/2) = 7/8.
Substituting these values into (7.41) yields the best linear prediction of Y as

)
) 3 78 5
Y = -— - .
2 " 11/16 (x 4)
14 1

e =
11 11
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which is shown in Figure 7.9a as the dashed line. The line shown in Figure 7.9a is
referred to as a regression line in statistics. What do you think would happen if the
probability of (2,3) were zero, and the remaining three points had probabilities of
1/37

&

The reader should be aware that we could also have predicted X from ¥ =y
by interchanging X and Y in (7.41). Also, we note that if cov(X,Y) = 0, then
Y = Ey [Y] or X = x provides no information to help us predict Y. Clearly, this
will be the case if X and Y are independent (see (7.37)) since independence of two
random variables implies a covariance of zero. However, even if the covariance is
zero, the random variables can still be dependent (see Figure 7.8) and so prediction
should be possible. This apparent paradox is explained by the fact that in this
case we must use a nonlinear predictor, not the simple linear function aX + b (see
Problem 8.27).

The optimal linear prediction of (7.41) can also be expressed in standardized
form. A standardized random wvariable is defined to be one for which the mean is
zero and the variance is one. An example would be a random variable that takes on
the values +1 with equal probability. Any random variable can be standardized by
subtracting the mean and dividing the result by the square root of the variance to
form

X, = X — Ex[X]
var(X)
(see Problem 7.42). For example, if X ~ Pois()\), then X, = (X — \)/v/X, which is
easily shown to have a mean of zero and a variance of one. We next seek the best
linear prediction of the standardized Y based on a standardized X = x. To do so we
define the standardized predictor based on a standardized X = x, as

g o Y= B[]
var(Y')
Then from (7.41), we have
V- Ey[Y]  cov(X,Y) a—Ex[X]

var(Y) Vvar(Y)var(X) y/var(X)

and therefore
- XY
ooy (7.42)
var(X)var(Y')

Example 7.56 - Previous example continued
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For the previous example we have that

 x—5/4
VTV T;
v Y —3/2
5/4
and
cov(X,Y) _ 7/8 ~ 00
Vvar(X)var(Y)  /(11/16)(5/4)
so that

Y, = 0.94z,

and is displayed in Figure 7.9b.

¢
The factor that scales x; to produce Y, is denoted by
cov(X,Y
PXY = ( ) (7.43)
var(X)var(Y)

and is called the correlation coefficient. When X and Y have px )y # 0, then X and
Y are said to be correlated. If, however, the covariance is zero and hence pxy =0,
then the random variables are said to be uncorrelated. Clearly, independent ran-
dom variables are always uncorrelated, but not the other way around. Using the
correlation coefficient allows us to express the best linear prediction in its standard-
ized form as Y, = px,yTs. The correlation coefficient has an important property
in that it is always less than one in magnitude. In the previous example, we had
px,y ~ 0.94.

Property 7.25 - Correlation coefficient is always less than one in magni-
tude or |pxy| <1

Proof:  The proof relies on the Cauchy-Schwarz inequality for random variables.

This inequality is analogous to the usual one for the dot product of Euclidean vectors
v and w, which is

v w| <[[v][[]wl]]

where ||v|| denotes the length of the vector. Equality holds if and only if the vectors
are collinear. Collinearity means that w = c¢v for ¢ a constant or the vectors point in
the same direction. For random variables V and W the Cauchy-Schwarz inequality
says that

|Evw VW] < VEv[V2]Y Ew W2 (7.44)
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with equality if and only if W = ¢V for ¢ a constant. See Appendix TA for a
derivation. Thus letting V =X — Ex[X] and W =Y — Ey[Y], we have

|cov(X,Y)]
var(X)var(Y')
|Ev,w [VWV]|
VEVIVZEw[W?]

using (7.44). Equality will hold if and only if W = ¢V or equivalently if Y — Ey[Y] =
¢(X — Ex[X]), which is easily shown to mean that (see Problem 7.45)

loxy| =

_ 1 fY=aX +bwitha >0
PXY 1 ifY =aX +b with a < 0.

for a and b constants.

O
Note that when pxy = £1, Y can be perfectly predicted from X by using ¥ =
aX + b. See also Figures 7.6a and 7.6b for examples of when pxy = +1 and
px,y = —1, respectively.

A Correlation between random variables does not imply a causal
relationship between the random variables

A frequent misapplication of probability is to assert that two quantities that are
correlated (px,y # 0) are such because one causes the other. To dispel this myth
consider a survey in which all individuals over 55 years of age in the U.S. are asked
whether they have ever had prostate cancer and also their height in inches. Then,
for each height in inches we compute the average number of individuals per 1000
that have had cancer. If we plot the average number, also called the incidence
of cancer, versus height, a typical result would be as shown in Figure 7.10. This
indicates a strong positive correlation of cancer with height. One might be tempted
to conclude that growing taller causes prostate cancer. This is of course nonsense.
What is actually shown is that segments of the population that are tall are associated
with a higher incidence of cancer. This is because the portion of the population of
individuals who are taller than the rest are predominately male. Females are not
subject to prostate cancer, as they have no prostates! In summary, correlation
between two variables only indicates an association, i.e., if one increases, then so
does the other (if positively correlated). No physical or causal relationship need

exist.
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Figure 7.10: Incidence of prostate cancer per 1000 individuals over age 55 versus
height.

7.10 Joint Characteristic Functions

The characteristic function of a discrete random variable was introduced in Section
6.777. For two random variables we can define a joint characteristic function. For
the random variables X and Y it is defined as

¢X7y(wx,wy) = E)(’y[exp[j(wXX + wa)]]. (745)

Assuming both random variables take on integer values, it is evaluated using (7.29)

as
00

dxy(wx,wy) = > > pxylklexp[j(wxk + wyl)]. (7.46)

k=—o00l=—00

It is seen to be the two-dimensional Fourier transform of the two-dimensional se-
quence px,ylk,l] (note the use of +j as opposed to the more common —j in the
exponential). As in the case of a single random variable, the characteristic function
can be used to find moments. In this case, the joint moments are given by the
formula

1 "oy y(wy,wy)
jmtn Ow' 0wy

Exy[X™Y"] = (7.47)

wx=wy =0

In particular, the first joint moment is found as

Py (wx,wy)
(9&))( 8wy

Exy[XY] =

UJX:UJYZO
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Another important application is to finding the PMF for the sum of two independent
random variables. This application is based on the result that if X and Y are
independent random variables, the joint characteristic function factors due to the
property Ex y[g(X)h(Y)] = Ex[g(X)]Ey[h(Y)] (see (7.31)). Before deriving the
PMF for the sum of two independent random variables, we prove the factorization
result, and then give a theoretical application. The factorization of the characteristic
function follows as

o o
dxy(wx,wy) = Z Z px,ylk,l]exp[j(wxk + wyl)]
k=—o00l=—00
o o
= Z Z px[klpy[l] exp[jwx k] exp[jwy ] (joint PMF factors)
k=—o00l=—00
o o
= > px[kexpljwxk] D py[l]expljwyl]
k=—00 l=—00
= o¢x(wx)oy (wy). (definition of characteristic function  (7.48)

for single random variable).

The converse is also true — if the joint characteristic function factors, then X and
Y are independent random variables. This can easily be shown sto follow from the
inverse Fourier transform relationship. As an application of the converse result,
consider the tranformed random variables W = ¢(X) and Z = h(Y'), where X and
Y are independent. We prove that W and Z are independent as well, which is to
say functions of independent random wvariables are independent. To do so we show
that the joint characteristic function factors. The joint characteristic function of the
transformed random variables is

dw,z(ww,wz) = Ew,zlexplj(ww W +wzZ)]].
But we have that

dw,z(ww,wz) = Exylexpljlwwg(X) +wzh(Y)]] (slight extension of (7.28))
= Exlexp(juwg(X))]Ey[exp(jwzh(Y))] (same argument as used to
yield (7.31))
= Ewlexp(juwW)|Ez[exp(jwzZ)] (from (6.5)77)
= owlww)pz(wz) (definition)

and hence W and Z are independent random variables. As a general result, we can
now assert that if X and Y are independent random variables, then so are g(X)
and h(Y') for any functions g and h.

Finally, consider the problem of determining the PMF for Z = X + Y, where X
and Y are independent random variables. We have already solved this problem using



214 CHAPTER 7. MULTIPLE DISCRETE RANDOM VARIABLES

the joint PMF approach with the final result given by (7.22). By using characteristic
functions, we can simplify the derivation. The derivation proceeds as follows.

dz(wz) = Ezlexp(jwzZ)] (definition)
= FExylexp(jwz(X +Y)] (from (7.28) and (7.29))
= Exylexp(jwzX)exp(jwzY)]
= FExlexp(jwzX)]|Ey[exp(jwzY)] (from (7.31))
= ¢x(wz)dy(wz).

To find the PMF we take the inverse Fourier transform of ¢z(wz), replacing wy by
the more usual notation w, to yield

pal] = [ ox(@hdv()exp(—juk) 3
= Z px[ilpy [k —i]

which agrees with (7.22).

7.11 Computer Simulation of Random Vectors

The method of generating realizations of a two-dimensional discrete random vector
is nearly identical to the one-dimensional case. In fact, if X and Y are independent,
then we generate a realization of X, say x;, according to px[z;] and a realization of Y,
say yj, according to py[y;] using the method of Chapter 5. Then we concatenate the
realizations together to form the realization of the vector random variable as (z;, y;).
Furthermore, independence reduces the problems of estimating a joint PMF, a joint
CDF, etc. to that of the one-dimensional case. The joint PMF, for example, can be
estimated by first estimating px[z;] as px[z;], then estimating p,[y;] as p,[y;], and
finally forming the estimate of the joint PMF as px y[z;, y;] = px[z:]py [y;]-

When the random variables are not independent, we need to generate a realiza-
tion of (X,Y) simultaneously since the value obtained for X is dependent on the
value obtained for Y and vice-versa. If both Sx and Sy are finite, then a simple
procedure is to consider each possible realization (z;,y;) as a single outcome with
probability px y[z;,y;]. Then, we can apply the techniques of Section 5.9 directly.
An example is given next.

Example 7.57 - Generating realizations of jointly distributed random
variables

Assume a joint PMF as given in Table 7.7. A simple MATLAB program to generate
a set of M realizations of (X,Y) is given below.
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Table 7.7: Joint PMF values for Example 7.15.

for m=1:M
u=rand(1,1);
if u<=1/8
x(m,1)=0;y(m,1)=0;
elseif u>1/8&u<=1/4
x(m,1)=0;y(m,1)=1;
elseif u>1/4&u<=1/2
x(m,1)=1;y(m,1)=0;
else
x(m,1)=1;y(m,1)=1;
end
end

Once the realizations are available we can estimate the joint PMF and marginal
PMFs as

Number of outcomes equal to (i, )

pxyli,j] = i i=0,1;5=0,1
pxlil = pxy[i:0] +pxyli,1]  i=0,1
pylil = pxyl[0,5] +pxy[L,]] 7=0,1

and the joint moments are estimated as

Exy| Xle] = Z T Y

where (z,,,ym) is the mth realization. Other quantities of interest are discussed in
Problems 7.49 and 7.51.

&

7.12 Real-World Example—Assessing Health Risks

An increasing common health problem in the United States is obesity. It has been
found to be associated with many life-threatening illnesses, especially diabetes. One



216 CHAPTER 7. MULTIPLE DISCRETE RANDOM VARIABLES

Wy Wy Wi Wi Ws
115 145 175 205 235
Hy 527 |21 27 32 37 43
Hy 567 19 23 28 33 38
H3; 5’107 |16 21 25 29 34
H, 6’27 15 19 22 26 30
Hs 6’67 13 17 20 24 27

Table 7.8: Body mass indexes for heights and weights of hypothetical college stu-
dents.

way to define what constitutes an obese person is via the body mass index (BMI)
[CDC 2003]. It is computed as

703W
H?2

where W is the weight of the person in pounds and H is the person’s height in inches.
BMIs greater than 25 and less than 30 are considered to indicate an overweight
person, and 30 and above an obese person [CDC 2003]. It is of great importance to
be able to estimate the PMF of the BMI for a population of people. For example,
in Chapter 4 we displayed a table of the joint probabilities of heights and weights
for a hypothetical population of college students. For this population we would
like to know the probability or percentage of obese persons. This percentage of the
population would then be at risk for developing diabetes. To do so we could first
determine the PMF of the BMI and then determine the probability of a BMI of 30
and above. From Table 4.1 or Figure 7.1 we have the joint PMF for the random
vector (H,W). To find the PMF for the BMI we note that it is a function of H and
W or in our previous notation, we wish to determine the PMF of Z = ¢(X,Y’), where
Z denotes the BMI, X denotes the height, and Y denotes the weight. The solution
follows immediately from (7.26). One slight modification that we must make in
order to fit the data of Table 4.1 into our theoretical framework is to replace the
height and weight intervals by their midpoint values. For example, in Table 4.1 the
probability of observing a person with a height between 5’°8” and 6’ and a weight
of between 130 and 160 Ibs is 0.06. We convert these intervals so that we can say
that the probability of a person having a height of 5’10” and a weight of 145 lbs is
0.06. Next to determine the PMF we first find the BMI for each height and weight
using (7.49), rounding the result to the nearest integer. This is displayed in Table
7.8. Then, we determine the PMF by using (7.26). For example, for a BMI=21, we
require from Table 7.8 the entries (H, W) = (5’27,115) and (H, W) = (5’107,145).
But from Table 4.1 we see that

PH=52"W =115 = 0.08
P[H =510",W =145] = 0.06

BMI =

(7.49)
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Figure 7.11: Probability mass function for body mass index of hypothetical college
population.

and therefore P[BMI = 21] = 0.14. The other values of the PMF of the BMI
are found similarly. This produces the PMF shown in Figure 7.12. It is seen that
the probability of being obese as defined by the BMI (BMI > 30) is 0.08. Stated
another way 8% of the population of college students are obese and so are at risk
for diabetes.
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Problems

7.1 (w) A chess piece is placed on a chessboard, which consists of an 8 x 8 array
of 64 squares. Specify a numerical sample space Sxy for the location of the
chess piece.

7.2 (w) Two coins are tossed in succession with a head being mapped into a +1 and
a tail being mapped into a —1. If a random vector is defined as (X,Y’) with
X representing the mapping of the first toss and Y representing the mapping
of the second toss, draw the mapping. Use Figure 7.2 as a guide. Also, what
is S)(’y'?
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7.3(--) (w) A woman has a penny, a nickel, and a dime in her pocket. If she
chooses two coins from her pocket in succession, what is the sample space S
of possible outcomes? If these outcomes are next mapped into the values of
the coins, what is the numerical sample space Sx y?

7.4 (w) If Sy = {1,2} and Sy = {3,4}, plot the points in the plane comprising
Sxy = Sx x Sy. What is the size of Sx y7

7.5 (w) Two dice are tossed. The number of dots observed on the dice are added
together to form the random variable X and also differenced to form Y. De-
termine the possible outcomes of the random vector (X,Y’) and plot them in
the plane. How many possible outcomes are there?

7.6 (f) A two-dimensional sequence is given by
pxylijl=c(l—p)'(1—p2)! i=12,...;5=12,...

where 0 < p; < 1,0 < ps <1, and c is a constant. Find c to make pyxy a
valid joint PMF.

7.7 (F) Ts
1

1+
px,y[i,j]=(5> i=0,1,...;5=0,1,...

a valid joint PMF?
7.8 (.-) (w) A single coin is tossed twice. A head outcome is mapped into a 1 and

a tail outcome into a 0 to yield a numerical outcome. Next, a random vector
(X,Y) is defined as

X = outcome of first toss + outcome of second toss

Y = outcome of first toss — outcome of second toss .

Find the joint PMF for (X,Y’), assuming the outcomes (z;,y;) are equally
likely.

7.9 (f) Find the joint PMF for the experiment described in Example 7.1. Assume
each outcome in § is equally likely. How can you check your answer?

7.10 (.- ) (f) The sample space for a random vector is Sxy = {(4,7) : 1 =1,2,3,4,5;j =
1,2,3,4}. If the outcomes are equally likely, find P[(X,Y) € A], where
A={(i,j):1<i<2%3<j<4}.

7.11 (f) A joint PMF is given as py y[i,j] = (1/2)"" for i = 1,2,...;5 = 1,2,....
If A={(i,j):1<1i<3;5>2}, find P[A].

7.12 (f) The values of a joint PMF are given in Table 7.9. Determine the marginal
PMFs.
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Table 7.9: Joint PMF values for Problem 7.12.
7.13 (.-) (f) If a joint PMF is given by

pxylig) =p*(1—p)™72  i=1,2..55=12,..
find the marginal PMFs.

7.14 (f) If a joint PMF is given by pxy[i,j] = 1/36 for ¢ = 1,2,3,4,5,6;5 =
1,2,3,4,5,6, find the marginal PMFs.

7.15 (w) A joint PMF is given by

o 10\ /1\* , ,
pX,Y[Z,J]ZCj 3 i=0,1;7=0,1,...,10

where c is some unknown constant. Find ¢ so that the joint PMF is valid and
then determine the marginal PMFs. Hint: Recall the binomial PMF.

7.16 (.- ) (w) Find another set of values for the joint PMF that will yield the same
marginal PMFs as given in Table 7.2.

7.17 (t) Prove Properties 7.3 and 7.4 for the joint CDF by relying on the standard
properties of probabilities of events.

7.18 (w) Sketch the joint CDF for the joint PMF given in Table 7.2. Do this by
shading each region in the z-y plane that has the same value.

7.19 (--) (w) A joint PMF is given by

L () = (0,0)

T ea=an
pxyli,j] = L (4,9) = (1,0)
po(g)=(1,-1)

Are X and Y independent?

7.20 (t) Prove that if the random variables X and Y are independent, then the
joint CDF factors as Fixy(z,y) = Fx(z)Fy (y).
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7.21 (t) If a joint PMF is given by

px,y[i,j] =

o o9

d

where of course we must have a+b+c+d = 1, show that a necessary condition
for the random variables to be independent is ad = be. This can be used to
quickly assert that the random variables are not independent as for the case
shown in Table 7.5.

7.22 (f) If X ~ Ber(px) and Y ~ Ber(py), and X and Y are independent, what is
the joint PMF?

7.23 (--) (w) If the joint PMF is given as

10\ /11 /1\*
px,yli,j] = ( )( ) (—) 1=0,1,...,10;7 =0,1,...,11
1 J 2

are X and Y independent? What are the marginal PMFs?

7.24 (t) Assume that X and Y are discrete random variables that take on all integer
values and are independent. Prove that the PMF of Z = X —Y is given by

o0

pzlll= Y px[klpylk—1]  1=...,-1,0,1,...

k=—00

by following the same procedure as was used to derive (7.22). Note that the
transformation from (X,Y) to (W, Z) is one-to-one. Next show that if X and
Y take on nonnegative integer values only, then

oo

k=max(0,[)

7.25 (f) Using the result of Problem 7.24 find the PMF for Z = X — Y if X ~
Pois(Ax), Y ~ Pois(\y), and X and Y are independent. Hint: The result will
be in the form of infinite sums.

7.26 (w) Find the PMF for Z = max(X,Y) if the joint PMF is given in Table 7.5.

7.27 () (f) If X ~ Ber(1/2), Y ~ Ber(1/2) and X and Y are independent, find
the PMF for Z = X + Y. Why does the width of the PMF get larger? Does
the variance increase?

7.28 (t) Prove that Ex y[g(X)] = Ex[g(X)]. Do X and Y have to be independent?
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7.29 (t) Prove that
Ex ylag(X) + bh(Y)] = aEx[g(X)] + bEy [h(Y)].

7.30 (t) Prove (7.31).

7.31 (t) Find a formula for var(X —Y") similar to (7.33). What can you say about
the relationship between var(X +Y') and var(X —Y) if X and Y are uncor-
related?

7.32 (f) Find the covariance for the joint PMF given in Table 7.4. How do you
know the value that you obtained is correct?

7.33 (.-) (f) Find the covariance for the joint PMF given in Table 7.5.

7.34 (t) Prove the following properties of the covariance:

cov(X,Y) = Eyy[XY]- Ex[X]Ey[Y]
cov(X,X) = var(X)
cov(Y,X) = cov(X,Y)
cov(cX,Y) = cleov(X,Y)]
cov(X,cY) = cleov(X,Y)]
cov(X, X +Y) = cov(X,X)+ cov(X,Y)
cov(X +Y,X) = cov(X,X)+cov(Y, X)

for ¢ a constant.

7.35 (t) If X and Y have a covariance of cov(X,Y’), we can transform them to a
new pair of random variables whose covariance is zero. To do so we let

W = X
Z = aX+Y

where ¢ = —cov(X,Y)/var(X). Show that cov(W,Z) = 0. This process is
called decorrelating the random wvariables. See also Example 9.477 for another
method.

7.36 (f) Apply the results of Problem 7.35 to the joint PMF given in Table 7.5.
Verify by direct calculation that cov(W, Z) = 0.

7.37 (.-) (f) If the joint PMF is given as

1\"*"
pX,Y[ILa]]:<§> 2217277]:1727

compute the covariance.
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7.38 (--) (f) Determine the minimum mean square error for the joint PMF shown
in Figure 7.9a. You must evaluate Ex y[(Y — ((14/11)X — 1/11))?].

7.39 (t,f) Prove that the minimum mean square error of the optimal linear predic-
tor is given by

msemin = Ex y[(Y — (aops X + bopt))Q] = var(Y) (1 — pg(,y) )
Use this formula to check your result for Problem 7.38.

7.40 (--) (w) In this problem we compare the prediction of a random variable with
and without the knowledge of a second random variable outcome. Consider
the joint PMF shown below First determine the optimal linear prediction of Y

j=0 j=1

[ —= 00—
| [

Table 7.10: Joint PMF values for Problem 7.40.

without any knowledge of the outcome of X (see Section 6.6). Also, compute
the minimum mean square error. Next determine the optimal linear prediction
of Y based on the knowledge that X = x and compute the minimum mean
square error. Plot the predictions versus x in the plane. How do the minimum
mean square errors compare?

7.41 () (w,c) For the joint PMF of height and weight shown in Figure 7.1 deter-
mine the best linear prediction of weight based on a knowledge of height. You
will need to use Table 4.1 as well as a computer to carry out this problem.
Does your answer seem reasonable? Is the prediction of a person’s weight if
the height is 70 inches reasonable? How about if the height is 78 inches? Can
you explain the difference?

7.42 (f) Prove that the transformed random variable

X — Ex[X]
var(X)

has an expected value of 0 and a variance of 1.

7.43 (--) (w) The linear prediction of one random variable based on the outcome
of another becomes more difficult if noise is present. We model noise as the
addition of an uncorrelated random variable. Specifically, assume that we wish
to predict X based on observing X 4+ N, where N represents the noise. If X
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and N are both zero mean random variables that are uncorrelated with each
other, determine the correlation coefficient between W = X and Z = X + N.
How does it depend on the power in X, which is defined as Ex[X?], and the
power in N, also defined as En[N?%]?

7.44 (w) Consider var(X +Y'), where X and Y are correlated random variables.
How is the variance of a sum of random variables affected by the correlation
between the random variables? Hint: Express the variance of the sum of the
random variables using the correlation coefficient.

7.45 (f) Prove that if Y = aX + b, where a and b are constants, then pxy = 1 if
a>0ande,y:—1 if a < 0.

7.46 (.- ) (w) If X ~Ber(1/2), Y ~ Ber(1/2), and X and Y are independent, find
the PMF for Z = X + Y. Use the characteristic function approach to do so.
Compare your results to that of Problem 7.27.

7.47 (w) Using characteristic functions prove that the binomial PMF has the re-
producing property. That is to say, if X ~ bin(Mx,p), Y ~ bin(My,p), and
X and Y are independent, then Z = X +Y ~ bin(Mx + My, p). Why does
this make sense in light of the fact that a sequence of independent Bernoulli
trials can be used to derive the binomial PMF?

7.48 (.-) (c) Using the joint PMF shown in Table 7.7 generate realizations of the
random vector (X,Y) and estimate its joint and marginal PMFs. Compare
your estimated results to the true values.

7.49 (.-) (c) For the joint PMF shown in Table 7.7 determine the correlation coef-
ficient. Next use a computer simulation to generate realizations of the random
vector (X,Y) and estimate the correlation coefficient as

M _
% Zm:1 ImYm — XY

PXYy =
M _ M _
J Gt o) (3 S0t - )

where

()=
8
3

1
M

3
I

Il
SIS
WE

&

3
I

and (%, Ym) is the mth realization.
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7.50 (w,c) If X ~ geom(p), ¥ ~ geom(p), and X and Y are independent, show

that the PMF of Z = X + Y is given by
palk] = (k- D1 —p)* 2 k=23,

To avoid errors use the discrete unit step function. Next, for p = 1/2 generate
realizations of Z by first generating realizations of X, then generating realiza-
tions of Y and adding each pair of realizations together. Estimate the PMF
of Z and compare it to the true PMF.

7.51 (w,c) Using the joint PMF given in Table 7.5 determine the covariance to

show that it is nonzero and hence X and Y are correlated. Next use the
procedure of Problem 7.35 to determine transformed random variables W and
Z that are uncorrelated. Verify that W and Z are uncorrelated by estimating
the covariance as

o —

M
1
cov(W, Z) = i Z Wiy Zm — WZ
m=1

where

and (W, Zm ) is the mth realization. Be sure to generate the realizations of W
and Z as wy, = x,, and 2z, = aZp, + Ym, where (2, yp,) is the mth realization

of (X,Y).



Appendix TA

Derivation of Cauchy-Schwarz
Inequality

The Cauchy-Schwarz inequality was given by

|Evw VW] < VEv[V2]Y Ew [W?] (7A.1)

with equality holding if and only if W = ¢V, for ¢ a constant. To prove this, we
first note that for all &« # 0 and 5 # 0

Eyvw((aV — pW)?] > 0. (7A.2)
If we let
a = /Ewy[W?]
B = VEv[V?

then we have that

Byw[(VEw[W2V - VE/[VIW)?] > 0
Eyvw|[Bw[W2V? - 2/ Ew W2/ Ey[VIVW + Ey[VIW?] > 0
Ew[W?|Ey[V? - 2/ Ew[W2\/Ey[V2]| Evw VW] + Ev[VIEy[W? > 0

since Ey,w[g(W)] = Ew[g(W)], etc. , which results in

Ew[W?|Ey[V?] — /Ew W2/ Ev[V2Eyw[VW] > 0.
Dividing by Ew [W?]Ey[V?] produces

L Bawlvwl
VEw[W3H/Ey[V?]

225
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or finally, upon rearranging terms we have that

Evw[VW] <
VEVIVIVEw[W?] ~

or

Eyw[VW] < VEv[VZEw[W?2].

By replacing the negative sign in (7A.2) by a positive sign and proceeding in an
identical manner, we will obtain

—EywVW] < VEy V2]V Ew[W?]

and hence combining the two results yields the desired inequality. To determine
when the equal sign will hold, we note that

Byw((@V —BW)*1 =Y (aw; — Buw;) pv.w [vi, wj]

Vi wj

which can only equal zero when (aw; —Bw;)? = 0 for all i and j since py,w [v;, w;] > 0.
Thus, for equality to hold we must have

av; = fw; all 7 and j

which is equivalent to requiring
oV =W

or finally dividing by 8 (asssumed not equal to zero), we obtain the condition for
equality as

W=-V=cV

a
g

for ¢ a constant.



Chapter 8

Conditional Probability Mass
Functions

8.1 Introduction

In Chapter 4 we discussed the concept of conditional probability. We recall that a
conditional probability P[A|B] is the probability of an event A, given that we know
that some other event B has occurred. Except for the case when the two events are
independent of each other, the knowledge that B has occurred will change the prob-
ability P[A]. In other words, P[A|B] is our new probability in light of the additional
knowledge. In many practical situations, two random mechanisms are at work and
are described by events A and B. An example of such a compound experiment was
given in Example 4.2. To compute probabilities for a compound experiment it is
usually convenient to use a conditioning argument to simplify the reasoning. For
example, say we choose one of two coins and toss it 4 times. We might inquire
as to the probability of observing 2 or more heads. However, this probability will
depend upon which coin was chosen, as for example in the situation where one coin
is fair and the other coin is weighted. It is therefore convenient to define condi-
tional probability mass functions, px[k|coin 1 chosen] and px[k|coin 2 chosen], since
once we know which coin is chosen, we can easily specify the PMF. In particular,
for this example the conditional PMF is a binomial one whose value of p depends
upon which coin is chosen and with k& denoting the number of heads (see (5.6)77).
Once the conditional PMFs are known, we have by the law of total probability (see
(4.4)77) that the probability of observing k heads for this experiment is given by
the PMF

px k] = px[k|coin 1 chosen|P[coin 1 chosen] + px [k|coin 2 chosen]P[coin 2 chosen].

227
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Therefore, the desired probability of observing 2 or more heads is

PIX >2] = Y pxl[k]

+ px[k|coin 2 chosen]P[coin 2 chosen]).

The PMF that is required depends directly on the conditional PMFs (of which there
are two). The use of conditional PMFs greatly simplifies our task in that given
the event, i.e., the coin chosen, the PMF of the number of heads observed readily
follows. Also, in many problems, including this one, it is actually the conditional
PMFs that are specified in the description of the experimental procedure. It makes
sense, therefore, to define a conditional PMF and study its properties. For the most
part, the definitions and properties will mirror those of the conditional probabillity
P[A|B], where A and B are events defined on Sy y.

8.2 Summary

The utility of defining a conditional PMF is illustrated in Section 8.3. It is especially
appropriate when the experiment is a compound one, in which the second part of
the experiment depends upon the outcome of the first part. The definition of the
conditional PMF is given in (8.7). It has the usual properties of a PMF, that of
being between 0 and 1 and also summing to one. Its properties and relationships
are summarized by Properties 8.1-8.5. The conditional PMF is related to the joint
PMF and the marginal PMFs by these properties. They are also depicted in Figure
8.4 for easy reference. If the random variables are independent, then the conditional
PMF reduces to the usual marginal PMF as shown in (8.22). For general probability
calculations based on the conditional PMF one can use (8.23). In Section 8.5 it is
shown how to use conditioning arguments to simplify the derivation of the PMF for
Z = g(X,Y). The PMF can be found using (8.26), which makes use of the condi-
tional PMF. In particular, if X and Y are independent, the procedure is especially
simplified with examples given in Section 8.5. The mean of the conditional PMF is
defined by (8.30). It is computed by the usual procedures but using the conditional
PMF as the “averaging” PMF. It is next shown that the mean of the unconditional
PMF can be found by averaging over the means of the conditional PMFs as given
by (8.35). This simplifies the computation. Generation of realizations of random
vectors (X,Y’) can be simplified using conditioning arguments. An illustration and
MATLAB code segment is given in Section 8.7. Finally, an application of condi-
tioning to the modeling of human learning is described in Section 8.8. Utilizing the
posterior PMF, which is a conditional PMF, one can demonstrate that “learning”
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takes place as the result of observing the outcomes of repeated experiments. The
degree of learning is embodied in the posterior PMF.

8.3 Conditional Probability Mass Function

We continue with the introductory example to illustrate the utility of the conditional
probability mass function. Summarizing the introductory problem, we have an
experimental procedure in which we first choose a coin, either coin 1 or coin 2. Coin
1 has a probability of heads of p;, while coin 2 has a probability of heads of ps. Let
X be the discrete random variable describing the outcome of the coin choice so that

Y 1 if coin 1 is chosen
“ 1 2 ifcoin 2 is chosen.

Since Sx = {1,2}, we assign a PMF to X of

pxli] = { * j: (8.1)

l—«

where 0 < o < 1. The second part of the experiment consists of tossing the chosen
coin 4 times in succession. Call the outcome of the number of heads observed
as Y and note that Sy = {0,1,2,3,4}. Hence, the overall set of outcomes of the
compound experiment is Sxy = Sx X Sy, which is shown in Figure 8.1. The overall

Yy

A

4| Ve el

' i~ 4
3 1 0 [ W}

2| Lo e

] . o Sxy
—_———————

Figure 8.1: Mapping for coin toss example,  denotes the coin chosen while y denotes
the number of heads observed.

outcome is described by the random vector (X,Y"), where X is the coin chosen and
Y is the number of heads observed for the 4 coin tosses. If we wish to determine
the probability of 2 or more heads, then this is the probability of the set A shown
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in Figure 8.1. It is given mathematically as

P[A] = > pxy[ing]

{(@,9):(3.5)€A}
2 4

= > pxylijl. (8:2)
i=1 j=2

Hence, we need only specify the joint PMF to determine the desired probability. To
do so we make use of our definition of the joint PMF as well as our earlier concepts
from conditional probability (see Chapter 4). Recall from Chapter 7 the definitions
of the joint PMF and marginal PMF as

pxyli,j] = P[X =14Y =j]
px[i] = P[X =il

By using the definition of conditional probability for sets we have

pxylij] = P[X=4Y =j] (definition of joint PMF)
= P[Y =j|X =i|P[X =i] (definition of conditional prob.)
= P[Y =j|X =i]px][i] (definition of marginal PMF). (8.3)

From (8.1) we have px[i] and from the experimental description we can determine
PlY = j|X =i]. When X =1, we toss a coin with a probability of heads p;, and
when X = 2, we toss a coin with a probability of heads ps. Also, we have previously
shown that for a coin with a probability of heads p; that is tossed 4 times, the
number of heads observed has a binomial PMF. Thus, for i = 1,2

4\ . .
P =il =i = () -pt j=01.23.4 (8.4

Note that the probability depends on the outcome X = i via p;. Also, for a given
value of X = 4, the probability has all the usual properties of a PMF. These prop-
erties are

0<PlY =jlX =i <1
4
Y Py =j|Xx =i =1
j=0

It is therefore appropriate to define P[Y = j|X = i] as a conditional PMF. We will
denote it by

Examples are plotted in Figure 8.2 for p; = 1/4 and py = 1/2. Returning to our
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Figure 8.2: Conditional PMF's given by (8.4).

problem we can now determine the joint PMF. Using (8.3) we have

px.v[i, j] = pyxlililpx|i] (8.5)

and using (8.4) and (8.1) the joint PMF is
.. 4 j 4—j . .
pX,Y[Z?j] = _7 p{(l_pl) « 7’:1’.7 :031323334
4 . .
= <j>p;(1—p2)4—3(1—a) i=27=0,1,2,3,4.

Finally the desired probability is from (8.2)

4 4
P[A] = ZPX,Y[laj]+ZpX,Y[2aj]
2 =2
4 4
— 4 ' — 47‘0{ 4 . — 4=y —

As an example, if p; = 1/4 and ps = 3/4, we have for o = 1/2, that P[A] = 0.6055,
but if @ = 1/8, then P[A] = 0.8633. Can you explain this?
Note from (8.5) that the conditional PMF is also expressed as
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and is only a renaming for the conditional probability of the event that A; = {s:
Y (s) = j} given that B; = {s: X(s) = i}. To make this connection we have

pyixljli] = PIY =j|X =i]= P[XP[:);":YZ.]: J]
. P[A] N Bz]
- P[B]
= P[4|Bi]

and hence py|x[jli] is a conditional probability for the sets A; and B;.

8.4 Joint, Conditional, and Marginal PMFs

As evidenced by (8.6), there are relationships between the joint, conditional, and
marginal PMFs. In this section we describe these relationships. To do so we rewrite
the definition of the conditional PMF in slightly more generality as

px.y [T, yj]
pyx[yjlni] = —=——=L
Y|X[y]| Z] pX[fI:i]

(8.7)
for a sample space Sxy which may not consist solely of integer two-tuples. It is
always assumed that px[z;] # 0. Otherwise, the definition does not make any sense.
The conditional PMF, although appearing to be a function of two variables, z; and
y;, should be viewed as a family or set of PMFs. Each PMF in the family is a valid
PMF when x; is considered to be a constant. In the example of the previous section,
we had py|x[j[1] and py|x[j|2]. The family is therefore {py | x[j|1], py|x[j|2]} and
each member is a valid PMF, whose values depend on j. Hence, we would expect
that (see Problem 8.4)

Z PY\XUM = 1

P~
oo
> pyixlil2l = 1
j=—o0

but not 3 77° _ py|x[jli] = 1 (see also Problem 4.977). Before proceeding to list the
relationships between the various PMFs, we give an example of the calculation of
the conditional PMF based on (8.7).

Example 8.58 - Two dice toss

Two dice are tossed with all outcomes assumed to be equally likely. The number of
dots observed on each die are added together. What is the conditional PMF of the
sum if it is known that the sum is even? We begin by letting ¥ be the sum and define
X =1 if the sum is even and X = 0 if the sum is odd. Thus, we wish to determine
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py|x[j|l] and py|x[7]0] for all j. The sample space for YV is Sy = {2,3,...,12} as
can be seen from Table 8.1, which lists the sum of the two dice as a function of the
outcomes for each die. The boldfaced entries are the ones for which the sum is even

j=1l1j=2|j=3|j=4|j=5|7j=6
i=1] 2 3 4 5 6 7
i=2| 3 4 5 6 7 8
i=3| 4 5 6 7 8 9
i=4] 5 6 7 8 9 10
i=5| 6 7 8 9 10 11
i=6| 7 8 9 10 11 12

Table 8.1: The sum of the number of dots observed for two dice — boldface indicates
an even sui.

and therefore comprise the sample space for py-x[j|1]. Note that each outcome (i, 7)
has an assumed probability of occurring of 1/36. Now, using (8.7)

L
pm[jll]:w j=2,4,6,8,10,12 (8.8)
px[1]

where px y[l,j] is the probability of the sum being even and also equaling j. Since
we assume in (8.8) that j is even (otherwise py | x[j|1] = 0), we have that px v [1,j] =
pylj] for j = 2,4,6,8,10,12. Also, there are 18 even outcomes resulting in px[l] =
1/2. Thus, (8.8) becomes

. py[J]
pyix[i[l] = 12
N;(1/36)

1/2
1
= —N;
187

where NN; is the number of outcomes in Sx )y for which the sum is j. From Table
8.1 we can easily find N; so that

pyixlill] = (8.9)

5ol Golw Goler Gelen Gelee Gl
<
I



234 CHAPTER 8. CONDITIONAL PROBABILITY MASS FUNCTIONS

Note that as expected > Py x[j|1] = 1. The reader is asked to verify by a similar
calculation that (see Problem 8.7)

r% j=3
5 J=5
pyixlilo] =14 § J=T (8.10)
& i=9
[ & j=1L

These conditional PMFs are shown in Figure 8.3. Also, note that py x[j|0] #

05 05
—04 =04
= ~
Roal ] = ]
:0.3 ;0-3
S8 S8
02t : 02t :
01t ‘ ‘ 1 01t ] l 1
NI I I I I NN I I I I
123 456 7 8 9101112 123 456 7 8 9101112
T : T :
Mean of conditional PMF Mean of conditional PMF

(a) (b)

Figure 8.3: Conditional PMFs for Example 8.1.

1 — py|x[j[1]. Each conditional PMF is generally different.
¢

There are several relationships between the joint, marginal, and conditional PMFs.
We now summarize these as properties.

Property 8.26 - Joint PMF yields conditional PMF's
If the joint PMF px y[zi,y;] is known, then the conditional PMFs are found as

PX,Y (%0, Yj)
i o parlmw) 8.11
Y|X[y]| z] ijxyy[%'ayj] ( )
PXYITirYj
px|y(zily]l = Dvlroyl (8.12)

YipxylTi, vl
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Proof: Since the marginal PMF px|[z;] is found as Z]. Px,y[%i,yj], the denominator
of (8.7) can be replaced by this to yield (8.11). Similarly, (8.12) is proven.

O
Hence, we see that the conditional PMF is just the joint PMF with x; fixed and then
normalized by >, px,v[%;,y;] so that it sums to one. In Figure 8.3a, the conditional
PMF py|x[j|1] evaluated at j = 8 is just px y[l,8] = 5/36 divided by the sum of
the probabilities px y[1,-] = 18/36, where “” indicates all possible values of j. This
Property 8.27 - Conditional PMFs are related

x|y [Tily;] = leX[ZﬂZJ],;][)X il (8.13)

Proof: By interchanging X and Y in (8.7) we have

prx[yja(I;i]
pxylwily;] = ——2==
Xy il py [yl
but
pyxlyj,zi] = PY =y;, X =]
= PX=uz;,Y=y;] (since ANB=DBnNA)
= pxylTi,y;]
and therefore [ |
Px,Y[Ti, Y
p LTilYjl = — 7 7 - 8.14
vtz py[y;] (8.14)

Using px,v[zi, Y] = py|x[yjlzilpx[z;] from (8.7) in (8.14) yields the desired result
(8.13).

O
Property 8.28 - Conditional PMF is expressible using Bayes rule
pyix [y lzi] = px|y [#ilyilpy [y;] (8.15)
Y|X = .
Sy leilysley [yi]
Proof: From (8.11) we have that
px,v[Zi,yj]
D ] = 2P0 Ig) 8.16
Y‘X[y]| Z] ijx,y[l“z,y]] ( )

and using (8.14) we have

px,v[zi, ;] = px|v[Tilyilpy )] (8.17)
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which when substituted into (8.16) yields the desired result.
O

Property 8.29 - Conditional PMF and its corresponding marginal PMF
yields the joint PMF

pxylzi,yil = pyixlyjleilpx(zi (8.18)
pxylTi,y)l = pxylTilylpy[y;] (8.19)

Proof: (8.18) follows from definition of conditional PMF (8.7) and (8.19) is just
(8.17).
U

Property 8.30 - Conditional PMF and its corresponding marginal PMF
yields the other marginal PMF

pyly;] = ZPY|X[yj|xi]pX (] (8.20)

Proof: This is just the law of total probability in disguise or equivalently just
pylyj] = > px,y[i,y;] (marginal PMF from joint PMF).

O
These relationships are summarized in Figure 8.4. Notice that the joint PMF can
be used to find all the marginals and conditional PMFs (see Figure 8.4a). The
conditional PMF and its corresponding marginal PMF can be used to find the
joint PMF (see Figure 8.4b). Finally, the conditional PMF and its corresponding
marginal PMF can be used to find the other conditional PMF (see Figure 8.4c). As
emphasized earlier, we cannot determine the joint PMF from the marginals. This
is only possible if X and Y are independent random variables since in this case

px.y[®i, y;] = px[zilpy [y;]- (8.21)
Additionally, for independent random variables, the use of (8.21) in (8.7) yields

px[zilpy [y;] _
px [zi]
or the conditional PMF is the same as the unconditional PMF. There is no change
in the probabilities of Y whether or not X is observed. This is of course consistent
with our previous definition of statistical independence.
Finally, for more general conditional probability calculations we sum the appro-
priate values of the conditional PMF to yield (see Problem 8.14)

PY e AX =z]= Y pyxlylzi. (8.23)
{j; €A}

pyix[yjlz:] = py [yl (8.22)
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PX =), PXY PY =D, PXY px Py

@ (8.18)
(8.11) (8.12)

bx)y = Py |xPX
bx)y = Px|yPYy

_ DPxy pPXx,
PYIY = 5 by PXIY = 5 poy Py|x Py
(a) (b)

px py

(8.20)
(8.18) @
(8.13)
Py |xP
Pyix PXly =~ p

(c) (Can also interchange X
and Y for similar results)

Figure 8.4: Conditional PMF relationships.

8.5 Simplifying Probability Calculations using Condi-
tioning

As alluded to in the introduction, conditional PMFs can be used to simplify proba-
bility calculations. To illustrate the use of this approach we once again consider the
determination of the PMF for Z = X +Y, where X and Y are independent discrete
random variables that take on integer values. We have already seen that the solu-
tion is pz = px * py, where * denotes discrete convolution (see (7.21)77). To solve
this problem using conditional PMF's, we ask ourselves the question: Could T find
the PMF of Z if X were known? If so, then we should be able to use conditioning
arguments to first find the conditional PMF of Z given X, and then uncondition
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the result to yield the PMF of Z. Let us say that X is known and that X =4. As
a result, we have that conditionally Z =1 + Y, where 7 is just a constant. This is
sometimes denoted by Z|(X = 4). But this is a transformation from one discrete
random variable Y to another discrete random variable Z. We therefore wish to
determine the PMF of a random variable that has been summed with a constant.
It is not difficult to show that if a discrete random variable U has a PMF pylj],
then U + ¢ has the PMF py[j —i] or the PMF is just shifted to the right by 7 units.
Thus, the conditional PMF of Z evaluated at Z = j is pz|x[j|i] = py|x[j —i|i]. Now
to find the unconditional PMF of Z we use (8.20) with an appropriate change of
variables to yield

pzlil = Y paxlililpxlil

1=—00

and since pz x[j|i] = py|x[j — ili], we have

pzlil= > pyixli — ililpx[i]-

1=—00

But X and Y are independent so that py|x = py and therefore we have the final
result

pali) = Y2 prli—ilpxli

1=—00

which agrees with our earlier one. Another example follows.

Example 8.59 - PMF for Z = max(X,Y)

Let X and Y be discrete random variables that take on integer values. Also, assume
independence of the random variables X and Y and that the marginal PMFs of X
and Y are known. To find the PMF of Z we use (8.20) or the law of total probability
to yield

pzlk] = Z pz|x[klilpx[i]- (8.24)

1=—00

Now px is known so that we only need to determine pz|x for X =i. But given that
X =i, we have that Z = max(s,Y) for which the PMF is easily found. We have
thus reduced the original problem, which is to determine the PMF for the random
variable obtained by transforming from (X,Y) to Z, to determining the PMF for
a function of only one random wvariable. Letting g(Y) = max(i,Y’) we see that the
function appears as shown in Figure 8.5. Hence, using (5.8)?7 for the PMF of a
single transformed discrete random variable we have

pzix[kli] = Z pyxili-
{j:9(j)=k}
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Figure 8.5: Plot of the function ¢g(y) = max(i,y).

Solving for j in g(j ) =k (refer to Figure 8.5) yields no solution for k < i, the
multiple solutions j = ...,7 — 1,4 for £k = 4, and the single solution j = k for
k=14+1,942,.... This produces

0 k=, i—2i—1
pzix[kli] = § i opyixlilid] k=i (8.25)
py|x (k] k=i+1,i4+2,....

Using this in (8.24) produces

k-1

pzlk] = ; pzixIklilpx [i] + pzpx [KIKpx K] + %lpzx [klilpx[i] ~ (break up sum)
= kzl py|x[klilpx [1] + Z py|x[ilklpx[k] + 0 (use (8.25))
i=—oo pr——
- Zl py [klpx[i] + Xk: py [ipx [K] (since X and Y are independent)
i= oo =0
= pylk] Z px[i] + px[k] i py[j]-
Pl pr——

Note that due to the independence assumption this final result can also be written

as
Z px,yi, k] + Z px,v [k, J]
1=—00 j=—o00
so that the PMF of Z is obtained by summing all the points of the joint PMF
shown in Figure 8.6 for £ = 2, as an example. These point comprise the set {(z,y) :
max(z,y) = 2and z =i,y = j}. It is now clear that we could have solved this
problem in a more direct fashion by making this observation. As in most problems,
however, the solution is usually trivial once it is known!
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Yy
A
o o o 02-4» o o (2’2)
1+ °
— -
1 2
°

Figure 8.6: Points of joint PMF to be summed to find PMF of Z = max(X,Y") for
k=2

¢
As we have seen, a general procedure for determining the PMF for Z = ¢(X,Y)

when X and Y are independent is as follows:
1. Fix X =z; and let Z|(X = z;) = g(z;,Y)

2. Find the PMF for Z|X by using the techniques for a transformation of a single
random variable Y into another random variable Z. The formula is from
(5.9)77, where the PMF's are first converted to conditional PMFs

pz|xlzklzil = Z Py |x [Yjlzi] for each z;
{i:9(ziy;)=2k}
= Z Py [y;] for each z; (due to independence).
{5:9(ziyj)==k}

3. Uncondition the conditional PMF to yield the desired PMF

pzlzk] = Z Pz x[2k|z]px [wi]-

In general, to compute probabilities of events it is advantageous to use a condi-
tioning argument, whether or not X and Y are independent. Where previously we
have used the formula

Py eAl= Y bpvly
{5y €A}
to compute the probability, a conditioning approach would replace py[y;] by
>_i Py |x[yjlzilpx[zi] to yield

Py e Al= > > pyixlyjlzidpx(zi] (8.26)
{jiy;€A} i
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to determine the probability. Equivalently, we have that

Py e A=Y | Y pyixlylaed|  pxle] - (8.27)
i R {7y;€A} unconditioning

e

conditioning

In this form we recognize the conditional probability of (8.23), which is

PlY € A|X = o] = Z py|x[yjlzi]
{iyieA}

and the unconditional probability

PlY € A]=) PV € A[X = z]px|[zi] (8.28)
with the latter being just a restatement of the law of total probability.

8.6 Mean of the Conditional PMF

Since the conditional PMF is a PMF, it exhibits all the usual properties. In particu-
lar, we can determine attributes such as the expected value of a random variable Y,
when it is known that X = x;. This expected value is the mean of the conditional
PMF py|x. Its definition is the usual one

> yipyxlyslzi] (8:29)
J

where we have replaced py by py|x. It should be emphasized that since the con-
ditional PMF depends on z;, so will its mean. Hence, the mean of the conditional
PMF is a constant when we set z; equal to a fixed value. We adopt the notation for
the mean of the conditional PMF as Fy|x[Y|z;]. This notation includes the sub-
script “Y|X” to remind us that the averaging PMF is the conditional PMF py|x.
Also, the use of “Y'|z;” as the argument will remind us that the averaging PMF is
the conditional PMF that is specified by X = x; in the family of conditional PMFs.
The mean is therefore defined as

By x[Yw] =) yipy x[y;lwil- (8.30)
J

Although we have previously asserted that the mean is a constant, here it is to be
regarded as a function of ;. An example of its calculation follows.
Example 8.60 - Mean of conditional PMF - continuation of Example 8.1
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We now compute all the possible values of Ey x[Y|z;] for the problem described
in Example 8.1. There z; = 1 or ; = 0 and the corresponding conditional PMFs
are given by (8.9) and (8.10), respectively. The means of the conditional PMFs are
therefore

Byx[Y1] = 2 (1—18> +4 (1—?’8> +6 (%) +8 (15—8> 110 (%) +12 (%) _7
By x[Y|0] = 3 (1—28> +5 (%) +7 (%) +9 (%) 411 (%) =7

and are shown in Figure 8.3. In this example the means of the conditional PMFs
are the same, but will not be in general. We can expect that g(z;) = Ey|x[Y]|z;]
will vary with x;.

¢

We could also compute the variance of the conditional PMFs. This would be

2
var(Y|z;) = Z (yj - EY|X[Y|5L"z']) PY|X[yj|fL“i]- (8.31)
J
The reader is asked to do this in Problem 8.22. (See also Problem 8.23 for an

alternate expression for var(Y|z;).) Note from Figure 8.3 that we do not expect
these to be the same.

A What is the “conditional expectation”?

The function g(z;) = Ey|x[Y |z;] is the mean of the conditional PMF py | x [y;|z;]-

Alternatively, it is known as the conditional mean. This terminology is widespread
and so we will adhere to it, although we should keep in mind that it is meant to
denote the usual mean of the conditional PMF. It is also of interest to determine
the expectation of other quantities besides Y with respect to the conditional PMF.
This is called the conditional exzpectation and is symbolized by Ey|x[g(Y)|z;]. The
latter is called the conditional expectation of g(Y). For example, if g(Y) = Y2,
then it becomes the conditional expectation of Y2 or equivalently the conditional
second moment. Lastly, the reader should be aware that the conditional mean is the
optimal predictor of a random variable based on observation of a second random
variable (see Problem 8.27).

We now give another example of the computation of the conditional mean.
Example 8.61 - Toss one of two dice

There are two dice having different numbers of dots on their faces. Die one is the
usual type of die with faces having 1,2,3,4,5, or 6 dots. Die 2 has been mislabled
with its faces having 2,3,2,3,2, or 3 dots. A die is selected at random and tossed.
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Each face of the die is equally likely to occur. What is the expected number of dots
observed for the tossed die? To solve this problem first observe that the outcomes
will depend upon which die has been tossed. As a result, the conditional expectation
of the number of dots will depend upon which die is initially chosen. We can view
this problem as a conditional one by letting

¥ = 1 if die 1 is chosen
“ 1 2 ifdie 2 is chosen

and Y is the number of dots observed. Thus, we wish to determine Ey | x[Y|1] and
Ey x[Y'[2]. But if die 1 is chosen, the conditional PMF is

) 1 .

and if die 2 is chosen )

py|x[j]2] = 53 J=23 (8.33)

with the latter conditional PMF due to the fact that for die 2 half the sides show
2 dots and the other half of the sides show 3 dots. Using (8.30) with (8.32) and
(8.33), we have that

6
By Vi) =Y dpvili) = o
>
]3 5
Eyx[Y|2] = ZJPY|XU|2]:§- (8.34)
j=2

An example of typical outcomes for this experiment is shown in Figure 8.7. For
50 trials of the experiment Figure 8.7a displays the outcomes for which die 1 was
chosen and Figure 8.7b displays the outcomes for which die 2 was chosen. It is
interesting to note that the estimated mean for Figure 8.7a is 3.88 and for Figure
8.7b it is 2.58. Note that the theoretical conditional means are from (8.34) 3.5 and
2.5, respectively.

¢
In the previous example, we have determined the conditional means, which are the
means of the conditional PMFs. We also might wish to determine the unconditional
mean, which is the mean of Y. This is the number of dots observed as a result
of the overall experiment, without first conditioning on which die was chosen. In
essence, we wish to determine Ey[Y]. Intuitively, this is the average number of
dots observed if we combined Figures 8.7a and 8.7b together (just overlay Figure
8.7b onto Figure 8.7a) and continued the experiment indefinitely. Hence, we wish
to determine Ey[Y] for the following experiment:

1. Choose die 1 or die 2 with probability of 1/2
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| jlh Ll AOIJL Ml i

(a) Outcomes when die 1 chosen (b) Outcomes when die 2 chosen

Figure 8.7: Computer simulated outcomes of randomly selected die toss experiment.

2. Toss chosen die

3. Count number of dots on face of tossed die and call this the outcome of the
random variable Y.

A simple MATLAB program to simulate this experiment is given as

for m=1:M
if rand(1,1)<0.5
y(m,1)=PMFdata(1,[1 2 3 4 56 6]1°,[1/6 1/6 1/6 1/6 1/6 1/6]1’);
else
y(m,1)=PMFdata(1,[2 3]1°,[1/2 1/2]1°);
end
end

where the subprogram PMFdata.m is listed in Appendix 6B. After the code is ex-
ecuted there is an array y, which is M X 1, containing M realizations of Y. By
taking the sample mean of the elements in the array y, we will have estimated
Ey[Y]. But we expect about half of the realizations to have used the fair die and
the other half to use the mislabled die. As a result, we might suppose that the
unconditional mean is just the average of the two conditional means. This would be
(1/2)(7/2) 4+ (1/2)(5/2) = 3, which turns out to be the true result. This conjecture
is also strengthened by the results of Figure 8.7. By overlaying the plots we have
50 outcomes of the experiment for which the sample mean is 3.25. Let’s see how to
verify this.

To determine the theoretical mean of Y, i.e., the unconditional mean, we will
need py[j]. But given the conditional PMF and the marginal PMF we know from
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Figure 8.4c that the joint PMF can be found. Hence, from (8.32) and (8.33) and
px[i] = 1/2 for i = 1,2, we have

pxyli, il = pyxlilipx[i]
L i=1;j=1,2,3,4,56
B { 1o i=2=23.
To find py[j] we use
2
pylil = Y pxyli.j]
i=1
pxy[l,i] = 1 J=14,5,6
{ pxy[Lil+pxy2il=5+1=3 7=23
Thus, the unconditional mean becomes
6
BylY] = Y jpvlj]
j=1
- m) ()2 6) (@) (@) (5)
12 3 3 12 12 12
= 3.

This value is sometimes called the unconditional expectation. Note that for this
example we have upon using (8.34)

Ey[Y] = Ey|x[Yl]px[1] + Ey|x[Y[2]px [2]

or the unconditional mean is the average of the conditional means. This is true
generally and is summarized by the relationship

EylY] = ZEY|X[Y|5E¢]I>X[%]- (8.35)

To prove this relationship is straightforward. Starting with (8.35) we have

ZEY\X[Y|$i]PX[$i] = Z Zyjpy‘x[yj|$i] px|z;] (definition of conditional mean)
7 i j
= Z Z Yj Wp x[24] (definition of conditional PMF)
5 px[zi]
= Z Yj ZPX,Y[%, y;]
j i
= > ypyly] (marginal PMF from joint PMF)
J

= Ey[Y]
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In (8.35) we can consider g(z;) = Ey|x[Y|z;] as the transformed outcome of the
coin choice part of the experiment, where X = z; is the outcome of the coin choice.
Since before we choose the coin to toss, we do not know which one it will be, we
can consider g(X) as a transformed random variable whose values are g(z;). By this
way of viewing things, we can define a random variable as g(X) = Ey|x[Y|X] and
therefore rewrite (8.35) as

By[Y] = Ex[g(X)]

or explicitly we have that
Ey[Y] = Ex[Byx[V]X]. (8.36)

In effect, we have computed the expectation of a random variable in two steps. Step
one is to compute a conditional expectation Ey |x while step two is to undo the
conditioning by averaging the result with respect to the PMF of X. An example, is
the previous coin tossing experiment. The utility in doing so is that the conditional
PMFs were easily found and hence also the means of the conditional PMF's, and
finally the averaging with respect to px is easily carried out to yield the desired
result. We illustrate the use of (8.36) with another example.

Example 8.62 - Random number of coin tosses

An experiment is conducted in which a coin with a probability of heads p is tossed
M times. However, M is a random wvariable with M ~ Pois(A). For example, if a
realization of M is generated, say M = 5, then the coin is tossed 5 times in succes-
sion. We wish to determine the average number of heads observed. Conditionally
on knowing the value of M, we have a binomial PMF for the number of heads Y.
Hence, for M = i we have upon using the binomial PMF (see (5.6)77)

pyulili] = (;) PA—p)¥ T j=0,1,...,i;i=0,1,...
Now using (8.36) and replacing X with M we have
Ey[Y] = Eyx[Ey\m[Y |M]]
and for a binomial PMF we know that Ey-y/[Y'|i] = ip so that
Ey[Y] = Eyn[Mp] = pEy[M].

But for a Poisson random variable Ej/[M] = A, which yields the final result

It can be shown more generally that Y ~ Pois(Ap) (see Problem 8.26) so that our
result for the mean of Y follows directly from knowledge of the mean of a Poisson
random variable.

&
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8.7 Computer Simulation Based on Conditioning

In Section 7.11 we discussed a simple method for generating realizations of jointly
distributed discrete random variables (X,Y") using MATLAB. To do so we required
the joint PMF. Using conditioning arguments, however, we can frequently simplify
the procedure. Since py y|[zi,y;] = py|x[yjlzi]px[z:], a realization of (X,Y) can
be obtained by first generating a realization of X according to its marginal PMF
px|[z;]. Then, assuming that X = z; is obtained, we next generate a realization of
Y according to the conditional PMF py|x[y;|z;]. (Of course, if X and Y are inde-
pendent, we replace the second step by the generation of Y according to py [y;] since
in this case py|x[y;j|zi] = py[y;].) This is also advantageous when the problem de-
scription is formulated in terms of conditional PMFs, as in a compound experiment.
To illustrate this approach with the one described previously we repeat Example
7.15.

Example 8.63 - Generating realizations of jointly distributed random
variables - Example 7.15 (continued)

The joint PMF of Example 7.15 is shown in Figure 8.8, where the solid circles
represent the sample points and the values of the joint PMF are shown to the right
of the sample points. To use a conditioning approach we need to find px and py x.

4
A

—t
®
|
[ ]
N[ —

oo| —
b | —
Y

— @

Figure 8.8: Joint PMF for Example 8.6.

But from Figure 8.8, if we sum along the columns we obtain

pxli] = {

and using the definition of the conditional PMF, we have

1=0

1=1

EN[SURENTES

. pXY[Oaj]
o) = vl
1/8 .
- 1/8 .
pi=1 i=1
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and
. pxyl[l, ]
1] = &rimdd
/4 1 . _
_ { ﬁ—ﬁ =0
- 1/2 2 .

The MATLAB segment of code shown below generates M realizations of (X,Y)
using this conditioning approach.

for m=1:M
ux=rand(1,1);
uy=rand(1,1);
if ux<=1/4; % Refer to px[il
x(m,1)=0;
if uy<=1/2 ¥, Refer to pylx[jl0]
y(m,1)=0;
else
y(m,1)=1;
end
else
x(m,1)=1; % Refer to px[i]
if uy<=1/3 ¥, Refer to pylx[jl1]
y(m,1)=0;
else
y(m,1)=1;
end
end
end

The reader is asked to test this program in Problem 8.29.

8.8 Real-World Example-Modeling Human Learning

A two year old child that has learned to walk can perform tasks that not even the
most sophisticated robots can match. For example, a two year old child can easily
maneuver her way to a favorite toy, pick it up, and start to play with it. Robots,
powered by machine vision and mechanical grippers, have a hard time performing
this supposedly simple task. It is not surprisingly, therefore, that one of the holy
grails in cognitive science and also machine learning is to figure out how a child
does this. If we were able to understand the thought processes that were used
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to successfully complete this task, then it is conceivable that a machine might be
built to do the same thing. Many models of human learning employ a Bayesian
framework [Tenenbaum 1999]. This approach appears to be fruitful in that using
Bayesian modeling we are able to discriminate with more and more accuracy as
we repeatedly perform an experiment and observe the outcome. This is analogous
to a child attempting to pick up the toy, dropping it, picking it up again after
having learned something about how to pick it up, dropping it, etc., until finally
she is successful. Fach time the experiment, attempting to pick up the toy, is
repeated the child learns something or equivalently narrows down the number of
possible strategies. In Bayesian analysis, as we will next show, the width of the
PMF decreases as we observe more outcomes. This is in some sense saying that
our uncertainty about the outcome of the experiment decreases as it is performed
more times. Although not a perfect analogy, it does seem to possess some critical
elements of the human learning process. Therefore, we illustrate this modeling with
the simple example of coin tossing.

Suppose we wish to “learn” whether a coin is fair (p = 1/2) or is weighted
(p # 1/2). One way to do this is to repeatedly toss the coin and count the number
of heads observed. We would expect that our certainty about the conclusion, that
the coin is fair or not, would increase as the number of trials increases. In the
Bayesian model we quantify our knowledge about the value of p by assuming that
p is a random wvariable. Our particular coin, however, has a fixed probability of
heads. It is just that we do not know what it is and hence our belief about the value
of p is embodied in an assumed PMF. This is a slightly different interpretation of
probability than our previous relative frequency interpretation. To conform to our
previous notation we let the probability of heads be denoted by the random variable
Y and its values by y;. Then, we determine its PMF. Our state of knowledge will be
high if the PMF is highly concentrated about a particular value, as for example in
Figure 8.9a. If, however, the PMF is spread out or “diffuse”, our state of knowledge
will be low, as for example in Figure 8.9b. Now let’s say that we wish to learn the
value of the probability of heads. Before we toss the coin we have no idea what it
is, and therefore it is reasonable to assume a PMF that is uniform, as for example
the one shown in Figure 8.9b. Such a PMF is given by
for y; =0, 4, 2, ..., 2= 1 (8.37)

pY[y]]: MY M " M

M+1

for some large M (in Figure 8.9b M = 11). This is also called the prior PMF since
it summarizes our state of knowledge before the experiment is performed. Now
we begin to toss the coin and examine our state of knowledge as the number of
tosses increases. Let N be the number of coin tosses and X denote the number of
heads observed in the N tosses. We know that the PMF of the number of heads
is binomially distributed. However, to specify the PMF completely, we require
knowledge of the probability of heads. Since this is unknown, we can only specify
the PMF of X conditionally or if Y = y; is the probability of heads, then the
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Figure 8.9: PMFs reflecting state of knowledge about coin’s probability of heads.

conditional PMF of the number of heads for X =i is
) N\ N—i .
x|y lilyj] = . y; (1 —y;) 1=0,1,...,N. (8.38)

Since we are actually interested in the probability of heads or the PMF of Y after
observing the outcomes of N coin tosses, we need to determine the conditional PMF
py|x[yjli]. The latter is also called the posterior PMF, since it is to be determined
after the experiment is peformed. The reader may wish to compare this terminology
with that used in Chapter 4. The posterior PMF contains all the information about
the probability of heads that results from our prior knowledge, summarized by py,
and our “data” knowledge, summarized by pxy. The posterior PMF is given by
Bayes rule (8.15) with z; =7 as

px|y [ilyjlpy [y
> pxvlilyslpyv ;]

PY\X[ZJJM =

Using (8.37) and (8.38) we have

. (]j) vi( = y) N i ,
pyixlyildl = = 7% i —— yj=0,1/M,...,1;i=0,1,...,N
> =0 ( i ) yi(L=y) N i
or finally,
. yi(1—y)N ,
py xyill] = =57 d yj=0,1/M,...,1;i=0,1,...,N. (8.39)
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Note that the posterior PMF depends on the number of heads observed, which is
i. To understand what this PMF is saying about our state of knowledge, assume
that we toss the coin N = 10 times and observe : = 4 heads. The posterior PMF
is shown in Figure 8.10a. For N = 20, + = 11 and N = 40, + = 19, the posterior
PMFs are shown in Figures 8.10b and 8.10c, respectively. Note that as the number
of tosses increases the posterior PMF becomes narrower and centered about the
value of 0.5. The Bayesian model has “learned” the value of p, with our confidence
increasing as the number of trials increases. Note that for no trials (just set N =0
and hence i = 0 in (8.39)) we have just the uniform prior PMF of Figure 8.9b.
From our experiments we could now conclude with some certainty that the coin

1 1
= =
§0.8 §0.8
= =
506 506
SH SH
0.4 0.4
{ { X : 0.2 { : 0.2
e T I ?. 0 (] I I . 0 ? I .
0 05 1 15 -05 0 0.5 1 15 -0.5 0 05 1
Yj Yj Yj
(a)N:lO,i:4 (b)N:ZO,iZH (C)N:40,i=19

Figure 8.10: Posterior PMFs for coin tossing analogy to human learning — coin
appears to be fair. The y;’s are possible probability values for a head.

is fair. However, if the outcomes were N = 10,4 = 2, and N = 20, ¢ = 5, and
N =40, ¢« =7, then the posterior PMFs would appear as in Figure 8.11. We would
then conclude that the coin is weighted and is biased against yielding a head, since
the posterior PMF is concentrated about 0.2. See [Kay 1993] for futher descriptions
of Bayesian approaches to estimation.
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Figure 8.11: Posterior PMFs for coin tossing analogy to human learning — coin
appears to be weighted. The y;’s are possible probability values for a head.

Problems

8.1 (w) A fair coin is tossed. If it comes up heads, then X = 1 and if it comes
up tails, then X = 0. Next, a point is selected at random from the area A
if X =1 and from the area B if X = 0 as shown in Figure 8.12. Note that
the area of the square is 4 and A and B both have areas of 3/2. If the point
selected is in an upper quadrant, we set Y = 1 and if it is in a lower quadrant,
we set Y = 0. Find the conditional PMF pyx[j]i] for all values of 7 and j.
Next, compute P[Y = 0].

Y

1

Figure 8.12: Areas for Problem 8.1.

8.2 (--) (w) A fair coin is tossed with the outcome mapped into X = 1 for a head
and X = 0 for a tail. If it comes up heads, then a fair die is tossed. The
outcome of the die is denoted by Y and is set equal to the number of dots
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observed. If the coin comes up tails, then we set Y = 0. Find the conditional
PMF py x[j]i] for all values of i and j. Next, compute P[Y = 1].

8.3 (w) A fair coin is tossed 3 times in succession. All the outcomes (i.e., the
3-tuples) are equally likely. The random variables X and Y are defined as

Y - 0 if outcome of first toss is a tail
o 1 if outcome of first toss is a head
Y = number of heads observed for the three tosses

Determine the conditional PMF py- x[j]i] for all 4 and j.

8.4 (t) Prove that >32°  py|x|[yj|zi] =1 for all ;.

8.5 (.-) (w) Are the following functions valid conditional PMFs?
a. pyixlilz] = (1 —zi)ei  j=1,2,...;0;=1/4,1/2,3/4
h;wwuuﬂz(fyﬂu—xQNﬁ G=0,1,... Nyz; = —1/2,1/2

c. py|x[jlei] = cz] J=2,3,...;1;, =2
for ¢ some constant?

8.6 (.-) (f) If

ti=0,j=0

1 . .
.. 3 1=0,7=1

P /L? = . .
pY,Y[ ]] % i=1,j=0
t i=1j=1

find py|x and px|y.
8.7 (f) Verify the conditional PMF given in (8.10).

8.8 () (f) For the sample space shown in Figure 8.1 determine pyx and pxy if
all the outcomes are equally likely. Explain your results.

8.9 (w) Explain the need for the denominator term in (8.11) and (8.12).
8.10 (w) If py|x and py are known, can you find px y?

8.11 (.-) (w) A box contains three type of replacement light bulbs. There is an
equal proportion of each type. The types vary in their quality so that the
probability that the light bulb fails at the jth use is given by

pyix[ill] = (0.99)7 '0.01
pyix[il2l = (0.9)77'0.1
pyixliB3] = (0.8)710.2
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for j = 1,2,.... Note that py|x[j|i] is the PMF of the bulb failing at the jth
use if it is of type ¢. If a bulb is selected at random from the box, what is the
probability that it will operate satisfactorily for at least 10 uses?

8.12 (f) A joint PMF px y[i,j] has the values shown in Table 8.2. Determine the
conditional PMF py|x. Are the random variables independent?

Jj=113=2|75=3
1 1 2
=1 0 0 1o
'L: l L l
20 20 10
i — 3 1 1
10 20 20

Table 8.2: Joint PMF for Problem &8.12.

8.13 (.- ) (w) A random vector (X,Y) has a sample space shown in Figure 8.13
with the sample points depicted as solid circles. The four points are equally
probable. Note that the points in Figure 8.13b are the corners of the square
shown in Figure 8.13a after rotation by +45°. For both cases compute py | x
and py to determine if the random variables are independent.

1/V2T

\
8
\
8

(a) (b)

Figure 8.13: Joint PMFs - each point is equally probable.

8.14 (t) Use the properties of conditional probability and the definition of the con-
ditional PMF to prove (8.23). Hint: Let A = U;{s: Y (s) = y;} and note that
the sets {s: Y (s) = y;} are disjoint.

8.15(w) If X and Y are independent random variables, find the PMF of Z =
|X —Y|. Assume that Sx = {0,1,...} and Sy = {0, 1,...}. Hint: The answer
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_ ) XZopxlipy[i] k=0
pz[k] o { 00 . . . . .
Yoo viilpx[i + k] +pxilpyi +k]) k=1,2,... .

As an intermediate step show that

0 _ [ pvld] k=0
pz|xkli] = { pi[i + k| +pyli—k] k#DO.

8.16 (w) Two people agree to meet at a specified time. Person A will be late by
i minutes with a probability px[i] = (1/2)!! for i = 0,1,..., while person B
will be late by j minutes with a probability of py[j] = (1/2)/+! for j = 0,1,....
The persons arrive independently of each other. The first person to arrive will
wait a maximum of 2 minutes for the second person to arrive. If the second
person is more than 2 minutes late, the first person will leave. What is the
probability that the two people will meet? Hint: Use the results of Problem
8.15.

8.17(.-) (w) If X and Y are independent random variables, both of whose PMF's
take on values {0, 1,...}, find the PMF of Z = min(X,Y).

8.18 (w) If X and Y have the joint PMF
px,ylisjl =pipe(1 —p1)' (1 —p2)!  i=0,1,...;5=0,1,...

find P[Y > X] using a conditioning argument. In particular, make use of
(8.23) and P[Y > X|z = i] = P[Y > i|X =i].

8.19 (f) If X and Y have the joint PMF given in Problem 8.6, find Ey|x[Y |;].
8.20 (f) If X and Y have the joint PMF

ot o .
pX,Y[ILa]] = (5) exp(_A)? ? :07177] :0717"'

find Ey|X[Y|’L] for all 2.

8.21 (.- ) (f) Find the conditional mean of Y given X if the joint PMF is uniformly
distributed over the points Sx y = {(0,0), (1,0),(1,1),(2,0),(2,1),(2,2)}.

8.22 (.-) (f) For the joint PMF given in Problem 8.21 determine var(Y|z;) for all
z;. Explain why your results appear to be reasonable.

8.23 (t) Prove that var(Y|z;) = Ey\x[Y2|$i] - E%‘X[Y|$l] by using (8.31).

8.24 (f) Find Ey[Y] if the joint PMF is as given in Problem 8.21. Do this by using
the definition of the expected value and also using (8.36).
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8.25 (t) Prove the extension of (8.36) which is
Ey[g(Y)] = Ex [Eyx[g(Y)|X]]

where h(X) = By x[g(Y)|X] is a function of the random variable X which
takes on values

h(z;) = EY|X[9(Y)|5L“z'] = Zg(yj)PY|X[yj|fEi]-
J

This says that Ey[g(Y)] can be computed using the formula

Ey[g(Y)]ZZ Zg(yj)PY|X[yj|$i] px|zi).

i J

8.26 (t) In this problem we prove that if M ~ Pois(\) and Y conditioned on M
is a binomial PMF with parameter p, then the unconditional PMF of Y is
Pois(Ap). This means that if

)\m

pulm] =exp(=A)—  m=0,1,...
and

. . m j m—j .

pywmm]—(j)p(l—p) i=01...m
then .
- Ap)’ .
pylj]l = exp(—/\p)( j,) i=0,1,....

To prove this you need to derive the characteristic function of Y and show
that it corresponds to a Pois(Ap) random variable. Proceed as follows, making
use of the results of Problem 8.25

¢Y(CU) = Ey[exp(]wY)]
= Eu [By|ulexp(jwY)|M]

= Euy [[pexp(jw) +(1 —p)]M]

and complete the derivation.

8.27 (t) In Chapter 7 the optimal linear predictor of Y based on X = z; was found.
The criterion of optimality was the minimum mean square error, where the
mean square error was defined as Ex y[(Y — (aX + b))?]. In this problem we
prove that the best predictor, now allowing for nonlinear predictors as well, is
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given by the conditional mean Ey x[Y]|z;]. To prove this we let the predictor
be Y = g(X) and minimize

Exyl(Y —g(X))*] = ZZ(yj—g(IEi))QpX,Y[fEi,yj]
i g

- Z Z(yj_g(xi))Qpﬂx[yﬂxi] px[x;].

i J

But since px|z;] is nonnegative and we can choose a different value of g(z;)
for each x;, we can equivalently minimize

> () — 9(@:) Py x [yl

J

where we consider ¢g(z;) = ¢ as a constant. Prove that this is minimized for
9(w;) = BEy|x[Y|x;]. Hint: You may wish to review Section 6.6.

8.28 (--) (f) For random variables X and Y with the joint PMF

b Gd) = (-1,0)

pestiq =] & =070
SR I BCH) R (3
L oGg) = (10

we wish to predict Y based on our knowledge of the outcome of X. Find the
optimal predictor using the results of Problem 8.27. Also, find the optimal
linear predictor for this problem (see Section 7.9) and compare your results.
Draw a picture of the sample space using solid circles to indicate the sample
points in a plane and then plot the prediction for each outcome of X = i for
1 = —1,0,1. Explain your results.

8.29 (c¢) Test out the MATLAB program given in Section 8.7 to generate realiza-
tions of the vector random variable (X,Y’) whose joint PMF is given in Figure
8.8. Do so by estimating the joint PMF or px y[i,j]. You may wish to review
Section 7.1177.

8.30 (.-) (w,c) For the joint PMF given in Figure 8.8 determine the conditional
means Ey|x[j|i] and then verify your results using a computer simulation.
Note that you will have to separate the realizations (%, yn) into two sets,
one in which z, = 0 and one in which z,, = 1, and then use the sample
average for each set as your estimator.
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8.31 (w,c) For the joint PMF given in Figure 8.8 determine Ey[Y]. Then, verify
(8.36) by using your results from Problem 8.30, and computing

Ey[Y] = Ey|x[Y[0]px[0] + By x[Y [1]px[1]
where EY‘/X[? |0] and EH/X[? |1] are the values obtained in Problem 8.30. Also,
the PMF of X,which needs to be estimated, can be done so as described in
Section 5.9.

8.32 (w,c) For the posterior PMF given by (8.39) plot the PMF for i = N/2,
M = 11 and increasing N, say N = 10, 30, 50, 70. What happens as N becomes
large? Explain your results. Hint: You will need a computer to evaluate and
plot the posterior PMF.



Chapter 9

Discrete N-dimensional Random
Variables

9.1 Introduction

In this chapter we extend the results of Chapters 5-8 to N-dimensional random vari-
ables, which are represented as an N x 1 random vector. Hence, our discussions will
apply to the 2 x 1 random vector previously studied. In fact, most of the concepts
introduced earlier are trivially extended so that we do not dwell on the conceptu-
alization. The only exception is the introduction of the covariance matriz, which
we have not seen before. We will introduce more general notation in combination
with vector/matrix representations to allow the convenient manipulation of N x 1
random vectors. This representation allows many results to be easily derived and is
useful for the more advanced theory of probability that the reader may encounter
later. Also, it lends itself to straightforward computer implementations, particularly
if one uses MATLAB, which is a vector-based programming language. Since many
of the methods and subsequent properties rely on linear and matrix algebra, a brief
summary of relevant concepts is given in Appendix C.

9.2 Summary

The N-dimensional joint PMF is given by (9.1) and satisfies the usual properties of
(9.3) and (9.4). The joint PMF of any subset of the N random variables is obtained
by summing the joint PMF over the undesired ones. If the joint PMF factors as
in (9.7), the random variables are independent and vice-versa. The joint PMF
of a transformed random vector is given by (9.9). In particular, if the transformed
random variable is the sum of N independent random variables with the same PMF,
then the PMF is most easily found from (9.14). The expected value of a random
vector is defined by (9.15) and the expected value of a scalar function of a random
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vector is found via (9.16). As usual, the expectation operator is linear with a special
case given by (9.17). The variance of a sum of N random variables is given by (9.20)
or (9.21). If the random variables are uncorrelated, then this variance is the sum of
the variances as per (9.22). The covariance matrix of a random vector is defined by
(9.25). It has many important properties that are summarized in Properties 9.1—
5. Particularly useful results are the covariance matrix of a linearly transformed
random vector given by (9.27) and the ability to decorrelate the elements of a
random vector using a linear transformation as explained in the proof of Property
9.5. An example of this procedure is given in Example 9.4. The joint moments and
characteristic function of an N-dimensional PMF are defined by (9.32) and (9.34),
respectively. The joint moments are obtainable from the characteristic function by
using (9.36). An important relationship is the factorization of the joint PMF into
a product of conditional PMFs as given by (9.39). When the random variables
exhibit the Markov property, then this factorization simplifies even further into the
product of first-order conditional PMFs as given by (9.41). The estimates of the
mean vector and the covariance matrix of a random vector is given by (9.44) and
(9.46), respectively. Some MATLAB code for implementing these estimates is listed
in Section 9.8. Finally, a real-world example of the use of transform coding to
store/transmit image data is described in Section 9.9. It is based on decorrelation
of random vectors and so makes direct use of the concepts of the covariance matrix.

9.3 Random Vectors and Probability Mass Functions

Previously, we denoted a two-dimensional random vector by either of the equivalent
notations (X,Y) or [X Y]T. Since we now wish to extend our results to an N x 1
random vector, we shall use (X1, Xo,...,Xy) or X = [X; X5... Xy]7. Note that
a boldface character will always denote a vector or a matrix, in contrast to a scalar
variable. Also, all vectors are assumed to be column vectors. A random vector
is defined as a mapping from the original sample space & of the experiment to a
numerical sample space, which we term Sy, x,... x,. The latter is normally referred
to as R"™, which is the N-dimensional Euclidean space. Hence, X takes on values
in RY so that _
Xi(s)

X(s) = XQ-(S)

Xx(s)

will have values

I
T3

TN
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where x is a point in the N-dimensional Euclidean space RY. A simple example
is § = {all lottery tickets} and X(s) represents the number printed on the ticket.
Then, X;(s) is the first digit of the number, X5(s) is the second digit of the number,
..., and Xn(8) is the Nth digit of the number.

We are, as usual, interested in the probability that X takes on its possible values.
This probability is P[X| = x1, Xo = x9,..., Xy = zy] and it is defined as the joint
PMF. The joint PMF is therefore given by

le,Xz,...,XN[fL'laan e ,:EN] = P[Xl = :El,XQ =Ty ,XN = (L‘N] (91)
or more succinctly using vector notation as
px[x] = P[X = x]. (9.2)

When x consists of integer values only, we will replace z; by k;. Then, the joint
PMF will be px, x,,. xylki,k2,...,kn] or more succintly as py[k], where k =
[k1 ko ... kn]T. An example of an N-dimensional joint PMF, which is of consid-
erable importance, is the multinomial PMF (see (4.19)?77). In our new notation the
joint PMF is

M

ki1, k k
le,XQ,...,XN[kI,kZ, .. ,kN] = <k1’k2’ - ,kN> p11p22 . 'pNN
where k; > 0 with 32~ k; = M, and 0 < p; < 1 for all i with 3 p; = 1. That

this is a valid joint PMF follows from its adherence to the usual properties

0 <px, .Xo,..xy[k1, k2, kN] <1 (9.3)
ZZ"‘ZleyX%---,XN[kl’k?""’kN] = 1. (94)
k1 k2 kn

To prove (9.4) we need only use the multinomial expansion, which is (see Problem
9.3)

M
(a1+a2+---+aN)M:ZZ..Z<k A )’f’;?va (9.5)
[ kn 1y 2y e ey KN

where Zf\;l k; = M.
The marginal PMFs are obtained from the joint PMF by summing over the other
variables. For example, if px, [z1] is desired, then

px,[r1] = Z Z Z DPX1, X0, Xx L1, 22, -, ZN]  (9.6)

{@2:22€S8x, } {T3:23€Sx,} {zn:zNESxy }

and similarly for the other N — 1 marginals. This is because the right-hand-side of
(9.6) is

P[Xl =11, X9 ESXZ,X;), ESXB,...,XN ESXN] :P[Xl :xl].
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When the random vector is composed of more than two random variables, we can
also obtain the joint PMF of any subset of the random variables. We do this by
summing over the variables that we wish to eliminate. If, say, we wish to determine
the joint PMF of X; and Xy, we have

pxoxnELaN] =D 0 ) pxy XXy 71, T2, - 2N
T2 T3

ITN-—1

As in the case of N = 2 the marginal PMFs do not determine the joint PMF,
unless of course the random variables are independent. In the N-dimensional case
the random variables are defined to be independent if the joint PMF factors or if

PX), Xopos Xn X1, 225 - -, EN] = DX, [Z1]PX, [T2] - - . pxy [2N]- (9.7)

Hence, if (9.7) holds, the random variables are independent, and if the random
variables are independent (9.7) holds. Unlike the case of N = 2, it is possible that
the joint PMF may factor into two or more joint PMFs. Then, the subsets of random
variables are said to be independent of each other. For example, if N = 4 and the
joint PMF factors as px, x, xs.X.[%1, T2, T3, Z4] = DX, X»[%1, T2]PX5, X, [%3, T4], then
the random variables (X7, X3) are independent of the random variables (X3, X4).
An example of the determination of a joint PMF follows.

Example 9.64 - Joint PMF for independent Bernoulli trials

Consider an experiment in which we toss a coin with a probability of heads p,
N times in succession. We let X; = 1 if the i¢th outcome is a head and X; = 0
if it is a tail. Furthermore, assume that the trials are independent. As defined
in Chapter 4, this means that the probability of the outcome on any trial is not
affected by the outcomes of any of the other trials. Thus, the experiment is a
sequence of independent Bernoulli trials. The sample space is IN-dimensional and
is given by Sx, x,,...xy = {(k1,k2,...,kn) : k; =0,1;i=1,2,...,N}, and since
px,[ki] = p¥ (1 — p)' %, we have the joint PMF from (9.7)

N
DXL, Xo, Xy K1 K2y EN] = pri (K]
i—1

N
= J[»F—p)'*
=1
N . _SN
= prmhi(l—p)N Tk, (9:8)

¢
A joint cumulative distribution function (CDF) can be defined in the N-dimensional
case as

Fx, xo,...xn(@1,%2,...,on) = P[X; <1,Xy <x9,..., XN < 2p]).
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It has the usual properties of being between 0 and 1, being monotonically increasing
as any of the variables increases, and being “right continuous”. Also,

Fx, x,,.. xy(—00,—00,...,—00) = 0

Fx, Xy,...xx (+00,400,...,400) =

The marginal CDFs are easily found by letting the undesired variables be evaluated
at +00. For example, to determine the marginal CDF for X, we have

Fx,[z1] = Fx, X, x5 (%1, 400, +00,...,+00).

9.4 Transformations

Since X is an N X 1 random vector, a transformation or mapping to a random vector
Y can yield another IV x 1 random vector or an M X 1 random vector with M < N.
In the former case the formula for the joint PMF of Y is an extension of the usual
one (see (7.12)7?7). If the transformation is given as y = g(x), where g represents
an N-dimensional function or more explicitly

Yy = 91(!E1,!E2,---,$N)
Yy = ga(®1,%2,...,7N)
Yyn = 9N($1a$2,---,$N)
then
PYi Yo Yy WU - UNT = DD > PXy X Xy 71 T2, 7] (9.9)
{@1,zn):

gl(xlv"'va):ylr“v

gN(Z1,..,EN)=YN }

In the case where the transformation is one-to-one, there is only one solution for
X in the equation y = g(x), which we denote symbolically by x = g !(y). The
transformed joint PMF becomes from (9.9) py[y] = px[g~'(y)], using vector no-
tation. A simple example of this is when the transformation is linear and so can
be represented by y = Ax, where A is an N x N nonsingular matrix. Then, the
solution is x = A~y and the transformed joint PMF becomes

pylyl = px[A”"y]. (9.10)

The other case, in which Y has dimension less than N, can be solved using the
technique of auxiliary random variables. We add enough random variables to make
the dimension of the transformed random vector equal to N, find the joint PMF via
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(9.9), and finally sum the N-dimensional PMF over the auxiliary random variables.
More specifically, if Y is M x 1 with M < N, we define a new N x 1 random vector

Z=[Y1Ys...Yir Zyr1 = X1 Zaggr = Xarso .- Zy = Xn)”

so that the transformation becomes one-to-one, if possible. Once the joint PMF of
Z is found, we can determine the joint PMF of Y as

PY1, Yoy Var (Y15 Y25 - - - YM| = Z Z ---Zle,Z2,...,ZN[ZI,Z2,---,ZN]-
ZN

ZM+41 ZM42

The determination of the PMF of a transformed random vector is in general not an
easy task. Even to determine the possible values of Y can be quite difficult. An
example follows which illustrates the work involved.
Example 9.65 - PMF for one-to-one transformation of N-dimensional
random vector

In Example 9.1 X has the joint PMF given by (9.8). We define a transformed
random vector as

Y1 = X;
Y = Xi+X,
Y3 = X1+X2—|-X3.

This is a linear transformation that maps a 3 X 1 random vector X into another
3 x 1 random vector Y. It can be represented by the 3 x 3 matrix

1 00
A=|110
1 11

Note that the transformed random variables are the sums of the outcomes of the first
Bernoulli trial, the first and second Bernoulli trials, and finally the sum of the first
three Bernoulli trials. As such the values of the transformed random variables must
take on certain values. In particular, y; < yo < y3 or the outcomes must increase
as the index ¢ increases. This is sometimes called a counting process and will be
studied in more detail when we discuss random processes. Some typical realizations
of the random vector Y are shown in Figure 9.1. To determine the sample space
for Y we enumerate the possible values, making sure that the values in the vector
increase or stay the same and that the increase is at most one unit from y; to y;1.
The sample space is composed of integer 3-tuples (l1,[2,13), which is given by

SY17Y2,Y3 = {(07 0, 0)7 (07 0, 1)7 (07 L, 1)7 (17 I, 1)7 (07 I, 2)7 (]-7 L, 2)7 (17 2, 2)7 (17 2, 3)}
(9.11)
These are the values of y for which py, v, y; is nonzero and are seen to be integer-
valued. Next, we need to solve for x according to (9.10). It is easily shown that the



9.4. TRANSFORMATIONS 265

4 4
3 3
= =
P2 ~ 2
N { 1 1
0 0
1 2 . 3 4 0 1 2 . 3 4 0 1 2 3
7 7 7

Figure 9.1: Typical realizations for sum of outcomes of independent Bernoulli trials.

linear transformation is one-to-one since A has an inverse (note that the determinant
of A is nonzero since det(A) = 1, and so A has an inverse), which is

1 00

A'=]-1 10

0 -1 1
This says that x = A7y or &1 = y1, 22 = y2 — y1, T3 = y3 — y2. Thus, we can use
(9.10) and then (9.8) to find the joint PMF of Y. It becomes from (9.10)

Pyyya,Yall1s 12, 03] = pxy x5 x5 [l 2 — 1,13 — 19]
and since from (9.8)
DXy XX [kl, ko, k3] — pk1+k2+k3(1 _p)3*(k1+k2+k3)

we have that

Py1,Y2,Y3 [llvl?vl?)] :pla(l _p)3—l3. (9'12)
Note that the joint PMF is valid only over the sample space Sy, v, v, given in (9.11).
O

A Always make sure PMF values sum to one.

The result of the previous example looks strange in that the joint PMF of Y does
not depend on /1 and l5. A simple check that should always be made when working
these types of problems is to verify that the PMF values sum to one. If not, then
there is an error in the calculation. If they do sum to one, then there could still
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be an error but it is not likely. For the previous example, we have from (9.11) 1
outcome for which I3 = 0, 3 outcomes for which I3 = 1, 3 outcomes for which I3 = 2
and 1 outcome for which I3 = 3. If we sum the probabilities of these outcomes we
have from (9.12)

1(1—p)*+3p(1—p)* +3p*(L—p)+p* =1

and hence we can assert with some confidence that the result is correct.

AN

A transformation that is not one-to-one but which frequently is of interest is the
sum of N independent discrete random variables. It is given by

N
Y= X, (9.13)
=1

where the X;’s are independent random variables with integer values. For the case
of N = 2 and integer-valued discrete random variables we saw in Section 7.6 that
PY = DX, *PX,, Where x denotes discrete convolution. This is most easily evaluated
using the characteristic functions and the inverse Fourier transform to yield

py[k] = /_7r ox, (W)dx, (w) eXp(—jwk);l—:.

For a sum of N independent random variables we have the similar result

py[k] = / [T ¢x: (w) GXP(—jwk)—gW
=1

and if the X;’s have the same PMF and hence the same characteristic function, this

becomes - J
. w
vl = [ oY () exp(—ju) 5 (914

where ¢x(w) is the common characteristic function. An example follows (see also
Problem 9.9).

Example 9.66 - Binomial PMF derived as PMF of sum of independent
Bernoulli random variables

We had previously derived the binomial PMF by examining the number of successes
in N independent Bernoulli trials (see Section 4.6.2). We can rederive this result by
using (9.14) with X; =1 for a success and X; = 0 for a failure and determining the
PMF of Y = Zl]\il X;. The random variable Y will be the number of successes in
N trials. The characteristic function of X is for a single Bernoulli trial

¢x(w) = Exlexp(jwX)]
= exp(jw(1))p + exp(jw(0))(1 — p)
= pexp(jw) + (1 —p).



9.5. EXPECTED VALUES 267

Now using (9.14) we have

ik = [ pespti) + (1 - p)" exp(—ju) 5
x N
= / Z (7) [pexp(jw)]*(1 — p)N exp(—jwk)g—: (use binomial theorem)
~T =0
(N i i [T L dw
= §<z >p(1—p)N /_Wexp[jw(z—k)]%.

But the integral can be shown to be 0 if i # k and 1 if i = k (see Problem 9.8).
Using this result we have as the only term in the sum being nonzero the one for
which ¢ = k, and therefore

N _

The sum of N independent Bernoulli random variables has the PMF bin(V,p) in
accordance with our earlier results.

¢

9.5 Expected Values

The expected value of a random vector is defined as the vector of the expected values
of the elements of the random vector. This is to say that we define

Xy Ex, [Xi]
Xo Ex,[X5]

Ex[X] = Ex, x5,.,Xy : = 2: (9.15)
XN Exy[Xn]

We can view this definition as “passing” the expectation “through” the left bracket
of the vector since Ex, x,,. . xy[Xi] = Ex;[Xi].

A particular expectation of interest is that of a scalar function of X1, Xo,..., Xy,
say g(Xy,Xo,...,Xy). Similar to previous results (see Section 7.7) this is deter-
mined by using

Ex, x,,..xy[9(X1,X2,..., XnN)]

= Z Z N Zg(xl,xg, e axN)le,Xm--.,XN [:El,xg, N ,(I,‘N]. (916)

1 T2 TN

As an example, if (X1, Xs,...,XnN) = Zl]\il X;, then

N
Ex, x5, Xy [Z Xz']

=1
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= ZZ Z$1+$2+ +$N)pX17X2, ’XN[.'L'I,.'L'Q,...,LL'N]
= ZZ lepxl,xz, Xn %1, 22, ..., TN]

r1 T2

"‘ZZ Zx2pX1,X2, Xylz1,m2, . 2N

r1 9
= ZZ .. ZprXth,---,XN[wlax?a' .. ,:EN]
1 X2 TN
=  Ex,[Xi] + Ex,[Xo] + -+ + Exy[Xn]

By a slight modification we can also show that

N N
Exi X0, Xy [Z aiXi] = aiBx,[X)] (9.17)

i=1 i=1

which says that the expectation is a linear operator. It is also possible to write
(9.17) more succinctly by defining the N x 1 vector a = [aj as...ay]” to yield

Ex[alX] = al Ex[X]. (9.18)

We next determine the variance of a sum of random variables. Previously it was
shown that
var(Xi + Xo) = var(X;) + var(Xsz) + 2cov(Xy, X2). (9.19)

Our goal is to extend this to Var(zij\;1 X;) for any N. To do so we proceed as

follows.
N 2
i=1

N [/ N
ar (Z X1> = FEx (Z X; — Ex
1=1 L 7,;1 ;
= Fx (Z(Xi—EXi[Xi])> (since Ex[X;] = Ex,[X;])

=1

and by letting U; = X; — Ex,[X;] we have

() - o |(8)
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But
Ex[U;Uj] = Ex[(X;— Ex,[Xi])(X; — Ex;[X;])]
= Ex,x;[(Xi — Ex;,[Xi])(X; — Ex;[X;])]
= COV(XZ',X]')

so that we have as our final result
N N N
var (Z Xi> = Z Z cov(X;, X;). (9.20)
i=1 i=1 j=1

Noting that since cov(X;, X;) = var(X;) and cov(X;, X;) = cov(X;, X;), we have
for N = 2 our previous result (9.19). Also, we can write (9.20) in the alternative
form

N N N N
var (Z X) = var(X;)+ Y > cov(Xi, X;). (9.21)
=1 =1 ]

As an immediate and important consequence, we see that if all the random variables
are uncorrelated so that cov(X;, X;) = 0 for i # 7, then

N N
var (Z XZ-> = var(X;) (9.22)
=1 =1

which says that the variance of a sum of uncorrelated random variables is the sum
of the variances.

We wish to explore (9.20) further since it embodies some important concepts
which we have not yet touched upon. For clarity let N = 2. Then (9.20) becomes

2 2
var(Xy + X3) = Y > cov(X;, X;). (9.23)
i=1 j=1
If we define a 2 x 2 matrix Cx as

Cy = [ var(X1)  cov(Xy, Xo) ]

cov(Xo9,X1)  var(X2)

then we can rewrite (9.23) as

Var(X1+X2) = [ 11 ]CX

1
] (9.24)
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as is easily verified. The matrix Cx is called the covariance matriz. It is a matrix
with the variances along the main diagonal and the covariances off the main diagonal.
For N =3 it is given by

var(X7)  cov(Xi,X9) cov(Xy, X3)
CX = COV(XQ,Xl) V&I‘(XQ) COV(XQ,Xg)
cov(X3, X1) cov(Xs,Xo)  var(X3)

and in general it becomes

var(Xl) COV(Xl,XQ) COV(Xl,XN)
cov(Xo, X var(Xs e cov(Xo, Xy

Oy = | YUY eor( ) (9.25)
cov(Xn, X1) cov(Xn,X3) ... cov(Xn,Xn)

The covariance matrix has many important properties, which are discussed next.
Property 9.31 - Covariance matrix is symmetric, i.e, C§ =Cx

Proof:
COV(Xj,Xi) = COV(XZ',XJ') (Why")

Property 9.32 - Covariance matrix is positive semidefinite

Being positive semidefinite means that if a is the N x 1 column vector a =
[a1ay...an]", then alCya > 0 for all a. Note that a’ Cya is a scalar and is
referred to as a quadratic form (see Appendix C).
Proof: Consider the case of N = 2 since the extension is immediate. Let U; =
X, — Ex,[X;], which is zero mean, and therefore we have

var(a1X1 + a2X2)

= var(a Uy + a2Us) (since a1 X1 + a2 X2 = a1U; + asUs + ¢ for ¢ a constant)
Ex[(aU1 + a20s)?]  (Bx[U1] = Ex[Us] = 0)

a?Bx[U?] + a3 Ex[U3] + a1a2 Bx[U1Us] + aga) Ex[UsU;]  (linearity of Ex)

= a?var(X) + a3var(Xy) + ajazcov(Xy, Xo) + azaycov(Xy, Xi)

Lo )| e ]
Lo cov(Xs, X1) var(Xs)

ai

az
= al'Cya.

Since var(a; X1+ a2 Xs) > 0 for all a; and as, it follows that Cx is positive semidef-

inite.

O
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Also, note that the covariance matrix of random variables that are not perfectly
predictable by a linear predictor is positive definite. A positive definite covariance
matrix is one for which a’ Cxa > 0 for all a # 0. If, however, perfect prediction
is possible, as would be the case if for N = 2 we had a1 X7 + a9 X9 + ¢ = 0, for ¢
a constant and for some a; and ay or equivalently if Xo = —(a1/a2)X; — (c/as),
then the covariance matrix is only positive semidefinite. This is because var(ai X1 +
aXs) = al'Cxa = 0 in this case.
Finally, with the general result that (see Problem 9.14)

N
var (Z aX) =a’Cya (9.26)
=1

we have upon lettinga =1 =[11...1]7 be an N x 1 vector of ones that

N
var (Z Xl> = lTCXl
=1

which is another way of writing (9.20) (the effect of premultiplying a matrix by 17
and postmultiplying by 1 is to sum all the elements in the matrix).

The fact that the covariance matrix is a symmetric positive semidefinite matrix
is important in that it must exhibit all the properties of that type of matrix. For
example, if a matrix is symmetric positive semidefinite, then it can be shown that
its determinant is nonnegative. As a result, it follows that the correlation coefficient
must have a magnitude less than or equal to one (see Problem 9.18). Some other
properties of a covariance matrix follow.

Property 9.33 - Covariance matrix for uncorrelated random variables is
a diagonal matrix
A diagonal matrix is one for which all the off-diagonal elements are zero.
Proof: Let cov(X;, X;) =0 for ¢ # j in (9.25).

O
Before listing the next property a new definition is needed. Similar to the definition
that the expected value of a random vector is the vector of expected values of the
elements, we define the expectation of a random matrix as the matrix of expected
values of its elements. As an example, if N = 2 the definition is

B 911(X)  g12(X) ] _ [ Ex[g11(X)] Ex[g12(X)]
X ga(X) g22(X) Ex[g21(X)]  Ex[g22(X)]

Property 9.34 - Covariance matrix of Y = AX, where A is an M x N
matrix (with M < N)
The result is that

Cy = ACxAT. (9.27)
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Proof:

To prove this result without having to explicitly write out each element of the various
matrices requires the use of matrix algebra. We therefore only sketch the proof and
leave some details to the problems. The covariance matrix of Y can alternatively
be defined by (see Problem 9.21)

Cy = By [(Y — Ey[Y])(Y — Ey[Y])"].
Therefore,

Cy = Ex[(AX - Ex[AX])(AX — Ex[AX])]
Ex [A(X — Ex[X])(A(X — Ex [X]))T] (see Problem 9.22)
= ABx [(X - Ex[X])(X - BEx[X])"] AT (see Problem 9.23)
= ACyAT.

O
This result subsumes many of our previous ones (try A = [11...1] and note that
Cy =var(Y) if M =1, for example!).
Property 9.35 - Covariance matrix can always be diagonalized
The importance of this property is that a diagonalized covariance matrix implies
that the random variables are uncorrelated. Hence, by transforming a random
vector of correlated random variable elements to one whose covariance matrix is
diagonal, we can decorrelate the random variables. It is exceedingly fortunate that
this transformation is a linear one and is easily found. In summary, if X has a
covariance matrix Cx, then we can find an N x N matrix A so that Y = AX has
the covariance matrix

var(Y1) 0 0

0 var(Ya) ... 0

Cy = : : : :
0 0 ... var(Yy)

The matrix A is not unique (see also Problem 7.357?7 for a particular method). One
possible determination of A is contained within the proof.
Proof:
We only sketch the proof of this result since it relies heavily on linear and matrix
algebra (see also Appendix C). More details are available in [Noble and Daniel
1977]. Since Cx is a symmetric matrix, it has a set of N orthonormal eigenvectors
with corresponding real eigenvalues. Since Cx is also positive semidefinite, the
eigenvalues are nonnegative. Hence, we can find N x 1 eigenvectors {vi,va,..., vy}
so that

vai:)\ivi i:1,2,...,N
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where v]'v; = 0 for i # j (orthogonality), v v; = 1 (normalized to unit length),
and A; > 0. We can arrange the N x 1 column vectors Cxv; and also \;v; into
N x N matrices so that

[ CXv1 CXv2 CXvN ] == [ >\1V1 )\2V2 >\NVN ] (928)

But it may be shown that for an NV x N matrix A and N x 1 vectors by, bo,d;,ds,
using N = 2 for simplicity (see Problem 9.24),

[ Ab; Aby, | = A[b; by | (9.29)

[Cldl CQdQ] = [dl d2]|:001 602] (9.30)

Using these relationships (9.28) becomes

A0 .0 0
0 A ... O
CXIVI Vo ... VN]:[Vl Vo ... VN] . . .. .
v 0 0 ... Ay
A
or
CxV =VA.

(The matrix V is known as the modal matrix and is invertible.) Premultiplying
both sides by V~! produces
VTICxV =A.

Next we use the property that the eigenvectors are orthonormal to assert that V=1 =
VT (a property of orthogonal matrices), and therefore

vicxv=A (9.31)

Now recall from Property 9.4 that if Y = AX, then Cy = ACyAT. Thus, if we
let Y = AX = VX, we will have

Cy = Vicyv (from Property 9.4)
= A (from (9.31))

and the covariance matrix of Y will be diagonal with ith diagonal element var(Y;) =
A > 0.

O
This important result is used extensively in many disciplines. Later we will see that
for some types of continuous random vectors, the use of this linear transformation



274 CHAPTER 9. DISCRETE N-DIMENSIONAL RANDOM VARIABLES

To=—8 25=0 32=2 x9="6] px,[2]
p=-8| 0 1 0 0 i
2y = 1 0 0 0 i
2y = 0 0 0 i i
1 =6 0 0 1 0 i
Px,[T2] I i i i

Table 9.1: Joint PMF values.

will make the random variables not only uncorrelated but independent as well (see
Chapter 77). An example follows.
Example 9.67 - Decorrelation of random variables
We consider a two-dimensional example whose joint PMF is given in Table 9.1. We
first determine the covariance matrix Cx and then A so that Y = AX consists of
uncorrelated random variables. From Table 9.1 we have that

Ex, [Xl] = Ex, [XQ] =0

Ex, [XIZ] Ex, [XQZ] =26

Ex,x,[X1X2] = 6

and therefore we have that
var(X1) = var(Xsy) =26
COV(X 1, XQ) = 6
yielding a covariance matrix
26 6
CX"[6 26]'

To find the eigenvectors we need to first find the eigenvalues and then solve (Cx —
AI)v = 0 for each eigenvector v. To determine the eigenvalues we need to solve for
A in the equation det(Cx — AI) = 0. This is

26X 6
det([ 6 26—>\]>_0

(26 — A)(26 — ) — 36 =0

and has solutions A\; = 20 and A2 = 32. Then, solving for the corresponding

eigenvectors yields
U1 0
() B 0

or

(cX—Alez[g 2]
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which yields after normalizing the eigenvector to have unit length
4

V2

1

V2

V] =

Similarly,
6

ercsm= [ ][ ][]

which yields after normalizing the eigenvector to have unit length

(=2

Vo =

S -

The modal matrix becomes

-5
Sh-si-

V=[w vQ]:[

and therefore
A=VT= [

S-Sl
|
Sl

Vi = X1 - —X,
Yo = —=Xi+

and Y] and Y5 are uncorrelated random variables with

Ey[Y] = Ey[AX]=AEx[X]=0

Cy = ACxAT"=VICyV=A= [ 200 302 ] i

It is interesting to note in this example, and in general, that A is a rotation matrix

or
cos@ —sinf
A= [ sinf cos# ]

where @ = /4. The effect of multiplying a 2 x 1 vector by this matrix is to rotate
the vector 45° in the counterclockwise direction (see Problem 9.27). As seen in
Figure 9.2 the values of X, indicated by the small circles and also given in Table
9.1, become the values of Y, indicated by the large circles. One can easily verify
the rotation.

&
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Figure 9.2: Sample points for X (small circles) and Y (large circles). The dashed
lines indicate a 45° rotation.

9.6 Joint Moments and the Characteristic Function

The joint moments corresponding to an N-dimensional PMF are defined as

Iyl ! Il !
Ex, Xo,..xy[X1' X XN ] = ZZ .- fofff DX Xy Xy (1, %2, - -, TN
TN

T1 T2

(9.32)
As usual if the random variables are independent, the joint PMF factors and there-
fore

Ex, Xo,..xx [ XU XE X0 = Ex [XMEx, [X2]. .. Ex, [ XY (9.33)
The joint characteristic function is defined as

DX\ X, Xn (W1, wa, ... wN) = Ex, X, xy [€xplJ(w1 X1 + woXo + -+ + wnXN)]]
(9.34)
and is evaluated as

bX, Xo,.... Xn (W1, w2, ... ,WN)

= ZZ - Zexp[j(wlxl + woZo + - - +waL“N)]PXhXQ,...,XN[IEl,$2a e 7$N]‘

r1 T2 TN
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In particular, for independent random variables, we have (see Problem 9.28)

DX1,Xo, Xy (W1, W2, ..., wN) = dx, (W1)dx, (W2) ... dx, (WN).

Also, if X takes on integer values, the joint PMF can be found from the joint
characteristic function using the inverse Fourier transform or

DPX1,Xo,o Xy K1, K2y oy kN ]

™ ™ ™
= / / DX, X, Xy (W1 W2, ., WN)
—T —T —T

dwy d d
-exp[—j(w1k1 + w2k‘2 + -+ UJNI{:N) ﬂﬂ N

o g (935)

All the properties of the 2-dimensional characteristic function extend to the general
case. Note that once ¢x, x,,. xy(w1,ws,...,wn) is known, the characteristic func-
tion for any subset of the X;’s is found by setting w; equal to zero for the ones not
in the subset. For example, to find px, x,[z1,22], we let w3 =wy =+ =wny =01in
the joint characteristic function

Vi Vi
Px,,Xs K1, ko] = / fﬁxl,xz,...,XN (wi,w2,0,0,...,0) exp[—j(wi ki +waky)]
—T —T N~
dx1, x5 (W1,w2)

dw1 de
or 21

As seen previously, the joint moments can be obtained from the characteristic func-
tion. The general formula is

I1 yvl2 In
EX17X27"'7XN [Xl X2 st XN ]

1 Hlrtlzt-+iy

BT g o

BX1,Xay Xy (W1, W2, - -, WN)

w1=wa=--=wyn =0

(9.36)

9.7 Conditional Probability Mass Functions

When we have an N-dimensional random vector, many different conditional PMFs
can be defined. A straightforward extension of the conditional PMF py|x encoun-
tered in Chapter 8 is the conditional PMF of a single random variable conditioned
on knowledge of the outcomes of all the other random variables. For example, it is
of interest to study px|x,,x,,...xy_,» Whose definition is

PX1,X2, Xn L1, L2, - -, TN
DX, Xy, Xn_1 [T1, %2, - -, TN_1)

PXn|X1, X2y Xy 1 [N |T1, T2,y TN 1] = (9.37)
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Then by rearranging (9.37) we have upon omitting the arguments

PX1, X0, Xy = pXN‘Xl,XQ,...,XN_lel,XQ,...,XN,I- (938)
If we replace N by N — 1 in (9.37), we have

_ PXy, X, XN
Pxy 1|X1,X2, 0, XN_o =
PXy,Xo,. . Xn_>
or
PX1,X2,...XNn—1 = PXN_1|X1,X2,., XN_2PX1,X2,... XN_2"

Inserting this into (9.38) yields

PX1, X5, Xn T PXn|X1,X2, . Xy 1 PXn_1|X1,X2,., XN _oPX1,X0,.., XNn_2-

Continuing this process results in the general chain rule for joint PMFs (see also
(4.10)77)

PXy,X5,... XNy = pXN\Xl,Xg,...,XN,leN,l|X1,X2,...,XN,2 N 'pX2|X1pX1‘ (939)

A particularly useful special case of this relationship occurs when the conditional
PMFs satisfies

PX0 X1, X200 Xno1 = PXn|Xno1 forn=3,4,...,N (9.40)

or X, is independent of X7 ..., X, o if X,,_1 is known for all n > 3. If we view n
as a time index, then this says that the probability of the current random variable
X, is independent of the past outcomes once the most recent past outcome X, 1
is known. This is called the Markov property, which was described in Section 4.6.4.
When the Markov property holds, we can rewrite (9.39) in the particularly simple
form

DPX1,X2, s Xn = PXN|XN_1PX N1 |Xnos - - - PXo| X1 P X (9.41)

which is a factorization of the N-dimensional joint PMF into a product of first-order
conditional PMFs. It can be considered as the logical extension of the factorization
of the N-dimensional joint PMF of independent random variables into the product
of its marginals. As such it enjoys many useful properties, which are discussed
in Chapter 7?7. A simple example of when (9.40) holds is for a “running” sum of
independent random variables or X, = Z?Zl U;, where the U;’s are independent.
Then, we have

Xy = U
Xo Ur+U; = X1 +Us
X3 = U +Us+Us =X9+4Us

Xy = Xn_1+Un.
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For example, X5 is known, the PMF of X3 = X5 + Us only depends on Us and not
X1. Also, it is seen from the definition of the random variables that U3z and U7 = X,
are independent. Thus, once X, is known, X3 (a function of Us) is independent of
Xi (a function of Uy). As a result, px,|x, x, = Pxs|x, and in general

PX0|X1, X200 Xno1 = PXp| Xny forn=3,4,...,N

or (9.40) is satisfied. It is said that “the PMF of X,, given the past samples depends
only on the most recent past sample.” To illustrate this we consider a particular
running sum of independent random variables known as a random walk.

Example 9.68 - Random walk
Let U; for : = 1,2,..., N be independent random variables with the same PMF

_J1=p kE=-1
pU[k]_{p k=1

and define

X, = Z U;.
=1

At each “time” n the new random variable X,, changes from the old random variable
Xp—1 by £1 since X,, = X,,_1 + U,. The joint PMF is from (9.41)

N
Px1 XXy = || PXalx0 s (9.42)
n=1

where py,|x, is defined as px,. But py, |x, , can be found by noting that X, =
X, -1+ U, and therefore if X,,_1 = z,,_1 we have that

PXn|Xn 1 [TnlTn-1] = Punx._1[Tn — Tn—1]Tn-1] (step 1 - transform PMF)
= pu,[Tn — Tn—1] (step 2 - independence)
= pulTn — Tp-1] (Uy,’s have same PMF).

Step 1 results from the transformed random variable Y = X + ¢, where c is a con-
stant, having a PMF py[y;] = px[y; — ¢]. Step 2 results from U,, being independent
of X,,_1 = E?;ll U; since all the U;’s are independent. Finally, we have from (9.42)

N
PX1, Xy Xy [ L1, %2, -, TN] = H pulty — Tn_1]. (9.43)
n=1

A realization of the random variables for p = 1/2 is shown in Figure 9.3. As justified
by the character of the outcomes in Figure 9.3b, this random process is termed a
random walk. We will say more about this later in Chapter ??. Note that the
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oyt §§I.I.I]I.I.I] hlm l h'l'll
(a) Realization of Uy’s (b) Realization of X,’s

Figure 9.3: Typical realization of a random walk.

probability of the realization in Figure 9.3b is from (9.43)

30 30 1 1 30
le,XQ,...,XBO [13 03 ey _2] = H pU[fL'n - xn—l] — H 5 — (5)
n=1

n=1

since py[—1] = py([l] = 1/2.

9.8 Computer Simulation of Random Vectors

To generate a realization of a random vector we can use the direct method described
in Section 7.11 or the conditional approach of Section 8.7. The latter uses the general
chain rule (see (9.39)). We will not pursue this further as the extension to an N x 1
random vector is obvious. Instead we concentrate on two important descriptors of
a random vector, those being the mean vector given by (9.15) and the covariance
matrix given by (9.25). We wish to see how to estimate these quantities. In practice,
the N-dimensional PMF is usually quite difficult to estimate and so we settle for
the estimation of the means and covariances. The mean vector is easily estimated
by estimating each element by its sample mean as we have done in Section 6.8. Here
we assume to have M realizations of the N x 1 random vector X, which we denote

as {x1,x9,...,xpr}. The mean vector estimate becomes
— 1 M
Bx[X] =+~ > xm (9.44)
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which is the same as estimating the i component of EFx|[X] by (1/M) Zm 1 [Xmli,
where [£]; denotes the ith component of the vector & To estimate the N x N
covariance matrix we first recall that the vector/matrix definition is

Cx = Bx |(X - Bx[X]) (X - Bx[X)].
This can also be shown to be equivalent to (see Problem 9.31)
Cx = Bx [XXT] - (Bx[X])(Bx[X])". (9.45)
We can now replace Ex[X] by the estimate of (9.44). To estimate the N x N matrix
Ex [XXT]

we replace it by (1/M) Zm | XmX_) since it is easily shown that the (4,) element
of Bx [XXT] is

[EX[XXT]]Z'J' = Ex[X;X;] = Ex;x; [Xi X;]

and

i

ij m:l

1L 1
[M Z xmxm] Z (X i[Xm];-
m=1

Thus we have that
M | M T
et () ()
which can also be written as

. 1 XM — _———\T
Cx=—Y (xm - EX[X]) (xm - EX[X]) (9.46)

where ]g[i] is given by (9.44). The latter form of the covariance matrix estimate
is also more easily implemented. An example follows.

Example 9.69 - Decorrelation of random variables - continued

In Example 9.1 we showed that we could decorrelate the random variable compo-
nents of a random vector by applying the appropriate linear transformation to the
random vector. In particular, if the 2 x 1 random vector X whose joint PMF is
given in Table 9.1 is transformed to a random vector Y, where

.
V2
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then the covariance matrix for X

26 6
CX_[G 26]

becomes the diagonal covariance matrix for Y

Cy:[20 0}.

0 32
To check this we generate realizations of X, as explained in Section 7.11 and then use

the estimate of the covariance matrix given by (9.46). The results are for M = 1000
realizations

= _ [25.9080 6.1077
X = 6.1077 25.8558
G _ [ 197742 0.0261
L 0.0261 31.9896

and are near to the true covariance matrices. The entire MATLAB program is given
below.

% covexample.m
clear all % clears out all previous variables from workspace
rand(’state’,0); % sets random number generator to initial value
M=1000;
for m=1:M 7} generate realizations of X (see Section 7.11)
u=rand(1,1);
if u<=0.25
x(1,m)=-8;x(2,m)=0;
elseif u>0.25&u<=0.5
x(1,m)=0;x(2,m)=-8;
elseif u>0.5&u<=0.75
x(1,m)=2;x(2,m)=6;

else
x(1,m)=6;x(2,m)=2;

end
end
meanx=[0 0]’; % estimate mean vector of X
for m=1:M

meanx=meanx+x(:,m)/M;
end
meanx

CX=zeros(2,2);
for m=1:M 7 estimate covariance matrix of X
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xbar(:,m)=x(:,m)-meanx;
CX=CX+xbar (:,m)*xbar(:,m)’/M;
end
CcX
A=[1/sqrt(2) -1/sqrt(2);1/sqrt(2) 1/sqrt(2)];
for m=1:M % transform random vector X
y(,m)=A*xx(:,m);

end
meany=[0 0]’; %estimate mean vector or Y
for m=1:M
meany=meany+y (: ,m)/M;
end
meany

CY=zeros(2,2);

for m=1:M 7, estimate covariance matrix of Y
ybar (:,m)=y(:,m)-meany;
CY=CY+ybar(:,m)*ybar(:,m)’/M;

end

CY

9.9 Real-World Example - Image Coding

The methods for digital storage and transmission of images is an important consid-
eration in the modern digital age. One of the standard procedures used to convert
an image to its digital representation is the JPEG encoding format [Sayood 1996].
It makes the observation that many images contain portions that do not change
significantly in content. Such would be the case for the image of a house in which
the color and texture of the siding, whether it be aluminum siding or clapboards,
is relatively constant as the image is scanned in the horizontal direction. To store
and transmit all this redundant information is costly and time consuming. Hence,
it is desirable to reduce the image to its basic set of information. Consider a gray
scale image for simplicity. Each pixel, which is a dot of a given intensity level, is
modeled as a random variable. For the house image example, note that for the
siding pixels, the random variables are heavily correlated. For example, if X; and
X5 denote neighboring pixels in the horizontal direction, then we would expect the
correlation coefficient px, x, = 1. If this is the case, then we know from Section
7.9 that X; = X9, assuming zero mean random variables in our model. There is no
economy in storing/transmitting the values X; = z; and X9 = z9 = x;. We should
just store/transmit X; = z; and when it is necessary to reconstruct the image let
X, = X1 = z1. In this case, there is no image degradation in doing so. If, however,
lpx1,x,| < 1, then there will be an error in the reconstructed Xs. If the correlation
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coefficient is close to £1, this error will be small. Even if it is not, for many images
the errors introduced are perceptually unimportant. Human visual perception can
tolerate gross errors before the image becomes unsatisfactory.

To apply this idea to image coding we will consider a simple yet illustrative
example. The amount of correlation between random variables is quantified by
the covariances. In particular, for multiple random variables this information is
embodied in the covariance matrix. For example, if N = 3 a covariance matrix of

4.0 0
Cx=|0 4 38 (9.47)
0 38 4

indicates that
PX1,X2 = PX1,X5 = 0

but
3.8

XX =

Clearly, then (X7, X5) or (X1, X3) contain most of the information. For more com-
plicated covariance matrices these relationships are not so obvious. For example,
if

=0.95.

4 1 5
1 4 5
5 5 10

Cx = (9.48)

it is not obvious that X5 = X; + Xo (assuming zero mean random variables). (This
is verfied by showing that E[(X3 — (X7 + X2))?] = 0 (see Problem 9.33)).

The technique of transform coding [Sayood 1996] used in the JPEG encoding
scheme takes advantage of the correlation between random variables. The particular
version we describe here can be shown to be an optimal approach [Kramer and
Mathews 1956]. It is termed the Karhunen-Loeve transform and an approximate
version is used in the JPEG encoding. Transform coding operates on a random
vector X and proceeds as follows:

1. Tranform the random variables into uncorrelated ones via a linear transformation
Y = AX, where A is an invertible N x N matrix.

2. Discard the random variables whose variance is small relative to the others by
setting the corresponding elements of Y equal to zero. This yields a new N x 1
random vector Y. This vector would be stored or transmitted. (Of course,
the zero vector elements would not require encoding, thereby effecting data
compression. Their locations, though, would need to be specified.)

3. Transform back to X = A 1Y to recover an approximation to the original ran-
dom variables (if the values Y were stored then this would occur upon retrieval
or if they were transmitted, this would occur at the receiver).
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By decorrelating the random variables first it becomes obvious which components
can be discarded without significantly affecting the reconstructed vector. To accom-
plish the first step we have already seen that a decorrelation matrix is V7', where
V is the matrix of eigenvectors of Cx. By doing so we have that

Cy = ACy AT

vicyv
var(Y1) 0 0
= A= 0 var(Y3) 0
0 0 var(Y3)

We now carry out the transform coding procedure for the covariance matrix of
(9.48). This is done numerically using MATLAB. The statement [V Lambdal=eig(CX)
will produce the matrices V and A, as

[ 0.4082 —0.7071  0.5774
V = | 04082 —0.7071  0.5774
| 0.8165 0 —0.5774
15 0 0
A =10 30
| 0 0 0

Hence, var(Y3) = 0 so that we discard it by setting V3 = 0 and therefore

Y; Y;
) ! 100 !
Y=|Y,|=[0120 Y,
0 00
0 N—— YS
B Hf—/
Y

The reconstructed random vector becomes with A = V7

~

X=AY = VY
= VBY
= VvBVTX

and since

Wl WIN Wl

vBVvT =

Wl Wl Wit
WIN Wl wl—



286 CHAPTER 9. DISCRETE N-DIMENSIONAL RANDOM VARIABLES

we have that

[ 2X1— 13Xy 4+ 3+ X3
X = | -ixi+2X+1x;
X1+ 11X + 2X;

- X

= X5 (using X3 = X7 + X3, see Problem 9.33)
L X1+ Xo
- X,

= | Xy
L X3

Here we see that the reconstructed vector X is identical to the original one. Gen-
erally, however, there will be an error. For the covariance matrix of (9.47) there
will be an error since X9 and X3 are not perfectly correlated. For that covariance
matrix the eigenvector and eigenvalue matrices are

0 1 0
V = 0.7071 0  0.7071
| 0.7071 0 -0.7071
[ 78 0 0
A = 0 4 0
0 0 02

and it is seen that the decorrelated random variables all have a nonzero variance.
This indicates that no component of Y can be discarded without causing an error
upon reconstruction. By discarding Y3, which has the smallest variance, we will
incur the least amount of error. Doing so produces the reconstructed random vector

X = VBVTX

1 0 0
= |05 3 |X
11
0 3 3
which becomes
X
. X9+ X3
X = 5
X9+ X3
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It is seen that the components Xy and X3 are replaced by their averages. This is
due to the near unity correlation coefficient coefficient (px, x, = 0.95) between these
components. As an example, we generate 20 realizations of X as shown in Figure
9.4a, where the first realization is displayed in samples 1,2,3, the second realization in
samples 4,5,6, etc. The reconstructed realizations are shown in Figure 9.4b. Finally,
the error between the two is shown in Figure 9.5. Note that the total average

N
N

MHI,,HWLH ﬂl.J“Mﬂ..m L DU T

L1 T W T
_2 - II 4 _2 L o
-4 -4
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Sample Sample
(a) Original (b) Reconstruction
Figure 9.4: Realizations of original random vector {xi,x2,...,X2} and recon-
structed random vectors {X;,Xg,...,X20}. The displayed samples shown are com-

ponents of x1, followed by components of xo, etc.

squared error or the total mean square error (MSE) is given by 37| Ex[(X; — X;)?]
which is

Total mse = E[(X; — X1)2 + (X2 — XZ)Q + (X3 — X3)2]
= E[(Xs — (X2 + X3)/2)2] + E[(X3 — (X2 + X3)/2)?]
= B[((X2 — X3)/2)7] + B[(Xs — X2)/2)’]
= SEI(X: — X))
= %[var(XQ) + var(X3) — 2cov(X2, X3)]
_ %[4 +4-2(3.8)] =0.2

which can be verified by taking the sum of the squares of the values in Figure 9.5
and dividing by 20, the number of realizations.

Finally, to appreciate the error in human vision perceptual terms we can convert
the realizations of X and X into an image. This is shown in Figure 9.6. The grayscale
bar shown at the right can be used to convert the various shades of gray into
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ottt 1' o 1' U S

0 10 20 30 40 50 60
Sample

Figure 9.5: Error between original random vector realizations and reconstructed
ones.

numerical values. Also, note that as expected (see Cx in (9.47)) X is uncorrelated
with X5 and X3 and X5 and X3 are heavily correlated in the upper image. In the
lower image X5 and X3 have been replaced by their average.
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Problems

9.1 (.-) (w) A retired person gets up in the morning and decides what to do that
day. He will go fishing with probability 0.3 or he will visit his daughter with
probability 0.2 or else he will stay home and tend to his garden. If the decision
that he makes each day is independent of all other decisions, what is the
probability that he will go fishing for 3 days, visit his daughter for 2 days, and
garden for 2 days of the week?
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T_ original reconstruction —¢

6 8 10 12 14 16 18 20

Figure 9.6: Realizations of original random vector and reconstructed random vectors
displayed as a gray-scale image. The upper image is the original and the lower image
is the reconstructed image.

9.2 (f,c) Compute the values of a multinomial PMF if N =3, M =4, p; = 0.2,
and py = 0.4 for all possible ki, ko, k3. Do the sum of the values equal one?
Hint: You will need a computer to do this.

9.3 (t) Prove the multinomial formula given by (9.5) for N = 3 by the following
method. Use the binomial formula to yield

M —k
a1+b Z k‘1 M k1 lb !

Then let b = ao + a3 so that upon using the binomial formula again we have

M —kq

M — ky)! ke
bM ki _ M—k1 _ ( 1 ko M—ky kg‘
(ag + a3) kz[) ko! (M_kl_k2)!a2 a3

2

Finally, rearrange the sums and note that k3 = M — k; — ks so that there is
actually only a double sum in (9.5) for N = 3 due to this constraint.
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9.4 (-) (f) Is the following function a valid PMF?

1 /1\k 71\ % k1=0,1,...
le,Xz,Xs[klak2ak3] = 3 <§> <Z> ke =0,1,...
k3 = —1,0,1.
9.5 (w) For the joint PMF
ki, =0,1,...
DX, X, x5 K1, k2, k3] = (1 — a)(1 — b)(1 — ¢)a™ bF2ch ka=0,1,...
k3 =0,1,...

where 0 <a <1,0<b<1,and 0 < ¢ < 1, find the marginal PMFs px,,px,
and px,.

9.6 (.- ) (w) For the joint PMF given below are there any subsets of the random
variables that are independent of each other?

o ki =0,1,..., M
DX, X0, X3 1, ko, k3] = PP (1 — ps)ph ky =M — k;
k17k2
ks = 0,1, ...
where 0 <p; <1, po=1—p;,and 0 < p3 < 1.
9.7 (f) A random vector X with the joint PMF

)\kl )\kz )\kg kl == 0, 1, .

PX1,X2,X3 [klv k?a k3] = exp[—(Al + >‘2 + >‘3)]W k2 = 07 ]-7
1o ks =0,1,.

is transformed according to Y = AX where

A=

—_ = =
e )
_—o O

Find the joint PMF of Y.

T L dw 0 kK#0
[ izt {1 120

—T

9.8 (t) Prove that

Hint: Expand exp(jwk) into its real and imaginary parts and note that [(g(w)+
jh(w))dw = [ g(w)dw + j [ h(w)dw.

9.9 (t) Prove that the sum of N independent Poisson random variables with X; ~
Pois(A;) for 4 = 1,2,..., N is again Poisson distributed but with parameter
A= A\ Hint: See Section 9.4.
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9.10 (:-) (w) The components of a random vector X = [X; X5... Xy]? all have
the same mean Ex[X] and the same variance var(X). The “sample mean”

random variable
1 X
X = Zl X;
1=

is formed. If the X;’s are independent, find the mean and variance of X. What
happens to the variance as N — oo? Does this tell you anything about the
PMF of X as N — 00?

9.11 (w) Repeat Problem 9.10 if we know that each X; ~ Ber(p). How can this
result be used to motivate the relative frequency interpretation of probability?

9.12 (f) If the covariance matrix of a 3 x 1 random vector X is
1 01
Cx=1|10 2 2
1 2 4

find the correlation coefficients px, x,, px, x;, and px, x;.

9.13 (.-) (w) A 2 x 1 random vector is given by

U
2U

X —

where var(U) = 1. Find the covariance matrix for X. Next find the correlation
coefficient px, x,. Finally, compute the determinant of the covariance matrix.
Is the covariance matrix positive definite? Hint: A positive definite matrix
must have a positive determinant.

9.14 (t) Prove (9.26) by noting that

N N

a’Cya = Z Z a;ajcov(X;, X;).
i=1 j=1

9.15 (f) For the covariance matrix given in Problem 9.12, find var(X; + X2 + X3).

9.16 (t) Is it ever possible that var(X; + X3) = var(X;) without X5 being a con-
stant?

9.17 (.-) (w) Which of the following matrices are not valid covariance matrices
and why?

S ER B B FE R Y
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9.18 (f) A positive semidefinite matrix A must have det(A) > 0. Since a covari-
ance matrix must be positive semidefinite, use this property to prove that the
correlation coefficient satisfies |px, x,| < 1. Hint: Consider a 2 x 2 covariance

matrix.

9.19 (f) If a random vector X is transformed according to

Y1 = X;
Yo = X1 +Xo
and the mean of X is
3
EX[X]:[ ]
4

find the mean of Y = [Y; Y5]7.

9.20 (.- ) (f) If the random vector X given in Problem 9.19 has a covariance matrix
2 1
o[l
find the covariance matrix for Y = [V Y3]7.
9.21 (t) For N = 2 show that the covariance matrix may be defined as

Cx = Ex [(X — Ex[X])(X — Ex[X])"].

Hint: Recall that the expected value of a matrix is the matrix of the expected
values of its elements.

9.22 (t) In this problem you are asked to prove that if Y = AX, where both X and
Y are N x1 random vectors and A is an N X N matrix, then Fy[Y] = AEx[X].
If we let [A]ij be the (i,7) element of A, then you will need to prove that

This is because if b = Ax, then b; = Z;VZI a;jxj, for i = 1,2,..., N where b;
is the ith element of b and a;; is the (i, j) element of A.

9.23 (t) In this problem we prove that

Ex[AG(X)A"] = AEx[G(X)]A”
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where A is an N x N matrix and G(X) is an N x N matrix whose elements
are all functions of X. To do so we note that if A,B,C,D are all N x N
matrices then D = ABC is an N x N matrix with (i,[) element

D]y = [AB];1[Clgi

Z[A]ij Bljk | [Cli
Z[A]ij [Bl[Clrt-

J=1

I
M= TM= T1M-

B
Il
—

Using this result and replacing A by itself, B by G(X), and C by AT will
allow the desired result to be proven.

9.24 (f) Prove (9.29) and (9.30) for the case of N = 2 by letting

A — [au a12]

asy a2
e e
b, = ! by=| |
I bgl) I ng)
o o
d, = ! dy=|
I dgl) ] ng)

and multiplying out all the matrices and vectors. Then, verify that the re-
lationships are true by showing that the elements of the resultant N x N
matrices are identical.

9.25 (c) Using MATLAB, find the eigenvectors and corresponding eigenvalues for
the covariance matrix

6 26
To do so use the statement [V Lambda]=eig(CX).

oo[% 4]

9.26 (.- ) (f,c) Find a linear transformation to decorrelate the random vector X =
[X1 X2]" that has the covariance matrix

10 6
CX_[G 20]'

What are the variances of the decorrelated random variables?
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9.27 (t) Prove that an orthogonal matrix, i.e., one that has the property UT =
U !, rotates a vector x to a new vector y. Do this by letting y = Ux and
showing that the length of y is the same as the length of x. The length of a

vector is defined to be ||x|| = VxTx = \/:1:% + 2+ + 2%

9.28 (t) Prove that if the random variables X1, X, ..., Xy are independent, then
the joint characteristic function factors as

X1, Xa, Xy (W1, W2, - WN) = Pxy (W1)Pxy (W) - - - Pxy (W)

Alternatively, if the joint characteristic function factors, what does this say
about the random variables and why?

9.29 (f) For the random walk described in Example 9.5 find the mean and the
variance of X, as a function of n if p = 3/4. What do they indicate about the
probable outcomes of X7, Xo,..., Xn7?

9.30 (c) For the random walk of Problem 9.29 simulate several realizations of the

random vector X = [X; X5... Xy]” and plot these as z, versus n for n =
1,2,...,N = 50. Does the appearance of the outcomes corroborate your
results in Problem 9.297 Also, compare your results to those shown in Figure
9.3b.

9.31 (t) Prove the relationship given by (9.45) as follows. Consider the (i,7) ele-
ment of Cx, which is COV(Xi,Xj) = EXi,Xj [XZX]] — EXi [XZ]E)(] [X]] Then,
show that the latter is just the (7,7) element of the right-hand-side of (9.45).
Recall the definition of the expected value of a matrix/vector as the ma-
trix/vector of expected values.

9.32 (¢) A random vector is defined as X = [X; X5... Xn]T, where each compo-
nent is X; ~ Ber(1/2) and all the random variables are independent. Since
the random variables are independent, the covariance matrix should be di-
agonal. Using MATLAB, generate realizations of X for N = 10 by using
x=floor(rand(10,1)+0.5) to generate a single vector realization. Next gen-
erate multiple random vector realizations and use them to estimate the covari-
ance matrix. Presumably the random numbers that MATLAB produces are
“pseudo-independent” and hence “pseudo-uncorrelated”. Does this appear to
be the case? Hint: Uset the MATLAB command mesh(CXest) to plot the
estimated covariance matrix CXest.

9.33 (w) Prove that if X, X5, X3 are zero mean random variables, then E[(X3 —
(X1 + X3))?] = 0 for the covariance matrix given by (9.48).

9.34 (t) In this problem we explain how to generate a computer realization of a
random vector with a given covariance matrix. This procedure was used to
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produce the realizations shown in Figure 9.4a. For simplicity the desired NV x 1
random vector X is assumed to have a zero mean vector. The procedure is
to first generate an N x 1 random vector U whose elements are zero mean,
uncorrelated random variables with unit variances so that its covariance matrix
is I. Then transform U according to X = BU, where B is an appropriate
N x N matrix. The matrix B is obtained from the N x N matrix v/A whose
elements are obtained from the eigenvalue matrix A of Cx by taking the
square root of the elements of A, and V, where V is the eigenvector matrix of
Cy, to form B = VV/A. Prove that the covariance matrix of BU will be Cy.

9.35 (=) (f) Using the results of Problem 9.34 find a matrix transformation B of
U = [U; Us]", where Cyy =1, so that X = BU has the covariance matrix

4 1
ex=|1 4]

9.36 (=) (c) Generate 30 realizations of a 2 x 1 random vector X that has a zero
mean vector and the covariance matrix given in Problem 9.35. To do so use
the results from Problem 9.35. For the random vector U assume that U; and
U; are uncorrelated and have the same PMF

pulk] = {

Note that the mean of U is zero and the covariance matrix of U is I. Next
estimate the covariance matrix Cx using your realizations and compare it to
the true covariance matrix.

k=—1
k=1

N[ D=
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Chapter 10

Continuous Random Variables

10.1 Introduction

In Chapters 5-9 we have discussed discrete random variables and the methods em-
ployed to describe them probabilistically. The principal assumption necessary in
order to do so is that the sample space, which is the set of possible outcomes, is
finite or at most countably infinite. It followed then that a PMF could be defined
as the probability of each sample point and used to calculate the probability of all
possible events (which are subsets of the sample space). Most physical measure-
ments, however, do not produce a discrete set of values but rather a continuum of
values such as the rainfall measurement data shown in Figures 1.1 and 1.2. An-
other example is the maximum temperature measured during the day, which might
be anywhere between 20°F and 60°F. The number of possible temperatures in the
interval [20, 60] are infinite and uncountable. Therefore, we cannot assign a valid
PMF to the temperature random variable. Of course, we could always choose to
“round off” the measurement to the nearest degree so that the possible outcomes
would then become {20,21...,60}. Then, many valid PMFs could be assigned.
But this approach compromises the measurement precision and so is to be avoided
if possible. What we are ultimately interested in is the probability of any interval,
such as the probability of the temperature being in the interval [20,25] or [55, 60]
or the union of intervals [20,25] U [55,60]. To do so we must extend our previous
approaches to be able to handle this new case. And if we later decide that less pre-
cision is warranted, such that the rounding of 20.6° to 21° is acceptable, we will still
be able to determine the probability of observing 21°. To do so we can regard the
rounded temperature of 21° as having arisen from all temperatures in the interval
A =1[20.5,21.5). Then, P[rounded temperature = 21] = P[A], so that we have lost
nothing by considering a continuum of outcomes (see Problem 10.2).

Chapters 10-14 discuss continuous random variables in a manner similar to
Chapters 5-9 for discrete random variables. Since many of the concepts are the same,
we will not belabor the discussion but will concentrate our efforts on the algebraic

297
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manipulations required to analyze continuous random variables. It may of interest to
note that discrete and continuous random variables can be subsumed under the topic
of a general random variable. There exists the mathematical machinery to analyze
both types of random variables simultaneously. This theory is called measure theory
[Capinski, Kopp 2004]. It requires an advanced mathematical background and does
not easily lend itself to intuitive interpretations. An alternative means of describing
the general random variable that appeals more to engineers and scientists makes
use of the Dirac delta function. This approach will discussed later in this chapter
under the topic of mized random wvariables.

In the course of our discussions we will revisit some of the concepts alluded to in
Chapters 1 and 2. With the appropriate mathematical tools we will now be able to
define these concepts. Hence, the reader may wish to review the relevant sections
in those chapters.

10.2 Summary

The definition of a continuous random variable is given in Section 10.3 and illus-
trated in Figure 10.1. The probabilistic description of a continuous random variable
is the probability density function (PDF) px(x) with its interpretation as the prob-
ability per unit length. As such the probability of an interval is given by the area
under the PDF (10.4). The properties of a PDF are that it is nonnegative and
integrates to one, as summarized by Properties 10.1 and 10.2 in Section 10.4. Some
important PDFs are given in Section 10.5, such as the uniform (10.6), the exponen-
tial (10.5), the Gaussian or normal (10.7), the Laplacian (10.8), the Cauchy (10.9),
the Gamma (10.10), and the Rayleigh (10.14). Special cases of the Gamma PDF
are the exponential, the chi-squared (10.12), and the Erlang (10.13). The cumu-
lative distribution function (CDF) for a continuous random variable is defined the
same as for the discrete random variable and is given by (10.16). The corresponding
CDFs for the PDFs of Section 10.5 are given in Section 10.6. In particular, the
CDF for the standard normal is denoted by ®(z) and is related to the @ function
by (10.17). The latter function cannot be evaluated in closed form but may be
found numerically using Q.m listed in Appendix 10B. An approximation to the @
function is given by (10.23). The CDF is useful in that probabilities of intervals
are easily found via (10.25) once the CDF is known. The transformation of a con-
tinuous random variable by a one-to-one function produces the PDF of (10.30). If
the transformation is many-to-one, then (10.33) can be used to determine the PDF
of the transformed random variable. Mixed random variables, ones that exhibit
nonzero probabilities for some points but are continuous otherwise, are described
in Section 10.8. They can be described by a PDF if we allow the use of the Dirac
delta function or impulse. For a general mixed random variable the PDF is given
by (10.36). To generate realizations of a continuous random variable on a digital
computer one can use a transformation of a uniform random variable as summarized
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in Theorem 10.9.1. Examples are given in Section 10.9. Estimation of the PDF and
CDF can be accomplished by using (10.38) and (10.39). Finally, an example of the
application of the theory to the problem of speech clipping is given in Section 10.10.

10.3 Definition of Continuous Random Variable

A continuous random wvariable X is defined as a mapping from the experimental
sample space S to a numerical (or measurement) sample space Sx, which is a subset
of the real line R'. In contrast to the sample space of a discrete random variable,
Sx consists of an infinite and uncountable number of outcomes. As an example,
consider an experiment in which a dart is thrown at the circular dartboard shown
in Figure 10.1. The outcome of the dart-throwing experiment is a point S; in the

X(s1)

Sx =1[0,1]
S

Figure 10.1: Mapping of the outcome of a thrown dart to the real line (example of
continuous random variable).

circle of radius one. The distance from the bullseye (center of the dartboard) is
measured and that value is assigned to the random variable as X (s;) = ;. Clearly,
then the possible outcomes of the random variable are in the interval [0, 1], which is
an uncountably infinite set. We cannot assign a nonzero probability to each value of
X and expect the sum of the probabilities to be one. One way out of this dilemma
is to assign probabilities to intervals, as was done in Section 3.6. There we had a
one-dimensional dartboard and we assigned a probability of the dart landing in an
interval to be the length of the interval. Similarly, for our problem if each value of
X is equally likely so that intervals of the same length are equally likely, we could
assign

Pla<X <b=b—a 0<a<b<l1 (10.1)

for the probability of the dart landing in the interval [a, b]. This probability assign-
ment satisfies the probability axioms given in Section 3.6 and so would suffice to
calculate the probability of any interval or union of disjoint intervals (use Axiom 3
for disjoint intervals). But what would we do if the probability of all equal length
intervals were not the same? For example, a champion dart thrower would be more
likely to obtain a value near x = 0 than near x = 1. We therefore need a more
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general approach. For discrete random variables it was just as easy to assign PMF's
that were not uniform as ones that were uniform. Our goal then is to extend this
approach to encompass continuous random variables. We will do so by examining
the approximation afforded by using the PMF to calculate interval probabilities for
continuous random variables.

Consider first a possible approximation of (10.1) by a uniform PMF as

1
pX[xi]:M z; =1Ax fori=1,2,..., M

where Az = 1/M, so that M Az =1 as shown in Figure 10.2. Then to approximate

0.12 : — 0.12 —
Lo Lo
0.1 v 9 0.1 o
[ I
"50.08 (I '50.08 L
= || = |
0.06 1| {2006 o SR,
[ | 711
0.04 \ | 0.04 \ | 1
[ | (]
0.02 il 0.02 i ]
[ (]
0 | | 0 ; | |
0 0.380.52 1 0 0.380.52 1
T T
(a) M =10, Az =0.1 (b) M =20, Az = 0.05

Figure 10.2: Approximating the probability of interval for a continuous random
variable by using a PMF.

the probability of the outcome of X in the interval [a,b] we can use

Pa<X<b= Y L (10.2)
{i:a<z; <b}

For example, referring to Figure 10.2a, if ¢ = 0.38 and b = 0.52, then there are two
values of z; that lie in that interval and therefore P[0.38 < X < 0.52] =2/M = 0.2,
even though we know that the true value is 0.14 from (10.1). To improve the quality
of our approximation we increase M to M = 20 as shown in Figure 10.2b. Then,
we have three values of z; that lie in the interval and therefore P[0.38 < X <
0.52] = 3/M = 0.15, which is closer to the true value. Clearly, if we let M — oo or
equivalently let Az — 0, our approximation will become exact. Considering again
(10.2) with Az = 1/M, we have

Pa<X<b= > 1Az
{i:a<w; <b}
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and defining px(z) = 1 for 0 < z < 1 and zero otherwise, we can write this as

Pla<X <b= >  px(=)As (10.3)
{i:a<z; <b}

Finally letting Az — 0 to yield no error in the approximation, the sum in (10.3)
becomes an integral and py (z;) — px(z) so that

Pla < X <b] = /bpx(w)dw (10.4)

which gives the same result for the probability of an interval as (10.1). Note that
px (z) is defined to be 1 for all 0 < z < 1. To interpret this new function px(x) we
have from (10.3) with zo = kAz for k an integer

Plzy — Az/2 < X <z + Az/2]

= > px(zi)Az

{i:zxo—Azx/2<z;<z0+Az/2}
= Z px (z;)Ax (only one value of x; within interval)
{i:xi=x0}

= px(zo)Ax

which yields
Plxyg — Az /2 < X < 9 + Az/2]

px(@o) = AL :
This is the probability of X being in the interval [zg — Az/2,z¢ + Az /2] divided
by the interval length Az. Hence, px(z¢) is the probability per unit length and is
termed the probability density function (PDF). It can be used to find the probability
of any interval by using (10.4). Equivalently since the value of an integral may be
interpreted as the area under a curve, the probability is found by determining the
area under the PDF curve. This is shown in Figure 10.3. The PDF is denoted by
px (), where we now use a parenthesis since the argument is no longer discrete but
continuous. Also, for the same reason we omit the subscript ¢, which is used for the
PMF argument. Hence, the PDF for a continuous random variable is the extension
of the PMF that we sought. Before continuing we examine this example further.
Example 10.70 - PDF for a uniform random variable and the MATLAB
command rand

The PDF given by

(z) = 1 O<zx1
PX\T) =11 0 otherwise

is known as a uniform PDF. Equivalently, X is said to be a uniform random vari-
able or we say that X is uniformly distributed on (0,1). The shorthand notation is
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12 12
1 r 1
] 1 1 1
508 ! ! wosp ! !
= i i = i i
06 ' ! o6 b
! ! ! <+ P[0.38<X <b.52]
i i i i
0.4 1 1 04r I |
| | | |
0.2 ] 1 021 I 1
1 1 1 1
0 1 1 0 1 1
0 0.380.52 1 0 0.380.52 1
T Z
(a) Probability density function (b) Probability shown as shaded area

Figure 10.3: Example of probability density function and how probability is found
as the area under it.

X ~U(0,1). Observe that this is the continuous random variable for which MAT-
LAB uses rand to produce a realization. Hence, in simulating a coin toss with a
probability of heads of p = 0.75, we use (10.4) to obtain

b
Pla <X <b = /px(x)dx

b
:/ldac
a

= b—a=0.75

and choose ¢ = 0 and b = 0.75. The probability of obtaining an outcome in the
interval (0, 0.75] for a random variable X ~ 2/(0, 1) is now seen to be 0.75. Hence, the
code below can be used to generate the outcomes of a repeated coin toss experiment
with p = 0.75.

for i=1:M
u=rand(1,1);
if u<=0.75
x(i,1)=1; % head mapped into 1
else
x(1,1)=0; % tail mapped into O
end
end

Could we have used any other values for ¢ and b?
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¢

Now returning to our dart thrower, we can acknowledge her superior dart-throwing
ability by assigning a nonuniform PDF as shown in Figure 10.4. The probability of

px(z) =2(1 —x)

151

px(7)

0.5F

x
Figure 10.4: Nonuniform PDF.

throwing a dart within a circle of radius 0.1 or X € [0,0.1] will be larger than for
the region between the circles with radii 0.9 and 1 or X € [0.9, 1]. Specifically, using
(10.4)

0.1
P0<X<01] = / 2(1 — z)dx = 2(z — 22/2)|," = 0.19
0

1
P0I<X<1] = / 2(1 — z)dz = 2(z — 2%/2)|; , = 0.01,
0.9

Note that in this example px (z) > 0 for all z and also [*°_px(z)dz = 1. These are
properties which must be satisfied for a valid PDF. We will say more about these
properties in the next section.

It may be helpful to consider a mass analogy to the PDF. An example is shown
in Figure 10.5. It can be thought of as a slice of Jarlsberg cheese with length 2
meters, height of 1 meter, and depth of 1 meter, which might be purchased for a
New Year’s eve party (with a lot of guests!). If its mass is 1 kilogram (it is a new
“lite” cheese), then its overall density D is

mass M 1kg

volume 1% 1m? g/m

However, its linear density or mass per meter which is defined as AM /Ax will change
with z. If each guest is allowed to cut a wedge of cheese of length Ax as shown in
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Figure 10.5: Jarlsberg cheese slice used for mass analogy to PDF.

Figure 10.5, then clearly the hungriest guests should choose a wedge near x = 2 for
the greatest amount of cheese. To determine the linear density we compute AM/Ax
versus z. To do so first note that AM = DAV = AV and AV =1 (area of face),
where the face is seen to be trapezoidal. Thus,

AV = lA:I:(

0 _2Ax/2 + o +2A$/2> = lonx.

2 2

Hence, AM/Axz = AV/Ax = z(/2 and this is the same even as Az — 0. Thus,

dM 1
— = — <zr<2
dz 2x O<zs

and to obtain the mass for any wedge from z = a to £ = b we need only integrate
dM /dx to obtain the mass as a function of z. This yields

M([a, b)) :/ab %xdwz/abm(x)dx

where m(x) = z/2 is the linear mass density or the mass per unit length. It is
perfectly analogous to the PDF which is the probability per unit length. Can you
find the total mass of cheese from M ([a,b])? See also Problem 10.3.

10.4 The PDF and its Properties

The PDF must have certain properties so that the probabilities obtained using (10.4)
satisfy the axioms given in Section 3.4. Since the probability of an interval is given
by

b
Pla < X < b] :/ px (z)dz



10.4. THE PDF AND ITS PROPERTIES 305

the PDF must have the following properties.
Property 10.36 - PDF must be nonnegative.

px(z) >0 —o00 <z < 00.

Proof: If px(z) < 0 on some small interval [zg — Az /2, ¢ + Az/2], then

1'0+A:v/2
Plzy — Az/2 < X <z + Az/2] :/ px(z)dz <0
mo—Ax/Z
which violates Axiom 1 that P[E] > 0 for all events E.
O
Property 10.37 - PDF must integrate to one.
oo
/ px(z)dz =1
—00
Proof:
o0
1=P[X € Sx]=Pl-00< X < x0] = / px (z)dz
— 00
O

Hence, any nonnegative function that integrates to one can be considered as a PDF.
An example follows.
Example 10.71 - Exponential PDF

Consider the function

px(z) = { (/)\eXp(_M) : i 8 (10.5)

for A > 0. This is called the exponential PDF and is shown in Figure 10.6. Note
that it is discontinuous at z = 0. Hence, a PDF need not be continuous (see also
Figure 10.3a for the uniform PDF which also has points of discontinuity). Also, for
A > 1, we have px(0) = A > 1. In contrast to a PMF, the PDF can exceed one in
value. It is the area under the PDF that cannot exceed one. As expected py (z) > 0
for —oco < z < 0o and

/OO px(z)dz = /Ooerxp(—Az)dz

— 00

= —exp(=Az)g° =1

for A > 0. This PDF is often used as a model for the lifetime of a product. For
example, if X is the failure time in days of a lightbulb, then P[X > 100] is the
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0.41

0.2F

Figure 10.6: Exponential PDF.

probability that the lightbulb will fail after 100 days or it will last for at least 100
days. This is found to be

oo
P[X >100] = / Aexp(—Az)dx
100
= —exp(—Az)|g
= exp(—100X)
{0367 A=001
~ 1 0.904 X =0.001.

A Probability of a sample point is zero.

If X is a continuous random variable, then it was argued in Section 3.6 that the
probability of a point is zero. This is consistent with our definition of a PDF. If the
width of the interval shrinks to zero, then the area under the PDF also goes to zero.
Hence, P[X = z] = 0. This is true whether or not px(x) is continuous at the point
of interest (as long as the discontinuity is a finite jump). In the previous example
of an exponential PDF P[X = 0] = 0 even though px(0) is discontinuous at =z = 0.
This means that we could, if desired, have defined the exponential PDF as

Aexp(=Az) >0
PX(fU):{O ol ) <0
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for which px(0) is now defined to be 0. It makes no difference in our probability
calculations whether we include z = 0 in the interval or not. Hence, we see that

/b px(z)dz = /oi px(z)dr = /Obpx(ff)dﬁ

and in a similar manner if X is a continuous random variable, then
Pla<X <b=Pla<X<b=Pa<X<b=Pla<X <D

In summary, the value assigned to the PDF at a discontinuity is arbitrary since
it does not affect any subsequent probability calculation involving a continuous
random variable. However, for discontinuities other than step discontinuities (which
are jumps of finite magnitude) we will see in Section 10.8 that we must be more

careful.
/AN

10.5 Important PDF's

There are a multitude of PDFs in use in various scientific disciplines. The books
by [Johnson, Kotz, and Balakrishnan 1994] contain a summary of many of these
and should be consulted for further information. We now describe some of the more
common PDFs.

10.5.1 Uniform

We have already encountered a special case of the uniform PDF in Figure 10.3.
More generally it is defined as

= a<z<b
otherwise

px () = { (10.6)

and examples are shown in Figure 10.7. It is given the shorthand notation X ~
U(a,b). Ifa =0and b =1, then a/(0, 1) random variable is generated in MATLAB
using rand.

10.5.2 Exponential

This was previously defined in Example 10.2. The shorthand notation is X ~
exp(A).
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Figure 10.7: Examples of Uniform PDF.

10.5.3 Gaussian or Normal

This is the famous “bell shaped” curve first introduced in Section 1.3. It is given by

(o) = s exp |~ (o

where 02 > 0 and —0o < p < oo. Its application in practical problems is ubiquitous.
It is shown in integrate to one in Problem 10.9. Some examples of this PDF as well
as some outcomes for various values of the parameters (u,0?) are shown in Figure
10.8 and 10.9. It is characterized by the two parameters ; and o2. The parameter
1 indicates the center of the PDF which is seen in Figures 10.8a and 10.8c. It depicts
the “average value” of the random variable as can be observed by examining Figures
10.8b and 10.8d. In Chapter 11 we will show that u is actually the mean of X. The
parameter o2 indicates the width of the PDF as is seen in Figures 10.9a and 10.9c.
It is related to the variability of the outcomes as seen in Figures 10.9b and 10.9d. In
Chapter 11 we will show that o2 is actually the variance of X. The PDF is called the
Gaussian PDF after the famous German mathematician K.F. Gauss and also the
normal PDF, since “normal” populations tend to exhibit this type of distribution.
A standard normal PDF is one for which y = 0 and 02 = 1. The shorthand notation
is X ~ N(u,0%). MATLAB generates a realization of a standard normal random
variable using randn. This was used extensively in Chapter 2.

To find the probability of the outcome of a Gaussian random variable lying
within an interval requires numerical integration (see Problem 1.1477) since the
integral

—00 <z <0 (10.7)

exp(—(1/2)z?)dz

[
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Figure 10.8: Examples of Gaussian PDF with different p’s.

cannot be evaluated analytically. A MATLAB subprogram will be provided and
described shortly to do this. The Gaussian PDF is commonly used to model noise in
a communication system (see Section 2.6), as well as for numerous other applications.
We will see in Chapter 15 that the PDF arises quite naturally as the PDF of a large
number of independent random variables that have been added together.

10.5.4 Laplacian

This PDF is named after Laplace, the famous French mathematician. It is similar
to the Gaussian except that it does not decrease as rapidly from its maximum value.
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Figure 10.9: Examples of Gaussian PDF with different o2’s.

1 2
o exp (—\/ §|x|> —00 <z <00 (10.8)

where 02 > 0. Again the parameter o2 specifies the width of the PDF, and will be
shown in Chapter 11 to be the variance of X. It is seen to be symmetric about z = 0.
Some examples of the PDF and outcomes are shown in Figure 10.10. Note that for
the same o2 as the Gaussian PDF, the outcomes are larger as seen by comparing
Figure 10.10b to Figure 10.9b. This is due to the larger probability in the “tails” of
the PDF. The “tail” region of the PDF is that for which |z| is large. The Laplacian
PDF is easily integrated to find the probability of an interval. This PDF is used as

Its PDF is

px(z) =



10.5. IMPORTANT PDFS 311

1 5
4 L
0.8} 3r
0.6 1r
X §o ]IT.T]T “T“”
0.4f O -1t l
_2 L
0.2} , 1 -3t
_4 L
0 : 5 : ‘
-5 0 5 0 5 10 15 20 25 30
x Trial number
(a) o® =1 (b) o2 =1
1 5
at i
0.8} 3r 1
— o 2t ,
8
= il [ r] l ! ”
ISH ‘; Or é
0.4f ] QO 1t l“ l
_2 L
02f , 1 -3t
_4 L
0 -5
-5 0 5 0 5 10 15 20 25 30
T Trial number
(c)o? =4 (d) e =4

Figure 10.10: Examples of Laplacian PDF with different o%’s.

a model for speech amplitudes [Rabiner and Schafer 1978].

10.5.5 Cauchy

The Cauchy PDF is named after another famous French mathematician and is

defined as )
=— — . 10.9
px(z) o 00 <z < 00 (10.9)
It is shown in Figure 10.11 and is seen to be symmetric about z = 0. The Cauchy
PDF can easily be integrated to find the probability of any interval. It arises as the

PDF of the ratio of two independent AN(0,1) random variables (see Chapter 12).
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Figure 10.11: Cauchy PDF.

10.5.6 Gamma

The Gamma, PDF is a very general PDF that is used for nonnegative random vari-
ables. It is given by

22 _zo—loxp(=Az) z >0
pﬂ@z{g@ pl )$;0 (10.10)

where A > 0, a > 0, and I'(z) is the Gamma function which is defined as

[(z) = /ﬁootZIexp(—i)dt. (10.11)

Clearly, the I'(«r) factor in (10.10) is the normalizing factor needed to ensure that
the PDF integrates to one. Some examples of this PDF are shown in Figure 10.12.
The shorthand notation is X ~ I'(a, A). Some useful properties of the Gamma
function are as follows.

Property 10.38 - T'(z +1) = 2I'(2)

Proof: See Problem 10.16.

Property 10.39 - T'(N) = (N —1)!
Proof: Follows from Property 10.3 with z = N — 1 since

T(N) = (N—-1I(N-1)
= (N—1)(N—-2)T(N—-3) (let z= N —2 now)
= (N-1)(N-2)...1=(N—1)!
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15

Figure 10.12: Examples of Gamma PDF.

Property 10.40 - T'(1/2) = /7
Proof:

(1/2) = /000 112 exp(—t)dt

(Note that near ¢ = 0 the integrand becomes infinite but ¢~ /2 exp(—t) ~ /2
which is integrable.) Now let ¢ = u?/2 and thus dt = udu which yields

r1/2) = /Ooo :2/2exp(—u2/2)udu

= /00 V2exp(—u?/2)du
0

V2 [ 2 . . .
= 5 exp(—u”/2)du (integrand is symmetric about u = 0)
— 00

/

:\/ﬂvwhy?
= .
O

The Gamma PDF reduces to many well known PDFs for appropriate choices of the
parameters « and A. Some of these are:

1. Exponential for a =1
From (10.10) we have

A_exp(—=Az) >0
px(x):{g(l) p( ) :1:;0
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But I'(1) = 0! = 1, which results from Property 10.3 so that we have the
exponential PDF.

2. Chi-squared PDF with N degrees of freedom for « = N/2 and A =1/2
From (10.10) we have

1 N/2-1 _
px(x>={ e A b (10.12)

0 z<0.

This is called the chi-squared PDF with N degrees of freedom and is important
in statistics. It can be shown to be the PDF for the sum of IV independent ran-
dom variables all with the same PDF AN (0, 1) (see Chapter 12). The shorthand
notation is X ~ X?v-

3. Erlang for a = N
From (10.10) we have

N —
px(z) = %wN Lexp(=Az) >0
0 <0
and since I'(V) = (N — 1)! from Property 10.4, this becomes
AN N-1
_ ] wor ew(-Az) w20 10.13
px(e) { 0 r<0. (10.13)

This PDF arises as the PDF of a sum of N independent exponential random
variables all with the same A (see also Problem 10.17).

10.5.7 Rayleigh

The Rayleigh PDF is named after the famous British physicist Lord Rayleigh and
is defined as

0 xz<0.

It is shown in Figure 10.13. The Rayleigh PDF is easily integrated to yield the
probability of any interval. It can be shown to arise as the PDF of the square root
of the sum of the squares of two independent A/(0, 1) random variables (see Chapter
12).

Finally, note that many of these PDFs arise as the PDF's of transformed Gaussian
random variables. Therefore, realizations of the random variable may be obtained
by first generating multiple realizations of independent standard normal or N (0, 1)
random variables, and then performing the appropriate transformation. An alterna-
tive and more general approach to generating realizations of a random variable, once
the PDF is known, is via the probability integral transformation to be discussed in
Section 10.9.

T 1 z2
=z _1la? >
pX(:E):{ o eXp( 202) z20 (10.14)
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Figure 10.13: Rayleigh PDF with 02 = 1.

10.6 Cumulative Distribution Functions

The cumulative distribution function (CDF) for a continuous random variable is
defined exactly the same as for a discrete random variable. It is

Fx(z) = P[X < z] —o0 <z <0 (10.15)
and is evaluated using the PDF as
T
Fx(z) = / px (t)dt —o00 <z < o00. (10.16)
—00

& Avoiding confusion in evaluating CDF's

It is important to note that in evaluating a definite integral such as in (10.16) it
is best to replace the variable of integration with another symbol. This is because
the upper limit depends on z which would conflict with the dummy variable of
integration. We have chosen to use ¢ but of course any other symbol that does not
conflict with # can be used.

Some examples of the evaluation of the CDF are given next.

10.6.1 Uniform
Using (10.6) we have

0 z<a
Fx(z)={ [I3dt a<z<b
1 T >b
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which is
0 r<a
Fx(z)={ 7=(z—a) a<z<b
1 z>b.

An example is shown in Figure 10.14 for ¢ = 1 and b = 2.

Figure 10.14: CDF for uniform random variable over interval (1,2).

10.6.2 Exponential

Using (10.5) we have

Fy(z) = 0 z <0
X Jo Aexp(=At)dt z>0.

But
/ Aexp(—At)dt = —exp(—XAt)|; =1 — exp(—Az)
0

so that
0 <0
Fx((L‘) = {

1 —exp(—Az) z>0.

An example is shown in Figure 10.15 for A = 1.

Note that for the uniform and exponential random variables the CDF's are con-
tinuous even though the PDFs are discontinuous. This property motivates an al-
ternative definition of a continuous random variable as one for which the CDF is
continuous. Recall that the CDF of a discrete random variable is always discontin-
uous, displaying multiple jumps.
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Figure 10.15: CDF for exponential random variable with A = 1.

10.6.3 Gaussian

Consider a standard normal PDF, which is a Gaussian PDF with p = 0 and o2 = 1.
(If © # 0 and/or 02 # 1 the CDF is a simple modification as shown in Problem
10.22) Then from (10.7) we have

o1 1
Fx((L‘):/ —27Texp <—§t2> dt —oo <z <o0.
—o0

This cannot be evaluated further but can be found numerically and is shown in
Figure 10.16. The CDF for a standard normal is usually given the special symbol

12

Figure 10.16: CDF for standard normal or Gaussian random variable.

®(z) so that

L | 1
O(x) = / mexp <—§t2> dt —oo<x<o0.
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Hence, ®(z) represents the area under the PDF to the left of the point x as seen in
Figure 10.17a. It is sometimes more convenient, however, to have knowledge of the
area to the right instead. This is called the right-tail probability of a standard normal
and is given the symbol Q(z). It is termed the “Q” function and its definition is
depicted in Figure 10.17b. By its definition we have

0.5 : : : : : : : 0.5
04 [ /T 04 [
& =
><0.3 - < 0.31
SY oY
0.2t 02l
OLf -t L 0.1f
-4 -3 -2 -1 0 1 2 3 4 -4 4
x
(a) Shaded area = ®(1) (b) Shaded area = Q(1)
Figure 10.17: Definitions of ®(z) and Q(x) functions.
Qlz) = 1—d(z) (10.17)
/OO ! < 1t2> dt <z< (10.18)
= exp | —= —o00 <z <00 .
z V2w P\ 72

and is shown in Figure 10.18, plotted on a linear as well as a logarithmic vertical
scale. Some of the properties of the Q function that are easily verified are (see
Problem 10.25)

Q(—x) = 1 (10.19)
Qo) = 0 (10.20)
Q) = % (10.21)
Q(—z) = 1—Q(z). (10.22)

Although the Q function cannot be evaluated analytically, it is related to the well
known “error function.” Thus, making use of the latter a MATLAB subprogram
Q.m, which is listed in Appendix 10B, can be used to evaluate it. An example follows.

Example 10.72 - Probability of error in communication system
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Figure 10.18: Q(z) function.

In Section 2.6 we analyzed the probability of error for a PSK digital communication
system. The probability of error P, was given by

P, = P[AJ2+ W < 0]

where W ~ N(0,1). (In the MATLAB code we used w=randn(1,1) and hence the
random variable representing the noise was a standard normal random variable.)
To explicitly evaluate P, we have that

P, = P[A/24+W <]

1 — P[A/2+ W > 0]

1—-P[W > —-A/2]
1-Q(—A/2) (definition)
= Q(A/2) (use (10.22)).

Hence, the true P, shown in Figure 2.15 as the dashed line can be found by using
the MATLAB subprogram Q.m, which is listed in Appendix 10B, for the argument
A/2 (see Problem 10.26). It is also sometimes important to determine A to yield
a given P,. This is found as A = 2Q '(P,), where Q! is the inverse of the Q
function. It is defined as the value of x necessary to yield a given value of Q(z).
It too cannot be expressed analytically but may be evaluated using the MATLAB
subprogram Qinv.m, also listed in Appendix 10B.

&

The @ function can also be approximated for large values of = using [Abramowitz

5
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and Stegun 1965]

1 1
Q(x) =~ exp (——x2> x> 3. (10.23)
2nx 2

A comparison of the approximation to the true value is shown in Figure 10.19. If

Approximate Q(z)

Figure 10.19: Approximation of QQ function - true value is shown dashed.

X ~ N (u,0?), then the right-tail probability becomes

PIX > 2] =Q <x\/;_5> (10.24)

(see Problem 10.24). Finally, note that the area under the standard normal Gaussian
PDF is mostly contained in the interval [—3,3]. As seen in Figure 10.19 Q(3) =~
0.001, which means that the area to the right of x = 3 is only 0.001. Since the PDF
is symmetric, the total area to the right of z = 3 and to the left of z = —3 is 0.002 or
the area in the [—3, 3] interval is 0.998. Hence, 99.8% of the probability lies within
this interval. We would not expect to see a value greater than 3 in magnitude very
often. This is borne out by an examination of Figure 10.8b. How many realizations
would you expect to see in the interval (1,00)? Is this consistent with Figure 10.8b 7

As we have seen, the CDF for a continuous random variable has certain prop-
erties. For the most part they are the same as for a discrete random variable: the
CDF is 0 at x = —oo, 1 at £ = oo, and is monotonically increasing (or stays the
same) between these limits. However, now it is continuous, having no jumps. The
most important property for practical purposes is that which allows us to compute
probabilities of intervals. This follows from the property

Pla< X <b]=Pla< X <b] = Fx(b) — Fx(a) (10.25)
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which is easily proven (see Problem 10.35). It can be seen to be valid by referring to
Figure 10.20. Using the CDF we no longer have to integrate the PDF to determine

px ()

area = Fx (b) area = Fx(a)

b - a ab
Figure 10.20: Illustration of use of CDF to find probability of interval.

probabilities of intervals. In effect, all the integration has been done for us in finding
the CDF. Some examples follow.

Example 10.73 - Probability of interval for exponential PDF
Since Fx(z) =1 — exp(—Az) for z > 0, we have for ¢ > 0 and b > 0

Pla<X <bl = Fx(b)— Fx(a)
(1 — exp(—\b)) — (1 — exp(~Aa))
= exp(—Aa) —exp(—Ab)

which should be compared to

b
/ Aexp(—Ax)dz.
a

¢
Since we obtained the CDF from the PDF, we might suppose that the PDF could
be recovered from the CDF. For a discrete random variable this was the case since
px[zi] = Fx(z]) — Fx(z;). For a continuous random variable we consider a small
interval [zg — Az/2,x0 + Az /2] and evaluate its probability using (10.25) with

Fx(z) = /fL‘ px (t)dt.

—00

Then, we have

F)(((II() —|—ALE/2) — Fx(xo — A(I,‘/Q)
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zo+Ax/2 xo—Ax/2
_ / py (t)dt — / px (1)t

—0o0 —0o0
1'0+A1'/2

= / px (t)dt
ro—Axz/2

ro+Az/2
~ pX(:JcO)/ 1dt (px(t) = constant as Az — 0)
T

0—Ax/2
= px(zo)Az
so that
Fx(zo+ Az/2) — Fx(zo — Az/2)
PX(ﬂUo) ~ A
T
dF
— x(2) as Az — 0.
d(I; =X

Hence, we can obtain the PDF from the CDF by differentiation or

px(z) = 9!%2522_ (10.26)

This relationship is really just the fundamental theorem of calculus [Widder 1989].
Note the similarity to the discrete case in which px[z;] = Fx(z}) — Fx(z; ). As an
example, if X ~ exp()\), then

1—exp(—Xz) >0
Fk@%:{o P r<0.

For all = except z = 0 (at which the CDF does not have a derivative due to the
change in slope as seen in Figure 10.15) we have

. de((L‘)
 dx

px(7) =0 <0

= dexp(—Az) z >0

and as remarked earlier, px (0) can be assigned any value.

10.7 Transformations

In discussing transformations for discrete random variables we noted that a trans-
formation can be either one-to-one or many-to-one. For example, the function
g(z) = 2z is one-to-one while g(z) = z? is many-to-one (in this case two-to-one
since —z and +x both map into z2?). The determination of the PDF of Y = g(X)
will depend upon which type of transformation we have. Initially, we will consider
the one-to-one case, which is simpler. For the transformation of a discrete random
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variable we saw from (5.9)?7 that the PMF of Y = ¢(X) for any g could be found
from the PMF of X using

pylyi] = Z px[z;].

{5:9(zj)=y:}

But if g is one-to-one we have only a single solution for g(acj) = y;, so that z; =
g~ '(y;) and therefore

py [yl = pxlg~ " (4i)] (10.27)

and we are done. For example, assume X takes on values {1,2} with a PMF px/[1]
and px[2] and we wish to determine the PMF of Y = g(X) = 2X, which is shown
in Figure 10.21. Then from (10.27)

S

“
I 1 2

Figure 10.21: Transformation of discrete random variable.

Because we are now dealing with a PDF, which is a density function, and not a
PMF, which is a probability function, the simple relationship of (10.27) is no longer
valid. To see what happens instead, consider the problem of determining the PDF
of Y = 2X, where X ~ U(1,2). Clearly, Sx = {z : 1 < z < 2} and therefore
Sy = {y: 2 <y < 4} so that py(y) must be zero outside the interval (2,4). The
results of a MATLAB computer simulation are shown in Figure 10.22. A total of
50 realizations were obtained for X and Y. The generated X outcomes are shown
on the z-axis and the resultant Y outcomes obtained from y = 2z are shown on the
y-axis. Also, a 50% expanded version of the points is shown at the point (2.5,1). Tt
is seen that the density of points on the y-axis is less than that on the z-axis. After
some thought the reader will realize that this is the result of the scaling by a factor of
2 due to the transformation. Since the PDF is probability per unit length, we should
expect py = px/2 for 2 < y < 4. To prove that this is so, we note that a small
interval on the z-axis, say [zo — Az /2, zo + Az /2] will map into [2z¢ — Az, 2z + Az]
on the y-axis. However, the intervals are equivalent events and so their probabilities
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Figure 10.22: Computer generated realizations of X and Y = 2X for X ~ U(1,2).
A 50% expanded version of the realizations is shown to the right.

must be equal. It follows then that

To+Ax/2 2x0+Ax
/ px(z)dr = / py (y)dy
xo—Ax/2 2x0—Ax

and as Az — 0, we have that px () — px(zo) and py (y) — py (2z0) in the small
intervals so that

px (z0)Az = py (2x0)2Ax

or
1

py (2z0) :px(xo)i.

As expected, the PDF of Y is scaled by 1/2. If we now let yo = 2z, then this
becomes

py (o) = px (30/2)

or for any arbitrary value of y

) =pxly/2)y  2<y<t (10.28)
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This results in the final PDF using px(z) =1 for 1 <z < 2 as

1l 2<y<4

py(y) = { .

0 otherwise (10.29)
and thus if X ~ #(1,2), then Y = 2X ~ U(2,4). The general result for the PDF of
Y = g(X) is given by

(10.30)

dg=(y)
dy )

pr(y) = px(g~ ) \

For our example, the use of (10.30) with g(z) = 2z and therefore g '(y) = y/2
results in (10.29). The absolute value is needed to allow for the case when g is
decreasing and hence g~ ! is decreasing since otherwise the scaling term would be
negative (see Problem 10.57) A formal derivation is given in Appendix 10A. Note
the similarity of (10.30) to (10.27). The principal difference is the presence of the
derivative or Jacobian factor dg'(y)/dy. Tt is needed to account for the change in
scaling due to the mapping of a given length interval into an interval of different
length as illustrated in Figure 10.22. Some examples of the use of (10.30) follow.
Example 10.74 - PDF for linear (actually an affine) transformation

To determine the PDF of Y = aX + b, for a and b constants first assume that
Sy = {—00 <z < oo} and hence Sy = {—o00 < y < co}. Here we have g(z) = ar+b

so that the inverse function g~ ! is found by solving y = ax + b for z. This yields
z = (y — b)/a so that

and from (10.30) the general result is

py(y) = px (y — b) =

a .

(10.31)

As a further example, consider X ~ N(0,1) and the transformation Y = Vo2 X + p.
Then, letting o = Vo2 > 0 we have

) = ox (0) |2
( )
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and therefore Y ~ N(u,02). A linear transformation of a Gaussian random vari-
able results in another Gaussian random wvariable whose Gaussian PDF has dif-
ferent values of the parameters. Because of this property we can easily gener-
ate a realization of a N (i, 0?) random variable using the MATLAB construction
y=sqrt(sigma2)*randn(1l,1)+mu, since randn(1,1) produces a realization of a
standard normal random variable (see Problem 10.60).

¢

Example 10.75 - PDF of Y = exp(X) for X ~ N (0,1)
Here we have that Sy = {y : y > 0}. To find g !(y) we let y = exp(z) and solve
for x, which is z = In(y). Thus, g~ (y) = In(y). From (10.30) it follows that

dln(y)‘ _ { px(In(y))y, v >0
dy 0 y <0

Py (y) = px (In(y)) ‘

or

1 ex -1 n 2
py(y):{ e p [—3(In())?] zzg'

This PDF is called the log-normal PDF. It is frequently used as a model for a
quantity that is measured in decibels (dB) and which has a normal PDF in dB
quantities [Members of Technical Staff 1970].

¢

A Always determine the possible values for Y before using (10.30)

A common error in determining the PDF of a transformed random variable is
to forget that py(y) may be zero over some regions. In the previous example of
y = exp(z), the mapping of —oo < z < oo is into y > 0. Hence, the PDF of ¥ must
be zero for y < 0 since there are no values of X that produce a zero or negative
value of Y. Nonsensical results occur if we attempt to insert values in py (y) for
y < 0. To avoid this potential problem, we should find determine Sy and then use
(10.30) to find the PDF over the sample space.

When the transformation is not one-to-one, we will have multiple solutions for z in
y = g(r). An example is for y = 22 for which the solutions are

3 = —Vu=g7"'@v)
= V=95 ()

This is shown in Figure 10.23. In this case we use (10.30) but must add the PDFs
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Figure 10.23: Solutions for = in y = g(z) = z2.

(since both the z-intervals map into the same y-interval and the z-intervals are
disjoint) to yield

dg; ' (y) dg, ' (y) ‘ (10.32)

pr(v) = px (a7 () \d—y‘ T pxler' () \d—y .

Example 10.76 - PDF of Y = X2 for X ~ N(0,1)
Since —0co < X < 00, we must have ¥ > 0. Next because g; '(y) = —/y and
g5 ' (y) = vy we have from (10.32)

_ __1 _1
py(y) = 4 PX( \/ﬂ)‘ Qﬂ‘erx(\/ﬂ)‘gﬂ‘ y=0
0 y <0
which reduces to

py(y) = [\/L?_W exp(—y/Q)] ﬁ + [\/LQ_TF exp(—y/g)] ﬁ y>0
’ y<0

7= exp(—y/2) y =0
0 y < 0.

This is shown in Figure 10.24 and should be compared to Figure 2.10 in which this
PDF was estimated (see also Problem 10.59). Note that the PDF is undefined at
y = 0 since py (0) — oo, although the area under the PDF is finite and of course is
less than 1. Also, Y ~ x? as can be seen by referring to (10.12) with N = 1.

¢
In general, if y = g(z) has solutions z; = g; ' (y) for i = 1,2,..., M, then

M -1
) = pxta ) | ). (1033
=1
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Figure 10.24: PDF for Y = X2 for X ~ N(0,1).

An alternative means of finding the PDF of a transformed random variable is to first
find the CDF and then differentiate it (see (10.26)). We illustrate this approach by
redoing the previous example.

Example 10.77 - CDF approach to determine PDF of Y = X? for X ~
N(0,1)

First we determine the CDF of Y in terms of the CDF for X as

1
i)
e
éI/\
IN <

X < vyl
= Fx(Vy) = Fx(=vy).  (from (10.25))
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Then, differentiating we have

dFy (y)
dy

- d%[Fx(\/z?)—Fx(—\/z?)]

d d(—
= pX(\/ﬂ)d—\/y —px (=) ( d\/ﬂ) (from (10.25) and chain rule of calculus)
Y Y

- px(@)% +px<—\/@)%

1
_ { pX(\/?j)\/y y=0 (since px(—z) = px(z) for X ~ N(0,1))

py(y) =

0 y <0

_ ] A exp(=y/2) y20
0 y < 0.

10.8 Mixed Random Variables

We have so far described two types of random variables, the discrete random vari-
able and the continuous random variable. The sample space for a discrete random
variable consists of a countable (either finite or infinite) set of points while that for a
continuous random variable has an infinite and uncountable set of points. The points
in Sx for a discrete random variable have a nonzero probability while those for a
continuous random variable have a zero probability. In some physical situations,
however, we wish to assign a nonzero probability to some points but not others. As
an example, consider an experiment in which a fair coin is tossed. If it comes up
heads, we generate the outcome of a continuous random variable X ~ AN(0,1) and
if it comes up tails we set X = 0. Then, the possible outcomes are —oo < £ < o0
and the probability of any point except © = 0 has a zero probability of occuring.
However, the point £ = 0 occurs with a probability of 1/2 since the probability of
a tail is 1/2. A typical sequence of outcomes is shown in Figure 10.25. One could
define a random variable as

X ~ N(0,1) if heads
X =0 if tails
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T

Outcome
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. HXIJXI .1...‘ll

0 10 20 30 40 50
Trial number

Figure 10.25: Sequence of outcomes for mixed random variable - X = 0 with nonzero
probability.

which is neither a discrete nor a continuous random variable. To find its CDF we
use the law of total probability to yield

Fx(z) = P[X <1
P[X < z|heads]P[heads] + P[X < z|tails]P[tails]
B { (z)3+0(3) 2<0
@i+ 1d) 20

which can be written more succinctly using the unit step function. The unit step
function is defined as u(z) = 1 for > 0 and u(x) = 0 for z < 0. With this definition
the CDF becomes

Fx(x) = %(I)((L‘) + %u(x) —0 <z < 00.

The CDF is shown in Figure 10.26. Note the jump at x = 0, indicative of the
contribution of the discrete part of the random variable. The CDF is continuous for
all  # 0 but has a jump at z = 0 of 1/2. It corresponds to neither a discrete random
variable, whose CDF consists only of jumps, nor a continuous random variable,
whose CDF is continuous everywhere. Hence, it is called a mized random wvariable.
Its CDF is in general continuous except for a countable number of jumps (either
finite or infinite). As usual it is right-continuous at the jump.

Strictly speaking, a mixed random variable does not have a PMF or a PDF.
However, by the use of the Dirac delta function (also called an impulse), we can
define a PDF which may then be used to find the probability of an interval via
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Figure 10.26: CDF for mixed random variable.

integration by using (10.4). To first find the PDF we attempt to differentiate the
CDF i1 .
=—|=-d — .
pr(o) = 5 |50 + 3ule)]
The difficulty encountered is that u(z) is discontinuous at 2 = 0 and thus formally its
derivative does not exist there. We can, however, define a derivative for the purposes
of probability calculations as well as for conceptualization. To do so requires the
introduction of the Dirac delta function ¢(x) which is defined as
du(x)
o(x) = .
(@) = —

The function 0(z) is usually thought of as a very narrow pulse with a very large
amplitude which is centered at z = 0. It has the property that §(¢) = 0 for all ¢ # 0
but

J(t)dt = 1

—€
for € a small positive number. Hence, the area under the narrow pulse is one. Using
this definition we can now differentiate the CDF to find that

px(z) = L (——:;;2) + %5(:1:) (10.34)

which is shown in Figure 10.27. This may be thought of as a generalized PDF. Note
that it is the strength of the impulse which is 1/2 since the amplitude is theoretically
infinite. The CDF can be recovered using (10.16) and the result that

u(z) = / ; 5(t)dt
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03

01

0.05f

Figure 10.27: PDF for mixed random variable.

where T means that the integration interval is (—oo,z + €] for € a small positive
number. Thus, the impulse should be included in the integration interval if z = 0
so that u(0) = 1 according to the definition of the unit step function.

A When do we include the impulse in the integration interval?

For a mixed random variable the presence of impulses in the PDF requires a mod-

ification to (10.4). This is because an endpoint of the interval can have a nonzero
probability. As a result, the probabilities P[0 < X < 1] and P[0 < X < 1] will be
different if there is an impulse at z = 0, for example. The modifications to (10.4)
are

Pla<X <l = /f px (z)dz
Pla<X <l = /T px (2)dz
Pla<X <t = /b px(2)dz
Pla<X <l = /j px () dz

where z~ is a number slightly less than z and 2™ is a number slightly greater than
z. Of course, if the PDF does not have any impulses at z = a or = b, then all the
integrals above will be the same and therefore, there is no need to choose between
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them. See also Problem 10.51.

/N

Continuing with our example, let’s say we wish to determine P[—2 < X < 2]. Then,
using (10.4) since the impulse does not occur at one of the interval endpoints, and
our generalized PDF of (10.34) yields

2

P-2<X <2 = /pr(x)dx

211 1 1,\ 1
= /_2 [Emexp (_§$ ) + 55(:1:)] dx
1 [? 1 1, 1 [?
= 5/_2 2Wexp(—§x>dx+§/_25(x)dx

1 1
= 5Q(=2)-Q@)]+5
— %[1 —2Q(2)] + % =1-0Q(2).

Alternatively, we could have obtained this result using P[-2 < X < 2] = Fx(2) —
Fx(~2) with Fx(z) = (1/2)(1 - Q()) + (1/2)u(x).

Mixed random variables often arise as a result of a transformation of a continuous
random variable. A final example follows.
Example 10.78 - PDF for amplitude-limited Rayleigh random variable
Consider a Rayleigh random variable whose PDF is given by (10.14) that is input
to a device that limits its output. One might envision a physical quantity such as
temperature and the device being a thermometer which can only read temperatures
up to a maximum value. All temperatures above this maximum value are read as the
maximum. Then the effect of the device can be represented by the transformation

T 0 <2< Tmax
Tmax T 2 Tmax

v=a() = {

which is shown in Figure 10.28. The PDF of Y is zero for y < 0 since X can only
take on nonnegative values. For 0 < y < xpyax it is seen from Figure 10.28 that
g '(y) = y. Finally, for y > .. we have from Figure 10.28 the infinite number of
solutions x € [Zyax,00). Thus, we have for region one or for y < 0 that py(y) = 0.
For region two or for 0 < y < Zmay where ¢~ '(y) = y, we have from (10.30)

1
prly) = px(g-l(y»\dgd—;y)\
= px(y).

For region three which is y > zp.x, we note that Y cannot exceed zpax and so
Y = Tmax 18 the only possible value for y in region three. The probability of Y = zmax
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y = g(x)
A
region 3
=T Tmax
region 2
| L !t
region 1 % Lmax

Figure 10.28: Amplitude limiter.
is equal to the probability that X > znay. In particular, it is
o0
PIY = mon] = / px(2)dz (10.35)
Tmax

since from Figure 10.28 the z-interval [zyax, 00) is mapped into the y-point y = Tyax.
Since the probability of Y at the point y = Ty is nonzero, we represent it in the
PDF by using an impulse as

py(y) = [/: px(w)dw] 6(Y — Tmax) Y = Tmax.

In summary, the PDF of the transformed random variable is

0 y<0
bx (y) 0 < Y < Tmax
py(y) = 00 B _
Joo. px(2)dz| 0(y — Tmax) Y = Tmax
0 Y > Tmax -

It is seen to be the PDF of a mixed random variable in that it contains an impulse.
Finally, for z > 0 the Rayleigh PDF is for 0? =1

px(z) = zexp <—%x2>
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so that the PDF of Y becomes

335

(0 y <0
w - et 0 <y < Tmax

py\y) = [f;iax T exp (—%xZ) dx] 0(Y — Tmax) Y = Tmax

0 Y > Tmax -

(0 y <0

_ ) yexp(=39%) 0 <y < Zomax
€xp (_%xIZIlaX) 6(?/ - xmax) Y = Tmax

. 0 Y > Tmax-

This is plotted in Figure 10.29b.
¢

In general, if a random variable X can take on a continuum of values as well

L 1
strength’ = exp(—(1/2)22,,)
08 08
A
/é\ —
—06 06
S area = exp(—(1/2)a2,, &
04 1 04
02 02
o 0
0 1 2 3 4 0 1 2 3 4
b P
Tmax Lmax

(b) PDF of Y = g(X) - mixed random vari-
able

(a) PDF of X - continuous random variable

Figure 10.29: PDFs before and after transformation of Figure 10.28.

as discrete values {x1,z2 ...} with corresponding nonzero probabilities {p1,po, ...},
then the PDF of the mixed random variable X can be written in the succinct form

px(x) = pelz) + Y pid(w — ;) (10.36)
i=1

where p.(z) represents the contribution to the PDF of the continuous part (its
integral must be < 1) and must satisfy p.(z) > 0. To be a valid PDF we require
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that

/ pe(z)dx + Zpi =1.
% i=1

For solely discrete random variables we can use the generalized PDF
(o0}
px (@) =Y pid(x —m;)
i=1

or equivalently use the PMF

px|Ti] = pi 1=1,2,...

to perform probability calculations.

10.9 Computer Simulation

In simulating the outcome of a discrete random variable X we saw in Figure 5.1477
that first an outcome of a U ~ U(0, 1) random variable is generated and then mapped
into a value of X. The mapping needed was the inverse of the CDF. This result
is also valid for a continuous random variable so that X = F'(U) is a random
variable with CDF Fx(z). Stated another way, we have that U = Fx(X) or if
a random variable is transformed according to its CDF, the transformed random
variable U ~ U(0,1). This latter transformation is termed the probability integral
transformation. The transformation X = Fgl(U) is called the inverse probability
integral transformation. Before proving these results we give an example.
Example 10.79 - Probability integral transformation of exponential ran-
dom variable

Since the exponential PDF is given for A = 1 by

{ exp(—z) >0

px(T) =1 ¢ <0

the CDF is from (10.16)

0 <0
1 —exp(—z) z>0.

Fx(z) = {

The probability integral transformation asserts that ¥ = ¢g(X) = Fx(X) has a
U(0,1) PDF. Considering the transformation g(z) = 1 —exp(—z) for z > 0 and zero
otherwise, we have that y = 1 — exp(—z) and therefore, the unique solution for z is
z=—1In(l —y) for 0 <y <1 and zero otherwise. Hence,

_ —In(l-y) 0<y<1
1 _
g (y) = { 0 otherwise
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and using (10.30), we have for 0 <y <1

—1
) = pxla'@) \dgd—y(y)\

= ol (-l - ]| 2|
= 1.

Finally, then
1 O<y<l1
0 otherwise

py(y) = {

which is the PDF of a ¢/(0, 1) random variable.
¢

To summarize our results we have the following theorem.

Theorem 10.9.1 (Inverse Probability Integral Transformation) If a contin-
wous random variable X is given as X = F5'(U), where U ~ U(0,1), then X has
the PDF px(z) = dFx (z)/dz.

Proof:
Let V = F,.}(U) and consider the CDF of V.
Fo(v) = PV <v]=PFI(U) <o)
= P[U < Fx(v)] (Fx is monotonically increasing - see Problem 10.58)
Fx (v)
= / pu(u)du
0
Fx(’l})
= / ldu
0
= Fx(v).

Hence, the CDFs of V and X are equal and therefore the PDF of V = Fy}(U) is

px(z).
A

Another example follows.

Example 10.80 - Computer generation of outcome of Laplacian random
variable

The Laplacian random variable has a PDF

1 2
px(x):@exp [—H;M] —00 <z <00

and therefore its CDF is found as

Fy(z) = /_oo \/;?exp [—\/gm] dt.
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For x < 0 we have
z 1 2
Fx(x) = / ﬁexp [”ﬁt] dt
—00 g
x
1 2
= 5 exp ﬁt

1 2
= 5 exXp ?II;

—00

and for £ > 0 we have

0 1 2
Fx(z) = 700\/Wexp ?t
T
1 1 2t
= — — — @ — —_—
2 27|17V
1 2
= 1—§exp —\ 2% -

By letting y = Fx (x), we have

dt+/m ! e 1/ 2t dt
<D | —1/ —
0 V202 P o?

(first integral is 1/2 since px(—z) = px(z))

0

%exp[,/%x} z <0

1—%exp [—,/%x] z>0.

We note that for x < 0, 0 < y < 1/2 and for x > 0, 1/2 < y < 1. Thus, solving for
 to produce F'(y) yields

B V0?%/21n(2y) 0<y<1/2
Y7\ Vo2l (2(1—51,)> 1/2<y<1.

Finally to generate the outcome of a Laplacian random variable we can use

V02/21n(2u) 0<u<1/2
r= \/02/2ln(2(1—1_u)> 1/2<u<1 (10.37)

where u is a realization of a ¢/(0,1) random variable. An example of the outcomes
of a Laplacian random variable with 02 = 1 is shown in Figure 10.30a. In Figure
10.30b the true PDF (the solid curve) along with the estimated PDF (the bar plot) is
shown based on M = 1000 outcomes. The estimate of the PDF was accomplished by
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Figure 10.30: Computer generation of Laplacian random variable using probability
integral transformation.

the procedure described in Example 2.1 (see Figure 2.7 for the code for a Gaussian
PDF). We can now justify that procedure. Since from Section 10.3 we have

Plrg — Az/2 < X < xg+ Az/2
p(z0) ~ [0 / == 0 /2]

and

Number of outcomes in [zg — Az/2,z9 + Az /2]

Plzy — Az/2 < X < zp+ Az/2] = i

we use as our PDF estimator

. Number of outcomes in [zg — Az/2,z0 + Aa:/2]
pleo) = MAzx

In Figure 10.30b we have chosen the bins or intervals to be [—4.25, —3.75], [-3.75, —3.25],
., [3.75,4.25] so that Az = 0.5. We have therefore estimated px (—4),px (—3.5),...,

px(4). To estimate the PDF at more points we would have to decrease the binwidth

or Az. However, in doing so we cannot make it too small. This is because as the

binwidth decreases, the probability of an outcome falling within the bin also de-

creases. As a result, fewer of the outcomes will occur within each bin, resulting in

a poor estimate. The only way to remedy this situation is to increase the number

of trials M. What do you suppose would happen if we wanted to estimate px(5)?

The MATLAB code for producing the PDF estimate is given below.

(10.38)

% Assume outcomes are in x, which is M x 1 vector
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M=1000;
bincenters=[-4:0.5:4]’; % set binwidth = 0.5
bins=length(bincenters);
h=zeros(bins,1);
for i=1:length(x) Y’ count outcomes in each bin
for k=1:bins
if x(i)>bincenters(k)-0.5/2.
& x(i)<bincenters(k)+0.5/2
h(k,1)=h(k,1)+1;
end
end
end
pxest=h/(M*0.5); % see (10.38)

The CDF can be estimated by using

Number of outcomes < z

M

and is the same for either a discrete or a continuous random variable. See also
Problems 10.60-62.

FX(LE) =

(10.39)

&

10.10 Real-World Example - Setting Clipping Levels for
Speech Signals

In order to communicate speech over a transmission channel it is important to make
sure that the equipment does not “clip” the speech signal. Commercial broadcast
stations commonly use VU meters to monitor the power of the speech. If the power
becomes too large, then the amplifier gains are manually decreased. Clipped speech
sounds distorted and is objectionable. In other situations, the amplifier gains must
be set automatically, as for example, in telephone speech transmission. This is
necessary so that the speech, if transmitted in an analog form, is not distorted at
the receiver, and if transmitted in a digital form is not clipped by an analog-to-
digital convertor. To determine the highest amplitude of the speech signal that can
be expected to occur a common model is to use a Laplacian PDF for the amplitudes
[Rabiner and Schafer 1978]. Hence, most of the amplitudes are near zero but larger
level ones are possible according to

1 2
@exp [—\/;M] —oo <z < o0o.

As seen in Figure 10.10, the width of the PDF increases as o2 increases. In effect, o
measures the width of the PDF and is actually its variance (to be shown in Problem

px(z) =
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11.347?). The parameter o2 is also a measure of the speech power. In order to
avoid excessive clipping we must be sure that an amplifier can accommodate a high
level, even if it occurs rather infrequently. A design requirement might then be to
transmit a speech signal without clipping 99% of the time. A model for a clipper is
shown in Figure 10.31. As long as the input signal, i.e, z, remains in the interval

g(z)

Figure 10.31: Clipper input-output characteristics.

—A <z < A, the output will be the same as the input and no clipping takes place.
However, if £ > A, the output will be limited to A and similarly if z < —A. Clipping
will then occur whenever |z| > A. To satisfy the design requirement that clipping
should not occur for 99% of the time, we should choose A (which is a characteristic
of the amplifier or analog-to-digital convertor) so that Pclip < 0.01. But

P

Clip:P[X>AOI'X<—A]

and since the Laplacian PDF is symmetric about z = 0 this is just
P 2P[X > A] 2/00 ! J 2| d
. — — eXp — — T X
clip 1 V202 02
o0
1 2
— 5 exp | — ﬁl‘
A
[ 2
= —/=A].
exp [ =
Hence, if this probability is to be no more than 0.01, we must have

exp [—\/%A

or solving for A produces the requirement that

o2 1
> — — . .
424/%m <0‘01> (10.41)

= 2

(10.40)

<0.01
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It is seen that as the speech power o2 increases, so must the clipping level A. If the

clipping level is fixed, then speech with higher powers will be clipped more often. As
an example, consider a speech signal with 02 = 1. The Laplacian model outcomes
are shown in Figure 10.32 along with a clipping level of A = 1. According to (10.40)

5

at+

Outcome

o =
_l_.
—.
—o

J'.
—o
:’
N
—o

_4,
-5 i i i i i
0 10 20 30 40 50
Trial number
Figure 10.32: Outcomes of Laplacian random variable with 62 = 1 - model for

speech amplitudes.

the probability of clipping is exp(—+v/2) = 0.2431. Since there are 50 outcomes in
Figure 10.32 we would expect about 50-0.2431 ~ 12 instances of clipping. From the
figure we see that there are exactly 12. To meet the specification we should have

that .

As seen from Figure 10.32 there are no instances of clipping for A = 3.25. It is seen
that to set the appropriate clipping level A, we need to know o2. In practice, this
too must be estimated since different speakers have different volumes and even the
same speaker will exhibit a different volume over time!
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Problems

10.1 (w) Are the following random variables continuous or discrete?

a. Temperature in degrees Fahrenheit
b. Temperature rounded off to nearest 1°
c. Temperature rounded off to nearest 1/2°
d. Temperature rounded off to nearest 1/4°
10.2 (.-) (w) The temperature in degrees Fahrenheit is modeled as a uniform ran-
dom variable with 7" ~ 1/(20,60). If T is rounded off to the nearest 1/2° to

form 7', what is P[T = 30°]? What can you say about the use of a PDF versus
a PMF to describe the probabilistic outcome of a physical experiment?

10.3 (w) A wedge of cheese as shown in Figure 10.5 is sliced from z =a toz = b .
If a =0 and b = 0.2, what is the mass of cheese in the wedge? How about if
a=1.8 and b= 27

10.4 (o) (w) Which of the following functions are valid PDFs? If a function is
not a PDF, why not?

1 1
0.8
0.5
~—~~ —~
Bos B
> > o
0.4
-0.5
0.2
0 -1
1 2 3 4 0 1 2 3 4 0 1 2 3
x x x
(a) (b) (c)

Figure 10.33: Possible PDF's for Problem 10.4.
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10.5 (f) Determine the value of ¢ to make the following function a valid PDF

o(z) = { c(l—1|z/5|) |z| <5

0 otherwise .

10.6 (-~ ) (w) A Gaussian mixture PDF is defined as

() 1 ( 1 2) N 1 ( 1 2)
px(z) = oy exp | ——s=z a9 exp | ——s=z
271'0% 20% 271'0% 20%

for 0? # 03. What are the possible values for a; and as so that this is a valid
PDF?

10.7 (w) Find the area under the curves given by the following functions:

T 0<z<l1
gi(z) = l+z 1<zx<2
0 otherwise
T 0<zx<1
g2(z) = l+2 1<z<2
0 otherwise

and explain your results.

10.8 (w) A memory chip has a projected lifetime X in days that is modeled as
X ~ exp(0.001). What is the probability that it will fail within one year?

10.9 (t) In this problem we prove that the Gaussian PDF integrates to one. First

we let o 1 )
1= ——exp | —=2? ) dx
/oo V2T P ( 2 >
and write I? as the iterated integral
1 1 1 1
I? :/ / ex <——:1:2> ex <—— 2) dydzx.
N A= p 2 o p 2?/ Yy

Next, convert (z,y) into polar coordinates and evaluate the expression to prove
that I? = 1. Finally, you can conclude that I = 1 (why?).

10.10 (f,c) If X ~ N (p,0?), find P[X > p + ao] for a = 1,2,3, where 0 = Vo2.

10.11 (t) The median of a PDF is defined as the point z = med for which P[X <
med] = 1/2. Prove that if 2 ~ N (i1, 0%), then med = p.

10.12 (-) (w) A constant or DC current source which outputs 1 amp is connected
to a resistor of nominal resistance of 1 ohm. If the resistance value can vary
according to R ~ N(1,0.1), what is the probability that the voltage across
the resistor will be between 0.99 and 1.01 volts?
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10.13 (w) An analog-to-digital convertor can convert voltages in the range [—3, 3]
volts to a digital number. Outside this range, it will “clip” a positive voltage
at the highest positive level, i.e., +3, or a negative voltage at the most negative
level, i.e., —3. If the input to the convertor is modeled as X ~ N (u,1), how
should p be chosen to minimize the probability of clipping?

10.14 (--) (f) Find P[X > 3] for the two PDF's given by the Gaussian PDF with
@ = 0,02 =1 and the Laplacian PDF with 02 = 1. Which probability is larger
and why? Plot both PDFs.

10.15 (f) Verify that the Cauchy PDF given in (10.9) integrates to one.

10.16 (t) Prove that I'(2 4+ 1) = 2I'(z) by using integration by parts (see Appendix
B and Problem 11.777).

10.17 (.- ) (f) The arrival time in minutes of the Nth person at a ticket counter
has a PDF that is Erlang with A = 0.1. What is the probability that the
first person will arrive within the first 5 minutes of the opening of the ticket
counter? What is the probability that the first two persons will arrive within
the first 5 minutes of opening?

10.18 (f) A person cuts off a wedge of cheese as shown in Figure 10.5 starting at
z = 0 and ending at some value x = xy. Determine the mass of the wedge as
a function of the value zy. Can you relate this to the CDF?

10.19 (- ) (f) Determine the CDF for the Cauchy PDF.

10.20 (f) If X ~ N(0,1) find the probability that | X| < a, where a = 1,2,3. Also,
plot the PDF and shade in the corresponding areas under the PDF.

10.21 (f,c) If X ~ N(0,1), determine the number of outcomes out of 1000 that
you would expect to occur within the interval [1,2]. Next conduct a computer
simulation to carry out this experiment. How many outcomes actually occur
within this interval?

10.22 (-) (w) If X ~ N (u,0?), find the CDF of X in terms of ®(x).

10.23 (t) If a PDF is symmetric about = = 0 (also called an even function), prove
that F'x(—z) = 1 — Fx(z). Does this property hold for a Gaussian PDF with
1 = 07 Hint: See Figure 10.16.

10.24 (t) Prove that if X ~ A(u,0?), then

P[X>a]:Q<“_“>.

g

10.25 (t) Prove the properties of the @) function given by (10.19)—(10.22).
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10.26 (f) Plot the function Q(A/2) versus A for 0 < A < 5 to verify the true
probability of error as shown in Figure 2.1577.

10.27 (c) If X ~ N(0,1), evaluate P[X > 4] and then verify your results using
a computer simulation. How easy do you think it would be to determine
P[X > 7] using a computer simulation? (See Section 11.10?7 for an alternative
approach.)

10.28 (.-) (w) A survey is taken of the incomes of a large number of people in
a city. It is determined that the income in dollars is distributed as X ~
N(50000,10%). What percentage of the people have incomes above $70,000?

10.29 (w) In Chapter 1 an example was given of the length of time in minutes
an office worker spends on the telephone in a given 10 minute period. The
length of time T was given as N'(7,1) as shown in Figure 1.577. Determine the
probability that a caller is on the telephone more than 8 minutes by finding
P[T > 8|.

10.30 (.-) (w) A population of high school students in the eastern United States
score X points on their SATs, where X ~ N (500,4900). A similar population
in the western United States score X points, where X ~ N (525,3600). Which
group is more likely to have scores above 7007

10.31 (f) Verify the numerical results given in (1.3)77.

10.32 (f) In Example 2.2 we asserted that P[X > 2] for a standard normal random
variable is 0.0228. Verify this result.

10.33 (.-) (w) Is the following function a valid CDF?

1

= et

— o< r<o.

10.34 (f) If Fx(z) = (2/7)arctan(z) for 0 < z < oo, determine P[0 < X < 1].
10.35 (t) Prove that (10.25) is true.

10.36 (- ) (w) Professor Staff always scales his test scores. He adds a number of
points ¢ to each score so that 50% of the class get a grade of C. A C is given if
the score is between 70 and 80. If the scores have the distribution N (65, 38),
what should ¢ be? Hint: There are two possible solutions to this problem but
the students will prefer only one of them.

10.37 (w) A Rhode Island weatherman says that he can accurately predict the
temperature for the following day 95% of the time. He makes his prediction
by saying that the temperature will be between 717 Fahrenheit and 75 Fahren-
heit. If he knows that the actual temperature is a random variable with PDF
N (50, 10), what should his prediction be for the next day?
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10.38 (f) For the CDF given in Figure 10.14 find the PDF by differentiating. What
happens at z = 1 and z = 27

10.39 (f,c) If Y = exp(X), where X ~ U(0,1), find the PDF of Y. Next generate
realizations of X on a computer and transform them according to exp(X) to
yield the realizations of Y. Plot the x’s and ¥’s in a similar manner to that
shown in Figure 10.22 and discuss your results.

10.40 () (f) Find the PDF of Y = X* + 1 if X ~ exp(])).

10.41 (w) Find the constants ¢ and b so that Y = aX + b, where X ~ 1/(0,1),
yields Y ~ U(2,6).

10.42 (f) If Y = aX, find the PDF of Y if the PDF of X is px(z). Next, assume
that X ~ exp(1l) and find the PDFs of Y for a > 1 and 0 < a < 1. Plot these
PDF's and explain your results.

10.43 () (f) Find a general formula for the PDF of Y = | X|. Next, evaluate your
formula if X is a standard normal random variable.

10.44 (f) If X ~ N(0,1) is transformed according to Y = exp(X), determine py (y)
by using the CDF approach. Compare your results to those given in Example
10.6. Hint: You will need Leibnitz’s rule

d [ dg(y)
dy Jq '

10.45 (w) A random voltage X is input to a full wave rectifier that produces at its
output the absolute value of the voltage. If X is a standard normal random
variable, what is the probability that the output of the rectifier will exceed 27

10.46 (.- ) (f,c) If Y = X2, where X ~ U(0,1), determine the PDF of Y. Next

perform a computer simulation using the realizations of Y (obtained as v, =
z2,, where z,, is the mth realization of X) to estimate the PDF py(y). Do
your theoretical results match the simulated results?

10.47 (w) If a discrete random variable X has a Ber(p) PMF, find the PDF of X
using impulses. Next find the CDF of X by integrating the PDF.

10.48 (t) In this problem we point out that the use of impulses or Dirac delta
functions serves mainly as a tool to allow sums to be written as integrals. For
example, the sum

N
S = Zai
i=1
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can be written as the integral

S = /OO g(z)dz
if we define g(z) as
N
g(x) = Zalﬁ(x —1).
=1

Verify that this is true and how it applies to computing probabilities of events
of discrete random variables by using integration.

10.49 (f) Evaluate the expression

7 (=m0 fto-om)

Could the integrand represent a PDF? If it does, what does this integral rep-
resent?

10.50 (w) Plot the PDF and CDF if

px(x) = 5 exp(—a)ule) + 300z + 1) + 30(z — 1)

10.51 (.-) (w) For the PDF given in Problem 10.50 determine the following: P[—2 <
X<2,P[-1<X<I1],P[-1<X<1],P[-1<X<1], P[-1 <X <1].

10.52 (f) Find and plot the PDF of the transformed random variable
y_J2X 0<x<1
1 2 X>1
where X ~ exp(1).

10.53 (f) Find the PDF representation of the PMF of a bin(3, 1/2) random variable.
Plot the PMF and the PDF.

10.54 (- ) (f) Determine the function g so that X = g(U), where U ~ U(0,1) has
a Rayleigh PDF with 02 = 1.

10.55 (f) Find a transformation so that X = ¢g(U), where U ~ U(0, 1) has the PDF
shown in Figure 10.34.

10.56 (c) Verify your results in Problem 10.55 by generating realizations of the
random variable whose PDF is shown in Figure 10.34. Next estimate the
PDF and compare to the true PDF.
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px ()

0.5

0 0.5 1 15 2
Z

Figure 10.34: PDF for Problem 10.55

10.57 (t) A monotonically increasing function g(z) is defined as one for which if
xy > 11, then g(z2) > g(x1). A monotonically decreasing function is one
for which if zo > 1, then g(z2) < g(x1). It can be shown that if g(x)
is differentiable, then a function is monotonically increasing (decreasing) if
dg(z)/dz > 0 (dg(z)/dx < 0) for all z. Which of the following functions are
monotonically increasing or decreasing: exp(z), In(z), and 1/x?

10.58 (t) Explain why the values of x for which the inequality z > =z is true
does not change if we take the logarithm of both sides to yield In(z) > In(z).
Would the inequality still hold if we inverted both sides or equivalently applied
the function g(x) = 1/x to both sides? Hint: See Problem 10.57.

10.59 (w) Compare the true PDF given in Figure 10.24 with the estimated PDF
shown in Figure 2.10. Are they the same and if not, why not?

10.60 (c) Generate on the computer realizations of the random variable X ~
N(1,4). Estimate the PDF and compare it to the true one.

10.61 (c) Determine the PDF of Y = X3 if X ~ ¢/(0,1). Next generate realizations
of X on the computer, apply the transformation X3 to each realization to yield
realizations of Y, and finally estimate the PDF of Y from these realizations.
Does it agree with the true PDF?

10.62 (c¢) For the random variable Y described in Problem 10.61 determine the
CDF. Then, generate realizations of Y, and estimate the CDF, and compare
it to the true one.
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Appendix 10A

Derivation of PDF of
Transformed Continuous
Random Variable

The proof uses the CDF approach as described in Section 10.7. It assumes that g
is a one-to-one function. If Y = ¢g(X), where g is a one-to-one and monotonically
increasing function, then there is a single solution for = in y = g(z). Thus,

Fy(y) = Plg(X) <y]
= HXSg”@ﬂ
Fx (97" (y)].

But py (y) = dFy (y)/dy so that

py(y) = @Eﬂfww)

-1
_ d Fx (z) L(y) (chain rule of calculus)

= px(9 ' (y) =
If g(z) is one-to-one and monotonically decreasing, then

Fy(y) = Plg(X) <y
= PIX >g '(y)]
= 1-P[X <g 'y)] (since P[X =g (y)] =0)
= 1-Fx(g~'(v))

351
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and

py(y) = dFY(y):—di’ny<gl<y>>

dy
-1
= —px(g‘l(y))dgTy(y)-

Note that if ¢ is montonically decreasing, then ¢~' is also montonically decreasing.

Hence, dg~'(y)/dy will be negative. Thus, both cases can be subsumed by the
formula 1
dg—(y)

Py () = px(e™ ) ‘Ty‘



Appendix 10B

MATLAB Subprograms to
Compute QQ and Inverse Q

°

Functions
% Q.m
A
% This program computes the right-tail probability
% (complementary cumulative distribution function) for
% a N(0,1) random variable.
b
% Input Parameters:
b
YA x — Real column vector of x values
b
% Output Parameters:
b
A y — Real column vector of right-tail probabilities
b
% Verification Test Case:
b
% The input x=[0 1 2]’; should produce y=[0.5 0.1587 0.0228]".
A

function y=Q(x)

y=0.5%erfc(x/sqrt(2)); 9’ complementary error function
% Qinv.m

353
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b
% This program computes the inverse Q function or the value
% which is exceeded by a N(0,1) random variable with a
% probability of x.
b
% Input Parameters:
b
b x - Real column vector of right-tail probabilities
% (in interval [0,1])
b
% Output Parameters:
b
b y - Real column vector of values of random variable
h
% Verification Test Case:
h
% The input x=[0.5 0.1587 0.0228]’; should produce
% y=[0 0.9998 1.9991]".
b
function y=Qinv(x)
y=sqrt(2) *erfinv(1-2*x); 7% inverse error function



Chapter 11

Expected Values for Continuous
Random Variables

11.1 Introduction

We now define the expectation of a continuous random variable. In doing so we
parallel the discussion of expected values for discrete random variables given in
Chapter 6. Based on the probability density function (PDF) description of a con-
tinuous random variable, the expected value is defined and its properties explored.
The discussion is conceptually much the same as before, only the particular method
of evaluating the expected value is different. Hence, we will concentrate on the
manipulations required to obtain the expected value.

11.2 Summary

The expected value E[X] for a continuous random variable is motivated from the
analogous definition for a discrete random variable in Section 11.3. Its definition is
given by (11.3). An analogy with the center of mass of a wedge is also described.
For the expected value to exist we must have E[|X|] < oo or the expected value of
the absolute value of the random variable must be finite. The expected values for
the common continuous random variables are given in Section 11.4 with a summary
given in Table 11.1. The expected value of a function of a continuous random
variable can be easily found using (11.10), eliminating the need to find the PDF of
the transformed random variable. The expectation is shown to be linear in Example
11.2. For a mixed random variable the expectation is computed using (11.11). The
variance is defined by (11.12) with some example given in Section 11.6. It has
the same properties as for a discrete random variable, some of which are given in
(11.13), and is a nonlinear operation. The moments of a continuous random variable
are defined as E[X"] and can either be found using a direct integral evaluation as in

355
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Example 11.6 or using characteristic functions (11.18). The characteristic function
is the Fourier transform of the PDF as given by (11.17). Central moments, which are
the moments about the mean, are related to the moments by (11.15). The second
central moment is just the variance. Although the probability of an event cannot
in general be determined from the mean and variance, the Chebyshev inequality of
(11.21) provides a formula for bounding the probability. The mean and variance can
be estimated using (11.22) and (11.23). Finally, an application of mean estimation to
test highly reliable software is described in Section 11.10. It is based on importance
sampling, which provides a means of estimating small probabilities with a reasonable
number of Monte Carlo trials.

11.3 Determining the Expected Value

The expected value for a discrete random variable X was defined in Chapter 6 to
be

ElX] = inpx[xi] (11.1)

where px|[z;] is the probability mass function (PMF) of X and the sum is over all
for which the PMF px[z;] is nonzero. In the case of a continuous random variable,
the sample space Sx is not countable and hence (11.1) can no longer be used. For
example, if X ~ (0, 1), then X can take on any value in the interval (0,1), which
consists of an uncountable number of values. We might expect that the average
value is F[X] = 1/2 since the probability of X being in any equal length interval
in (0,1) is the same. To verify this conjecture we employ the same strategy used
previously, that of approximating a uniform PDF by a uniform PMF, using a fine
partitioning of the interval (0, 1). Letting

1 .
pxlzi] = i z; = 1Az

fori=1,2,..., M and with Az =1/M, we have from (11.1)

BIX] = Y winln] = 3 (080) (57 (11.2)

- ZIWZWZIZ
1= 1=

But Y., i = (M/2)(M + 1) so that

MM+1) 1 1
ElX]=2Y"  “ _ -4 _ -
[X] M? 2+2M
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and as M — oo or the partition of (0, 1) becomes infinitely fine, we have E[X] — 1/2,
as expected. To extend these results to more general PDFs we first note from (11.2)
that

M
EX] = > 2Pz - Az/2 < X <2+ Ax/?]
=1
l Plx; — Az/2 < X < z;+ Az/2]
= Zwl AL Azx.

But
Plx; — Az/2 < X <z;+ Az/2] 1/M
= =1
Az Az

and as Az — 0, this is the probability per unit length for all small intervals centered
about z;, which is the PDF evaluated at © = x;. In this example, py (z;) does not
depend on the interval center, which is z;, so that the PDF is uniform or px(z) =1
for 0 < z < 1. Thus, as Az — 0

M
E[X] =) wipx(z:) Az
i=1
and this becomes the integral

1
E[X] :/0 zpx (z)dz

where px(z) =1 for 0 < z < 1 and is zero otherwise. To confirm that this integral
produces a result consistent with our earlier value of E[X] = 1/2, we have

1
E[X] = /prx(w)dx

! 1
= /w-ldx:—wz
0 2

In general, the expected value for a continuous random variable X is defined as

L |
. 2

oo
E[X] = / zpx (z)dx (11.3)
— 00

where px(z) is the PDF of X. Another example follows.

Example 11.81 - Expected value for random variable with a nonuniform
PDF

Consider the computation of the expected value for the PDF shown in Figure 11.1a.
From the PDF and some typical outcomes shown in Figure 11.1b the expected value
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px(z) =x/2
12 ‘ : : )
1 L
. | 1.5 L 4
Ho8f : : * L] giss
e}
go.e — : ] f.v; 1} ]
i @)
04t . . ~ ;o
I 05 1
02} » » » i l l
I
, LT !
0 05 1 15 2 0 5 10 15 20 25 30
T Trial number
E[X]=1.33
(a) PDF (b) Typical outcomes and expected value of
1.33
Figure 11.1: Example of nonuniform PDF and its mean.
should be between 1 and 2. Using (11.3) we have
2 11
EX] = / m(—x) dx
0 2
= §57h73
which appears to be reasonable.
¢

As an analogy to the expected value we can revisit our Jarlsberg cheese first de-
scribed in Section 10.3, and which is shown in Figure 11.2. The integral

CM = /02 zm(z)dz (11.4)

is the center of mass, assuming that the total mass or f02 m(x)dz, is one. Here,
m(x) is the linear mass density or mass per unit length. The center of mass is the
point at which one could balance the cheese on the point of a pencil. Recall that
the linear mass density is m(z) = /2 for which CM = 4/3 from Example 11.1. To
show that CM is the balance point we first note that f02 m(x)dz = 1 so that we can
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|
|

1

1

center of mass
at r =4/3
2

Figure 11.2: Center of mass (CM) analogy to average value.
write (11.4) as
2
/ zm(z)dr —CM = 0
0

Azm@mm—cmlam@m:: 0

2
/ (x —CM) m(z)dz = 0.
0 —— N—_——
;lfr;moment arm mMass

Since the “sum” of the mass moment arms is zero, the cheese is balanced at z =
CM =4/3.
By the same argument the expected value can also be found by solving

o0
/ (z — B[X])px (z)dz = 0 (11.5)
— 00

for E[X]. If, however, the PDF is symmetric about some point x = a, which is to
say that px(a +u) = px(a —u) for —co < u < 00, then (see Problem 11.2)

oo
/ (x —a)px (z)dz =0 (11.6)
—00

and therefore E[X] = a. Such was the case for X ~ (0, 1), whose PDF is symmetric
about @ = 1/2. Another example is the Gaussian PDF which is symmetric about
a = 1 as seen in Figures 10.8a and 10.8c. Hence, E[X]| = u for a Gaussian random
variable (see also the next section for a direct derivation). In summary, if the PDF
is symmetric about a point, then that point is F[X]. However, the PDF need not
be symmetric about any point as in Example 11.1.

A Not all PDFs have expected values
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Before computing the expected value of a random variable using (11.3) we must
make sure that it exists (see similar discussion in Section 6.4 for discrete random
variables). Not all integrals of the form [*°_ zpx (z)dz exist, even if [%_px(z)dz =
1. For example, if

S >1
px(x) =4 232 ©7
0 r<l1
then - ~
—r %y = ——| =1
A 7l
but

> 1 —3/2 00
$§:1: dr = \/5‘1 — 00.
1

A more subtle and somewhat surprising example is the Cauchy PDF. Recall that it
is given by
1
)= —F—>5< -0 < T <0o0.
Px(@) = T
Since the PDF is symmetric about z = 0, we would expect that E[X] = 0. However,
if we are careful about our definition of expected value by correctly interpreting the

region of integration in a limiting sense, we would have

0 U
E[X]= lim zpx (x)dzr + lim zpx (z)dx.
L——o00 I U—o0o 0
But for a Cauchy PDF
0 1 v 1
EX] = 1 ————dz+ li —d
X = him ) eyt i ey
0 U
— lim —In(1 lim — In(1
A gy 0 H |+ Jim g (e
= lim ——ln(1+L2)+ i —ln(1+U2)
Lo—co0 2T

= —oo+4 o0 =7

Hence, if the limits are taken independently, then the result is indeterminate. To
make the expected value useful in practice the independent choice of limits (and not
L = U) is necessary. The indeterminancy can be avoided, however, if we require
“absolute convergence” or

/ |z|px (z)dx < oo.

Hence, E[X] is defined to exist if F[|X|] < oo. This surprising result can be “ver-
ified” by a computer simulation, the results of which are shown in Figure 11.3. In
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Figure 11.3: Illustration of nonexistence of Cauchy PDF mean.

Figure 11.3a the first 50 outcomes of a total of 10,000 are shown. Because of the
slow decay of the “tails” of the PDF or since the PDF decays only as 1/z%, very
large outcomes are possible. The sample mean does not converge to zero as might
be expected because of these infrequent but very large outcomes. See also Problem
11.3 on the simulation used in this example and Problems 11.4 and 11.9 on how to
make the sample mean converge by truncating the PDF.

Finally, as for discrete random variables the expected value is the best guess of
the outcome of the random variable. Best means that the use of a = E[X] as our
estimate minimizes the mean square error, which is defined as mse = E[(X — a)?]
(see Problem 11.5).

11.4 Expected Values for Important PDFs

We now determine the expected values for the important PDF's described in Chapter
10. Of course, the Cauchy PDF is omitted.

11.4.1 Uniform

If X ~ U(a,b), then it is easy to prove that E[X] = (a + b)/2 or the mean lies at
the midpoint of the interval (see Problem 11.8).
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11.4.2 Exponential
If X ~ exp(A), then

EX] = /Ooowkexp(—)\w)dw

_ [—xexp(—)\x) _ ;exp(—m)] T . (11.7)

0
Recall that the exponential PDF spreads out as A decreases (see Figure 10.6) and
hence so does the mean.

11.4.3 Gaussian or normal

If X ~ N(u,0?), then since the PDF is symmetric about the point = = y, we know
that E[X] = u. A direct appeal to the definition of the expected value yields

EX] = /Zx\/;r?exp[—%(x—u)z]dx

= [ e | plo— | do

+/°° 1 1 ( 12| d
I > exp | —5 (@ —p z.

—o0

Letting © =  — p in the first integral we have

o 1 1 o0 1 1
EX :/ U exp [——uQ] du + / exp [——:1:— 2] dr = p.
M= L T P o | M o P | e T
K WV

=1

The first integral is zero since the integrand is an odd function (g(—u) = —g(u), see
also Problem 11.6) and the second integral is one since it is the total area under the
Gaussian PDF.

11.4.4 Laplacian

The Laplacian PDF is given by

1 2
\/ﬁexp [—\/;M] —00 <z <00 (11.8)

and since it is symmetric about £ = 0 (and the expected value ezists — needed to
avoid situation of Cauchy PDF), we must have E[X] = 0.

px(z) =
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11.4.5 Gamma
If X ~I'(a, A), then from (10.1077)

o0 « 1
E[X] = *Cexp(—Az)dz.
X)= [ apge el
To evaluate this integrate we attempt to modify the integrand so that it becomes the
PDF of a I'(¢/, \') random variable. Then, we can immediately equate the integral
to one. Using this strategy

Ae oo el ['(a+1)
EX] = 55 /0 Tlarn” PN
r 1
_ % (integrand is I'(ae + 1, A) PDF)
r

_ iFEZ; (using Property 10.3)

_ @

= 3

11.4.6 Rayleigh

It can be shown that E[X] = /(70?)/2 (see Problem 11.16).
The reader should indicate on Figures 10.6-10.10, 10.12, and 10.13 where the
mean OCCUrs.

11.5 Expected Value for a Function of a Random Vari-
able

If Y = g(X), where X is a continuous random variable, then assuming that Y is
also a continuous random variable with PDF py (y), we have by the definition of
expected value of a continuous random variable

ElY] = /oo ypy (y)dy. (11.9)

— 00

Even if Y is a mixed random variable, it expected value is still given by (11.9),
although in this case py (y) will contain impulses. Such would be the case if for
example, Y = max(0, X) for X taking on values —oco < z < oo (see Section 10.8).
As in the case of a discrete random variable, it is not necessary to use (11.9) directly,
which requires us to first determine py (y) from px(z). Instead, we can use for
Y = ¢g(X) the formula

Elg(X)] = / " g(@)px (@)da. (11.10)
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A partial proof of this formula is given in Appendix 11A. Some examples of its use
follows.

Example 11.82 - Expectation of linear (affine) function

If Y = aX + b, then since g(z) = ax + b, we have from (11.10) that

oo

Elg(X)] = / (az + bpx ()do

—00

= a/oo :Jch(ac)dm—i-b/oo px(z)dz

—00 —00

= aE[X]+b
or equivalently
ElaX + b =aE[X] +b.

It indicates how to easily change the expectation or mean of a random variable. For
example, to increase the mean value by b just replace X by X + b. More generally,
it is easily shown that

E[algl(X) + (ZQQQ(X)] = alE[gl(X)] + agE[gg(X)].

This says that the expectation operator is linear.

Example 11.83 - Power of N (0,1) random variable

If X ~N(0,1) and Y = X2, consider E[Y] = E[X?]. The quantity E[X?] is the
average squared value of X and can be interpreted physically as a power. If X is
a voltage across a 1 ohm resistor, then X? is the power and therefore F[X?] is the
average power. Now according to (11.10)

o 1 1
E[X?] = / xQEexp(—§x2>dx

> 1 1
= 2 z? ex ——x2> dzr integrand is symmetric about x = 0).
/0 N ( (integ y )

2

To evaluate this integral we use integration by parts ([ UdV = UV — [VdU, see
also Problem 11.7) with U = =z, dU = dz, dV = (1/v/2r)zexp[—(1/2)z*]dz and
therefore V = —(1/v/2m) exp[—(1/2)x?] to yield

By = 2o e ()| [ e (g2 ]
= —r ——exp | —=x — ———exp | —=x T
2 P 2 0 0 2 P 2
= 0+1=1.
The first term is zero since
1 1
lim zexp [ —=z? ) = lim + = lim ———=—-=0
T—>00 2 T—>00 exp (—(I;Z) T—>00 (I;exp (—(I;Z)



11.5. EXPECTED VALUE FOR A FUNCTION OF A RANDOM VARIABLE365

using L’Hospitals rule and the second term is evaluated using

] 1, 1
—= de = - hy?).
/0 —QWGXP( 2$> T =3 (Why?)

Example 11.84 - Expected value of indicator random variable
An indicator function indicates whether a point is in a given set. For example, if
the set is A = [3,4], then the indicator function is defined as

IA(z):{l 3<z<4

0 otherwise
and is shown in Figure 11.4. The subscript on I refers to the set of interest. The

2
15¢
B
S ir : ‘ 1 1
i i
| |
05¢ | 1
i i
| |
0 1 1
0 1 2 3 4 5 6
T

Figure 11.4: Example of indicator function for set A = [3,4].

indicator function may be thought of as a generalization of the unit step function
since if u(z) = 1 for > 0 and zero otherwise, we have that

I[O,oo)(x) = u(:L‘)
If now X is a random variable, then I4(X) is a transformed random variable which
takes on values 1 and 0, depending upon whether the outcome of the experiment lies

within the set A or not, respectively. (It is actually a Bernoulli random variable.)
On the average, however, it has a value between 0 and 1, which from (11.10) is

E[ly(x)] = / " Li()px (z)de

—o0

= / 1-px(z)dz (definition)
{z:z€A}

= / px (z)dz
{z:z€A}
= PI[A].
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Therefore, the expected value of the indicator random variable is the probability of the
set or event. As an example of its utility, consider the estimation of P[3 < X < 4].
But this is just E[I4(X)] when I4(z) is given in Figure 11.4. To estimate the
expected value of a transformed random variable we first generate the outcomes of X,
say xi,%3,...,Z), then transform each one to the new random variable producing
fori=1,2,.... M

1 3<z;,<4

0 otherwise

La(as) = {

and finally compute the sample mean for our estimate using

— 1 M
E[LA(X)) = == > La(ay)-
=1

Since P[A] = E[14(X)], we have as our estimate of the probability

— 1 M
pmzﬁzu@.
i=1

But this is just what we have been using all along, since Zl]‘il I4(z;) counts all the
outcomes for which 3 < z < 4. Thus, the indicator function provides a means to
connect the expected value with the probability. This is very useful for later theoretical
work in probability.

¢

Lastly, if the random variable is a mixed one with PDF
o0

px (@) = pe(x) + Y pid(z — z:)
i=1

where p.(z) is the PDF of the continuous part, then the expected value becomes

EX] = /°° T (pc(ﬂU) + sz-é(:p - :1:2)> dx
i=1

—00

9] o0 o
= / (I;pc((l;)dq: —+ / € pl(s((L‘ — :El)dx
R =1

= / xpe(x)dx + Zp,/ 20(x — z;)dx
00 Zoo
— / xpe(x)dx + inpi (11.11)
- i=1

since [%_g(x)d(z — z;)dz = g(z;) for g(z) a function continuous at z = z;. This
is known as the sifting property of a Dirac delta function (see Appendix D). A



11.6. VARIANCE AND MOMENTS

367

Values PDF E[X] | var(X) dx(w)
Uniform a<z<b ﬁ 1(a+b) (bzg)Z exp(j?f})(;fzf)’(jwa)
Exponential | = >0 Aexp(—Ax) 3 % 'Y :\jw
Gaussian —00<2<00 eXp[f(l/\zﬁ)Q)(xfum B o? expljwp—ow? /2]
Laplacian —00<T<00 \/7 exp(—+/2/0?|z|) 0 o? #g/gz
Gamma x>0 %xo‘ exp(—Az) S 3z m

. [Johnson,

Rayleigh x>0 L exp[—2?/(20%)] | /I | @-7/2)0? et al 1994]

Table 11.1: Properties of continuous random variables.

summary of the means for the important PDFs is given in Table 11.1. Lastly, note
that the expected value of a random variable can be determined directly from the
CDF as shown in Problem 11.28.

11.6 Variance and Moments of a Continuous Random
Variable

The variance of a continuous random variable, as for a discrete random variable,
measures the average squared deviation from the mean. It is defined as var(X) =
E[(X — E[X])?] (exactly the same as for a discrete random variable). To evaluate
the variance we use (11.10) to yield

var(X) = / "l

—00

— E[X))?px (z)dz. (11.12)

) random variable. In Figure 10.9 we saw that
2

As an example, consider a N (u,o?
the width of the PDF increases as o2 increases. This is because the parameter o
is actually the variance, as we now show. Using (11.12) and the definition of a
Gaussian PDF

] dx

N
= exp [—i(x — M)Z] dr  (recall that E[X] = p).

e |-

—o0
202
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Letting u = (z — p) /o produces (recall that o = Vo2 > 0)

var(X) =

o0

/Oo 9 9 1 [ 1 2]
o°U°————exp | ——5U
—00 V2ro? 20

odu

1
—§u2] du (see Example 11.3)

= 0'2.

u? L e p[
——ex
oo V2w

=1

Hence, we now know that a A'(i, 0?) random variable has a mean of x and a variance

of o2.

It is common to refer to the square-root of the variance as the standard deviation.
For a N (i1, 0?) random variable it is given by o. The standard deviation indicates
how closely outcomes tend to cluster about the mean. (See Problem 11.29 for an
alternative interpretation.) Again if the random variable is A (i1, 0?), then 68.2%
of the outcomes will be within the interval [u — o, + o], 95.5% will be within
[ — 20,1 + 20], and 99.8% will be within [ — 30, u + 30]. This is illustrated in
Figure 11.5. Of course, other PDFs will have concentrations that are different for
E[X] + ky/var(X). Another example follows.

0.5 0.5 0.5
04 04
3 SN—
0.3 0.3
ISH

5 -4 -3 -2 -1 0 1 2 3 4 5

(a) 68.2% for 1 standard devi-
ation

0
-5 -4

-3 -2 -1 0 1 2
Zz

0
-3 -2 -1 0 1 2 3 4 5 -5 -4 3 4
T

(b) 95.5% for 2 standard de-
viations

(c) 99.8% for 3 standard devi-
ations

Figure 11.5: Percentage of outcomes of N(1,1) random variable that are within
k = 1,2, and 3 standard deviations from the mean. Shaded regions denote area
within interval y — ko <z < pu + ko.

Example 11.85 - Variance of a uniform random variable

If X ~U(a,b), then

var(X)

_ / " (# — EIX])%px (s)dz

_ /ab (x—%(aer))Qbiadg”

5
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and letting u = z — (a + b)/2, we have

var(X) = / u?du

&

A summary of the variances for the important PDFs is given in Table 11.1. The
variance of a continuous random variable enjoys the same properties as for a discrete
random variable. Recall that an alternate form for variance computation is

var(X) = E[X?] — E?[X]

and if ¢ is a constant then

var(c) = 0
var(X +¢) = var(X)
var(cX) = cvar(X). (11.13)

Also, the variance is a nonlinear type of operation in that

var(g1(X) + g2(X)) # var(g1(X)) + var(g2(X))

(see Problem 11.32). Recall from the discussions for a discrete random variable that
E[X] and E[X?] are termed the first and second moments, respectively. In general,
E[X"] is termed the nth moment and it is defined to exist if E[|X|"] < oo. If it
is known that E[X?*] exists, then it can be shown that E[X"] exists for r < s (see
Problem 6.2377). This also says that if E[X"] is known not to exist, then E[X?]
cannot exist for s > r. An example is the Cauchy PDF for which we saw that E[X]
does not exist and therefore all the higher order moments do not exist. In particular,
the Cauchy PDF does not have a second order moment and therefore its variance
does not exist. We next give an example of the computation of all the moments of
a PDF.

Example 11.86 - Moments of an exponential random variable

Using (11.10) we have for X ~ exp(A) that

o
E[X"]:/ z"Nexp(—Az)dz.
0

To evalute this we first show how the nth moment can be written recursively in terms
of the (n — 1)st moment. Since we know that E[X] = 1/A, we can then determine
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all the moments using the recursion. We can begin to evaluate the integral using
integration by parts. This will yield the recursive formula for the moments. Letting
U = z" and dV = lexp(—Az) so that dU = nz""'dr and V = —exp(—Az), we
have

E[X"] = —x”exp(—)\x)|8°_/ —&(p(—)@)nw”fldz
0

= 0+n/ 2" L exp(—\z)dz
0

n

= —/ " Xexp(—\z)dx
AJo

n

= —EX".

SR

Hence, the nth moment can be written in term of the (n — 1)st moment. Since we
know that E[X] = 1/)\, we have upon using the recursion that

2 21 2
E[X?] = ZEX]=2Z==
X7 =33
3 32 3.2
EX’] = SEX?|=>5="5
X7 =3 w =
etc.
and in general
|
E[X"] = % (11.14)

The variance can be found to be var(X) = 1/A? using these results.

¢
In the next section we will see how to use characteristic functions to simplify the
complicated integration process required for moment evaluation.

Lastly, it is sometimes important to be able to compute moments about some
point. For example, the variance is the second moment about the point E[X]. In
general, the nth central moment about the point E[X] is defined as E[(X — E[X])"].
The relationship between the moments and the central moments is of interest. For
n = 2 the central moment is related to the moments by the usual formula E[(X —
E[X])?] = E[X?] — E?[X]. More generally, this relationship is found using the
binomial theorem as follows.

> () Xk(—E[X])”k]

= (n) E[X*(-E[X])"* (linearity of expectation operator)

BI(X - E[X)"] = E
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or finally we have that

B[(X — BIX])" = > (-1 () (BIX])" FE[XY) (11.15)

11.7 Characteristic Functions

As first introduced for discrete random variables, the characteristic function is a
valuable tool for the calculation of moments. It is defined as

¢x (w) = Elexp(jwX)] (11.16)

and always exists (even though the moments of a PDF may not). For a continuous
random variable it is evaluated using (11.10) for the real and imaginary parts of
Elexp(jwX)], which are E[cos(wX)] and E[sin(wX)]. This results in

¢ﬂm=/wwmmmmmw

—00

or in more familiar form as

bxl) = [ pxte) expljion)d. (11.17)

—00

The characteristic function is seen to be the Fourier transform of the PDF, although
with a +7 in the definition as opposed to the more common —j. Once the charac-
teristic function has been found, the moments are given as

1 d'gx ()

E[X"] =
A

(11.18)

w=0

An example follows.
Example 11.87 - Moments of the exponential PDF
Using the definition of the exponential PDF (see (10.577)) we have

ox(w) = /Ooo)\exp(—)\w)exp(jww)dm

= /000 Aexp[—(A — jw)z]dz
exp[—(A — jw)a]|*
—(A—jw) 0

= oA (explm (A= jw)od — 1).

A

A—Jw
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But exp[—(A — jw)x] — 0 as £ — oo since A > 0 and hence we have

A

px(w) = PN (11.19)

To find the moments using (11.18) we need to differentiate the characteristic function
n times. Proceeding to do so

d(ﬁ%agw) = %A(A—jw)*l
= A=D1\ —jw) (=)
2hx (w
%2() = MDD — ju) P ()
%X:") = M=1)(=2)...(=n)(X — jw) " H(—j)"
= NI\ — jw) !
and therefore
ey - L fet)
= Al (A —jw) "
n!
Y

which agrees with our earlier results (see (11.14)).

A Moment formula only valid if moments exist

Just because a PDF has a characteristic function, and all do, does not mean that
(11.18) can be applied. For example, the Cauchy PDF has the characteristic function
(see Problem 11.40)

¢x (w) = exp(—|w])

(although the derivative does not exist at w = 0). Hence, as we have already seen,
the mean does not exist and hence all higher order moments also do not exist. Thus,
no moments exist at all for the Cauchy PDF.

The characteristic function has nearly the same properties as for a discrete random
variable, namely
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1. The characteristic function always exists.

2. The PDF can be recovered from the characteristic function by the inverse Fourier
transform, which in this case is

o0 ) dw
px(z) = dx (w) exp(—ij)g. (11.20)
—o0
3. Convergence of a sequence of characteristic functions qbg?) (w) forn=1,2,...toa

given characteristic function ¢(w) guarantees that the corresponding sequence
of PDFs pg?) (z) for n =1,2,... converges to p(z), where from (11.20)

dw

po) = [ dlwexp(—jun)3”.

(See Problem 11.42 for an example.) This property is also essential for proving
the central limit theorem described in Chapter 15.

A slight difference from the characteristic function of a discrete random variable
is that now ¢x(w) is not periodic in w. It does, however, have the usual proper-
ties of the continuous-time Fourier transform [Jackson 1991]. A summary of the
characteristic functions for the important PDF's is given in Table 11.1.

11.8 Probability, Moments, and the Chebyshev Bound

The mean and variance of a random variable indicate the average value and variabil-
ity of the outcomes of a repeated experiment. As such, they summarize important
information about the PDF. However, they are not sufficient to determine proba-
bilities of events. For example, the PDF's

px(r) = \/12_7r exp <—%x2> (Gaussian)
px(r) = % exp (—\/§|:1:|> (Laplacian)

both have E[X] = 0 (due to symmetry about x = 0) and var(X) = 1. Yet, the
probability of a given interval can be very different. Although the relationship
between the mean and variance, and the probability of an event is not a direct one,
we can still obtain some information about the probabilities based on the mean and
variance. In particular, it is possible to bound the probability or to be able to assert
that

P[IX — BIX]| > 4] < B

where B is a number less than one. This is especially useful if we only wish to
make sure the probability is below a certain value, without explicitly having to find
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the probability. For example, if the probability of a speech signal of mean 0 and
variance 1 exceeding a given magnitude 7 (see Section 10.10) is to be no more than
1%, then we would be satisfied if we could determine a -y so that

P[|X — E[X]]| > ] <0.01.

We now show that the probability for the event | X — E[X]| > 7 can be bounded if
we know the mean and variance. Computation of the probability is not required and
therefore the PDF does not need to be known. Estimating the mean and variance is
much easier than the entire PDF (see Section 11.9). The inequality to be developed
is called the Chebyshev inequality. Using the definition of the variance we have

var(X) = / " (2 — BIX])px (2)da

—00

- [ (@~ BIX)px(a)ds + | (¢~ BIX]Vpx (a)da
{z:lz—E[X]|>7} {z:lz—E[X]|<v}

> / (z — E[X])*px (z)dx (omitted integral is nonnegative)
{z:lz—E[X]|>7}

> / v2px (z)dz (since for each z, |z — E[X]| > v)
{z:lz—E[X]|>7}

= 72/ px (z)dz
{z:lz—E[X][>~}
= 7’PlX - E[X]| > 7]

so that we have the Chebyshev inequality

P[|X — E[X]| > 4] < VB‘%(ZX) (11.21)
Hence, the probability that a random variable deviates from its mean by more
than v (in either direction) is less than or equal to var(X)/y?. This agrees with
our intuition in that the probability of an outcome departing from the mean must
become smaller as the width of the PDF decreases or equivalently as the variance
decreases. An example follows.

Example 11.88 - Bounds for different PDFs

Assuming E[X] = 0 and var(X) = 1, we have from (11.21)
1
?.

If v = 3, then we have that P[|X| > 3] < 1/9 ~ 0.11. This is a rather “loose”
bound in that if X ~ A(0,1), then the actual value of this probability is P[|X| >
3] = 2Q(3) = 0.0027. Hence, the actual probability is indeed less than or equal to

PlIX| > ] <
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the bound of 0.11, but quite a bit less. In the case of a Laplacian random variable
with mean 0 and variance 1, the bound is the same but the actual value is now

PlX| >3 = /:%exp<—\/§|$|)dw—i—/:o%exp(—\/ﬂﬂ)dm

*© 1
= 2/ — exp (—ﬁm) dz (PDF is symmetric about z = 0)
3 V2

o
- ()]
— exp (—3\/5) — 0.0144.
Once again the bound is seen to be correct but provides a gross overestimation of

the probability. A graph of the Chebyshev bound as well as the actual probabilities
of P[|X| > ] versus v is shown in Figure 11.6. The reader may also wish to consider

e o
N

Probability
>

Chebyshev inequality

o o o o
w > v
7 T

Gaussian

o
)
7
7

Laplacian —> N,

o
2
/

!

o

Figure 11.6: Probabilities P[|X| > 7] for Gaussian and Laplacian random variables
with zero mean and unity variance compared to Chebyshev inequality.

what would happen if we used the Chebyshev inequality to bound P[|X| > 0.5] if

X ~N(0,1).
3
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11.9 Estimating the Mean and Variance

The mean and variance of a continuous random variable are estimated in exactly
the same way as for a discrete random variable (see Section 6.8). Assuming that we

have the M outcomes {z1,z2,...,z)} of a random variable X the mean estimate
is - M
E[X] = M;z (11.22)
and the variance estimate is
var(X) = Bx? - (BX])
1 & LR
= o > af - (M Zx,) : (11.23)
i=1 i=1

An example of the use of (11.22) was given in Example 2.6 for a N'(0,1) random
variable. Some practice with the estimation of the mean and variance is provided
in Problem 11.46.

11.10 Real-World Example — Critical Software Testing
using Importance Sampling

Computer software is a critical component of nearly every device used today. The
failure of such software can range from being an annoyance, as in the outage of a
cellular telephone, to being a catastrophy, as in the breakdown of the control system
of a nuclear power plant. Testing of software is of course a prerequisite for reliable
operation but some events, although potentially catastrophic, will hopefully occur
only rarely. Therefore, the question naturally arises as to how to test software that is
designed to only fail once every 107 hours (= 1400 years). In other words, although
a theoretical analysis might predict such a low failure rate, there is no way to test
the software by running it and waiting for a failure. A technique that is often used in
other fields to test a system is to “stress” the system to induce more frequent failures,
say by a factor of 10°, then estimate the probability of failure per hour, and finally
readjust the probability for the increased stress factor. An analogous approach
can be used for highly reliable software if we can induce a higher failure rate and
then readjust our failure probability estimate by the increased factor. A proposed
method to do this is to stress the software to cause the probability of a failure to
increase [Hecht and Hecht 2000]. Conceivably we could do this by inputting data
to the software that is suspected to cause failures but at a much higher rate than is
normally encountered in practice. This means that if 7" is the time to failure, then
we would like to replace the PDF of T' so that P[T > +] increases by a significant
factor. Then, after estimating this probability by exercising the software we could
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adjust the estimate back to the original unstressed value. This probabilitic approach
is called importance sampling [Rubinstein 1981].

As an example of the use of importance sampling, assume that X is a continuous
random variable and we wish to estimate P[X > 7]. As usual, we could generate
realizations of X, count the number that exceed 7, and then divide this by the
total number of realizations. But what if the probability sought is 10~7? Then we
would need about 10° realizations to do this. As a specific example, suppose that
X ~ N(0,1), although in practice we would not have knowledge of the PDF at
our disposal, and that we wish to estimate P[X > 5] based on observed realization
values. The true probability is known to be Q(5) = 2.86 x 10~7. The importance
sampling approach first recognizes that the desired probability is given by

* 1 1
1= ——exp | —=2% | dz
/5 Vo P ( 2 )

oo [
5 px(z)
where px/(z) is a more suitable PDF. By “more suitable” we mean that its prob-
ability of X > 5 is larger, and therefore, generating realizations based on it will
produce more occurrences of the desired event. One possibility is X' ~ exp(1) or
px' (z) = exp(—z) for which P[X > 5] = exp(—5) = 0.0067. Using this new PDF
we have the desired probability

and is equivalent to

px (r)dz

s [l
5 exp(—z)

exp(—z)dz
or using the indicator function, this can be written as

e | 1,
I—/O f(5,<>o>(96)\/—2—7r exp (—536 +x>1px'(x)dx-

gz;)

Now the desired probability can be interpreted as E[g(X')], where X’ ~ exp(1). To
estimate it using a Monte Carlo computer simulation we first generate M realizations
of an exp(1) random variable and then use as our estimate

. 1 M
I = MZIQ(%)

1 I 1 1
-~ M 21(5,00)(%) \/—Q—WGXP <—§%2 + sz) - (11.24)

=1 . 7

weight with value <1
for z; > 5
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The advantage of the importance sampling approach is that the realizations whose
values exceed 5, which are the ones contributing to the sum, are much more proba-
ble. In fact, as we have noted P[X' > 5] = 0.0067 and therefore with N = 10,000
realizations we would expect about 67 realizations to contribute to the sum. Con-
trast this with a A/(0,1) random variable for which we would expect NQ(5) =
(10%)(2.86 x 10~7) = 0 realizations to exceed 5. The new PDF px- is called the
importance function and hence the generation of realizations from this PDF, which
is also called sampling from the PDF, is termed importance sampling. As seen from
(11.24), its success requires a weighting factor which downweights the counting of
threshold exceedances.

In software testing the portions of software that are critical to the operation of
the overall system would be exercised more often than in normal operation, thus
effectively replacing the operational PDF or px by the importance function PDF
or pyx. The ratio of these two would be needed as seen in (11.24) to adjust the
weight for each incidence of a failure. This ratio would also need to be estimated in
practice. In this way a good estimate of the probability of failure could be obtained
by exercising the software a reasonable number of times with different inputs. Oth-
erwise, the critical software might not exhibit a failure a sufficient number of times
to estimate its probability.

As a numerical example, if X’ ~ exp(1l), we can generate realizations using the
inverse probability transformation method (see Section 10.9) via X’ = —In(1 — U),
where U ~ U(0,1). A MATLAB computer program to estimate Z is given below.

rand(’state’,0) % sets random number generator to
% initial value
M=10000;gamma=5;% change M for different estimates

u=rand(M,1); % generates M U(0,1) realizations
x=-log(1-u); % generates M exp(l) realizations
k=0;
for i=1:M / computes estimate of P[X>gamma]
if x(i)>gamma
k=k+1;

y(k,1)=(1/sqrt(2*pi))*exp(-0.5%x (i) "2+x(i)); % computes weights
% for estimate
end
end
Qest=sum(y)/M 7% final estimate of P[X>gamma]

The results are summarized in Table 11.2 for different values of M, along with the
true value of Q(5). Also, shown are the number of times v was exceeded. Without
the use of importance sampling the number of exceedances would be expected to be
MQ(5) = 0 in all cases.
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M | Estimated P[X > 5] | True P[X > 5] | Exceedances
10° 1.11 x 1077 2.86 x 107 4

104 2.96 x 10~ 7 2.86 x 1077 66

10° 251 x 107 2.86 x 107 630

108 2.87 x 1077 2.86 x 1077 6751

Table 11.2: Importance sampling approach to estimation of small probabilities.
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Problems

11.1 (.- ) (f) The block shown in Figure 11.7 has a mass of 1 kg. Find the center
of mass for the block, which is the point along the z-axis where the block
could be balanced (in practice the point would also be situated in the depth
direction at 1/2).

Figure 11.7: Block for Problem 11.1.
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11.2 (t) Prove that if the PDF is symmetric about a point « = a, which is to say

that it satisfies px (a+u) = px(a—u) for all —oo < u < 0o, then the mean will
be a. Hint: Write the integral [*_zpx(z)dz as [*  zpx(z)dz+ [ zpx (z)dz
and then let © = x —a in the first integral and v = o — x in the second integral.

11.3 (¢) Generate and plot 50 realizations of a Cauchy random variable. Do so by

using the inverse probability integral transformation method. You should be
able to show that X = tan(n(U — 1/2)), where U ~ U(0, 1), will generate the
Cauchy realizations.

11.4 (¢) In this problem we show via a computer simulation that the mean of

a truncated Cauchy PDF exists and is equal to zero. A truncated Cauchy
random variable is one in which the realizations of a Cauchy PDF are set to
T = Tmax if T > Tmax and £ = —ZTpax if £ < —zmax. Generate realizations
of this random variable with z,,x = 50 and plot the sample mean versus the
number of realizations. What does the sample mean converge to?

11.5 (t) Prove that the best prediction of the outcome of a continuous random

variable is its mean. Best is to be interpreted as the value that minimizes the
mean square error mse(b) = E[(X — b)?].

11.6 (t) An even function is one for which g(—z) = g(z), as for example cos(x).

An odd function is one for which g(—z) = —g(z), as for example sin(z). First
prove that [ g(z)dz =2 [;° g(x)dz if g(z) is even and that [*_g(z)dz =0
if g(x) is odd. Next, prove that if px () is even, then E[X] = 0 and also that
IS px (@)de =1/2

11.7 (f) Many integrals encountered in probability can be evaluated using integra-

tion by parts. This useful formula is

/UdV:UV—/VdU

where U and V are functions of z. As an example, if we wish to evaluate
[ zexp(az)dz, we let U = 2 and dV = exp(az)dz. The function U is easily
differentiated to yield dU = dz and the differential dV is easily integrated to
yield V = (1/a) exp(az). Continue the derivation to determine the integral of
the function x exp(az).

11.8 (f) Find the mean for a uniform PDF. Do so by first using the definition and

then rederive it using the results of Problem 11.2.

11.9 (t) Consider a continuous random variable that can take on values zpin <

T < Tmax. Prove that the expected value of this random variable must satisfy
Zmin < FE[X] < Zmax. Hint: Use the fact that if M; < g(z) < Ms, then
Mia < fabg(x)dx < M>b.
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11.10 (.- ) (w) The signal-to-noise ratio (SNR) of a random variable quantifies the
accuracy of a measurement of a physical quantity. It is defined as E?[X]/var(X)
and is seen to increase as the mean, which represents the true value, increases
and also as the variance, which represents the power of the measurement error,
i.e., X — E[X], decreases. For example, if X ~ N (u,0?), then SNR = p?/02.
Determine the SNR if the measurement is X = A + U, where A is the true
value and U is the measurement error with U ~ U(—1/2,1/2). For an SNR of
1000 what should A be?

11.11 (.- ) (w) A toaster oven has a failure time that has an exponential PDF. If
the mean time to failure is 1000 hours, what is the probability that it will not
fail for at least 2000 hours?

11.12 (w) A bus always arrive late. On the average it is 10 minutes late. If the
lateness time is an exponential random variable, determine the probability
that the bus will be less than 1 minute late.

11.13 (w) In Section 1.3 we described the amount of time an office worker spends
on the phone in a 10 minute period. From Figure 1.5 what is the average
amount of time he spends on the phone?

11.14 (.- ) (f) Determine the mean of a x% PDF.

11.15 (f) Determine the mean of an Erlang PDF using the definition of expected
value. See Chapter 10 for the definition of this PDF.

11.16 (f) Determine the mean of a Rayleigh PDF using the definition of expected
value.

11.17 (w) The mode of a PDF is the value of z for which the PDF is maximum. It
can be thought of as the most probable value of a random variable (actually
most probable small interval). Find the mode for a Gaussian PDF and a
Rayleigh PDF. How do they relate to the mean?

11.18 (f) Indicate on the PDFs shown in Figures 10.7-10.13 the location of the
mean value.

11.19 () (w) A dart is thrown at a circular dartboard. If the distance from the
bullseye is a Rayleigh random variable with a mean value of 10, what is the
probability that the dart will land within 1 unit of the bullseye?

11.20 (f) For the random variables described in Problems 2.8-2.11 what are the
means? Note that the uniform random variable is ¢/(0,1) and the Gaussian
random variable is N'(0,1).
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11.21 () (w) In Problem 2.14 it was asked whether the mean of vU, where U ~

U(0,1), is equal to vVmean of U. There we relied on a computer simulation to
answer the question. Now prove or disprove this equivalence.

11.22 (.-) (w) A sinusoidal oscillator outputs a waveform s(t) = cos(2mFpt + ¢),
where ¢ indicates time, Fj is the frequency in Hz, and ¢ is a phase angle
that varies depending upon when the oscillator is turned on. If the phase is
modeled as a random variable with ¢ ~ U(0, 27), determine the average value
of s(t) for a given t = 3. Also, determine the average power, which is defined
as E[s%(t)] for a given t = ty. Does this make sense? Explain your results.

11.23 (f) Determine E[X?] for a N'(u,0?) random variable.
11.24 (f) Determine E[(2X + 1)?] for a N (1, 0?) random variable.

11.25 (f) Determine the mean and variance for the indicator random variable I 4(X)
as a function of P[A].

11.26 (--) (w) A half-wave rectifier passes a zero or positive voltage undisturbed
but blocks any negative voltage by outputting a zero voltage. If a noise sample
with PDF N (0,02) is input to a half-wave rectifier, what is the average power
at the output? Explain your result.

11.27 (.-) (w) A mixed PDF is given as

px(z) = %5@) + \/2;76xp (—%:ﬁ) u(z).

What is E[X?] for this PDF? Can this PDF be interpreted physically? Hint:
See Problem 11.26.

11.28 (t) In this problem we derive an alternative formula for the mean of a non-
negative random variable. A more general formula exists for random variables
that can take on both positive and negative values [Parzen 1960]. If X can
only take on values z > 0, then

E[X] = /Ooo (1 - Fyx(z)) da.

First verify that this formula holds for X ~ exp(\). To prove that the formula
is true in general, we use integration by parts (see Problem 11.7) as follows.

BX) = [T (- Fxlo) ds

://pX dtdw.
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Finish the proof by using lim,_, . = fwoo px (t)dt = 0, which must be true if the
expected value exists (see if this holds for X ~ exp())).

11.29 (t) The standard deviation o of a Gaussian PDF can be interpreted as the
distance from the mean at which the PDF curve goes through an inflection
point. This means that at the points x = p 4o the second derivative of px (x)
is zero. The curve then changes from being concave (shaped like a N) to being
convex (shaped like a U). Show that the second derivative is zero at these
points.

11.30 (--) (w) The office worker described in Section 1.3 will spend an average of
7 minutes on the phone in any 10 minute interval. However, the probability
that he will spend ezactly 7 minutes on the phone is zero since the length of
this interval is zero. If we wish to assert that he will spend between T1,;, and
Tmax minutes on the phone 95% of the time, what should T, and Tiax be?
Hint: There are multiple solutions — choose any convenient one.

11.31 (w) A group of students is found to weigh an average of 150 lbs. with a stan-
dard deviation of 30 lbs. If we assume a normal population (in the probabilis-
tic sense!) of students, what is the range of weights for which approximately
99.8% of the students will lie? Hint: There are multiple solutions — choose
any convenient one.

11.32 (w) Provide a counterexample to disprove that var(gi(X) + ¢g2(X)) =
var(g1 (X)) + var(gs(X)).

11.33 (w) The SNR of a random variable was defined in Problem 11.10. Determine
the SNR for exponential random variable and explain why it doesn’t increase
as the mean increases. Compare your results to a N'(u,0?) random variable
and explain.

11.34 (f) Verify the mean and variance for a Laplacian random variable given in
Table 11.1.

11.35 (.- ) (f) Determine E[X3] if X ~ N(u,0%). Next find the third central
moment.

11.36 (f) An example of a Gaussian mixture PDF is
11 1 11 1
) = ———exp |—=(z — 1)?| + - ——ex [—— z+1 2].
px(o) = 5= emp |50~ 7] + Go= e |5+
Determine its mean and variance.

11.37 (t) Prove that if a PDF is symmetric about z = 0, then all its odd-order
moments are zero.
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11.38 (.-) (f) For a Laplacian PDF with 0? = 2 determine all the moments. Hint:
Let

1 11 1
w2+l 25 \w—7 w+j)/)’
11.39 (f) If X ~ N(0,0?), determine E[X?] using the characteristic function ap-

proach.

11.40 (t) To determine the characteristic function of a Cauchy random variable we
must evaluate the integral

%) 1 .
—00

A result from Fourier transform theory called the duality theorem asserts that
the Fourier transform and inverse Fourier transform are nearly the same if we
replace z by w and w by z. As an example, for a Laplacian PDF with 02 = 2
we have from Table 11.1 that

%) 1 1
| pxte)esptiwn)as = [ S expl—la) expliwn)ds = 5.

The inverse Fourier transform relationship is therefore
1 Codw 1
/ exp(—juwz) 55 = 3 exp(—|a]).

0o 1 +w?

Use the latter integral, with appropriate modifications (note that 2 and w are
just variables which we can redefine as desired), to obtain the characteristic
function of a Cauchy random variable.

11.41 (f) If the characteristic function of a random variable is

o= (322

find the PDF. Hint: Recall that when we convolve two functions together the
Fourier transform of the new function is the product of the individual Fourier
transforms. Also, see Table 11.1 for the characteristic function of a U(—1,1)

random variable.

11.42 (.-) (w) If X ~ N(u,1/n), determine the PDF of the limiting random
variable X as n — oo. Use characteristic functions to do so.

11.43 (f) Find the mean and variance of a x% random variable using the charac-
teristic function.
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11.44 (.- ) (f) The probability that a random variable deviates from its mean by
an amount vy in either direction is to be less than or equal to 1/2. What should
v be?

11.45 (f) Determine the probability that | X| > v if X ~ U[—a,a]. Next compare
these results to the Chebyshev bound for a = 2.

11.46 (.- ) (c) Estimate the mean and variance of a Rayleigh random variable with
02 = 1 using a computer simulation. Compare your estimated results to the
theoretical values.

11.47 (c¢) Use the importance sampling method described in Section 11.10 to de-
termine Q(7). If you were to generate M realizations of a A(0,1) random
variable and count the number that exceed v = 7 as is usually done to esti-
mate a right-tail probability, what would M have to be (in terms of order of
magnitude)?
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Appendix 11A

Partial Proof of Expected Value
of Function of Continuous
Random Variable

For simplicity assume that ¥ = ¢g(X) is a continuous random variable with PDF
py (y) (having no impulses). Also, assume that y = g(z) is monotonically increasing
so that it has a single solution to the equation y = g(z) for all y as shown in Figure
11A.1. Then

1
I
1
1
| xr

v

—1 1 =9 (y1)

Figure 11A.1: Monotonically increasing function used to derive E[g(X)].

ElY] = /_oo ypy (y)dy
0o —1
= /_ ypx(g_l(y))‘dgTy(y)‘dy (from (10.3077).

Next change variables from y to x using z = ¢g~'(y). Since we have assumed that
g(z) is monotonically increasing, the limits for y of +oo also become +oco for z.

387
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Then, since z = g~ (y), we have ypx (¢! (y)) becomes g(z)px (x) and

dg~! dg™!
‘QT(ZJ)‘ dy = gT(y)dy (g is monotonically increasing
Y Y
implies g~ ! is monotonically increasing
implies derivative is positive)
dz
= —dy=d
dy 4 o

from which (11.10) follows. The more general result for nonmonotonic functions
follows along these lines.



Chapter 12

Multiple Continuous Random
Variables

12.1 Introduction

In Chapter 7 we discussed multiple discrete random variables. We now proceed to
parallel that discussion for multiple continuous random variables. We will consider
in this chapter only the case of two random variables, also called bivariate random
variables, with the extension to any number of continuous random variables to be
presented in Chapter 14. In describing bivariate discrete random variables, we used
the example of height and weight of a college student. Figure 7.1 displayed the
probabilities of a student having a height in a given interval and a weight in a
given interval. For example, the probability of having a height in the interval [5’8”,
6’] and a weight in the interval [160, 190] Ibs. is 0.14 as listed in Table 4.1 and as
seen in Figure 7.1 for the values of H = 70 inches and W = 175 Ibs. For physical
measurements such as height and weight, however, we would expect to observe a
continuum of values. As such, height and weight are more appropriately modeled
by multiple continuous random variables. For example, we might have a population
of college students, all of whose heights and weights lie in the intervals 60 < H < 80
inches and 100 < W < 250 lbs. Therefore, the continuous random variables (H, W)
would take on values in the sample space

Suw = {(h,w) : 60 < h < 80,100 < w < 250}

which is a subset of the plane, i.e, R2. We might wish to determine probabilities
such as P[61 < H < 67.5,98.5 < W < 154], which cannot be found from Figure 7.1.
In order to compute such a probability we will define a joint PDF for the continuous
random variables H and W. It will be a two-dimensional function of h and w. In the
case of a single random variable we needed to integrate to find the area under the
PDF as the desired probability. Now integration of the joint PDF, which is a function
of two variables, will produce the probability. However, we will now be determining
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the volume under the joint PDF. All our concepts for a single continuous random
variable will extend to the case of two random variables. Computationally, however,
we will encounter more difficulty since two-dimensional integrals, also known as
double integrals, will need to be evaluated. Hence, the reader should be acquainted
with double integrals and their evaluation using iterated integrals.

12.2 Summary

The concept of jointly distributed continuous random variables is introduced in
Section 12.3. Given the joint PDF the probability of any event defined on the plane
is given by (12.2). The standard bivariate Gaussian PDF is given by (12.3) and is
plotted in Figure 12.9. The concept of constant PDF contours is also illustrated
in Figure 12.9. The marginal PDF is found from the joint PDF using (12.4). The
joint CDF is defined by (12.6) and is evaluated using (12.7). Its properties are
listed in P12.1-P12.6. To obtain the joint PDF from the joint CDF we use (12.9).
Independence of jointly distributed random variables is defined by (12.10) and can
be verified by the factorization of either the PDF as in (12.11) or the CDF as in
(12.12). Section 12.6 addresses the problem of determining the PDF of a function
of two random variables — see (12.13) and that of determining the joint PDF of
a function which maps two random variables into two new random variables. See
(12.18) for a linear transformation and (12.22) for a nonlinear transformation. The
general bivariate Gaussian PDF is defined in (12.24) and some useful properties
discussed in Section 12.7. In particular, Theorem 12.7.1 indicates that a linear
transformation of a bivariate Gaussian random vector produces another bivariate
Gaussian random vector, although with different means and covariances. Example
12.14 indicates how a bivariate Gaussian random vector may be transformed to
one with independent components. Also, a formula for computation of the expected
value of a function of two random variables is given as (12.28). Section 12.9 discusses
prediction of a random variable from the observation of a second random variable
while Section 12.10 summarizes the joint characteristic function and its properties.
In particular, the use of (12.47) allows the determination of the PDF of the sum
of two continuous and independent random variables. It is used to prove that two
independent Gaussian random variables that are added together produce another
Gaussian random variable in Example 12.15. Section 12.11 shows how to simulate on
a computer a random vector with any desired mean vector and covariance matrix
by using the Cholesky decomposition of the covariance matrix — see (12.53). If
the desired random vector is bivariate Gaussian, then the procedure provides a
general method for generating Gaussian random vectors on a computer. Finally, an
application to optical character recognition is described in Section 12.12.
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12.3 Jointly Distributed Random Variables

We consider two continuous random variables that will be denoted by X and Y. As
alluded to in the introduction, they represent the functions that map an outcome s
of an experiment to a point in the plane. Hence, we have that

-1V

for all s € S. An example is shown in Figure 12.1 in which the outcome of a dart
toss &, which is a point within a unit radius circular dartboard, is mapped into a
point in the plane, which is within the unit circle. The random variables X and Y

X(s)
Y(s)

Y
\

R

X(s),Y(s)

S

1
R Sxy ={(z,y) 1 2* +y* <1}
Figure 12.1: Mapping of the outcome of a thrown dart to the plane (example of
jointly continuous random variables).

are said to be jointly distributed continuous random variables. As before, we will
denote the random variables as (X,Y) or [X Y], in either case referring to them as
a random vector. Note that a different mapping would result if we chose to represent
the point in Sx y in polar coordinates (r,#). Then we would have

Sreo ={(r0):0<r<1,0<6<2r}.

This is a different random vector but is of course related to (X,Y). Depending
upon the shape of the mapped region in the plane, it may be more convenient to
use either rectangular coordinates or polar coordinates for probability calculations
(see also Problem 12.1).

Typical outcomes of the random variables are shown in Figure 12.2 as points in
Sx,y for two different players. In Figure 12.2a 100 outcomes for a novice dart player
are shown while those for a champion dart player are displayed in Figure 12.2b. We
might be interested in the probability that v X2 4+ Y? < 1/4, which is the event
that a bulleye is attained. Now our event of interest is a two-dimensional region as
opposed to a one-dimensional interval for a single continuous random variable. In
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
T T
(a) Novice (b) Champion

Figure 12.2: Typical outcomes for novice and champion dart player.

the case of the novice dart player the dart is equally likely to land anywhere in the
unit circle and hence the probability is

Area of bullseye

P[bull =

[bullseye] Total area of dartboard
m(1/4)? _ 1
m(1)2 16

However, for a champion dart player we see from Figure 12.2b that the probability of
a bullseye is much higher. How should we compute this probability? For the novice
dart player we can interpret the probability calculation geometrically as shown in
Figure 12.3 as the volume of the inner cylinder since

1

Plbullseye] = w(1/4)? x -
= Area of bullseye X 1 .
Area o? event H;ﬂ;git
If we define a function
2 +y? <1

(12.1)

1
— ™
pxy(z,y) { 0 otherwise

then this volume is also given by

PlA] = / /A pxy (@, y)drdy (12.2)
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pX,Y(xay)

7

<

Sxy
z bullseye = A

Figure 12.3: Geometric interpretation of bullseye probability calculation for novice
dart thrower.

since then

P[A] = // ld:z:dy
{(zy)a?+y2<(1/)2} T

= l// dx dy

T J J{(w,y):a?+y><(1/4)%}

1 1 /1\? 1
= ;XAreaofA—;W (Z) _]__6

In analogy with the definition of the PDF for a single random variable X, we define
px,y(z,y) as the joint PDF of X and Y. For this example, it is given by (12.1) and
is used to evaluate the probability that (X,Y’) lies in a given region A by (12.2).
The region A can be any subset of the plane. Note that in using (12.2) we are
determining the volume under px y, hence the need for a double integral. Another
example follows.

Example 12.89 - Pyramid-like joint PDF

A joint PDF is given by

_ A=z -1)(1-[2y—-1]) 0<z<1,0<y<l1
pxy(y) = { 0 otherwise.

We wish to verify that the PDF integrates to one. Then, we consider the evaluation
of P[1/4 < X <3/4,1/4 <Y <3/4]. A three-dimensional plot of the PDF is shown
in Figure 12.4 and appears pyramid-like. Since it is often difficult to visualize the
PDF in 3-D, it is helpful to plot the contours of the PDF as shown in Figure 12.5.
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Figure 12.5: Contour plot of joint PDF.

As seen in the contour plot (also called a topographical map) the innermost contour
consists of all values of (z,y) for which pxy(z,y) = 3.5. This contour is obtained
by slicing the solid shown in Figure 12.4 with a plane parallel to the z-y plane and
at a height of 3.5 and similarly for the other contours. These contours are called
contours of constant PDF.

To verify that px y is indeed a valid joint PDF, we need to show that the volume
under the PDF is equal to one. Since the sample space is Sx,y = {(z,y) : 0 <z <
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1,0 <y <1} we have that
1 1
PlSxy] = / / 41— 22 — 1)(1 — 2y — 1))de dy
0 0
1

1

= / 2(1 — |2z — 1|)d:1:/ 2(1 — |2y — 1])dy.
0 0

The two definite integrals are seen to be identical and hence we need only evaluate

one of these. But each integral is the area under the function shown in Figure 12.6a

which is easily found to be 1. Hence, P[Sxy] =11 = 1, verifying that pxy is a

2t 2t

15} 15}
" "
S S

1t 1t

0.5} 0.5}

0 0

Figure 12.6: Plot of function g(z) = 2(1 — |2z — 1]).

valid PDF. Next to find P[1/4 < X <3/4,1/4 <Y < 3/4] we use (12.2) to yield

3/4 3/4
P[A] :/ / 41 — |2z — 1])(1 — |2y — 1|)dz dy.
1/4 J1/4

By the same argument as before we have

3/4 2
/ 21 — |22 — 1])dz
1/4
and referring to Figure 12.6b, we have that each unshaded triangle has area (1/2)(1/4)(1) =
1/8 and so
1 112 2
Pl =1t L (%) 2
8 8 8 16

In summary, a joint PDF has the expected properties of being a nonnegative two-
dimensional function that integrates to one over R?.

Pl4] =
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¢
For the previous example the double integral was easily evaluated since

1. The integrand px,y(z,y) was separable (we will see shortly that this property
will hold when the random variables are independent).

2. The integration region in the z-y plane was rectangular.

More generally this will not be the case. Consider, for example, the computation
of P[Y < X]|. We need to integrate px,y over the shaded region shown in Figure
12.7. To do so we first integrate in the y direction for a fixed z, shown as the darkly

1.2

1t

0.81

0.6

0.4r

0.2¢

Figure 12.7: Integration region to determine P[Y < X].

shaded region. Since 0 < y < z for a fixed =, we have the limits of 0 to = for the
integration over y and the limits of 0 to 1 for the final integration over x. This
results in

1 T
PY <X] = / / pxy (@, y)dy da
0 0

1 T
_ / / 41— |22 — 1))(1 = |2y — 1|)dy dar.
0 0

Although the integration can be carried out, it is tedious. In this illustration the
joint PDF is separable but the integration region is not rectangular.

A Zero probability events are varied in two dimensions

Recall that for a single continuous random variable the probability of X attaining
any value is zero. This is because the area under the PDF is zero for any zero length
interval. Similarly, for jointly continuous random variables X and Y the probability
of any event defined on the z-y plane will be zero if the region of the event in the
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plane has zero area. Then, the volume under the joint PDF will be zero. Some
examples of these zero probability events are shown in Figure 12.8.

(a) Point (b) Line (c) Curve

Figure 12.8: Examples of zero probability events for jointly distributed continuous
random variables X and Y. All events have zero area.

/AN

An important joint PDF is the standard bivariate Gaussian or normal PDF, which
is defined as

(2.9) 1 . 1 (2 — 2py + 2)] —00 < < 00
Pxy(2,Yy) = —F—=exp |~ g5 (&" —2pzy +y
21y/1 — p? 2(1 - p?) g —00 <y < 00
(12.3)

where p is a parameter that takes on values —1 < p < 1. (The use of the term
standard is because as is shown later the means of X and Y are 0 and the variances
are 1.) The joint PDF is shown in Figure 12.9 for various values of p. We will see
shortly that p is actually the correlation coefficient px y first introduced in Section
7.9. The contours of constant PDF shown in Figures 12.9b,d,f are given by the
values of (z,y) for which

z? — 2pzy + y? =r?

where 7 is a constant. This is because for these values of (x,y) the joint PDF takes
on the fixed value
1 1

2
T,Y) = ——F——=€Xp |~ T"|.
pxy (7, y) P p[ 50— ) ]

If p = 0, these contours are circular as seen in Figure 12.9d and otherwise they are
elliptical. Note that our use of r?, which implies that =2 — 2pzy + y? > 0, is valid
since in vector/matrix notation

T
T _ T
$2—2p:1cy+y2:[ ] [_1 1'0][ ]
y P y
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Figure 12.9: Three-dimensional and constant PDF contour plots of standard bivari-
ate Gaussian PDF.

which is a quadratic form. Because —1 < p < 1, the matrix is positive definite
(its principal minors are all positive - see Appendix C) and hence the quadratic
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form is positive. We will frequently use the standard bivariate Gaussian PDF and
its generalizations as examples to illustrate other concepts. This is because its
mathematical tractability lends itself to easy algebraic manipulations.

12.4 Marginal PDFs and the Joint CDF

The marginal PDF px(z) of jointly distributed continuous random variables X and
Y is the usual PDF which yields the probability of a < X < b when integrated over
the interval [a,b]. To determine py(x) if we are given the joint PDF px y(z,y), we
consider the event

A={(z,y)ra <z <b —00<y< oo}
whose probability must be the same as
Ax ={z:a <z <b}.
Thus, using (12.2)

Pla<X <t = PlAx]=P[4]

= //Apxyy(I,y)dIdy
00 b
= / /px,y(x,y)dxdy
b 00
= // pPx
p

x (

e

(z,y)dy dx.
)

Clearly, then we must have that

o0
px(z) = / px,y(z,y)dy (12.4)

—00
as the marginal PDF for X. This operation is shown in Figure 12.10. In effect, we
“sum” the probabilites of all the y values associated with the desired x, much the
same as summing along a row to determine the marginal PMF px[z;] from the joint
PMF px y[zi,y;]. The marginal PDF can also be viewed as the limit as Az — 0 as

Plzg — Az/2 < X <1zp+ Az/2,—00 <Y < 0]
px(zo) = A

ro+Ax o0
Lo A 2o pxy (@, y)dy do

Ax

for a small Az. An example follows.
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Figure 12.10: Obtaining the marginal PDF of X from the joint PDF of (X,Y).

Example 12.90 - Marginal PDFs for Standard Bivariate Gaussian PDF
From (12.3) and (12.4) we have that

00 1 1
px(x) = ————exXp |-+
(=) /oo 21y/1 — p2 2(1-p?)

To carry out the integration we convert the integrand to one we recognize, i.e.,
a Gaussian, for which the integral over (—oo,00) is known. The trick here is to
“complete the square” in y as follows.

(22 — 2pzy + y?) | dy. (12.5)

Q = y>—2pzy+a?
= y* —2pzy + p’2? + 2 — px?
= (y—px)*+ (1 - p*)a’.

Substituting into (12.5) produces
pr(o) = ep(-(1/2) [ e |-t
o 00 21— p2 2(1-p?)

© 1

= o012 [ e |- L - w?) ay

N

(y — pw)Q] dy

e

=1

where 1 = pz and 02 = 1 — p?, so that we have

px(z) = \/12_7r exp <—%x2>
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or X ~ N(0,1). Hence, the marginal PDF for X is a standard Gaussian PDF.
By reversing the roles of X and Y, we will also find that Y ~ A(0,1). Note that
since the marginal PDFs are standard Gaussian PDFs, the corresponding bivariate
Gaussian PDF is also referred to as a standard one.
¢
In the previous example we saw that the marginals could be found from the joint
PDF. However, in general the reverse process is not possible — given the marginal
PDFs we cannot determine the joint PDF. For example, knowing that X ~ A(0,1)
and Y ~ N(0,1) does not allow us to determine p, which characterizes the joint
PDF. Furthermore, the marginal PDFs are the same for any p in the interval (—1,1).
This is just a restatement of the conclusion that we arrived at for joint and marginal
PMFs. In that case there were many possible two-dimensional sets of numbers that
could sum to the same one-dimensional set.
We next define the joint CDF for continuous random variables (X,Y"). It is given
by
Fxy(z,y) = PIX <o,V <y]. (12.6)

From (12.2) it is evaluated using

y T
Fxy(z,y) 2/ / px,y (¢, u)dt du. (12.7)

Some examples follow.
Example 12.91 - Joint CDF for an exponential joint PDF
If (X,Y) have the joint PDF

pxyv(z,y) = { exp[—(z+y)] >0,y >0

0 otherwise
then
y [ T
Fxy(z,y) = //exp[—(t+u)]dtdu
o Jo
Yy T
= /eXp(—u)/ exp(—t)dt du
0 0
N—
1—exp(—z)
y
= ['1- exp(-s)expl(-u)au
0
y
— [1—exp(—:1:)]/ exp(—u)du
0
so that

o = {7 2020 g
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Figure 12.11: Joint exponential PDF and CDF.

The joint CDF is shown in Figure 12.11 along with the joint PDF. Once the joint
CDF is obtained the probability for any rectangular region is easily found.

¢

Example 12.92 - Probability from CDF for exponential random variables
Consider the rectangular region A = {(z,y) : 1 <z < 2,2 <y < 3}. Then referring

A={(z,y):1<2<2,2<y <3}

>5L‘

Figure 12.12: Evaluation of probability of rectangular region A using joint CDF.
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to Figure 12.12 we determine the probability of A by determining the probability
of the shaded region, then subtracting out the probability of the each cross-hatched
region (one running from south-east to north-west and the other running from south-
west to north-east), and finally adding back in the probability of the double cross-
hatched region. This results in

P[A] = Pl-o0< X <2,—00<Y <3]—-Pl-o0< X <2,—00<Y <2]
—Pl—o0< X <1,-00<Y <3|+ P[00 < X <1,—00 <Y < 2]
= Fxyl[2,3] - Fxy|[2,2] — Fxy[l,3] + FxyI[L,2].
For the joint CDF given by (12.8) this becomes
PlA] = [l —exp(=2)][1 —exp(=3)] — [1 — exp(-2)"
—[1 —exp(—=1)][1 — exp(=3)] + [L — exp(—1)][1 — exp(—2)].
Upon simplication we have the result
P[A] = [exp(~1) — exp(—2)]exp(~2) — exp(—3)]

which can also be verified by a direct evaluation as

PlA] = /2 ’ /1 " expl— (o + y)Jdz dy.

We see that the advantage here is that no integration is required. However, the
event A must be a rectangular region.

¢
The joint PDF can be recovered from the joint CDF by partial differentiation as
0’Fx.y(z,vy)
= - g/ 12.9

which is the two-dimensional version of the fundamental theorem of calculus. As an
example we continue the previous one.

Example 12.93 - Obtaining the joint PDF from the joint CDF for expo-
nential random variables

Continuing with the previous example we have that from (12.8)

0?[1—exp(—z)][l—exp(—y)] S 0.y >0
pxy(z,y) = B2y z20,y 2>
0 otherwise.

For x >0,y >0
0 01 = exp(—a)][1 — exp(—y)]

pX,Y(xay) =

= exp(—z) exp(—y) = exp[—(z + y)]-
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¢
Finally, the properties of the joint CDF are for the most part identical to those for

the CDF (see Section 7.4 for the properties of the joint CDF for discrete random
variables). They are (see Figure 12.11 for an illustration)

P12.5 Fxy(z,y) is monotonically increasing, which means that if zo > 21 and
Y2 > y1, then Fx y(x2,y2) > Fxy(z1,%2).

P12.6 Fxy(z,y) is continuous with no jumps (assuming that X and Y are jointly
continuous random variables). This property is different from the case of
jointly discrete random variables.

12.5 Independence of Multiple Random Variables

The definition of independence of two continuous random variables is the same as for
discrete random variables. Two continuous random variables X and Y are defined
to be independent if for all events A € R and B € R

P[X € A)Y € B] = P[X € A|P[Y € B]. (12.10)
Using the definition of conditional probability this is equivalent to

P[X € AY € B]
P[X € A]
= P[Y € B]

PYeB|X €Al =

and similarly P[X € A|Y € B] = P[X € A]. It can be shown that X and Y are
independent if and only if the joint PDF factors as (see Problem 12.20)

px,v(7,y) = px(z)py (y)- (12.11)
Alternatively, X and Y are independent if and only if (see Problem 12.21)
FX,y((II,y) = FX((II)Fy(y) (1212)

An example follows.
Example 12.94 - Independence of exponential random variables
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From Example 12.3 we have for the joint PDF

_J o exp[~(z+y)] z>0,y>0
pxy(z,y) = { 0 otherwise.

Recalling that the unit step function u(x) is defined as u(z) = 1 for z > 0 and
u(z) =0 for z < 0, we have

pxy(z,y) = exp[—(z + y)|u(z)u(y)

since u(z)u(y) = 1 if and only if u(z) = 1 and u(y) = 1, which will be true for
z >0,y > 0. Hence, we have

pxy (z,y) = exp(—z)u(z) exp(—y)u(y) .

/\C

e e

px(z) Py (y)

To assert independence we need only factor pxy(z,y) as g(z)h(y), where g and
h are nonnegative functions. However, to assert that g(z) is actually px(z) and
h(y) is actually py (y), each function, g and h, must integrate to one. For example,
we could have factored px y(z,y) into (1/2)exp(—z)u(z) and 2exp(—y)u(y), but
then we could not claim that px(z) = (1/2) exp(—x)u(z) since it does not integrate
to one. Note also that the joint CDF given in Example 12.3 is also factorable as
given in (12.8) and in general, factorization of the CDF is also sufficient to assert
independence.

&

A Assessing independence - careful with domain of PDF
The joint PDF given by

_J 2exp[—(z+y)] £>0,y>0, andy <z
pxy(@,y) = { 0 otherwise

is not factorable, although it is very similar to our previous example. The reason is
that the region in the z-y plane where px y (z,y) # 0 cannot be written as u(z)u(y)
or for that matter as any g(z)h(y). See Figure 12.13.

Example 12.95 - Standard bivariate Gaussian PDF
From (12.3) we see that py y(z,y) is only factorable if p = 0. From Figure 12.9d
this corresponds to the case of circular PDF contours. Specifically, for p = 0, we
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/xzo,yzo, and y < z

>~ T

Figure 12.13: Nonfactorable region in z-y plane.

have
1 1,5 9
pxy(z,y) = o5 €XP —5(:1: +9°) — 0 < T <00, —00 <y < 00
70 0] o |07
== ex — =T ex —_ = .
Vor P2 | e P
px‘El‘) PY?Z/)

Hence, we observe that if p = 0, then X and Y are independent. Furthermore, each
marginal PDF is a standard Gaussian (normal) PDF, but as shown in Example 12.2
this holds regardless of the value of p.

¢
Finally, note that if we can assume that X and Y are independent, then knowledge
of px(x) and py (y) is sufficient to determine the joint PDF according to (12.11). In
practice, the independence assumption greatly simplifies the problem of joint PDF
estimation as we need only to estimate the two one-dimensional PDFs px(z) and

Py (y)-

12.6 Transformations

We will consider two types of transformations. The first one maps two continuous
random variables into a single continuous random variable as Z = g(X,Y’), and the
second one maps two continuous random variables into two new continuous random
variables as W = ¢(X,Y) and Z = h(X,Y). The first type of transformation
Z = ¢g(X,Y) is now discussed. The approach is to find the CDF of Z and then
differentiate it to obtain the PDF. The CDF of Z is given as

Fz(z) = P[Z<Z] (definition of CDF)
= Plg(X,Y) <7] (definition of Z)

= // px,v(z,y)dz dy (from (12.2)). (12.13)
{(zy):9(x,y) <z}
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We see that it is necessary to integrate the joint PDF over the region in the plane
where g(z,y) < z. Depending upon the form of g, this may be a simple task or
unfortunately a very complicated one. A simple example follows. It is the continuous
version of (7.2277), which yields the PMF for the sum of two independent discrete
random variables.

Example 12.96 - Sum of independent ¢/(0,1) random variables

In Section 2.3 we inquired as to the distribution of the outcomes of an experiment
that added Uy, a number chosen at random from 0 to 1, to Uz, another number
chosen at random from 0 to 1. A histogram of the outcomes of a computer simulation
indicated that there is a higher probability of the sum being near 1, as opposed to
being near 0 or 2. We now know that U; ~ U(0,1), Uy ~ U(0,1). Also, in the
experiment of Section 2.3 the two numbers were chosen independently of each other.
Hence, we can determine the probabilities of the sum random variable if we first find
the CDF of X = U; 4+ Uy, where U; and U, are independent, and then differentiate
it to find the PDF of X. We will use (12.13) and replace z,y,z, and g(x,y) by
w1, U2, x, and g(ui,us), respectively. Then

Fx(z) = // UL U, (U1, ug)duy dus.
{(u1,u2):u1+uz <z}

To determine the possible values of X, we note that both U; and Us take on values in
(0,1) and so 0 < X < 2. In evaluating the CDF we need two different intervals for x
as shown in Figure 12.14. Since U; and Us are independent, we have py, 7, = pv, pu,

U2 U2

< (z—1,1) up +ug <
uy +ug < 1 ></
|~
(171:71)
\(1 \\17

e, W 1 o~

/7
8,

() 0<z<1 b)1<z<2

Figure 12.14: Shaded areas are regions of integration used to find CDF.

and therefore py, v, (u1,u2) =1 for 0 <wu; <1 and 0 < up < 1, which results in

Fx (@) = // 1 duy dup = shaded area in Figure 12.14.
{(u1,u2):w1+uz <z}
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Hence, the CDF is given by

0 z <0
1.2
_ ) 3 0<z<1
Fx(w) = 1-12-2)? 1<z<2
1 T > 2.
and the PDF is finally
dFx (z)
px(z) = ——
0 z <0
B 0<z<1
- 22—z 1<zx<2
0 T > 2.

This PDF is shown in Figure 12.15. This is in agreement with our computer results

f?X(ﬁﬁ)

1+

Figure 12.15: PDF for the sum of two independent ¢/(0, 1) random variables.

shown in Figure 2.2. The highest probability is at « = 1, which concurs with our
computer generated results of Section 2.3. Also, note that px(z) = py, (z) * py, (z),
where x denotes convolution (see Problem 12.28).

¢

More generally, we can derive a useful formula for the PDF of the sum of two
independent continuous random variables. According to (12.13), we first need to
determine the region in the plane for which z+vy < z. This inequality can be written
as y < z — x, where z is to be regarded for the present as a constant. To integrate
px,y (z,y) over this region, which is shown in Figure 12.16 as the shaded region, we
can use an iterated integral. Thus,
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Y
A
Z2—x
// o

integrate first

Figure 12.16: Iterated integral evaluation — shaded region is y < z — x. Integrate
first in y direction for a fixed = and then integrate over —oo < z < oo.

o0 Z2—X
Fz(z) = / / pxy(z,y)dy dz
—00 J —00

o0 Z2—X
= / / px (z)py (y)dy dz (independence)
— 00 —0o0
= / px(z) / py (y)dy dz
= / px(z)Fy(z — z)dx (definition of CDF).
If we now differentiate the CDF, we have
d o0
pz(z) = o px (z)Fy (2 — x)dx
Z — 00
> d . . .
= / px((L‘)%Fy(Z —x)dx (assume interchange is valid)
o d d
= / px(z) —Fy (u) N (chain rule with u = z — x)
S du I £
so that finally we have our formula
o0
pz(z) = / px (z)py (z — x)dz. (12.14)
—00

This is the analogous result to (7.2277). It is recognized as a convolution integral,
which we can express more succinctly as py = px *py, and thus may be more easily
evaluated by using characteristic functions. This is explored in Section 12.10.

A second approach to obtaining the PDF of g(X,Y) is to let W = X, Z =
g(X,Y), find the joint PDF of W and Z, ie., pw,z(w,2), and finally integrate
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out W to yield the desired PDF for Z. This method was encountered previously
in Chapter 7, where it was used for discrete random variables, and was termed the
method of auxiliary random variables. To implement it now requires us to determine
the joint PDF of two random variables that have been transformed to two new
random variables. This is the second type of transformation we were interested in.
Hence, we now consider the more general transformation

W = g¢g(X,Y)
Z = RhX,Y).

The final result will be a formula relating the joint PDF of (W, Z) to that of the
given joint PDF of (X,Y"). It will be a generalization of the single random variable
transformation formula

- dg~'(y
prl) =t ) |2 (12.15)
for Y = g(X).
To understand what is involved, consider as an example the transformation
X1 Ur
= (12.16)
X9 (U1 + UQ)/2

where Uy ~ U(0,1), Us ~ U(0,1), and Uy and Uy are independent. In Figure 2.13
we plotted realizations of [U; Uz]T and [X; X3]7. Note that the original joint PDF
Pu,,U, is nonzero on the unit square while the transformed PDF is nonzero on a
parallelogram. In either case the PDFs appear to be uniformly distributed. Similar
observations about the region for which the PDF of the transformed random variable
is nonzero were made in the one-dimensional case for Y = ¢g(X), where X ~ ¢/(0, 1),
in Figure 10.22. In general, a linear transformation will change the support area of
the joint PDF, which is the region in the plane where the PDF is nonzero. In Figure
2.13 it is seen that the area of the square is 1 while that for the parallelogram is 1/2.
It can furthermore be shown that if we have the linear transformation (see Problem
12.29)

W X
_ [ a b ] (12.17)
7 c d Y
ﬁf—/
G
then
Area in w-z plane = |det(G)]

Area in z-y plane
= |ad — be|.
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It is always assumed that G is invertible so that det(G) # 0. In the previous example
of (12.16) for which in our new notation we have W = X and Z = (X +Y)/2, the
linear transformation matrix is

10
o=} 1]
2 2

and it is seen that |det(G)| = 1/2. Thus, the PDF support region is decreased by
a factor of 2. We therefore expect the joint PDF of [X (X +Y)/2]" to be uniform
with a height of 2 (as opposed to a height of 1 for the original joint PDF). Hence,
the transformed PDF should have a factor of 1/|det(G)| to make it integrate to one.
This amplification factor, which is 1/| det(G)| = | det(G~!)| must be included in the
expression for the transformed joint PDF. Also, we have that [zy]" = G~ '[w 2]T.
Hence, it should not be surprising that for the linear transformation of (12.17) we
have the formula for the transformed joint PDF

pw,z(w, z) = pxy (Gl

j ]) |det(G™1)|. (12.18)

An example follows.

Example 12.97 - Linear transformation for standard bivariate Gaussian
PDF

Assume that (X,Y) has the PDF of (12.3) and consider the linear transformation

W B |: ow 0 :| X
7 0 oz ]|y
_——
G
Then,
-1 I/O'W 0
G _[ 0 1/oz
and
o w _ w/ow
z z[og
1
det(G™1) =
oWoz

so that from (12.3) and (12.18)
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1

oOwoz

1 1

21y/1 — p? [ 2(1-p?)

1

(wfow)? — 2pwz/(owaz) + (z/az)Z)]

2my /(1 — p?)ody0%

o[t () -2 () () () )] e

Note that since —oo < £ < 00, —00 < y < 00, we have that the region of support
for pyw,z is —00 < w < 00, —00 < z < 00. Also, the joint PDF can be written in
vector /matrix form as (see Problem 12.31)

T

(w, 2) L S e (12.20)
pw,z(W,2z) = —————exp | — .
w7 271 det'/2(C) 2| , P
where
o2 oOWOoz
C= [ pUZV([;W p 2 ] . (12.21)

The matrix C will be shown later to be the covariance matriz of W and Z (see Sec-
tion 9.5 for the definition of the covariance matrix, which is also valid for continuous
random variables).

¢
For nonlinear transformations a result similar to (12.18) is obtained. This is because
a two-dimensional nonlinear function can be linearized about a point by replacing
the usual tangent or derivative approximation for a one-dimensional function by the
Jacobian matrix approximation (see Problem 12.32). Hence, if the transformation
is given by

W = ¢g(X,Y)
Z = hX,Y)

then a given point in the w-z plane is obtained via w = g(z,y), z = h(z,y). Assume
that the latter set of equations has a single solution for all (w, z), say

r = g (w,2)

Then it can be shown that

det (a(i’ ‘Z) ) ‘ (12.22)

pW,Z('LU, Z) = pX,Y(g_l(’LU, Z)a h_l(wa Z))
— —

T Y
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where R

o or OT

a(ﬂ”’ v _ [ oo ] (12.23)
is called the Jacobian matrix of the inverse transformation from [w 2] to [z y]T and

is sometimes referred to as ~!'. It represents the compensation for the amplifica-

tion/reduction of the areas due to the transformation. For a linear transformation
G it is given by J = G (see also (12.15) for a single random variable). We now
illustrate the use of this formula.

Example 12.98 - Affine transformation for standard bivariate Gaussian
PDF

Let (X,Y’) have a standard bivariate Gaussian PDF and consider the affine trans-

formation
W B [ ow 0 ] X N Hw
7 0 oz Yy [z
Then using (12.22) we first solve for (x,y) as
g = LZHW
ow
Z— bz
y = ——.
0z

The inverse Jacobian matrix becomes

Tl BT

and therefore, since

(2,9) ! [ L (2 —2pay + 2)]
pxy(z,y) = ——=exp |~ (" — 2pz
X,Y\Z,Y o l—l—pZ 21 — p2) prY Ty

we have from (12.22)
1

pw,z(W,2) = ——F——
(1,2) 211 — p?

o [t (55 -2 (55) (522) - (522 )|

or finally
1

pw,z(w,z) =
2y /(1 — p?)od,0%

exp [‘2(1%2) <(w ) (o) () + (_fzuz>2>] |

(12.24)
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This is called the bivariate Gaussian PDF. If pyy = pz = 0 and oy = 0z = 1, then
it reverts back to the usual standard bivariate Gaussian PDF. If pyy = uz = 0, we
have the joint PDF in Example 12.9. An example of the PDF is shown in Figure
12.17.

— 5
8 4
She 3
~ 2
3 1
S8 ISEY
’ -1
-2
-3
-4
-5

-5-4-3-2-1 01 2 3 45

w
(a) Joint PDF (b) Contours of constant PDF

Figure 12.17: Example of bivariate Gaussian PDF with uy = 1L,uz = 1, O"Z/V =
3,02 =1, and p = 0.9.

&

The bivariate Gaussian PDF can also be written more compactly in vector/matrix
form as

T
1 1| w—pw w— pw
w,z) = ————exp | —= c! 12.25
e T G I -l B I

where C is the covariance matrix given by (12.21). It can also be shown that
the marginal PDFs are W ~ N (uw, 0%,) and Z ~ N (uz,0%) (see Problem 12.36).
Hence, the marginal PDF's of the bivariate Gaussian PDF are obtained by inspection
(see Problem 12.37).

Example 12.99 - Transformation of independent Gaussian random vari-
ables to a Cauchy random variable

Let X ~ N(0,1), Y ~ AN(0,1), and X and Y be independent. Then consider the
transformation W = X,Z = Y/X. To determine Sy, note that w = z so that
—00 < w < oo and since z = y/z with —co < z < 00,—o0 < y < 00, we have
—00 < z < 0o. Hence, Sy, 7 is the entire plane. To find the joint PDF we first solve
for (z,y) as x = w and y = £z = wz. The inverse Jacobian matrix is

dep) _[10]

o(w, z) z w
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so that |det(d(z,y)/0(w, z))| = |w|. Using (12.22), we have

1 1
pwz(w,z) = 5 CXP [—5(:1:2 + yQ)] |w]
T=w,y=wz
- L exp —l(w2 +w?2?) | |w|
27 2
1 1
= 5o exp [—5(1 + z2)w2] |wl.

It is of interest to determine the marginal PDFs. Clearly, the marginal of W = X
is just the original PDF A(0,1). The marginal PDF for Z, which is the ratio of two
independent NV (0, 1) random variables, is found from (12.4) as

o0

pz(2) = / pw,z(w, 2)dw

— 00

= / 27Texp[ 2(1+z)w]|w|dw

— 00

1 [ 1
= = / w exp [—5(1 + z2)w2] dw (integrand is even function)
™ Jo

1 exp[—(1/2)(1 + 22)w?] |
T —(14 22)
1

= — —00<z<
) 00 < 2z <00

0

which is recognized as the Cauchy PDF. Hence, the PDF of Y/X, where X and Y
are independent standard Gaussian random variables is Cauchy. We have implicitly
used the method of auziliary random wvariables to derive this result. Finally, the
observation that the denominator of Y/X is a standard Gaussian random variable,
with significant probability of being near zero, may help to explain why the outcomes
of a Cauchy random variable are as large as they are. See Figure 11.3

¢
The next example is one of great importance in many fields of science and engineer-
ing.
Example 12.100 - Magnitude and angle of jointly Gaussian distributed
random variables
Let X ~ N(0,02), Y ~ N(0,0?), and X and Y be independent random variables.
Then, it is desired to find the joint PDF when X and Y, considered as Cartesian
coordinates, are converted to polar coordinates via

R = VX2+Y? R>0

Y
© = arctan} 0<O <27 (12.26)
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It is common in many engineering disciplines, for example, in radar, sonar, and
communications, to transmit a sinusoidal signal and to process the received signal
by a digital computer. The received signal will be given by s(t) = Acos(2nFyt) +
Bsin(27Fyt) for a transmit frequency of Fy Hz. However, because the received signal
is due to the sum of multiple reflections from an aircraft, as in the radar example,
the values of A and B are generally not known. Consequently, they are modeled
as continuous random variables with marginal PDFs A ~ N(0,02), B ~ N(0,0?),
and where A and B are independent. Since the received signal can equivalently be
written in terms of a single sinusoid as (see Problem 12.42)

s(t) = V A% + B2 cos(2mFyt — arctan(B/A))

the amplitude is a random variable as is the phase angle. Thus, the transformation of
(12.26) is of interest in order to determine the joint PDF of the sinusoid’s amplitude
and phase. This motivates our interest in this particular transformation.

We first solve for (z,y) as £ = rcosf,y = rsinf. Then using (12.22) and
replacing w by r and z by 6 we have the inverse Jacobian

oz, y) [ cosf —rsinf ]

d(r,0) | sin@ rcosf
and thus o )
x,y
=r>0.
det (8(r,9)> r>0
Since

P ) =px (@) = gz exp |55 +17)]

we have upon using (12.22)

1 1
pro(r,0) = 303 OXP [—2—27"2] r or>00<60<2n
TOo o
r 1 5] 1
= ﬁexp[—ﬁr] % r>0,0<60< 2.
N - N~
pr(T) po(0)

Here we see that R has a Rayleigh PDF with parameter o2, © has a uniform PDF,
and R and © are independent random variables.

&

12.7 Expected Values

The expected value of two jointly distributed continuous random variables X and Y,
or equivalently the random vector [X Y7, is defined as the vector of the expected
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values. That is to say
X Ex[X]

Exy
Ey[Y]

Y

Of course this is equivalent to the vector of the expected values of the marginal
PDFs. As an example, for the bivariate Gaussian PDF as given by (12.24) with
W, Z replaced by X,Y, the marginals are N (ux,0%) and N (uy, 0%) and hence the
expected value or equivalently the mean of the random vector is

; [ N ]
20%
as shown in Figure 12.17 for ux = py = 1.
We frequently require the expected value of a function of two jointly distributed
random variables or of Z = ¢g(X,Y’). By definition this is

E[Z] = /00 zpz(2)dz.

— 00

Exy
Y

But as in the case for jointly distributed discrete random variables we can avoid the
determination of pz(z) by employing instead the formula

B2 =BV = [ [ gwapxy@udedy. (1220)
To remind us that the averaging PDF is px y (z,y) we usually write this as
o0 o0
By lbI= [ [ oy @y)dody. (12.28)
—00 J =00
If the function g depends on only one of the variables, say X, then we have
Exylo0) = [ [ g@pxy(pdsdy
oo oo
= / g(fv)/ px,y (2, y)dy dz
—00 J —o0 .,
px (z)
— Bxlg(X)]

As in the case of discrete random variables (see Section 7.7), the expectation has
the following properties:

1. Linearity
EX,y[aX + bY] = CLE)([X] + bEy[Y]

and more generally

Ex ylag(X) + bh(Y)] = aEx[g(X)] + bEy [h(Y)].
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2. Factorization for independent random variables
If X and Y are independent random variables

Exy[XY] = Ex[X|Ey[Y] (12.29)
and more generally
Exy[g(X)h(Y)] = Ex[g(X)]By [h(Y)]. (12.30)
Also, in determining the variance for a sum of random variables we have
var(X +Y) = var(X) + var(Y) + 2cov(X,Y) (12.31)

where cov(X,Y) = Exy[(X — Ex[X])(Y — Ey[Y])]. If X and Y are independent,
then by (12.30)

cov(X,Y) = Exy[(X —Ex[X])(Y — Ey[Y])]
= Ex[(X — Ex[X]|Ey[(Y — Ey[Y))]
= 0.

The covariance can also be computed as
cov(X,Y) = Exy[XY] — Ex[X|Ey[Y] (12.32)

where

o0 o0
Exy[XY] = / / zypx,y(z,y)dz dy. (12.33)
—00 J =00

An example follows.

Example 12.101 - Covariance for standard bivariate Gaussian PDF

For the standard bivariate Gaussian PDF of (12.3) we now determine cov(X,Y).
We have already seen that the marginal PDFs are X ~ A (0,1) and Y ~ N(0,1) so
that Ex[X] = Ey[Y] = 0. From (12.32) we have that cov(X,Y) = Ex y[XY] and
using (12.33) and (12.3)

1
cov(X,Y) / / exp - (2% = 2pzy + v?)| dz dy.
YondT 2 2(1—p2)( ’ )

To evaluate this double integral we use iterated integrals and complete the square
in the exponent of the exponential as was previously done in Example 12.2. This
results in

Q =1y’ —2pzy + 2> = (y — pz)* + (1 — p*)a

and produces
cov(X,Y)
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1

(3] 00 1
= TYy——F——=€xp |-+
/—oo /—oo 2w/ 1 —p2 |: 2(1 _92)

1
(y — px)Q] exp [—ng] dx dy
1 2
. _(y - pw)?| dyds.

- [ 4] Lo L

The inner integral over y is just Ey[Y] = [*_ ypy (y)dy, where Y ~ N (pz,1 — p?).
Thus, Ey Y] = pz so that

& 1 1
cov(X,Y) = / z? ex |:——(II2:| dx
(X,Y) B~

= pEx[X?]

where X ~ N(0,1). But Ex[X?] = var(X) + E%[X] = 14+ 02 = 1 and therefore we
have finally that
cov(X,Y) = p.

&

With the result of the previous example we can now determine the correlation
coefficient between X and Y for the standard bivariate Gaussian PDF. Since the
marginal PDFs are X ~ N(0,1) and Y ~ N(0, 1), the correlation coefficient between
X and Y is

cov(X,Y)

var(X)var(Y')

p
V11
p-

Xy =

We have therefore established that in the standard bivariate Gaussian PDF, the
parameter p is the correlation coefficient. This explains the constant PDF contours
shown in Figure 12.9. Also, we can now assert that if the correlation coefficient
between X and Y is zero, i.e., p =0, and X and Y are jointly Gaussian distributed
(i.e., a standard bivariate Gaussian PDF'), then

(ry) = — [ U@ 2y + 2)]
pxy\xr,y) = €Xp | — T —2pTY TY
2w/ 1 — p? 2(1 - p?)

1 1

el
el

— ex —=X ex -
Vor ) | V2r P179Y |

N~ N~

px () py (y)

then X and Y are independent. This also holds for the general bivariate Gaussian
PDF in which the marginal PDFs are X ~ N (ux,0%) and Y ~ N (uy,o0%). This



420 CHAPTER 12. MULTIPLE CONTINUOUS RANDOM VARIABLES

result provides a partial converse to the theorem that if X and Y are independent,
then the random variables are uncorrelated, but only for this particular joint PDF.

Finally, since p = px,y we have from (12.21) that upon replacing W by X and
Z by Y, that

Cc = ox ""X;’Y] (12.34)
L POy O X Oy
_ [ 03( PX,YOXOY ]
| PX,YOYOX 032/
[ var(X)  cov(X,Y)
L eov(Y,X)  var(Y) ]

is the covariance matrix. We have now established that C as given by (12.34) is
actually the covariance matrix. Hence, the general bivariate Gaussian PDF is given
in succinct form as (see (12.24))

T

1 1| T~ Hx | T kX

pxy (@,y) = s exp | = [ ] c! [ ] (12.35)
27 det (C) Y — By Y — py

where C is given by (12.34) and is the covariance matrix (see Section 9.5)

©= [ cov(Y,X)  var(Y) (12.36)

| var(X)  cov(X,Y) ]

As previously mentioned, an extremely important property of the bivariate Gaussian
PDF stems from its property that uncorrelated random variables implies indepen-
dent random variables. Hence, if the covariance matrix in (12.36) is diagonal, then
X and Y are independent. We have shown in Chapter 9 that it is always possible to
diagonalize a covariance matrix by transforming the random vector using a linear
transformation. Specifically, if the random vector [X Y]7 is transformed to a new
random vector VI [X Y7, where V is the modal matrix for the covariance matrix C,
then the transformed random vector will have a diagonal covariance matrix. Hence,
the transformed random vector will have uncorrelated components. If furthermore,
the transformed random vector also has a bivariate Gaussian PDF, then its compo-
nent random variables will be independent. 1t is indeed fortunate that this is true —
a linearly transformed bivariate Gaussian random vector produces another bivariate
Gaussian random vector, as we now show. To do so it is more convenient to use a
vector /matrix representation of the PDF. Let the linear transformation be

w
Z

X
=G

Y
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where G is an invertible 2 x 2 matrix. Assume for simplicity that ux = puy = 0.
Then, from (12.35)
T
x
c! ]
y )

) L 1 [«
z,Yy) = —————¢€xp | —=
P = rae 2(c) 2y,

and using (12.18)

pwyz(’w,z) = pPXyYy (Gl [ v ]) ‘det(Gfl)‘

T
1 1| w w
= ————exp | > c'cla! |det(G 1)
o det!/?(C) 2| 2 z

But it can be shown that (see Section C.3 of Appendix C for matrix inverse and
determinant formulas)

c'"clg'=g" 'cle! = (GegT) !

and

_ 1

|det(G)|
1

(det(G) det(G))1/2
1

(det(G) det(GT))1/2

det(G™1)| =

so that
|det(G™1)| 1
det!'/?(C) det'/?(C)(det(G) det(GT))L/2
1
(det(C) det(G) det(GT))1/2
1
(det(G) det(C) det(GT))1/2
1
det'/?(GCGT)’

Thus, we have finally that the PDF of the linearly transformed random vector is

r w
(GCGT) ! [ ])

) 1 . [ w
w,z) = xp | —=
bwz ardet2(GCGT) T\ 72|,
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which is recognized as a bivariate Gaussian PDF with zero means and a covariance
matrix GCGT. This also agrees with Property 9.4. We summarize our results in a
theorem.

Theorem 12.7.1 (Linear transformation of bivariate Gaussian random variables)
If (X,Y) has the bivariate Gaussian PDF

T
pxy(@,y) = ——m—~exp | —5 c! (12.37)
21 det'/*(C) 2| y—py y—py
and the random vector is linearly transformed as
w X
=G
Z Y
where G 1is invertible, then
1 1| W—Hw g w = pw
pw,z(w,z) = 73 exp | —5 (Geac")™!
2r det'/2(GCGT) 21 z—puy z— iz
where

nw 125.¢
nz ny
is the transformed mean vector.

The bivariate Gaussian PDF with mean vector p and covariance matrix C is denoted
by N(u,C). Hence, the theorem may be paraphrased as follows — if [X Y]T ~
N(u,C), then G[X Y]' ~ N(Gu, GCGT). An example, which uses results from
Example 9.4, is given next.

Example 12.102 - Transforming correlated Gaussian random variables
to independent Gaussian random variables

o[ 8]

Let ux = py =0 and

6 26

in (12.37). The joint PDF and its constant PDF contours are shown in Figure 12.18.
Now transform X and Y according to

w
Z

X

Y

where G is the transpose of the modal matrix V, which is given in Example 9.4.
Therefore

A 1
szTzl“P ﬁ]
.
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(a) Joint PDF (b) Contours of constant PDF

Figure 12.18: Example of joint PDF for correlated Gaussian random variables.

so that
1 1
W = —X-—2Y
V2 V2
1 1
Z = —X+ —=Y.
V2 V2
We have that
T T 120 0
GCG' =V CV—[ 0 39

and thus det(GCGT) = 20 - 32. The transformed PDF is

B 1 1w 1/20 0 w
pwz(w,2) = o P | 73 . [ 0 1/32] 2

1 1 w? 1 1 22
= ——exp|—-—| —=exp |-z
Vor 20 CPITo90 | Va3 P | T3

which is the factorization of the joint PDF of W and Z into the marginal PDFs
W ~ N(0,20) and Z ~ N(0,32). Hence, W and Z are now independent random
variables, each with a marginal Gaussian PDF. The joint PDF pyw, 7 is shown in
Figure 12.19. Note the rotation of the contour plots in Figures 12.18b and 12.19b.
This rotation was asserted in Example 9.4 (see also Problem 12.48).

&



424 CHAPTER 12. MULTIPLE CONTINUOUS RANDOM VARIABLES
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(a) Joint PDF (b) Contours of constant PDF

Figure 12.19: Example of joint PDF for transformed correlated Gaussian random
variables. The random variables are now uncorrelated and hence independent.

12.8 Joint Moments

For jointly distributed continuous random variables the k-I/th joint moments are
defined as Ex y[X*Y!]. They are evaluated as

[oe] o0
Exy[X*Y!] = / / y'pxy(x,y)de dy. (12.38)

The example for k¥ = = 1 and for a standard bivariate Gaussian PDF of Ex y [ XY]
was given Example 12.13. The k-Ith joint central moments are defined as Ex y[(X —
Ex[X))*(Y — Ey[Y])!] and are evaluated as

Exy (- BxIXD =By = [ [ o BxX)H =By V) oy (@, ) dy,

(12.39)
Of course, the most important case is for k = [ = 1 for which we have the cov(X,Y).
For independent random variables the joint moments factor as

Exy[X*Y!] = Ex[X* By Y]

and similarly for the joint central moments.

12.9 Prediction of Random Variable Outcome

In Section 7.9 we described the prediction of the outcome of a discrete random
variable based on the observed outcome of another discrete random variable. We now
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examine the prediction problem for jointly distributed continuous random variables,
and in particular, for the case of a bivariate Gaussian PDF. First we plot a scatter
diagram of the outcomes of the random vector [X Y]T in the z-y plane. Shown in
Figure 12.20 is the result for a random vector with a zero mean and a covariance
matrix

C= [ 0%9 Oig ] . (12.40)

Note that the correlation coefficient is given by

3

-3 ; ; ; ; ;
-3 -2 -1 0 1 2 3

Figure 12.20: 100 outcomes of bivariate Gaussian random vector with zero means
and covariance matrix given by (12.40). The best prediction of ¥ when X = z is
observed is shown by the line.

cov(X,Y)
var(X)var(Y)

0.9
= =0.9.

pPXyYy =

3

It is seen from Figure 12.20 that knowledge of X should allow us to predict the
outcome of Y with some accuracy. To do so we adopt as our error criterion the
minimum mean square error (MSE) and use a linear predictor or ¥ = X +b. From
Section 7.9 the best linear prediction when X = z is observed is

S cov(X,Y)
Y =Ey[Y]+ ———(z — Ex[X]). 12.41

Y[ ] + Va,I‘(X) (ZE X[ ]) ( )
For this example the best linear prediction is

. 0.9
Y=0+-(z-0)=09z (12.42)
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and is shown as the line in Figure 12.20. Note that the error ¢ = Y — 0.9X is
also a random variable and can be shown to have the PDF ¢ ~ N(0,0.19) (see
Problem 12.49). Finally, note that the predictor, which was constrained to be linear
(actually affine but the use of the term linear is commonplace), cannot be improved
upon by resorting to a nonlinear predictor. This is because it can be shown that
the optimal predictor is linear if (X,Y) has a bivariate Gaussian PDF (see Section
13.6). Hence, in this case the predictor of (12.42) is optimal among all linear and
nonlinear predictors.

12.10 Joint Characteristic Functions

The joint characteristic function for two jointly continuous random variables X and
Y is defined as

¢X,Y(UJX,WY) = E)(’y[exp [j(wXX + UJyY)] . (12.43)

It is evaluated as
o0 o0}
dxy(wx,wy) = / / pxy(z,y)exp [j(wxz + wyy)] dz dy (12.44)
—0Q —00

and is seen to be the two-dimensional Fourier transform of the PDF (with a +j
instead of the more common —j in the exponential). As in the case of discrete
random variables, the joint moments can be found from the characteristic function
using the formula

1 oy y(wx,wy)
Exvy[XFYY = : ’ . 12.45

wx =wy =0

Another important application is in determining the PDF for the sum of two inde-
pendent continuous random variables. As shown in Section 7.10 for discrete random
variables and also true for jointly continuous random variables, if X and Y are
independent, then the characteristic function of the sum Z =X +Y is

¢z(w) = px (W)py (). (12.46)

If we were to take the inverse Fourier transform of both sides of (12.41), then the
PDF of X +Y would result. Hence, the procedure to determine the PDF of X + Y,
where X and Y are independent random variables, is

1. Find the characteristic function ¢x(w) by evaluating the Fourier transform
o - . .
[ px () exp(jwz)dz and similarly for ¢y (w).

2. Multiply ¢x(w) and ¢y (w) together to form ¢y (w)dy (w).
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3. Finally, find the inverse Fourier transform to yield the PDF for the sum Z =

X +Y as
dw

pat) = [ " px (@)by (w) exp(—juwz) 2

. 12.4
2T ( 7)

Alternatively, one could convolve the PDF's of X and Y using a convolution integral
of (12.14) to yield the PDF of Z. However, the convolution approach is seldom
easier. An example follows.

Example 12.103 - PDF for sum of independent Gaussian random vari-
ables

If X ~ N(ux,0%) and Y ~ N(uy,0%) and X and Y are independent, we wish
to determine the PDF of Z = X 4+ Y. A convolution approach is explored in
Problem 12.51. Here we use (12.47) to accomplish the same task. First we need the
characteristic function of a Gaussian PDF. From Table 11.1 if X ~ AN (u,0?), then

o) = - 3.

Thus, the characteristic function for X + Y is

. 1 . 1
¢xiy(w) = exp (qux — 50§cw2> exp (wa — 5012/w2>

. 1
= exp (Jw(ux +py) = 5 (0% + 0§)w2>

and since this is again the characteristic function of a Gaussian random variable,
we have that X +Y ~ N (ux + py, 0% + 0%). (Recognizing that the characteristic
function is that for a known PDF allows us to avoid inverting the characteristic
function according to (12.47).) Hence, the PDF of the sum of independent Gaussian
random variables is again a Gaussian random variable whose mean is 4 = pux + py
and whose variance is 02 = 03( + O'%/. The Gaussian PDF is therefore called a
reproducing PDF. By the same argument it follows that the sum of any number of
independent Gaussian random variables is again a Gaussian random variable with
mean equal to the sum of the means and variance equal to the sum of the variances.
In Problem 12.53 it is shown that the Gamma PDF is also a reproducing PDF.

&
The result of the previous example could also be obtained by appealing to Theorem
w

12.7.1. If we let
T10
z | L1 1]y

then by Theorem 12.7.1, W and Z = X + Y are bivariate Gaussian distributed.
Also, we know that the marginals of a bivariate Gaussian PDF are Gaussian PDF's
and therefore the PDF of Z = X + Y is Gaussian. Its mean is px + py and its
variance is ag( + 012/ since X and Y are independent and hence uncorrelated.

X
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12.11 Computer Simulation of Jointly Continuous Ran-
dom Variables

For an arbitrary joint PDF the generation of continuous random variables is most
easily done using ideas from conditional PDF theory. In Chapter 13 we will see
how this is done. Here we will consider only the generation of a bivariate Gaussian
random vector. The approach is based on the following properties:

1. Any affine transformation of jointly Gaussian random variables results in two new
jointly Gaussian random variables. A special case, the linear transformation,
was proven in Section 12.7 and the general result summarized in Theorem
12.7.1. We will now consider the affine transformation

w X
VA

=G +

‘ ] : (12.48)

Y b

2. The mean vector and covariance matrix of [W Z]T transform according to

w X a

E = GE + (see Problem 9.22)  (12.49)
Z Y b
Cwz = GCxyG” (see (Theorem 12.7.1))(12.50)

where we now use subscripts on the covariance matrices to indicate the random
variables.

The approach assumes that X and Y are standard Gaussian and independent ran-
dom variables whose realizations are easily generated. In MATLAB the command
randn(1,1) can be used. Otherwise, if only /(0, 1) random variables are available,
one can use the Box-Mueller transform to obtain X and Y (see Problem 12.54).
Then, to obtain any bivariate Gaussian random variables (W, Z) with a given mean

[uw pz])" and covariance matrix Cyy,z, we use (12.48) with a suitable G and [a b]”
so that
w [ pw ]
E =
A nz

2
Cwy = [ ow  pPOWoZ ] . (12.51)
PO oW oy
Since it is assumed that X and Y are zero mean, from (12.49) we choose a = puw
and b = puz. Also, since X and Y are assumed independent, hence uncorrelated,
and with unit variances, we have

10
cor-[1 0]
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It follows from (12.50) that Cyy,z = GG”. To find G if we are given Cw,z, we could
use an eigendecomposition approach based on the relationship VTCW, zV = A (see
Problem 12.55). Instead, we next explore an alternative approach which is somewhat
easier to implement in practice. Let G be a lower triangular matrix

a 0
o [20]
Then, we have that

r |a 0 a b | a? ab
GG_[b c][o c]_[ab ¥+ | (12.52)

The numerical procedure of decomposing a covariance matrix into a product such as
GGT, where G is lower triangular, is called the Cholesky decomposition [Golub and
Van Loan 1983]. Here we can do so almost by inspection. We need only equate the
elements of Cyy z in (12.51) to those of GG' as given in (12.52). Doing so produces
the result

Hence, we have that

poz oz\/1—p?

In summary, to generate a realization of a bivariate Gaussian random vector we first
generate two independent standard Gaussian random variables X and Y and then
transform according to

G:[UW s ]

w
Z

X

+ [ . ] . (12.53)

_ [ ow 0 ]

pog oz:\/1—p? e
As an example, we let uyyy = pz = 1, oy = oz = 1, and p = 0.9. The constant
PDF contours as well as 500 realizations of [W Z]! are shown in Figure 12.21. To
verify that the mean vector and covariance matrix are correct, we can estimate these
quantities using (9.4477) and (9.4677) which are

Y

— w 1 M Wm
x| )] - wx]
Z M m=1 Zm
Cwyz = i — Ewz — Ewz
m=1 Zm Z Zm Z
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Figure 12.21: 500 outcomes of bivariate Gaussian random vector with mean [1 1]
and covariance matrix given by (12.40).

where [wp, z,]7 is the mth realization of [W Z]T. The results and the true values
w

are for M = 2000
1.0326 1
pr— EW,Z pr—
VA 1.0252 1

G _ [ 0:9958 0.9077 o [ 1 09
W2 =1 0.9077 1.0166 WZ =109 1

w
Z

e~

Ew,z

The MATLAB code used to generate the realizations and to estimate the mean
vector and covariance matrix is given below.

randn(’state’,0) ) set random number generator to initial value
G=[1 0;0.9 sqrt(1-0.972)]; % define G matrix
M=2000; % set number of realizations
for m=1:M
x=randn(1,1);y=randn(1,1); % generate realizations of two independent
% N(0,1) random variables
wz=G*[x y]’+[1 1]’; ’ transform to desired mean and covariance
WZ(:,m)=wz; % save realizations in 2 x M array
end
Wmeanest=mean(WZ(1,:)); % estimate mean of W
Zmeanest=mean(WZ(2,:)); % estimate mean of Z
WZbar(1,:)=WZ(1, :)-Wmeanest; % subtract out mean of W
WZbar (2, :)=WZ(2, :)-Zmeanest; % subtract out mean of Z
Cest=[0 0;0 01;
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for m=1:M
Cest=Cest+(WZbar (: ,m)*WZbar(:,m)’)/M; % compute estimate of
% covariance matrix
end
Wmeanest % write out estimate of mean of W
Zmeanest J, write out estimate of mean of Z
Cest % write out estimate of covariance matrix

12.12 Real-World Example - Optical Character Recog-
nition

An important use of computers is to be able to scan a document and automatically
read the characters. For example, bank checks are routinely scanned to ascertain
the account numbers, which are usually printed on the bottom. Also, scanners are
used to take a page of alphabetic characters and convert the text to a computer
file that can later be edited in a computer. In this section we describe in brief how
this might be done. A more comprehensive description can be found in [Trier, Jain,
and Taxt 1996]. To simplify the discussion we consider recognition of the digits
0,1,2,...,9 that have been generated by a printer (as opposed to handwritten, the
recognition of which is much more complex due to the potential variations of the
characters). An example of these characters is shown in Figure 12.22. They were
obtained by printing the characters from a computer to a laser printer and then
scanning them back into a computer. Note that each digit consists of an 80 x 80
array of pixels and each pixel is either black or white. This is termed a binary image.
A magnified version of the digit “1” is shown in Figure 12.23, where the “pixelation”
is clearly evident. Also, some of the black pixels have been omitted due to errors in
the scanning process. In order for a computer to be able to recognize and decode
the digits it is necessary to reduce each 80 x 80 image to a number or set of numbers
that characterize the digit. These numbers are called the features and they compose
a feature vector which must be different for each digit. This will allow a computer
to distinguish between the digits and be less susceptible to noise effects as is evident
in the “1” image. For our example, we will choose only two features, although in
practice many more are used. A typical feature based on the geometric character of
the digit images is the geometric moments. It attempts to measure the distribution
of the black pixels and is completely analogous to our usual joint moments. (Recall
our motivation of the expected value using the idea of the center of mass of object
in Section 11.3.) Let g[m,n] denote the pixel value at location [m,n] in the image,
where m = 1,2,...,80, n = 1,2,...,80 and either g[m,n] = 1 for a black pixel or
glm,n] = 0 for a white pixel. Note from Figure 12.23 that the indices for the [m,n]
pixel are specified in matrix format, where m indicates the row and n indicates the
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20 20 20 20
40 40 40 40
60 60 60 60
80 80 80 80
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
20 20 20 20
40 40 40 40
60 60 60 60
80 80 80 80
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
20 20
40 40
60 60
80

80
20 40 60 80 20 40 60 80

Figure 12.22: Scanned digits for optical character recognition.
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701 q
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Figure 12.23: Magnified version of the digit “1”.
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column. The geometric moments are defined as

80 80 k 1
Wk, 1] = 2=m= Zon=y M gmo ] (12.54)
Zm:l n=1 g[m?n]
If we were to define
plm,n] = —z 9[72(;”] m=1,2,...,8:n=12...,80

Zm:l n=1 g[m?n]

then p[m, n] would have the properties of a joint PMF, in that it is nonnegative and
sums to one. A somewhat better feature is obtained by using the central geometric
moments which will yield the same number even as the digit is translated in the
horizontal and vertical directions. This may be seen to be of value by referring to
Figure 12.22, in which the center of the digits do not all lie at the same location. Us-
ing central geometric moments alleviates having to center each digit. The definition
is

k‘, l] — Z?r?:l iozl(m _ m)k(n — ﬁ)lg[m’ n] (1255)

pl 80 80
Zm:l n=1 g[m’ ’I’L]

where

80 80
Zm:1 n=1 mg[m, ”]

— !
m = p[l,0] =
>t Yonet 9lmn]
80 80
n — NI[O 1] — Zm:l n=1 ng[m7n]

80 80
Zm:l n=1 g[m?n]

The coordinate pair (m,n) is the center of mass of the character and is completely
analogous to the mean of the “joint PDF” p[m, n].

To demonstrate the procedure by which optical character recognition is accom-
plished we will add noise to the characters. To simulate a “dropout”, in which a
black pixel becomes a white one (see Figure 12.23 for an example), we change each
black pixel to a white one with a probability of 0.4, and make no change with prob-
ability of 0.6. To simulate spurious scanning marks we change each white pixel to a
black one with probability of 0.1, and make no change with probability of 0.9. An
example of the noise corrupted digits is shown in Figure 12.24. As a feature vector
we will use the pair (u[1,1],[2,2]). For the digits “1” and “8”, 50 realizations of
the feature vector are shown in Figure 12.25a. The black square indicates the center
of mass for each digit’s feature vector. Note that we could distinguish between the
two characters without error if we recognize an outcome as belonging to a “1” if we
are below the line boundary shown and as a “8” otherwise. However, for the digits
“1” and “3” there is an overlap region where the outcomes could belong to either
character. For these digits we could not separate the characters without a large er-
ror. The latter is more typically the case and can only be resolved by using a larger
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Figure 12.25: 50 realizations of feature vector for two competing digits.
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dimension feature vector. The interested reader should consult [Duda, Hart, and
Stork 2001] for a further discussion of pattern recognition (also called pattern classi-
fication). Also, note that the digits “3” and ”8” would produce outcomes that would
overlap greatly. Can you explain why? You might consider some typical scanned
digits as shown in Figure 12.26 that have been designed to make recognition easier!

01238

Figure 12.26: Some scanned digits typically used in optical character recognition.
They were scanned into a computer which accounts for the obvious errors.
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Problems

12.1 (.- ) (w) For the dartboard shown in Figure 12.1 determine the probability
that the novice dart player will land his dart in the outermost ring, which has
radii 3/4 < r < 1. Do this by using geometrical arguments and also using
double integrals. Hint: For the latter approach convert to polar coordinates
(r,0) and remember to use dz dy = rdr df.

12.2 (c) Reproduce Figure 12.2a by letting X ~ U(—1,1) and ¥ ~ U(-1,1),
where X and Y are independent. Omit any realizations of (X,Y") for which
VX2 +Y? > 1. Explain why this produces a uniform distribution of points in
the unit circle. See also Problem 13.23 for a more formal justification of this
procedure.

12.3 (=) (w) For the novice dart player is P[0 < R < 0.5] = 0.5 (R is the distance
from the center of the dartboard)? Explain your results.
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12.4 (w) Find the volume of a cylinder of height A and whose base has radius r by
using a double integral evaluation.

12.5 (.- ) (c) In this problem we estimate 7 using probability arguments. Let X ~
U(-1,1)and Y ~U(—1,1) for X and Y independent. First relate P[X2+Y?2 <
1] to the value of w. Then generate realizations of X and Y and use them to
estimate 7.

12.6 (f) For the joint PDF

? +y* <1
otherwise

3=

peorten ={ 5
find P[|X| < 1/2]. Hint: You will need

1 1
/ V1—22de = 3% 1—22+ §arcsin(ac).

12.7 (.-) (f) If a joint PDF is given by

0 otherwise
find c.

12.8 (w) A point is chosen at random from the sample space S = {(z,y) : 0 <z <
1,0 <y < 1}. Find P[Y < X].

12.9 (f) For the joint PDF px y(z,y) = exp[—(z + y)]|u(z)u(y), find P[Y < X].

12.10 (.- ) (w,c) Two persons play a game in which the first person thinks of a
number from 0 to 1, while the second person tries to guess player ones’s num-
ber. The second player claims that he is telepathic and knows what number
the first player has chosen. In reality the second player justs chooses a num-
ber at random. If player one also thinks of a number at random, what is the
probability that player two will choose a number whose difference from player
one’s number is less than 0.1. Add credibility to your solution by simulating
the game and estimating the desired probability.

12.11 (.-) (f) If (X,Y) has a standard bivariate Gaussian PDF, find P[X?+Y?2 =
10).

12.12 (f,c) Plot the values of (z,y) for which 2% — 2pzy + 32 = 1 for p = —0.9,
p =0, and p = 0.9. Hint: Solve for y in terms of x.

12.13 (w,c) Plot the standard bivariate PDF in three dimensions for p = 0.9. Next
examine your plot if p — 1 and determine what happens. As p — 1, can you
predict Y based on X = x7
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12.14 (f) If pxy(z,y) = exp[—(z + y)]u(z)u(y), determine the marginal PDF's.

12.15 () (f) If
2 0<z<l,0<y<z
0 otherwise

pxy(@,y) = {
find the marginal PDFs.

12.16 (t) Assuming that (z,y) # (0,0), prove that 22 — 2pzy + y> > 0 for —1 <
p <Ll

12.17 (f) If px(z) = (1/2) exp[—(1/2)z]u(z) and py (y) = (1/4) exp[—(1/4)y]u(y),
find the joint PDF of X and Y.

12.18 (.- ) (f) Determine the joint CDF if X and Y are independent with

(z) = T 0<z<2
PX\T) =13 0 otherwise
1

+ O<y<4
_J 1
Py (y) { 0 otherwise.

12.19 (f) Determine the joint CDF corresponding to the joint PDF

1/..2 2
| zyexp [—5(1‘ +y )] >0,y >0
pX,Y(!L“,y) = { 0 otherwise.

Next verify Properties 12.1-12.6 for the CDF.

12.20 (t) Prove that (12.10) is true if (12.11) is true and vice-versa. Hint: Let
A={a<z<b}and B={y:c <y <d} for the first part and let A = {z :
xo—Ax/2 <x <zo+Az/2} and B ={y : yo — Ay/2 <y < yo + Ay/2} with
xo and yo arbitrary for the second part.

12.21 (t) Prove that (12.11) and (12.12) are equivalent.

12.22 (w) Two independent speech signals are added together. If each one has a
Laplacian PDF with parameter 02, what is the power of the resultant signal?

12.23 (.- ) (w) Lightbulbs fail with a time to failure modeled as an exponential
random variable with a mean time to failure of 1000 hours. If two lightbulbs
are used to illuminate a room, what is the probability that both bulbs will fail
before 2000 hours? Assume that the failure time of one bulb does not affect
the failure time of the other bulb.

12.24 (f) If a joint PDF is given as px y(z,y) = 6 exp[—(2z + 3y)]u(z)u(y), what
is the probability of A = {(z,y) : 0 <z < 2,0 <y < 1}? Are the two random
variables independent?
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12.25 (:-) (w) A joint PDF is uniform over the region {(z,y) : 0 <y < z,0 <z <
1} and zero elsewhere. Are X and Y independent?

12.26 (.-) (w) The temperature in Antarctica is modeled as a random variable
X ~ N(20,1500) degrees Fahrenheit, while that in Ecuador is modeled also
as a random variable with Y ~ A/(100,100) degrees Fahrenheit. What is the
probability that it will be hotter in Antarctica than in Ecuador? Assume the
random variables are independent.

12.27 (w,c) In Section 2.3 we discussed the outcomes resulting from adding to-
gether two random variables uniform on (0,1). We claimed that the proba-
bility of 500 outcomes in the interval [0,0.5] and 500 outcomes in the interval
[1.5,2] resulting from a total of 1000 outcomes is

1000\ /1) '
( 500 ) (§> ~ 2.2 x 107604,

Can you now justify this result? What assumptions are implicit in its calcula-
tion? Hint: For each trial consider the 3 possible outcomes (0,0.5), [0.5,1.5),
and [1.5,2). Also, see Problem 3.48 on how to evaluate expressions with large
factorials.

12.28 (f) Find the PDF of X = U; + Uz, where U; ~ U(0,1), Uy ~ U(0,1), and
Uy, Us are independent. Use a convolution integral to do this.

12.29 (w) In this problem we show that the ratio of areas for the linear transfor-

o B

G
£
is |det(G)|. To do so let & = [zy]” take on values in the region {(z,y) :
0 <z <10 <y <1} as shown by the shaded area in Figure 12.27. Then,

consider a point in the unit square to be represented as & = ae; + Bes, where
0<a<1,0<B<1,e =[10]", and e; = [01]7. The transformed vector is

b
A
It is seen that the natural basis vectors e;,es map into the vectors [a C]T,

[bd]", which appear as shown in Figure 12.27. The region in the w-z plane
that results from mapping the unit square is shown as shaded. The area of the

G¢ = G(ae; + (ey)
= aGe; + Gey
a

+6

= «

C
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parallelogram can be found from Figure 12.28 as BH. Determine the ratio of
areas to show that

Area in w-z plane

= ad — be = det(QG).
Area in z-y plane “ ¢ et(G)
The absolute value is needed since if for example a < 0,b < 0, the parallelo-
gram will be in the second quadrant and its determinant will be negative. The
absolute value sign takes care of all the possible cases.

Y
8
\
S

Figure 12.27: Mapping of areas for linear transformation.

/2 —0

Figure 12.28: Geometry to determine area of parallelogram.
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12.30 (.- ) (w,c) The champion dart player described in Section 12.3 is able to
land his dart at a point (z,y) according to the joint PDF

e (G )

with some outcomes shown in Figure 12.2b. Determine the probability of a
bullseye. Next simulate the game and plot the outcomes. Finally estimate the
probability of a bullseye using the results of your computer simulation.

Y

12.31 (t) Show that (12.19) can be written as (12.20).

12.32 (t) Consider the nonlinear transformation w = g(z,y),z = h(z,y). Use a
tangent approximation to both functions about the point (z¢,yo) to express
[wz]" as an approximate affine function of [zy]”, and use matrix/vector no-
tation. For example,

0
(QU—fL'o)Jra—g

(¥ — o)

r=xQ
Y=Yo0

9y
w=g(z,y) = g(z0, 40) + 5~ .
Y=v0
and similarly for z = h(z,y). Compare the matrix to the Jacobian matrix of

(12.23).

12.33 (f) If a joint PDF is given as pxy(z,y) = (1/4)%exp[—3(|z| + |y|)] for
—0 <z < o00,—00 <y < oo, find the joint PDF of

W 9 971[ X
-[> 1]

Z
12.34 (f) If a joint PDF is given as pxy(z,y) = exp[—(z + y)Ju(z)u(y), find the
joint PDF of W = XY, Z = Y/X.

Y

12.35 (w,c) Consider the nonlinear transformation
W = X?45Y?
Z = -5X*+Y2

Write a computer program to plot in the z-y plane the points (z;,y;) for
z; = 0.95 + (¢ — 1)/100 for « = 1,2,...,11 and y; = 1.95 + (j — 1)/100 for
j = 1,2,...,11. Next transform all these points into the w-z plane using
the given nonlinear transformation. What kind of figure do you see? Next
calculate the area of the figure (you can use a rough approximation based on
the computer generated figure output) and finally take the ratio of the areas
of the figures in the two planes. Does this ratio agree with the Jacobian factor

o (5e)

when evaluated at x =1, y = 27
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12.36 (.- ) (f) Find the marginal PDFs of the joint PDF given in (12.25).

12.37 (f) Determine the marginal PDFs for the joint PDF given by

([0

12.38 (. ) (f) If X and Y have the joint PDF

1 2 1
R

9 -1 2
find the joint PDF of the transformed random vector
|11
12 3

12.39 (t) Prove that the PDF of Z = Y/X, where X and Y are independent, is
given by

X

Y

X
Y

w
VA

X

Y

pz(2) = /°° px (2)py (z2)|z|dz.

— 00

12.40 (t) Prove that the PDF of Z = XY, where X and Y are independent is given
by

o0

pz(z) = / px(m)py(z/w)idm.

o |z]

12.41 (c¢) Generate outcomes of a Cauchy random variable using Y/ X, where X ~
N(0,1), Y ~ N(0,1) and X and Y are independent. Can you explain what
happens when the Cauchy outcome becomes very large in magnitude?

12.42 (t) Prove that s(t) = Acos(2nFyt) + Bsin(2mFyt) can be written as s(t) =
VA? + B? cos(2n Fyt — arctan (B/A)). Hint: Convert (A, B) to polar coordi-

nates.

12.43 (.- ) (w) A particle is subject to a force in a chaotic force field. If the velocity
of the particle is modeled in the z and y directions as V, ~ AN(0,10) and
Vy ~ N(0,10) meters/sec, and V,, and V,, are assumed to be independent, how
far will the particle move on the average in 1 second?

12.44 (f) Prove that if X and Y are independent standard Gaussian random vari-
ables, then X2 + Y2 will have a x3 PDF.
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12.45 (.-) (w,f) Two independent random variables X and Y have zero means and
variances of 1. If they are linearly transformed as W = X 4+Y,Z = X - Y,
find the covariance between the transformed random variables. Are W and Z
uncorrelated? Are W and Z independent?

e ()

determine the mean of X +Y and the variance of X + Y.

12.46 (f) If
X

12.47 (:-) (w) The random vector [X Y]7 has a covariance matrix
2 1
c=|1,]
Find a 2 x 2 matrix G so that G[X Y] is a random vector with uncorrelated

components.

12.48 (t) Prove that if a random vector has a covariance matrix

a b

=[5 ]

then the matrix ) )
V2 V2

can always be used to diagonalize it. Show that the effect of this matrix
transformation is to rotate the point (x,y) by 45° and relate this back to the
contours of a standard bivariate Gaussian PDF.

12.49 (f) Find the MMSE estimator of Y based on observing X = z if (X,Y’) has
the joint PDF

1 1 9 9
xyv(z,y) = ———exp |[——— (2" — 1.8zy + .
Also, find the PDF of the error ¥ — Y=Y — (aX + b), where a,b are the
optimal values. Hint: See Theorem 12.7.1.

12.50 (w,c) A random signal voltage V ~ N (1,1) is corrupted by an independent
noise sample N, where N ~ N(0,2), so that V + N is observed. It is desired
to estimate the signal voltage as accurately as possible using a linear MMSE
estimator. Assuming that V and N are independent, find this estimator. Then
plot the constant PDF contours for the random vector (V + N, V) and indicate
the estimated values on the plot.
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12.51 (f) Using a convolution integral prove that if X and Y are independent stan-
dard Gaussian random variables, then X +Y ~ N (0, 2).

12.52 (.-) () If

find P[X +Y > 2].

12.53 (t) Prove that if X ~ I'(ax,A) and Y ~ ['(ay,\) and X and Y are inde-
pendent, then X +Y ~ I'(ax + ay, A).

12.54 (f) To generate two independent standard Gaussian random variables on a
computer one can use the Boz-Mueller transform

X = —2InU;cos(2nUs)
Y = —2InU;sin(27xUs)

where Uy, U are both uniform on (0, 1) and independent of each other. Prove
that this result is true. Hint: To find the inverse transformation use a polar
coordinate transformation.

12.55 (t) Prove that by using the eigendecompostion of a covariance matrix VI CV =
A that one can factor C as C = GGT, where G = V\/K, and VA is defined
as the matrix obtained by taking the positive square roots of all the elements.
Recall that A is a diagonal matrix with positive elements on the main diagonal.
Next find G for the covariance matrix

26 6
C_[G %]

and verify that GG does indeed produce C.

12.56 (c) Simulate on the computer realizations of the random vector

([ ] )

Plot these realizations as well as the contours of constant PDF on the same
graph.

w

Z



444 CHAPTER 12. MULTIPLE CONTINUOUS RANDOM VARIABLES



Chapter 13

Conditional Probability Density
Functions

13.1 Introduction

A discussion of conditional PMFs was given in Chapter 8. The motivation was
that many problems are stated in a conditional format so that the solution must
naturally accommodate this conditional structure. Additionally, the use of condi-
tioning is useful for simplifying probability calculations when two random variables
are statistically dependent. In this chapter we formulate the analogous approach
for probability density functions. A potential stumbling block is that the usual con-
ditioning event X = z has probability zero for a continuous random variable. As a
result the conditional PMF cannot be extended in a straightforward manner. We
will see, however, that using care, a conditional PDF can be defined and will prove
to be useful.

13.2 Summary

The conditional PDF is defined in (13.3) and can be used to find conditional proba-
bilities using (13.4). The conditional PDF for a standard bivariate Gaussian PDF is
given by (13.5) and is seen to retain its Gaussian form. The joint, conditional, and
marginal PDFs are related to each other as summarized by Properties 13.1-13.5. A
conditional CDF is defined by (13.6) and is evaluated using (13.7). The use of condi-
tioning can simplify probability calculations as described in Section 13.5. A version
of the law of total probability is given by (13.12) and is evaluated using (13.13). An
optimal predictor for the outcome of a random variable based on the outcome of a
second random variable is given by the mean of the conditional PDF as defined by
(13.14). An example is given for the bivariate Gaussian PDF in which the predictor
becomes linear (actually affine). To generate realizations of two jointly distributed

445
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continuous random variables the procedure based on conditioning and described in
Section 13.7 can be used. Lastly, an application to determining mortality rates for
retirement planning is described in Section 13.8.

13.3 Conditional PDF

Recall that for two jointly discrete random variables X and Y, the conditional PMF
is defined as

pxy[zi,yj]

px[zi]

This formula gives the probability of the event Y = y; for j = 1,2,... once we have
observed that X = z;. Since X = z; has occurred, the only joint events with a
nonzero probability are {(z,y) : z = z;,y = y1,¥y2,...}. As a result we divide the
joint probability px y[z;,y;] = P[X = x;,Y = y;] by the probability of the reduced
sample space, which is px[z;] = P[X = 2;,Y = y1] + P[X = 2;,Y = o] +--- =
> 51 px,y[®i,y;]. This division assures us that

py|x[yjlzi] = j=1,2,... . (13.1)

- o px.y i, yj]
D _pvixlyled = 3 =
st ‘= pxlai

Z;ile,Y[xiayj]
px[wi]
o Z;ile,Y[xiayj] 1
Y Ripxylrnyl

In the case of continuous random variables X and Y a problem arises in defining
a conditional PDF. If we observe X = z, then since P[X = z] = 0, the use of a
formula like (13.1) is no longer valid due to the division by zero. Recall that our
original definition of the conditional probability is

P[AN B]

PAIB) = —5

which is undefined if P[B] = 0. How should we then proceed to extend (13.1) for
continuous random variables?

We will motivate a viable approach using the example of the circular dartboard
described in Section 12.3. In particular, we consider a revised version of the dart
throwing contest. Referring to Figure 12.2 the champion dart player realizes that the
novice presents little challenge. To make the game more interesting the champion
proposes the following modification. If the novice player’s dart lands outside the
region |z| < Axz/2, then the novice player gets to go again. He continues until his
dart lands within the region |z| < Az/2 as shown cross-hatched in Figure 13.1a.
The novice dart player even gets to pick the value of Az. Hence, he reasons that it
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—Azx/2 Ax/2 —Az/2 Azx/2

N
)
)

[\
)
X

Ah

|

go again

£o again

radius = 1/4

(a) Dartboard (b) Sample space

Figure 13.1: Revised dart throwing game. Only dart outcomes in the cross-hatched
region are counted.

should be small to exclude regions of the dart board that are outside the bullseye
circle. As a result, he chooses a Az as shown in Figure 13.1b, which allows him
to continue throwing darts until one lands within the cross-hatched region. The
champion, however, has taken a course in probability and so is not worried. In fact,
in Problem 12.30 the probability of the champion’s dart landing in the bullseye area
was shown to be 0.8646. To find the probability of the novice player obtaining a
bullseye, we recall that his dart is equally likely to land anywhere on the dartboard.
Hence, using conditional probability we have that

bullseye, —Az/2 < X < Az/2]

Pl
Plbullseye| — Az/2 < X < Az/2] = PA2< X < Ae/d

Since Az/2 is small, we can assume that it is much less than 1/4 as shown in Figure
13.1b. Therefore, we have that the cross-hatched regions can be approximated by
rectangles and so

Plbullseye| — Az/2 < X < Az/2]

P[double cross-hatched region]

P[double cross-hatched region| + P[single cross-hatched region]
Az(1/2
% (probability = rectangle area/dartboard area)

= 0.25 < 0.865. (13.2)

Hence, the revised strategy will still allow the champion to have a higher probability
of winning for any Az, no matter how small it is chosen. Even though P[X = 0] = 0,
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the conditional probability is well defined even as Az — 0 (but not equal 0). Some
typical outcomes of this game are shown in Figure 13.2, where it is assumed the
novice player has chosen Az/2 = 0.2. In Figure 13.2a are shown the outcomes of X

0.8
0.6

0.4

] \

I.

2 outcome
o

-0.2F

L‘” f

=

-0.4r

-0.6

-0.8

0 20 40 60 80 100
Trial number

(a) All z outcomes — those with |z| < 0.2 are shown as dark
lines

l | l |

(]
: \
3
1 T
= -0.2F &
_0.4 - d
-0.6
_0'8 L
-1 i i i i
0 20 40 60 80 100

Trial number

(b) Dark lines are y outcomes for which |z| < 0.2, b indicates
a bullseye (1/z2 + y? < 1/4) for the outcomes with |z| < 0.2

Figure 13.2: Revised dart throwing game outcomes.
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for the novice player. Only those for which |z| < Az/2 = 0.2, which are shown as
the darker lines, are kept. In Figure 13.2b the outcomes of Y are shown with the
kept outcomes shown as the dark lines. Those outcomes that resulted in a bullseye
are shown with a “b” over them. Note that there were 27 out of 100 outcomes that
had |z| values less than or equal to 0.2 (see Figure 13.2a), and of these, 8 outcomes
resulted in a bullseye (see Figure 13.2b). Hence, the estimated probability of landing
in the single or double cross-hatched region of Figure 13.1b is 27/100=0.27, while
the theoretical probability is approximately Az(2)/m = 0.4(2)/m = 0.254. Also,
the estimated conditional probability of a bullseye is from Figure 13.2b, 8/27=0.30
while from (13.2) the theoretical probability is approximately equal to 0.25. (The ap-
proximations are due to the use of rectangular approximations to the cross-hatched
regions, which only become exact as Az — 0.) We will use the same strategy to
define a conditional PDF. Let A = {(z,y) : \/2? + y?> < 1/4}, which is the bullseye
region. Then
P[A||X| < A/

PlA, | X]| < Ax/2
= 1[3[|’)|(| ;—sz/ ] ] (definition of cond. prob.)

 Pl{(z,y) : 2] < Ax/2,]y| < /1/16 — 22}] double cross-hatched area
Pl{(z,y) : |z| < Az/2,|y| < 1}] cross hatched area

P{(z,y) : |z] < Ax/2,|y| < V/1/16 — z?}]

P[{ - [1] < Az/2)]
JEXE I s oy (ay)dy de

Az/2
J- Xg/c/2 px (z)dz
As Az — 0, we can write

PIA[|X] < Az /2]

A
/- X:ﬁzf 1/4PXY x,y)dy dx

Ax/2
Jo A;{;/sz )dz

f 4pxy (0,y)Azdy

(since \/1/16 — 22 = 1/4 for |z| < Az/2)

%

R~ o (0)Az (since px y(z,y) = px,y(0,y) for |z| < Az/2)
1/4
~172 px(0)

We now define px y/px as the conditional PDF

pX,Y(‘fI;ay)

ox(@) (13.3)

pY\X(y|QU) =
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Note that it is well defined as long as px(z) # 0. Thus, as Az — 0

1/4
mmmmAwmz/me@mw

More generally, the conditional PDF allows us to compute probabilities as (see
Problem 13.6)

b
Pla <Y <blx — Az/2 < X <z + Az/2] :/ Py |x (ylz)dy.
a

This probability is usually written as
Pla <Y < b|X = z]

but the conditioning event should be understood to be {z : —Axz/2 < X < x+Az/2}
for Az small. Finally, with this understanding, we have that

b
Pla <Y <bX =] = [ prix(ulo)dy (13.4)

where py|x is defined by (13.3) and is termed the conditional PDF. The condi-
tional PDF py-x (y|z) is the probability per unit length of Y when X = z (actually
z—Az/2 < X <z + Az/2) is observed. Since it is found using (13.3), it is seen to
be a function of y and z. It should be thought of as a family of PDFs with y as
the independent variable, and with a different PDF for each value . An example
follows.

Example 13.104 - Standard bivariate Gaussian PDF

Assume that (X,Y’) have the joint PDF

(z.1) 1 [ 1 (22 — 2py + 2)] —00 < < 00
pxy(T,y) = —F—=exp |—5——5 (2" —2pzy +y
2my/1 — p? 2(1-p?) —00 <y <00

and note that the marginal PDF for X is given by

px(z) = \/% exp [—%ﬂf] :

The conditional PDF is found from (13.3) as

1 1 2 2
et [—72(1_,)2) (2% = 2pzy +y )]
PY|X(?J|$) = 1 [_le]
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where
0 22 —2pzy+y? (1 —p?)z?
1—p? 1—p?
_ y? — 2pzy + p*x?
= 2
(y — px)?
1—p2 °
As a result we have that the conditional PDF is
1 1 9
P )= ——exp |——(y — px 13.5
vix (yle) ) =W e (13.5)

and is seen to be Gaussian. This result, although of great importance, is not true
in general. The form of the PDF usually changes from py (y) to py|x(y|z). We will
denote this conditional PDF in shorthand notation as Y|(X = z) ~ N (pz,1 — p?).
As expected, the conditional PDF depends on z, and in particular the mean of the
conditional PDF is a function of z. It is a valid PDF in that for each x value, it is
nonnegative and integrates to 1 over —oo < y < o0o. These properties are true in
general. In effect, the conditional PDF depends on the outcome of X so that we use a
different PDF for each X outcome. For example, if p = 0.9 and we observe X = —1,
then to compute P[-1 <Y < —0.8/X = —1] and P[-0.1 <Y < 0.1|X = —1], we
first observe from (13.5) that Y|(X = —1) ~ A (—0.9,0.19). Then

P-1<Y<-08X=-1 = Q (ﬂ> —Q (M> =0.1815

V0.19 V0.19
P[-01<Y <01|X=-1] = Q (%.(1;0‘9» -Q (0.1—07\/(._;)0.9» = 0.0223.

Can you explain the difference between these values? In Figure 13.3b the cross-
section of the joint PDF is shown. Once the cross-section is normalized so that
it integrates to one, it becomes the conditional PDF pyx(y| — 1). This is easily
verified since
pxy(=1,y)

px(—1)

pxy(—1,9)

% pxy(—1y)dy

PY|X(y| —1)

13.4 Joint, Conditional, and Marginal PDF's

The relationships between the joint, conditional, and marginal PMF's as described
in Section 8.4 also hold for the corresponding PDFs. Hence, we just summarize the
properties and leave the proofs to the reader (see Problem 13.11).
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Figure 13.3: Standard bivariate Gaussian PDF and its cross-section at x = —1. The
normalized cross-section is the conditional PDF.

Property 13.41 - Joint PDF yields conditional PDF's

pyix(ylz) = pxy (2:9)
| 25 pxy (2, y)dy
px,y(7,y)
p ry) =
) = g e s
[l
Property 13.42 - Conditional PDF's are related
pY\X(y|$)pX($)
px|y(zly) =
py(y)
[l

Property 13.43 - Conditional PDF is expressible using Bayes rule

o) — pxpy (z|y)py (y)
Py |x\Y f?wpx|y($|y)pY(y)dy
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Property 13.44 - Conditional PDF and its corresponding marginal PDF
yields the joint PDF

pxy(z,y) = pyx (W2)px () = px|y (z|y)py (v)
0

Property 13.45 - Conditional PDF and its corresponding marginal PDF
yields the other marginal PDF

py(y) = / " pyx W)y (2)de

—o0
g

A conditional CDF can also be defined. Based on (13.4) we have upon letting
a=—ococand b=y

PIY < ylx =al = [ prixtiie)ar

—o0

As a result the conditional CDF is defined as
Fyx(ylz) = PlY <y|X = 1] (13.6)

and is evaluated using

Frix(ulo) = | " pyix (tl)dt. (13.7)

—o0

As an example, if Y|(X = z) ~ N(pz,1 — p?) as was shown in Example 13.1, we
have that

Fyix(yle) = 1-Q (M) . (13.8)
V1= p?

Finally, as previously mentioned in Chapter 12 two continuous random variables

X and Y are independent if and only if the joint PDF factors as pxy(z,y) =

px (z)py (y) or equivalently if the joint CDF factors as Fxy(z,y) = Fx(z)Fy(y).

This is consistent with our definition of the conditional PDF since if X and Y are

independent

pY\X(y|$) =
= —— <~ =pr(¥) (13.9)

(and similarly px|y = px). Hence, the conditional PDF no longer depends on the
observed value of X, i.e., z. This means that the knowledge that X = z has occurred
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does not affect the PDF of Y (and thus does not affect the probability of events
defined on Sy). Similarly, from (13.7), if X and Y are independent

Fyx(ylr) = /_y py|x (tlz)dt
_ / " py(®)dt (from (13.9))
= Fy(y).

An example would be if p = 0 for the standard bivariate Gaussian PDF. Then since
Y|(X =) ~ N(pz,1—p?) = N(0,1), we have that py|x(y|z) = py(y). Also, from
(13.8)

FY|X(?J|$) = 1-Q (%)

= 1-Q(y) = Fy(y).

Another example follows.
Example 13.105 - Lifetime PDF of spare lightbulb

A professor uses the overhead projector for his class. The time to failure of a
new bulb X has the exponential PDF px(z) = Aexp(—Az)u(z). A new spare bulb
also has a time to failure Y that is modeled as an exponential PDF. However, the
time to failure of the spare bulb depends upon how long the spare bulb sits unused.
Assuming the spare bulb is activated as soon as the original bulb fails, the time to
activation is given by X. As a result, the expected time to failure of the spare bulb

is decreased as
1 1

Ay A1+ az)

where 0 < o < 1 is some factor that indicates the degradation of the unused bulb
with storage time. The expected time to failure of the spare bulb decreases as the
original bulb is used longer (and hence the spare bulb must sit unused longer). Thus,
we model the time to failure of the spare bulb as

pyix(ylr) = Avexp(=Avy)u(y)
= M1+ ax)exp[-A(l + az)y] u(y).

This conditional PDF is shown in Figure 13.4 for 1/A\ = 5 hours and a = 0.5. We
now wish to determine the unconditional PDF of the time to failure of the spare
bulb which is py (y). It is expected that the probability will be less than if the spare
bulb were used rightaway (or for z = 0), which has been modeled as an exponential
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15

Figure 13.4: Conditional PDF for lifetime of spare bulb. Dependence is on time to
failure z of original bulb.

PDF with parameter A. Using Property 13.5 we have

py(y) = / " vy (Wl () d

—00

= /000 A1+ az)exp [-A(1 + ax)y] Aexp(—Az)dz
= Mexp(—=\y) /000(1 + azx)exp [-A(ay + 1)z] dz
= Mexp(—\y) '/000 exp(az)dr + 04/0oo xexp(aw)dw] (let a = =A(1 4+ ay))

o] oo:|
0

= Mexp(—\y) 7exp(a:1:)

+ o T explax Xplax
a “ a2

(1
= Mexp(—\y) ———i—%]

[ 1
= Mexp(—\y) + < 2] .

or finally
1 o

Moy ¥ D) T ey § 1)12] uly)-

This is shown in Figure 13.5 for 1/X = 5 and a = 0.5 along with the PDF px(z)
of the time to failure of the original bulb. As expected the probability of the spare
bulb failing before 2 hours is greatly increased.

py (y) = A% exp(—y) [
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15

0.5F

4
Time to failure

Figure 13.5: PDFs for time to failure of original bulb X and spare bulb Y.

o
Finally, note that the conditional PDF is obtained by differentiating the conditional

CDF. From (13.7) we have

3FY\X(Z/|$)

. 13.1
5 (13.10)

pY\X(y|5E) =

13.5 Simplifying Probability Calculations using Condi-
tioning

Following Section 8.6 we can easily find the PDF of Z = ¢(X,Y) if X and Y are

independent using conditioning. We shall not repeat the argument other than to
summarize the results and give an example. The procedure is

1. Fix X =z and let Z|(X = z) = g(z,Y).

2. Find the PDF of Z|(X = z) using the standard approach for a transformation
of a single random variable from Y to Z.

3. Uncondition the conditional PDF to yield the desired PDF pz(z).

Example 13.106 - PDF for ratio of independent random variables
Consider the function Z =Y/ X where X and Y are independent random variables.
In Problem 12.39 we asserted that

pz(2) = /°° px (2)py (z2)|z|dz.

— 00
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We now derive this using the aforementioned approach. First recall that if Z = aY
for a a constant, then pz(z) = py(z/a)/|a| (see Example 10.5). Now we have that

Z|(X:x):§‘(X:x):—

so that with @ = 1/x and noting the independence of X and Y, we have

pzix(2]2) = py|x (27)|z] = py (27)|] (13.11)

and thus

o0
pz(z) = / Pz x(z, z)dx (marginal PDF from joint PDF)

—00

oo
= / pz|x (2|2)px (z)dz (definition of conditional PDF)

—o0

_ /oopy(zx)|x|px(x)dx (from (13.11))

—o0

= /00 px (x)py (z2)|x|dz.

—00

Note that without the independence assumption, we could not assert that pyx = py
in (13.11).

¢
In general to compute probabilities of events it is advantageous to use conditioning
arguments whether or not X and Y are independent. The analogous result to
(8.2877) is (see Problem 13.15)

PlY € Al = /OO PlY € A|X = z]px(z)dz. (13.12)

—00
This is another form of the theorem of total probability. It can also be written as

o0

P[YeA]:/

—o0

[/anqx<ym»dy]pxxx>dx (13.13)

where we have used (13.4) and replaced {y : a < y < b} by the more general set A.
The formula of (13.13) is analogous to (8.27)77 for discrete random variables. An
example follows.

Example 13.107 - Probability of error for digital communication system
Consider the PSK communication system shown in Figure 2.14. The probability of
error was shown in Section 10.6 to be

P. = PIW < —A/2] = Q(A/2)
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since the noise sample W ~ AN(0,1). In a wireless communication system such
as is used in cellular telephone, the received amplitude A varies with time due to
multipath propagation [Rappaport 2002]. As a result, it is usually modeled as a
Rayleigh random variable whose PDF is

a — 1 .2 >
pa(a) =4 o4 exp( 203 ) ¢20
0 a < 0.

We wish to determine the probability of error if A is a Rayleigh random variable.
Thus, we need to evaluate P[W + A/2 < 0] if W ~ N (0,1), A is a Rayleigh random
variable, and we assume W and A are independent. A straightforward approach is
to first find the PDF of Z = W + A/2, and then to integrate pz(z) from —oo to 0.
Alternatively, it is simpler to use (13.12) as follows.

P, = P[W < —A/2]
_ /_oo PW < —A/2|A = alpa(a)da  (from (13.12))

o
= / PW < —a/2|A = alpa(a)da (since A = a has occurred).
—00

But since W and A are independent, P[W < —a/2|A = a] = P[W < —a/2] and
thus

P, = /oo PW < —a/2]pa(a)da.

—o0

Using P[W < —a/2] = Q(a/2) we have

o0 a 1,
P, = Q(a/2)— exp | —z—a” | da.
0 0% 20%

Unfortunately, this is not easily evaluated in closed form.

13.6 Mean of Conditional PDF

For a conditional PDF the mean is given by the usual mean definition except that
the PDF now depends on z. We therefore have the definition

o0

ypyx (y|z)dy (13.14)

ByixlYls) = [

which is analogous to (8.2977) for discrete random variables. We also expect and it
follows that (see Problem 13.19 and also the discussion in Section 8.6)

Ex[Ey|x[Y|X]] = Ey[Y] (13.15)
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where By x[Y|X] is given by (13.14) except that the value x is now replaced by the
random variable X. Therefore, Fy|x[Y|X] is viewed as a function of the random
variable X. As an example, we saw that for the bivariate Gaussian PDF that
Y|(X = z) ~ N(pz,1—p?). Hence, Ey|x[Y|z] = pz, but regarding the mean of the
conditional PDF as a function of the random variable X we have that Ey|x[Y|X] =
pX. To see that (13.15) holds for this example

Ex[By|x[Y|X]] = Ex[pX] = pEx[X] =0

since the marginal PDF of X for the standard bivariate Gaussian PDF was shown
to be N (0,1). Also, since Y ~ N(0,1) for the standard bivariate Gaussian PDF,
Ey[Y] =0, and we see that (13.15) is satisfied.

The mean of the conditional PDF arises in optimal prediction, where it is proven
that the minimum mean square error (MMSE) prediction of Y given X = z has been
observed is Eyx[Y|z] (see Problem 13.17). This is optimal over all predictors, linear
and nonlinear. For the standard Gaussian PDF, however, the optimal prediction
turns out to be linear since Ey|x[Y|z] = pr. More generally, it can be shown that
if X and Y are jointly Gaussian with PDF given by (12.3577), then

cov(X,Y)
var(X)
ox0o
=y + 57 (5 - py)
ox

pPoYy
(z — px)-

Byix[Ylz] = Ev[Y]+ (z — Ex[X])

2

(See also Problem 13.20.)

13.7 Computer Simulation of Jointly Continuous Ran-
dom Variables

In a manner similar to Section 8.7 we can generate realizations of a continuous
random vector (X,Y’) using the relationship

px,y(7,y) = py|x (y|2)px ().

(Of course, if X and Y are independent, we can generate X based on px(z) and YV
based on py (y)). Consider as an example the standard bivariate Gaussian PDF. We
know that Y|(X = z) ~ N(pz,1 — p?) and X ~ N(0,1). Hence, we can generate
realizations of (X,Y) as follows.

Step 1. Generate X = z according to N (0, 1).

Step 2. Generate Y|(X = z) according to N (pz, 1 — p?).
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This procedure is conceptually simpler than what we implemented in Section 12.11
and much more general. There we used (12.5377). Referring to (12.5377), if we
let pw = pz = 0, 012,[, = o% = 1 and make the replacements of W, Z, X, Y with
X,Y,U,V, we have

|1 0

B [ 1—p? ]

where U ~ N'(0,1), V ~ N(0,1), and U and V are independent. The transformation
of (13.16) can be used to generate realizations of a standard bivariate Gaussian
random vector. It is interesting to note that in this special case the two procedures
for generating bivariate Gaussian random vectors lead to the identical algorithm.
Do you see that they are the same?

As an example of the conditional PDF approach, if we let p = 0.9, we have the
plot shown in Figure 13.6. It should be compared with Figure 12.21 (note that in
Figure 12.21 the means of X and Y are 1). The MATLAB code used to generate

X U

Vv

(13.16)

Y

4

3

Figure 13.6: 500 outcomes of standard bivariate Gaussian random vector with p =
0.9 generated using conditional PDF approach.

realizations of a standard bivariate Gaussian random vector using conditioning is
given below.

randn(’state’,0) ’ set random number generator to initial value
rho=0.9;
M=500; % set number of realizations to generate
for m=1:M
x(m,1)=randn(1,1); % generate realization of N(0,1) random
% variable (Stepl)
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ygx(m,1)=rho*x(m)+sqrt (1-rho~2) *randn(1,1); % generate
%h Y1 (X=x) (Step 2)
end

13.8 Real-World Example — Retirement Planning

Professor Staff, who teaches too many courses a semester, plans to retire at age 65.
He will have accumulated a total of $500,000 in a retirement account and wishes to
use the money to live on during his retirement years. He assumes that his money
will earn enough to offset the decrease in value due to inflation. Hence, if he lives
to age 75 he could spend $50,000 a year and if he lives to age 85, then he could only
spend $25,000 a year. How much should he figure on spending per year?

Besides the many courses Professor Staff has taught in history, English, math-
ematics, and computer science, he has also taught a course in probability. He
therefore reasons that if he spends s dollars a year and lives for Y years during his
retirement, then the probability that 500,000 — sY < 0 should be small. Here sY
is the total money spent during his retirement. In other words, he desires

P[500,000 — sY < 0] = 0.5. (13.17)

He chooses 0.5 for the probability of outliving his retirement fund. This acknowl-
edges the fact that choosing a lower probability will lead to an overly conservative
approach and a small amount of expendable funds per year as we will see shortly.
Equivalently, he requires that

500, 000
>7

P [Y . ] =0.5. (13.18)
As an example, if he spends s = 50,000 per year, then the probability he lives more
than 500,000/s = 10 years should be 0.5.

It should now be obvious that (13.18) is actually the right-tail probability or
complementary CDF of the years lived in retirement. This type of information is of
great interest not only to retirees but also to insurance companies who pay annuities.
An annuity is a payment that an insurance company pays annually to an investor
for the remainder of his life. The amount of the payment depends upon how much
the investor originally invests, the age of the investor, and the insurance company’s
belief that the investor will live for so many years. To quantify answers to questions
concerning years of life remaining, the mortality rate, which is the distribution of
years lived past a given age is required. If Y is a continuous random variable that
denotes the years lived past age X = z, then the mortality rate can be described by
defining the conditional CDF

Fy|x(yle) = PIY <y|X = a].
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For example, the probability that a person will live at least 10 more years if he is
currently 65 years old is given by

P[Y > 10|X = 65] = 1 — Fy|x(10]65)

which is the complementary CDF or the right-tail probability of the conditional PDF
Pyx (y|z). It has been shown that for Canadian citizens the conditional CDF is well
modeled by [Milevsky and Robinson 2000]

r—1m

Fy x (yle) = 1 — exp [exp (T) (1 — exp (%))] y>0 (13.19)

where m = 81.95,] = 10.6 for males and m = 87.8,] = 9.5 for females. As an
example, if Fyx(y|z) = 0.5, then you have a 50% chance of living more than y
years if you are currently z years old. In other words, 50% of the population who
are z years old will live more than y years and 50% will live less than y years. The
number of years y is the median number of years to live. (Recall that the median is
the value at which the probability of being less than or equal to this value is 0.5.)
From (13.19) this will be true when

0.5 = exp [exp (‘x . m) (1-exp (%))]

which results in the remaining number of years lived by 50% of the population who
are currently x years old as

y=1n [1 — exp (— (x ~ m)) 1n0.5] . (13.20)

This is plotted in Figure 13.7a versus the current age z for males and females. In
Figure 13.7a the median number of years left is shown while in Figure 13.7b the
median life expectancy (which is z + y) is given.

Returning to Professor Staff he can now determine how much money he can
afford to spend each year. Since the probability of outliving one’s retirement funds
is a conditional probability based on current age, we write (13.18) as

500, 000
S

P[Y> ‘sz]:PL

where we allow the probability to be denoted in general by Pr. Since he will retire

at age x = 65, we have from (13.19) that he will live more than y years with a
probability of Py, given by

Pp = exp [exp <65 - m) (1 —exp (%))] : (13.21)
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Figure 13.7: Mortality rates.
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Figure 13.8: Probability Py, of exceeding y years in retirement for male who retires
at age 65.

Assuming Professor Staff is a male, we use m = 81.95,1 = 10.6 in (13.21) to produce
a plot Py, versus y as shown in Figure 13.8. If the professor is overly conservative,
he may want to assure himself that the probability of outliving his retirement fund
is only about 0.1. Then, he should plan on living another 27 years, which means
that his yearly expenses should not exceed $500,000/27 = $18,500. If he is less
conservative and chooses a probability of 0.5, then he can plan on living about 15
years. Then his yearly expenses should not exceed $500,000/15 ~ $33,000.
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Problems

13.1 (w,c) In this problem we simulate on a computer the dartboard outcomes
of the novice player for the game shown in Figure 13.1a. To do so generate
two independent U (—1,1) random variables to serve as the z and y outcomes.
Only keep the outcomes (z,y) for which /22 4+ y2 < 1 (see Problem 13.23 for
why this produces a uniform joint PDF within the unit circle). Then, of the
kept outcomes retain only the ones for which Az/2 < 0.2 (see Figure 13.2a).
Finally, estimate the probability that the novice player obtains a bullseye and
compare it to the theoretical value. Note that the theoretical value of 0.25
as given by (13.2) is actually an approximation based on the areas in Figure
13.2b being rectangular.

13.2 (--) (w) Determine if the proposed conditional PDF

| cexp(—y/z) y>0,2>0
py|x (ylz) = { 0 otherwise

is a valid conditional PDF for some c. If so, find the required value of c.

13.3 (w) Is the proposed conditional PDF

1 1
pyix(ylz) = €xXp ——(y—:E)2 —00 <y <o00,—00<x <0
| Vo 2

valid? If so, and if X ~ N(0,1), design an experiment that will produce the
random variables X and Y.

13.4 (-2) () If

_Jexpl—(z+vy)] 0<y<z,2>0
pxy(z,y) = { 0 otherwise

find pyx (y|7).
13.5 (w) Plot the joint PDF

(o.9) = 2r 0<z<1,0<y<l1
PXY\HY) =1 0 otherwise.
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Next determine by inspection the conditional PDF pyx(y|z). Recall that the
conditional PDF is just the normalized cross-section of the joint PDF.

13.6 (t) In this problem we show that
b
AlimOP[GL <Y <blz—Az/2< X <z + Azx/2] = / py|x (ylz)dy
Tr—r a

To do so first show that

lim Pla<Y <blz —Az/2 < X <z + Az/2]
Az—0

Ax/2
b I fx+Axx//2 Px, Y(x y)dz 4
Az—0 r+Az/2 d Y-
a Iz —Ag/2 PX\T)0x
13.7 (f) Determine P[Y > 1|X = 0] if the joint PDF is given as

@.5) = 20 0<z<1,0<y<l
PXY\HLY) =19 0 otherwise.

13.8 () (f) If X ~U(0,1) and Y|(X = z) ~ U(0, z), find the joint PDF for X
and Y and also the marginal PDF for Y.

13.9 (f,;t) For the standard bivariate Gaussian PDF find the conditional PDFs py| x
and px|y and compare them. Explain your results. Are your results true in
general?

13.10 (.- ) (f) If the joint PDF pxy is uniform over the region 0 < y < z and
0 <z <1 and zero otherwise, find the conditional PDFs py|x and pxy.

13.11 (t) Prove Properties P13.1-13.5.

13.12 (f) Determine the PDF of Y/X if X ~ N (0,1), Y ~ N(0,1) and X and Y
are independent. Do so by using the conditioning approach.

13.13 (t) Prove that the PDF of X + Y, where X and Y are independent is given
as a convolution integral (see (12.1477)). Do so by using the conditioning
approach.

13.14 (.- ) (w) A game of darts is played using the linear dartboard shown in
Figure 3.8. If two novice players throw darts at the board and each one’s dart
is equally likely to land anywhere in the interval (—1/2,1/2), prove that the
probability of player 2 winning is 1/2. Hint: Let X; and X9 be the outcomes
and use Y = | Xo| — |X1] and X = X in (13.12).

13.15 (t) Prove (13.12) by starting with (13.4).
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13.16 (.-) (w) A resistor is chosen from a bin of 10 ohm resistors whose distri-
bution satisfies R ~ N(10,0.25). A i = 1 amp current source is applied to
the resistor and the subsequent voltage V' is measured with a voltmeter. The
voltmeter has an error E that is modeled as E ~ N (0,1). Find the probability
that V' > 10 volts if an 11 ohm resistor is chosen. Note that V = iR + E.
What assumption do you need to make about the dependence between R and
E?

13.17 (t) In this problem we prove that the minimum mean square error estimate
of Y based on X = z is given by Fy x[Y]|z]. First let the estimate be denoted

by Y (z) since it will depend in general on the outcome of X. Then note that
the mean square error is

mse = Exy[(Y —Y(X))}

J(Y(2))

Now we can minimize .J(Y (x)) for each value of z since px (z) > 0. Complete
the derivation by differentiating J(Y (z)) and setting the result equal to zero.
Consider Y () as a constant (since z is assumed fixed inside the inner integral)
in doing so. Finally justify all the steps in the derivation.

13.18 (f) For the joint PDF given in Problem 13.10 find the minimum mean square
error estimate of Y given X = z. Plot the region in the z-y plane for which
the joint PDF is nonzero and also the estimated value of Y versus z.

13.19 (t) Prove (13.15).

13.20 (w,c) If a bivariate Gaussian PDF has a mean vector [ux uy]? = [12]7 and
a covariance matrix
c_[21
12

plot the contours of constant PDF. Next find the minimum mean square error
prediction of Y given X = z and plot it on top of the contour plot. Explain
the significance of the plot.

13.21 (.-) (w) A random variable X has a Laplacian PDF with variance o?. If
the variance is chosen according to o ~ U(0, 1), what is average variance of
the random variable?
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13.22 (c¢) In this problem we use a computer simulation to illustrate the known

result that Fy|x[Y|z] = pz for (X,Y) distributed according to a standard
bivariate Gaussian PDF. Using (13.16) generate M = 10,000 realizations of
a standard bivariate Gaussian random vector with p = 0.9. Then let A =
{z : 2y — Az/2 < z < z9 + Az/2} and discard the realizations for which z
is not in A. Finally, estimate the mean of the conditional PDF by taking the
sample mean of the remaining realizations. Choose Az/2 = 0.1 and zp =1
and compare the theoretical value of Ey|x[Y|z] to the estimated value based
on your computer simulation.

13.23 (t) We now prove that the procedure described in Problem 13.1 will produce

a random vector (X,Y’) which is uniformly distributed within the unit circle.
First consider the polar equivalent of (X,Y’), which is (R,®), so that the
conditional CDF is given by

P[R<r,0 <0|R<1] 0<r<1,0<6<2m.
But this is equal to

P[R<r R<1,0<6] PR<r0O <

P[R < 1] P[R < 1]

(Why?) Next show that

Or?
PIR<r,0<0R<1]=—
27
and differentiate with respect to r and then 6 to find the joint PDF pg o(r,0)
(which is actually a conditional joint PDF due to the conditioning on the value
of R being r < 1). Finally, transform this PDF back to that of (X,Y") to verify
that it is uniform within the unit circle. Hint: You will need the result

d(r,0) ) 1
det ( = .
W)/ den (578)

—

13.24 (--) (f,c) For the conditional CDF of years left to live given current age as

given by (13.19), find the conditional PDF. Plot the conditional PDF for a
Canadian male who is currently 50 years old and also for one who is 75 years
old. Next find the average life span for each of these individuals. Hint: You
will need to use a computer evaluation of the integral for the last part.

13.25 (t) Verify that the conditional CDF given by (13.19) is a valid CDF.
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Chapter 14

Continuous N-dimensional
Random Variables

14.1 Introduction

This chapter extends the results of Chapters 10-13 for one and two continuous
random variables to N continuous random variables. Our discussion will mirror
Chapter 8 quite closely, the difference being the consideration of continuous rather
than discrete random variables. Therefore, the descriptions will be brief and will
serve mainly to extend the usual definitions for one and two jointly distributed con-
tinuous random variables to an N-dimensional random vector. One new concept
that is introduced is the orthogonality principle approach to prediction of the out-
come of a random variable based on the outcomes of several other random variables.
This concept will be useful later when we discuss prediction of random processes in
Chapter 77.

14.2 Summary

The probability of an event defined on an N-dimensional sample space is given by
(14.1). The most important example of an N-dimensional PDF is the multivariate
Gaussian PDF, which is given by (14.2). If the components of the multivariate Gaus-
sian random vector are uncorrelated, then they are also independent as shown in
Example 14.2. Transformations of random vectors yield the transformed PDF given
by (14.5). In particular, linear tranformations of Gaussian random vectors preserve
the Gaussian nature but change the mean vector and covariance matrix as discussed
in Example 14.3. Expected values are described in Section 14.5 with the mean and
variance of a linear combination of random variables given by (14.8) and (14.10),
respectively. The sample mean random variable is introduced in Example 14.4. The
joint moment is defined by (14.18) and the joint characteristic function by (14.15).

469
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Joint moments can be found from the characteristic function using (14.17) and the
PDF for a sum of independent and identically distributed random variables using
(14.22). The prediction of the outcome of a random variable based on a linear com-
bination of the outcomes of other random variables is given by (14.24). The linear
prediction coefficients are found by solving the set of simultaneous linear equations
in (14.27). The orthogonality principle is summarized by (14.29) and illustrated
in Figure 14.3. Section 14.9 describes the computer generation of a multivariate
Gaussian random vector. Section 14.10 applies the results of this chapter to the
real-world problem of signal detection with the optimal detector given by (14.33).

14.3 Random Vectors and PDFs

An N-dimensional random vector will be denoted by either (Xi, Xs,...,Xy) or
X = [X; Xs... Xn]". Tt is defined as a mapping from the original sample space of
the experiment to a numerical sample space Sx, x,,... xy = RN . Hence, X takes on
values in the N-dimensional Euclidean space RN so that

[ Xl(S)

X(s) = XZ‘(S)

Xx(s)

will have values

1
2

N

where x is a point in RY. The number of possible values is uncountably infinite. As
an example, we might observe the temperature on each of N successive days. Then,
the elements of the random vector would be X (s) = temperature on day 1, X»(s) =
temperature on day 2, ..., Xy(S) = temperature on day N, and each temperature
measurement would take on a continuum of values.

To compute probabilities of events defined on Sx, x,,. x, we will define the
N-dimensional joint PDF (or more succinctly just the PDF) as

DX1, X, Xx (T1,Z2,...,ZN)

and sometimes use the more compact notation px(x). The usual properties of a
joint PDF must be valid

PX1, X2, Xy (T1,22,...,2n) > 0

00 00 00
/ / / le,X%m,XN(IL‘l,(IIQ,...,:EN)dxlde...d(L‘N = 1.
—00 J —00 —00
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Then the probability of an event A defined on RV is given by

P[A] ://"'/le,XZ,___’XN(.’,El,.’,EQ,...,.’,EN)d(IIId(IIQ...d.’,EN. (141)
A

The most important example of an N-dimensional joint PDF is the multivariate
Gaussian PDF. This PDF is the extension of the bivariate Gaussian PDF described
at length in Chapter 12 (see (12.3577)). It is given in marix/vector form as

(2m)N/2 ;etl/Q(C) o _%(X —w'CT x—p) (14.2)

px(x) =

where g = [y p2 ... py]? is the mean vector so that

Ex, [X{]
pxlx) = | 70|
EXN‘[XN]
and C is the N x N covariance matrix defined as
var(X1) cov(Xy,Xs9) ... cov(Xy,Xn)
cov(Xy, X1) var(Xz) ... cov(Xo, Xpn)
cov(X‘N,Xl) cov(X.N,Xg) var(.XN)

Note that C is assumed to be positive definite and so it is invertible and has det(C) >
0 (see Appendix C). If the random variables have the multivariate Gaussian PDF,
they are said to be jointly Gaussian distributed. Note that the covariance matrix
can also be written as (see (Problem 9.2177))

C=FEx[X-pX-p'].

To denote a multivariate Gaussian PDF we will use the notation M'(u, C). Clearly,
for N = 2 we have the bivariate Gaussian PDF. Evaluation of the probability of
an event using (14.1) is in general quite difficult. Progress can, however, be made
when A is a simple geometric region in RY and C is a diagonal matrix. An example
follows.

Example 14.108 - Probability of a point lying within a sphere

Assume N = 3 and let X ~ N(0,0%I). We will determine the probability that
an outcome falls within a sphere of radius R. The event is then given by A =
{(z1,m2,23) : 23 + 23 + 23 < R?}. This event might represent the probability that
a particle with mass m and random velocity components V;,V,,V, has a kinetic
energy £ = (1/2)m(V,Z + V;? + V?) less than a given amount. This modeling is
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used in the kinetic theory of gases [Resnick and Halliday 1966] and is known as the
Maxwellian distribution. From (14.2) we have with gy = 0, C = ¢%I, and N = 3

_ 1 _l T/ 21\—1
Pl = / / /A(27T)3/2det1/2(021) exp[ 7 (71 x] doudez ds

1 1
= ///Amex |: 2% 2($1 +IL‘2+IL'3):| dIl d$2 d$3

since det(0%I) = (02)3 and (0?I)~! = (1/0?)I. Next we notice that the region of
integration is the inside of a sphere. As a result of this and the observation that
the integrand only depends on the squared-distance of the point from the origin, a
reasonable approach is to convert the Cartesian coordinates to spherical coordinates.
Doing so produces the inverse transformation

1 = rcosfsing
T9 = rsinfsing
T3 = Trcos¢

where r > 0,0 < 0 < 27,0 < ¢ < 7. We must be sure to include in the integral over
r,0, ¢ the absolute value of the Jacobian determinant of the inverse transformation
which is 72 sin ¢ (see Problem 14.5). Thus,

2w |
PlA] = / / / 27m2 (921372 X p( 252 )7" sin ¢ df d¢ dr
1 .
= /0 /0 WTQ exp <_WT2> 27 sin ¢ dop dr
e : 1 2 1 .
=y Gy @\ Tg ) 2 el dr
2
R 47'(' 9 1 )
- (oroty2" (o)
1
B \/7/ 2 & p<_—7”>d7“
o2 952
To evaluate the integral
R 2 1
:/0 o (‘yr )dr

we use integration by parts (see Problem 11.777) with U = r and hence dU = dr
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and dV = (r/o?) exp[—r?/(20?)]dr so that V = —exp[—7r2/(20?)]. Then

R R 1
+/ exp [——7’2/02] dr
o Jo 2

[ 1 S| 1
= —Rexp —§R2/02] + v27r02/ \/2_2exp [——7"2/02] dr
I 0 o

— —Rexp |- R/o?| 4 Varat Q) - Q(R/o)].

(1
I = —rexp —57“2/02]

Finally, we have that
Py =\ —Rexp |5 1/0%] + VERS? [Q0) - QR

= 1-2Q(R/o) — \/%Rexp (—%R2/02> .
&

The marginal PDF's are found by integrating out the other variables. For exam-
ple, if px, (z1) is desired, then

o0 o0 o0
px, (21) :/ / / PX1,Xo, Xy (T1, %2, ...y 2N)dz2 d23 .. . dTN.
—0o0 — 00 — 00

As an example, for the multivariate Gaussian PDF it can be shown that X; ~
N (1i,02), where o7 = var(X;) (see Problem 14.16). Also, the lower dimensional
joint PDFs are similarly found. To determine px, x, (z1,zn) for example, we use

o0 o0 o0
Px1, Xy (T1,ZN) :/ / / PX1,X0,..Xn (T1,%2, ..., xN)dzodzs ... dTN_1.
—o0 — 00 —o0

The random variables are defined to be independent if the joint PDF factors into
the product of the marginal PDFs as

PX1, X0, Xn (T1, T2, -, TN) = Px; (21)Px, (72) - - - Pxy (TN)- (14.3)

An example follows.

Example 14.109 - Condition for independence of multivariate Gaussian
random variables

If the covariance matrix for a multivariate Gaussian PDF is diagonal, then the
random variables are not only uncorrelated but also independent as we now show.
Assume that

C = diag (01,03,...,0%)



474 CHAPTER 14. CONTINUOUS N-DIMENSIONAL RANDOM VARIABLES

then it follows that

det(C) = []o7

1 1 1
C_1 = dlag (-2,—2,,—2>
o1’ 03 0%
Using these results in (14.2) produces
1 1 ) 1 1 1
px(x) = exp [ = ding (2 ) (x )
o’ 03 o5

em (11, 02)

1 1 &
= Ny %P [_5 Z(ﬂ% - Nz‘)Q/UiQ]
;L /2707 i=1
A 1 )
- H €xp —2—2(% = 143)
i=1 271'012 9

N
= HpXi (:El)
i=1

where X; ~ N (13, 02). Hence, if a random vector has a multivariate Gaussian PDF
and the covariance matrixz is diagonal, which means that the random wvariables are
uncorrelated, then the random wvariables are also independent.

&

A Uncorrelated implies independence only for multivariate Gaus-
sian PDF even if marginal PDFs are Gaussian!

Consider the counterexample of a PDF for the random vector (X,Y) given by

(2, ) SR [ L (a? 200y + 2)]
px,y\T, = = exp [— x° — 2px
Y 227/1 — p2 2(1 — p?) pryTy
1 1 1 ) )
4+-—————exp [—7 x° 4 2pxy + ] 14.4
Yo T 2(1—p2)( pry +y°)| (14.4)

for 0 < p < 1. This PDF is shown in Figure 14.1 for p = 0.9. Clearly, the random
variables are not independent. Yet, it can be shown that X ~ A (0,1), Y ~ N(0,1),
and X and Y are uncorrelated (see Problem 14.7). The difference here is that the
joint PDF is not a bivariate Gaussian PDF.
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(a) Joint PDF (b) Constant PDF contours

Figure 14.1: Uncorrelated but not independent random variables with Gaussian
marginal PDFs.

/AN

A joint cumulative distribution function (CDF) can be defined in the N-dimensional
case as

FXl,XQ,...,XN($17$27"' ,:EN) = P[Xl S :I?l,XQ S Ly v ,XN S J?N].

It has the usual properties of being between 0 and 1, being monotonically increasing
as any of the variables increases, and being “right continuous”. Also,

FX| X5, xy(—00,—00,...,—00) = 0
Fx, Xy, xy (400, +00,...,+00) = L.

The marginal CDFs are easily found by letting the undesired variables be evaluated
at +o0o. For example, to determine the marginal CDF for X, we have

Fx, (xl) = FX17X2:---,XN (:L‘l, 400, +00,.. ., +OO)'

14.4 Transformations

We consider the transformation from X to Y where

Vi = g(X1,Xo,...,XnN)
Yo = g¢2(X1,Xo,...,XnN)

Yv = gn(X1,Xo,..., XnN)
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and the transformation is one-to-one. Hence Y is a continuous random vector having
a joint PDF (due to the one-to-one property). If we wish to find the PDF of a subset
of the Y;’s, then we need only first find the PDF of Y and then integrate out the
undesired variables. The extension of (12.2277) for obtaining the joint PDF of two
transformed random variables is

PY1 Yo, Y (U1, Y2, - YN)
— — _ 6(:}51 Loy :EN)
= (0 ()0 0 g5 ) [ (LR (145
—— —— N—— (ylayZa"-ayN)
1 2 TN
where
dz1 Oz Oz
b B o Dy
) ) B
Owras..yay) | 92 52 . G2
a(ylayQaayN)
dzy Oy dzn
oY1 dy2 "7 Oyn

is the inverse Jacobian matrix. An example follows.

Example 14.110 - Linear transformation of multivariate Gaussian random
vector

If X ~ N(p,C) and Y = GX, where G is an invertible N x N matrix, then we
have from y = Gx that

x = Gly
g_; -G,
Hence, using (14.5) and (14.2)
py(y) = px(Gly)|det(G™)]
= n)he ;etl/Q(C) P [_%(G_ly —wCTE Ty - ”)] m

1 1 B
(27)V/2 det2(GCGT) exp [_E(y - Gp)l(Gea") !y - G”)]

(see Section 12.7 for details of matrix manipulations) so that Y ~ N (Gu, GCGT).
This result is the extension of Theorem 12.7 from 2 to N jointly Gaussian random
variables. See also Problems 14.8 and 14.15 for the case where G is M x N with
M < N. It is shown there that the same result holds.

¢
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14.5 Expected Values

The expected value of a random vector is defined as the vector of the expected values
of the elements of the random vector. This says that we define

X1 Ex, [X1]
Xo Ex,[X2]

Ex[X] = Ex, x»,..Xx : = " (14.6)
XN Exy[XN]

We can view this definition as “passing” the expectation “through” the left bracket
of the vector since Ex, x, . xy[Xi] = Ex,;[X;]. A particular expectation of interest
is that of a scalar function of X1, Xo,..., Xy, say ¢(X1,Xo,...,Xy). Similar to
previous results (see (12.28)7?7 ) this is determined using

Ex, x,,..xx[9(X1, X2, ..., XN)]

o0 oo o0
:/ / / g(z1, 22, ..., TN)PX, Xo,.. Xn (X1, T2, ..., ZN)dT1 d2o . . . dTN.
— 00 — 00 — 00
(14.7)
Some specific results of interest are the linearity of the expectation operator or

N N
Ex, xs,..Xx [Z aiXi] = ZaiEXi [Xi] (14.8)
=1

=1

and in particular if ¢; = 1 for all 7, then we have

N N
EXl,XQ,...,XN [Z Xz] = ZEXz[Xl] (]_49)
=1

=1

The variance of a linear combination of random variables is given by

N N N
var (Z aiXi> = Z Zaiaicov(Xi,Xj) = aTCXa (14.10)
=1

i=1 j=1

where Cy is the covariance matrix of X and a = [aj as...ay]’. The derivation of
(14.10) is identical to that given in the proof of Property 9.2 for discrete random
variables. If the random variables are uncorrelated so that the covariance matrix is

diagonal or
Cx = diag(var(Xy), var(Xs)...,var(Xn))

then (see Problem 14.10)

N N
var (Z az-XZ-> = Z aZvar(X;). (14.11)

=1 =1
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If furthermore, a; = 1 for all 7, then

N N
var (Z X) = var(X;). (14.12)
i=1 =1

An example follows.
Example 14.111 - Sample mean of independent and identically dis-
tributed random variables

Assume that X1, Xo,..., Xy are independent random variables and each ran-
dom variable has the same marginal PDF. When random variables have the same
marginal PDF, they are said to be identically distributed. Hence, we are assuming
that the random variables are independent and identically distributed (IID) As a
consequence of being identically distributed, Ex,[X;] = p and var(X;) = o2 for all
1. It is of interest to examine the mean and variance of the random variable that we
obtain by averaging the X;’s together. This averaged random variable is

I
X:N;Xi

and is called the sample mean random wvariable. We have previously encountered
the sample mean when referring to an average of a set of outcomes of a repeated
experiment, which produced a number. Now, however, X is a function of the random
variables X1, Xs,..., X and so is a random variable itself. As such we may consider
its probabilistic properties such as its mean and variance. The mean is from (14.8)
with a; = 1/N

N
_1
Bx, XX [ X] = > Ex[Xi]=p
=1

and the variance is from (14.11) with a; = 1/N (since X;’s are independent and
hence uncorrelated)

var(X) = var(X;)

M-

Il

\H
™M= =~

ql\')

-
Il
_

3

)

0_2

N.
Note that on the average the sample mean random variable will yield the value y,
which is the expected value of each X;. Also as N — oo, var(X) — 0, so that the
PDF of X will become more and more concentrated about u. In effect, as N — oo,

we have that X — . This says that the sample mean random variable will converge
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to the true expected value of X;. An example is shown in Figure 14.2 in which the
marginal PDF of each X; is N'(2,1). In the next chapter we will prove that X does
indeed converge to Ex,[X;] = u.

2 2 -
B~ 15} 15}
a a R
o o
T 4 !
< <
E £
% %
M 05 FJJ‘ M 05
0 0
2
T

ST

(a) N =10 (b) N =100

Figure 14.2: Estimated PDF for sample mean random variable, X .

14.6 Joint Moments and the Characteristic Function
The joint moments corresponding to an N-dimensional PDF are defined as

I1 vla IN
EX17X2:---aXN [Xl X2 XN]

> o o I 1 l
:/ / / T TS . TR DX X, Xy (@1, T2, N )dT dog .. do .
—o00 J —00 —00
(14.13)
As usual if the random variables are independent, the joint PDF factors and therefore
Ex, X, xy [ XUXE XV = By [XMEx, [X2]. . Ex, [X2]. (14.14)

The joint characteristic function is defined as

X1, X0, Xy (W1 W2, s WN) = Exy X, xy [€xP[j(w1 X1 + woXo + -+ + wn X n)]]
(14.15)
and is evaluated as

DXy, Xoy Xy (W1, W2, .o, WN)

(o0} [o¢] [o¢]
:/ / / explj(wiz1+wazat - +WNTN) DX, X, Xy (T1, T2, ..., TN )dz d2s . .
—00 —0o0 —00

.d(I,‘N.
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In particular, for independent random variables, we have (see Problem 14.13)

BX1, Xz, Xy (W1, W2, ., wN) = dx, (W1)dx, (W2) ... dxy (WN).

Also, the joint PDF can be found from the joint characteristic function using the
inverse Fourier transform as

DPX1, X, Xx (T1,Z2, ..., ZN)

0 o0 o0
= / / / DX X, Xy (W1, w2, ..., WN)
— 00 — 00 —00

. dwi dwo dwpy
cexp[—j(wiz1 + wazy + - F WNEN)| —— ... —.
2w 27 27

All the properties of the 2-dimensional characteristic function extend to the general

case. Note that once ¢x, x,,.. xy (w1, ws,...,wn) is known, the characteristic func-

tion for any subset of the X;’s is found by setting w; equal to zero for the ones not in

the subset. For example, to find px, x,(z1,22), we can let w3 =wy =+ =wy =0
in the joint characteristic function to yield (see Problem 14.14)

(14.16)

dw1 de

[oe] [ee]
Px1,X5 (71, T2) :/ / bx1,Xo,... Xy (W1, w2,0,0,...,0) eXP[—j(w1$1+w2$2)]2——-
—oo J—oo ™~ ~— ~ T 2w

Bxy,x, (W1,w2)

As seen previously, the joint moments can be obtained from the characteristic func-
tion. The general formula is

I1 v l2 In
EX17X2:---:XN [Xl X2 XN]

1 al1+l2+"'+lN

= - ¢X1:X2:---7XN(UJ17W27"' ,UJN)
jhtlettin 3wlll 80.152 .. 3w§<}’

w1 =wo="+=wn=0

(14.17)
An example follows.
Example 14.112 - Second-order joint moments for multivariate Gaussian
PDF
In this example we derive the second-order moments Ex; x, [X; X;] if X ~ N(0, C).
The characteristic function can be shown to be [Muirhead 1982]

dx (w) = exp (—%wTCw>

where w = [wj wy ... wy]T. We first let

N N
Q(w) = wl'Cw = Z Zwmwn[C]mn (14.18)

m=1n=1
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and note that it is a quadratic form (see Appendix C). Also, we let [Cl, = cmn tO
simplify the notation. Then from (14.17) with [; = [; = 1 and the other I’s equal to
zero, we have

XX B aow; TP\ T2 )| e

Carrying out the partial differentiation produces

dexp[—(1/2)Q(w)] _l%(w)exp (—EQ(“’)>
2

ow; 2 Ow;
9% exp[—(1/2)Q(w)] _ 19Q(w) IQ(w) 1
;0w 4 0w ow; OF (_iQ(w)>

2 w
(). o

But

- 0 (14.20)

and also

(14.21)

But

0% wmwn, Owy, Owm
N 6wi 6wi
= WmOni + Wnomi

where d;; is the Kronecker delta, which is defined to be 1 if i = j and 0 otherwise.

Hence 9
0“wWmwn,

Gundiay 00 oo

and d,,0,; equals 1 if (m,n) = (j,7) and equals 0 otherwise, and d,,;0,,; equals 1 if
(m,n) = (4,7) and equals 0 otherwise. Thus,

2
Gwiawj w=0

= 2¢ (recall that CT = C).
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Finally, we have the expected result from (14.19) and (14.20) that

1 [ 192 1
EXin [XZXJ] = ]_2 |:_§ 8(,06;28(:]) xp <_§Q(w)>:| ‘w_()
1 1

— = (_§> (2¢ij) = cij = [Clyj.

&

Lastly, we extend the characteristic function approach to determining the PDF for
a sum of IID random variables. Letting ¥ = Zl]\il X;, the characteristic function of
Y is defined by

¢y (w) = By lexp(jwY)]

and is evaluated using (14.7) with g(X1, Xo,..., Xy) = exp[jw 3.~ X;] (the real
and imaginary parts are evaluated as separate integrals) as

N
dy(w) = Ex;x,.Xy [eXp (ijXlH

=1
N
= EX17X2:---,XN [H eXp(jWXi)] .
=1

Now using the fact that the X;’s are IID, we have that

N
oy (w) = HEXi[exp(iji)] (independence)
Z;l
= H¢Xl(w)
i=1
= [px (W)Y (identically distributed)

where ¢y (w) is the common characteristic function of the random variables. To
finally obtain the PDF of the sum random variable we use an inverse Fourier trans-
form to yield

o0 N . dw

py(y) = [ [ox(W)]" exp(—jwy) . (14.22)

o T
This formula will form the basis for the exploration of the PDF of a sum of IID
random variables in Chapter 15. See Problems 14.17 and 14.18 for some examples
of its use.

14.7 Conditional PDFs

The discussion of Section 9.7 of the definitions and properties of the conditional PMF
also hold for the conditional PDF. To accommodate continuous random variables we



14.8. PREDICTION OF A RANDOM VARIABLE OUTCOME 483

need only replace the PMF notation of the “bracket” with that of the PDF notation
of the “parenthesis.” Hence, we do not pursue this topic further.

14.8 Prediction of a Random Variable Outcome

We have seen in Section 7.9 that the optimal linear prediction of the outcome of Y
when X = zx is observed to occur is

cov(X,Y)

Y = By[Y] + var (X)

(x — Ex[X]). (14.23)
If (X,Y) has a bivariate Gaussian PDF, then the linear predictor is also the optimal
predictor, amongst all linear and nonlinear predictors. We now extend these results
to the prediction of a random variable after having observed the outcomes of several
other random variables. In doing so the orthogonality principle will be introduced.
Our discussions will assume only zero mean random variables, although the results
are easily modified to yield the prediction for a nonzero mean random variable. To
do so note that (14.23) can also be written as

. cov(X,Y)
Y —EylY]|=—(x — Ex[X]).
VY] = 8 o~ Bx[X)
But if X and Y had been zero mean, then we would have obtained
V- cov(X,Y)
var(X)

It is clear that the modification from the zero mean case to the nonzero mean case
is to replace each z; by z; — Ex,[X;] and also Y by Y — Ey[Y].

Now consider the p 4+ 1 continuous random variables {Xi, Xo,..., X, X1}
and say we wish to predict X,,; based on the knowledge of the outcomes of
X1, X9,...,Xp. Letting X1 = z1,X2 = 22...,X;, = 1, be those outcomes, we
consider the linear prediction

p
Xp+1 = Zaixi (14.24)
=1

where the a;’s are the linear prediction coefficients, which are to be determined. The
optimal coefficients are chosen to minimize the mean square error (MSE)

~

mse = EXl,X2,~~~,Xp+1[(XP+1 - XP+1)2]

or written more explicitly as

P 2
mse = Ex, X, X, 11 (Xz,]+1 - Z aiXZ-> . (14.25)
=1
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We have used Y ?_, a;X;, which is a random variable, as the predictor in order that
the error measure be the average over all predictions. If we now differentiate the
MSE with respect to a; we obtain

OBX, X, Xp1 [(Xps1 — Dby ai Xi)?]
(90,1

(interchange integration

0 . 2
= Exi X, X laal (Xps1 — EaiXi) ] and differentiation)
1=

p
= Ex, X, X1 [—2()(,,+1 - Z“in‘)Xll =0. (14.26)

=1

This produces

p
EX17X2;---7Xp+1[X1Xp+1] = EX17X27---7X13+1 [Z a'inXi]
i=1

or
p

Ex, Xy [ X1 Xpn1] = Y aiEx, x,[X1X).

=1

Letting c;; = Ex;, x;[X;X}] denote the covariance we have the equation

p

E C1it; = Clpy1-

=1

If we differentiate with respect to the other coefficients, similar equations are ob-
tained. In all, there will be p simultaneous linear equations given by

p
E CkiGi = Ckp+1 k=1,2,...,p
i—1

that need to be solved to yield the a;’s. These equations can be written in vec-
tor/matrix form as

C11 €12 ... Cip al Clp+1
C21 €22 ... C2p a2 C2.p+1
= (14.27)
Lot Cp2 - Cpp ap Cp,p+1
C c

We note that C is the covariance matrix of the random vector [X; X3 ... X,]T and
c is the vector of covariances between X, and each X; used in the predictor.
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The linear prediction coefficients are found by solving these linear equations. An
example follows.

Example 14.113 - Linear prediction based on two random variable out-
comes

Consider the prediction of X3 based on the outcomes of X; and X5 so that Xg =
a1z1 + agzo, where p = 2. If we know the covariance matrix of X = [X; X» X3]T
say Cx, then all the ¢;;’s needed for (14.27) are known. Hence, suppose that

C11 C12 Ci13 1 2/3 1/3
CX = C91 €22 C23 == 2/3 1 2/3
C31 €32 C33 1/3 2/3 1

Thus, X3 is correlated with X9 with a correlation coefficient of 2/3 and X3 is
correlated with X; but with a smaller correlation coefficient of 1/3. Using (14.27)
with p = 2 we must solve

s [0 )-[ e ]

By inverting the covariance matrix we have the solution
144 _ 1 [ 1 —2/3 ] 1/3
2, 1—1(2/3)2 | —2/3 1 2/3

1]

Due to the larger correlation of X3 with X5, the prediction coefficient as is larger.
Note that if the covariance matrix is Cx = oI, then c¢i3 = c3 = 0 and A1y =
a2,,, = 0. This results in X3 = 0 or more generally for random variables with
nonzero means, X3 = Ex,[X3], as one might expect. See also Problem 14.24 to see
how to determine the minimum value of the MSE.
¢

As another simple example, observe what happens if p = 1 so that we wish to
predict X, based on the outcome of X;. In this case we have that Xy = a1z and
from (14.27), the solution for a is a1,,, = ci2/c11 = cov(Xy, Xo)/var(X1). Hence,
Xy = [cov(X1, X5)/var(X1)]z; and we recover our previous results for the bivariate
case (see (14.23) and let Ex[X] = Ey[Y] = 0) by replacing X; with X, z; with z,
and Xy with Y.

An interesting and quite useful interpretation of the linear prediction procedure
can be made by reexamining (14.26). To simplify the discussion let p = 2 so that
the equations to be solved are

Ex, xy,x3[(X3 — a1 X1 — a2 X2) X1]
Ex, x5,x3[(X3 — a1 X1 — a2 X2)Xo] = 0. (14.28)
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Let the predictor error be denoted by €, which is explicitly € = X35 — a1 X1 — a2 Xo.
Then (14.28) becomes

EXl,X2,X3[6X1] =0
EXI,XQ,X3[6X2] =0 (14.29)

which says that the optimal prediction coefficients a1, as are found by making the
predictor error uncorrelated with the random variables used to predict X3. Presum-
ably if this were not the case, then some correlation would remain between the error
and X7, X9, and this correlation could be exploited to reduce the error further (see
Problem 14.23).

A geometric interpretation of (14.29) becomes apparent by considering X, X,
and X3 as vectors in a Euclidean space as depicted in Figure 14.3a. Since X5 =

X

X1

(a) (b)

Figure 14.3: Geometrical intepretation of linear prediction.

a1 X1+ axXo, Xg can be any vector in the shaded region, which is the X;- X5 plane,
depending upon the choice of a1 and as. To minimize the error we should choose
X5 as the orthogonal projection onto the plane as shown in Figure 14.3b. But this
is equivalent to making the error vector € orthogonal to any vector in the plane. In
particular, then we have the requirement that

e L X1
e L X, (14.30)
where L denotes orthogonality. To relate these conditions back to those of (14.29) we
define two zero mean random variables X and Y to be orthogonal if Fx y[XY] = 0.
Hence, we have that (14.30) is equivalent to
EXI ,X2,X3 I:EXI]

EXI ,X2,X3 [6X2]
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or just the condition given by (14.29). (Since € depends on (X1, X3, X3), the ex-
pectation reflects this dependence.) This is called the orthogonality principle. Tt
asserts that to minimize the MSE the error “vector” should be orthogonal to each of
the “data vectors” used to predict the desired “vector”. The “vectors” X and Y are
defined to be orthogonal if Ex y[XY] = 0, which is equivalent to being uncorrelated
since we have assumed zero mean random variables. See also Problem 14.22 for the
one-dimensional case of the orthogonality principle.

14.9 Computer Simulation of Gaussian Random Vec-
tors

The method described in Section 12.11 for generating a bivariate Gaussian random
vector is easily extended to the N-dimensional case. To generate a realization of
X ~ N(pu, C) we proceed as follows:

1. Perform a Cholesky decomposition of C to yield the N x N nonsingular matrix
G, where C = GGT.

2. Generate a realization u of an N x 1 random vector U whose PDF is N/(0,I).
3. Form the realization of X as x = Gu + p.

As an example, if 4 = 0 and

1 2/3 1/3
cC=12/3 1 2/3 (14.31)
1/3 2/3 1
then
1 0 0

G = | 0.6667 0.7454 0
0.3333 0.5963 0.7303

We plot 100 realizations of X in Figure 14.4. The MATLAB code is shown below.

c=[1 2/3 1/3;2/3 1 2/3;1/3 2/3 11;
G=chol(C)’; % perform Cholesky decomposition
% MATLAB produces C=A’*A so G=A’

M=200;
for m=1:M J, generate realizations of x

u=[randn(1,1) randn(1,1) randn(1,1)]’;

x(:,m)=G*u; % realizations stored as columns of 3 x 200 matrix
end
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T

Figure 14.4: Realizations of 3 x 1 multivariate Gaussian random vector.

14.10 Real-World Example — Signal Detection

An important problem in sonar and radar is to be able to determine when an object,
such as a submarine in sonar or an aircraft in radar, is present. To make this decision
a pulse is transmitted into the water (sonar) or air (radar) and one looks to see if a
reflected pulse from the object is returned. Typically, a digital computer is used to
sample the received waveform in time and store the samples in memory for further
processing. We will denote the received samples as X1, Xo,..., Xy. If there is no
reflection, indicating no object is present, the received samples are due to noise only.
If, however, there is a reflected pulse, also called an echo, the received samples will
consist of a signal added to the noise. A standard model for the received samples is to
assume that X; = W;, where W; ~ N (0, 02) for noise only present and X; = s; + W;
for a signal plus noise present. The noise samples W; are usually also assumed to be
independent and hence they are IID. With this modeling we can formulate the signal
detection problem as the problem of deciding between the following two hypotheses

Hw @ X;=W; 1=1,2,...,N
Hsow @ Xi=si+W; 1=1,2,...,N.

It can be shown that a good decision procedure is to choose the hypothesis for which
the received data samples have the highest probability of occuring. In other words,
if the received data is more probable when Hs y is true than when Hyy is true,
we say that a signal is present. Otherwise, we decide that noise only is present. To
implement this approach we let px(x;Hw ) be the PDF when noise only is present
and px (x; Hs1w) be the PDF when a signal plus noise is present. Then we decide
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a signal is present if
px (x; Hspw) > px (x5 Hw ). (14.32)

But from the modeling we have that X = W ~ A(0, o%I) for no signal present and
X = s+ W ~ N(s,0%I) when a signal is present. Here we have defined the signal
vector as s = [s1 s2...sy|7. Hence, (14.32) becomes

1 1 . 1 1 .
(2702) 2 o _ﬁ(x_S) =9~ (27m02) % exp[ 202" X]

An equivalent inequality is

T

Tx—s)>—x"x

—(x—s)
since the constant 1/(2wo?)N/2 is positive and the exponential function increases
with its argument. Expanding the terms we have

—XTX + sz + sTx — sTs > —xTx

and since sTx = xI's we have

1
xl's > §STS

or finally we decide a signal is present if

al 1
§. 1: Tisi > 3 § 1: 52, (14.33)
1= 1=

This detector is called a replica correlator [Kay 1998] since it correlates the data
Z1,%2,...,2n with a replica of the signal s, ss,...,sxy. The quantity on the right-
hand-side of (14.33) is called the threshold. If the value of Zl]\il x;s; exceeds the
threshold, the signal is declared as being present.

As an example, assume that the signal is a “DC level” pulse or s; = A for
i=1,2,...,N and that A > 0. Then (14.33) reduces to

N 1
AZmi > §NA2

=1

and since A > 0, we decide a signal is present if

N
1 A
i=1

Hence, the sample mean is compared to a threshold of A/2. To see how this detector
performs we choose A = 0.5 and 02 = 1. The received data samples are shown in
Figure 14.5a for the case of noise only and in Figure 14.5b for the case of a signal plus
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g 0‘ L]l‘ “lﬂlﬁ 1 “[lll .J‘Tllllu g O.[mf“ll ﬂl. ‘11 ll.]l.l

-2 -2
-3 : : : : -3 : : : :
0 20 40 60 80 100 0 20 40 60 80 100
Sample, i Sample, @
(a) Noise only (b) Signal plus noise

Figure 14.5: Received data samples. Signal is s; = A = 0.5 and noise consists of
IID standard Gaussian random variables.

noise. A total of 100 received data samples are shown. Note that the noise samples
generated are different for each figure. The value of the sample mean (1/N) Zl]\il T
is shown in Figure 14.6 versus the number of data samples N used in the averaging.
For example, if N = 10, then the value shown is (1/10) Z 1 Ti, where z; is found
from the first 10 samples of Figure 14.5. To more easily observe the results they
have been plotted as a continuous curve by connecting the points with straight lines.
Also, the threshold of A/2 = 0.25 is shown as the dashed line. It is seen that as the

1 . . . " 0.5
0.5} signal plus-noise 04l |
______ =
g ol g signal plus noise
‘é’ noise only E 0.3 1
<5}
2 -05 T e
2
5 L 3 02
= n
L noise onl
15 01 Y
-2 : : : : 0 : : : : :
0 20 40 60 80 100 70 75 80 85 90 95 100
Number of samples, N Number of samples, N
(a) Total view (b) Expanded view for 70 < N < 100

Figure 14.6: Value of sample mean versus the number of data samples averaged.
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number of data samples averaged increases, the sample mean converges to the mean
of X; (see also Example 14.4). When noise only is present, this becomes Ex[X] =0
and when a signal is present, it becomes Ex[X] = A = 0.5. Thus by comparing the
sample mean to the threshold of A/2 = 0.25 we should be able to decide if a signal
is present or not most of the time (see also Problem 14.26).
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Problems

14.1(.-) (w,f) If Y = X| + X5 + X3, where X ~ N (u, C) and

1
po= |2
| 3
1 1/2 1/4
cC = |1/2 1 1/2
| 1/4 172 1

find the mean and variance of Y.

14.2 (w,c) If [X; Xo]7 ~ N(0,0%1), find P[X? + X2 > R?]. Next, let 02 = 1 and
R =1 and lend credence to your result by performing a computer simulation
to estimate the probability.

14.3 (f) Find the PDF of Y = X? + X2+ X2 if X ~ N(0,I). Hint: Use the results
of Example 14.1. Note that you should obtain the PDF for a X% random
variable.

14.4 (w) An airline has flights that depart according to schedule 95% of the time.
This means that they depart late 1/2 hour or more 5% of the time due to
mechanical problems, traffic delays, etc. (for less than 1/2 hour the plane is
considered to be “on time”). The amount of time that the plane is late is
modeled as an exp(\) random variable. If a person takes a plane which makes
two stops at intermediate destinations, what is the probability that he will
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be more than 1 1/2 hours late? Hint: You will need the PDF for a sum of
independent exponential random variables.

14.5 (f) Consider the inverse transformation from spherical to Cartesian coordi-
nates. Show that the Jacobian has a determinant whose absolute value is
equal to 72 sin ¢.

14.6 (.- ) (w) A large group of college students have weights which can be modeled
as a N (150, 30) random variable. If 4 students are selected at random, what
is the probability that they will all weigh more than 150 lbs?

14.7 (t) Prove that the joint PDF given by (14.4) has A/(0,1) marginal PDFs and
that the random variables are uncorrelated. Hint: Use the known properties
of the standard bivariate Gaussian PDF.

14.8 (t) Assume that X ~ N (0,C) for X an N x 1 random vector and that Y =
GX, where G is an M x N matrix with M < N. If the characteristic function
of X is ¢x(w) = exp (—%wTCw), find the characteristic function of Y. Use
the following

dv(w) = Byexp(jw" Y)] = Ex[exp(jw’ GX)] = Ex[exp(j(G' w)" X)].
Based on your results conclude that Y ~ A(0, GCGT).

14.9(--) (f) Y = X; + X3 + X3, where X ~ N (0, C) and C = diag(o?, 02, 03),
find the PDF of Y. Hint: See Problem 14.8.
14.10 (f) Show that if Cyx is a diagonal matrix, then a’ Cya = Zl]\il a?var(X;).

7

14.11 (c) Simulate a single realization of a random vector composed of IID random
variables with PDF X; ~ N (1,2) for 4 = 1,2,..., N. Do this by repeating an
experiment that successively generates X ~ N(1,2). Then, find the outcome
of the sample mean random variable and discuss what happens as N becomes
large.

14.12 (:-) (w,c) An N x1random vector X has Ex,[X;] = p and var(X;) = io? for
1 =1,2,...,N. The components of X are independent. Does the sample mean
random variable converge to 1 as N becomes large? Carry out a computer
simulation for this problem and explain your results.

14.13 (t) Prove that if Xy, Xs,..., Xy are independent random variables, then
BX1, Xy X (W1 W2, oy W) = [ i, (W)

14.14 (t) Prove that ¢X1,X2,...,XN (QJ1,QJ2,0, 0... ,0) = ¢X1,X2(W1,CU2).
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14.15 (t) If X ~ N (u, C) with X an N x 1 random vector, prove that the charac-
teristic function is

1
ox (w) = exp <iju — EwTCw> .

To do so note that the characteristic function of a random vector distributed
according to N'(0,C) is exp (—iw? Cw). With these results show that the
PDF of Y = GX for G an M x N matrix with M < N is N'(Gu, GCGT).

14.16 (t) Prove that if X ~ N(u,C) for X an N x 1 random vector, then the
marginal PDFs are X; ~ N (u;,0?). Hint: Examine the PDF of Y = e! X,

i
where e; is the N x 1 vector whose elements are all zeros except for the ith
element, which is a one. Also, make use of the results of Problem 14.15.

14.17 (f) Prove that if X; ~ N (0,1) for i =1,2..., N and the X;’s are IID, then
ZZ]\; L X2 ~ x%. To do so first find the characteristic function of X?. Hint:
You will need the result that

00 1 1 2
/ ——exp (——x—> der =1
—o V27C 2 ¢

for ¢ a complex number. Also, see Table 11.1.

14.18 (t) Prove that if X; ~ exp(A) and the X;’s are IID, then ZZ]\LI X; has an
Erlang PDF. Hint: See Table 11.1.

14.19 (--) (w,c) Find the mean and variance of the random variable

12
Y =) (U; -1/2)
=1

where U; ~ U(0,1) and the U;’s are IID. Estimate the PDF of Y using a
computer simulation and compare it to a standard Gaussian PDF. See Section
15.5 for a theoretical justification of your results.

14.20 (w) Three different voltmeters measure the voltage of a 100 volt source. The
measurements can be modeled as random variables with

Vi ~ N(100,1)
Vo ~ N(100,10)
Vs ~ N(100,5).

Is it better to average the results or just use the most accurate voltmeter?
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14.21 (o) (f) If a 3 x 1 random vector has mean zero and covariance matrix
3 21
Cx=1|2 3 2
1 2 3

find the optimal prediction of X3 given that we have observed X; = 1 and
Xy =2.

14.22 (t) Consider the prediction of the random variable Y based on observing that
X = z. Assuming (X,Y) is a zero mean random vector, we propose using the
linear prediction Y = az. Determine the optimal value of a (being the value
that minimizes the MSE) by using the orthogonality principle. Explain your
results by drawing a diagram.

14.23 (f) If a 3 x 1 random vector X has a zero mean and covariance matrix

1 p p
Cx=|p 1 p
P> op 1

determine the optimal linear prediction of X3 based on the observed outcomes
of X; and X5. Why is ay,,, = 07 Hint: Consider the covariance between
€ = X3 — pXs, which is the predictor error for X5 based on observing only Xs,
and X1 .

14.24 (--) (t,f) Explain why the minimum MSE of the predictor X3 = A1 X1+
a20th2 is

msemil’l = EXI,XQ,Xg [(X?, - alothl — a20th2)2]
EX17X27X3 [(X?) - a’lothl - a20th2)X3:|

C33 = G145, C13 — 02, C23-

Next use this result to find the minimum MSE for Example 14.6.

14.25 (.- ) (c) Use a computer simulation to generate realizations of the random
vector X described in Example 14.6. Then, predict X3 based on the outcomes
of X1 and X» and plot the true realizations and the predictions. Finally, esti-
mate the predictor error and compare your results to the theoretical minimum
MSE obtained in Problem 14.24.

14.26 (w) For the signal detection example described in Section 14.9 prove that
the probability of saying a signal is present when indeed there is one, goes to
las A — oco.



PROBLEMS 495

14.27 (c) Generate on a computer 1000 realizations of the two different random
variables Xy ~ N(0,1) and X5 ~ N(0.5,1). Next plot the outcomes of
the sample mean random variable versus NV, the number of successive samples
averaged, or Zy = (1/N) ZZ]\LI 2;. What can you say about the sample means
as N becomes large? Explain what this has to do with signal detection.
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Chapter 15

Probability and Moment
Approximations using Limit
Theorems

15.1 Introduction

So far we have described the methods for determining the exact probability of events
using PMF's for discrete random variables and PDFs for continuous random vari-
ables. Also of importance were the methods to determine the moments of these
random variables. The procedures employed were all based on knowledge of the
PMF/PDF and the implementation of its summation/integration. In many practi-
cal situations the PMF/PDF may be unknown or the summation/integration may
not be easily carried out. It would be of great utility, therefore, to be able to ap-
proximate the desired quantities using much simpler methods. For random variables
that are the sum of a large number of independent and identically distributed ran-
dom variables this can be done. In this chapter we focus our discussions on two
very powerful theorems in probability — the law of large numbers and the central
limit theorem. The first theorem asserts that the sample mean random variable,
which is the average of IID random variables and which was introduced in Chapter
14, converges to the ezpected value, a number, of each random variable in the av-
erage. The law of large numbers is also known colloquially as the law of averages.
Another reason for its importance is that it provides a justification for the relative
frequency interpretation of probability. The second theorem asserts that a properly
normalized sum of IID random variables converges to a Gaussian random variable.

The theorems are actually the simplest forms of much more general results.
For example, the theorems can be formulated to handle sums of nonidentically
distributed random variables [Rao 1973] and dependent random variables [Brockwell
and Davis 1987].

497
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15.2 Summary

The Bernoulli law of large number is introduced in Section 15.4 as a prelude to the
more general law of large numbers. The latter is summarized in Theorem 15.4.1 and
asserts that the sample mean random variable of IID random variables will converge
to the expected value of a single random variable. The central limit theorem is
described in Section 15.5 where it is demonstrated that the repeated convolution of
PDF's produces a Gaussian PDF. For continuous random variables the central limit
theorem, which asserts that the sum of a large number of IID random variables has a
Gaussian PDF, is summarized in Theorem 15.5.1. The precise statement is given by
(15.6). For the sum of a large number of IID discrete random variables it is the CDF
that converges to a Gaussian CDF. Theorem 15.5.2 is the central limit theorem for
discrete random variables. The precise statement is given by (15.9). The concept
of confidence intervals is introduced in Section 15.6. A 95% confidence interval for
the sample mean estimate of the parameter p of a Ber(p) random variable is given
by (15.14). It is then applied to the real-world problem of opinion polling.

15.3 Convergence and Approximation of a Sum

Since we will be dealing with the sum of a large number of random variables, it is
worthwhile first to review some concepts of convergence. In particular, we need to
understand the role that convergence plays in approximating the behavior of a sum
of terms. As an illustrative example, consider the determination of the value of the
sum

N .
B (1+a")
N = z; N
1=

for some large value of N. We have purposedly chosen a sum that may be evaluated
in closed form to allow a comparison to its approximation. The exact value can be
found as

1 1L
SN = ﬁgl—f‘ﬁgaz

1 a_aN+1

= 1 N 1—a

Examples of sy versus N are shown in Figure 15.1. The values of sy have been
connected by straight lines for easier viewing. It should be clear that as N — oo,
sy — lif]a] < 1. This means that if N is sufficiently large, then sy will differ from 1
by a very small amount. This small amount, which is the error in the approximation
of sy by 1, is given by

1aq— aN+1

I
|8N | N 1-a
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0.6

0.4r

0.2r

0 20 40 60 80 100
N

Figure 15.1: Convergence of sum to 1.

and will depend on a as well as N. For example, if we wish to claim that the error
is less than 0.1, then N would have to be 10 for a = 0.5 but NV would need to be 57
for a = 0.85, as seen in Figure 15.1. Thus, in general the error of the approximation
will depend upon the particular sequence (value of a here). We can assert, without
actually knowing the value of a as long as |a| < 1 and hence the sum converges, that
sy will eventually become close to 1. The error can be quite large for a fixed value
of N (consider what would happen if @ = 0.999). Such are the advantages (sum will
be close to 1 for all |a| < 1) and disadvantages (how large does N have to be?) of
limit theorems. We next describe the law of large numbers.

15.4 Law of Large Numbers

When we began our study of probability, we argued that if a fair coin is tossed NV
times in succession, then the relative frequency of heads, i.e., the number of heads
observed divided by the number of coin tosses, should be close to 1/2. This was
why we intuitively accepted the assignment of a probability of 1/2 to the event that
the outcome of a fair coin toss would be a head. If we continue to toss the coin,
then as N — oo, we expect the relative frequency to approach 1/2. We can now
prove that this is indeed the case under certain assumptions. First we model the
repeated coin toss experiment as a sequence of N Bernoulli subexperiments (see
also Section 4.6.2). The result of the ith subexperiment is denoted by the discrete
random variable X;, where
1 if heads
Xi _{ 0 if tails.
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We can then model the overall experimental output by the random vector X =
(X1 X2...X N]T. We next assume that the discrete random variables X; are IID
with marginal PMF

px[k] = {

or the experiment is a sequence of independent and identical Bernoulli subexperi-
ments. Finally, the relative frequency is given by the sample mean random variable

k=0
k=1

D= N[

N
. 1
Xy =~ in (15.1)
=1
which was introduced in Chapter 14, although there it was used for the average of
continuous random variables. We subscript the sample mean random variable by NV

to remind us that N coin toss outcomes are used in its computation. Now consider
what happens to the mean and variance of Xy as N — oo. The mean is

_ 1 N
Bx[Xn] = > Bx[Xi]
=1

The variance is

_ 1 X
var(Xy) = var (WZXJ

=1

N
1
= N2 Zvar(Xi) (X;’s are independent = uncorrelated)
i=1
X.
= var](v i (X;’s are identically distributed = have same variance).

But for a Bernoulli random variable, X; ~ Ber(p), the variance is var(X;) = p(1—p).
Since p = 1/2 for a fair coin,

var(Xy) = W

1
= m—)o as N — oo.
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Therefore the width of the PMF of Xy must decrease as N increases and eventually
go to zero. Since the variance is defined as

var(Xx) = Bx [(Xn — Bx[Xx])’]

we must have that as N — oo, Xy — Ex[Xn] = 1/2. In effect the random
variable Xy becomes not random at all but a constant. It is called a degenerate
random variable. To further verify that the PMF becomes concentrated about its
mean, which is 1/2, we note that the sum of N IID Bernoulli random variables is a
binomial random variable. Thus,

al 1
Sy =Y X;~bin (N, 5)

=1

and therefore the PMF is

psylk] = @]) G)N k=0,1,...,N.

To find the PMF of Xy we let Xy = (1/N) N, X; = Sy/N and note that Xy

can take on values uy, = k/N for k = 0,1,..., N. Therefore, using the formula for
the transformation of a discrete random variable, the PMF becomes
= (MY (Y kN k=0,1,...,N (15.2)
pXNuk:_ N'U/k 2 U = ) =U, L. .

which is plotted in Figure 15.2 for various values of N. Because as N increases Xy
takes on values more densely on the interval [0, 1], we do not obtain a PMF with
all its mass concentrated at 0.5, as we might expect. Nonetheless, the probability
that the sample mean random variable will be concentrated about 1/2 increases.
As an example, the probability of being within the interval [0.45,0.55] is 0.2461 for
N =10, 0.4153 for N = 30, and 0.7287 for N = 100, as can be verified by summing
the values of the PMF over this interval. Usually it is better to plot the CDF since
as N — oo, it can be shown to converge to the unit step beginning at v = 0.5
(see Problem 15.1). Also, it is interesting to note that the PMF appears Gaussian,
although it changes in amplitude and width for each N. This is an observation that
we will focus on later when we discuss the central limit theorem. The preceding
results say that for large enough N the sample mean random variable will always
yield a number, which in this case is 1/2. By “always” we mean that every time we
perform a repeated Bernoulli experiment consisting of N independent and fair coin
tosses, we will obtain a sample mean of 1/2, for N large enough. As an example,
we have plotted in Figure 15.3 five realizations of the sample mean random variable
or zy versus N. The values of zy have been connected by straight lines for easier
viewing. We see that
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Figure 15.2: PMF for sample mean random variable of N IID Bernoulli random
variables with p = 1/2. It models the relative frequency of heads obtained for N
fair coin tosses.

d 100 200 300 400 500
N

Figure 15.3: Realizations of sample mean random variable of N IID Bernoulli ran-
dom variables with p = 1/2 as N increases.

Xy — % — Bx[X]. (15.3)

This is called the Bernoulli law of large numbers, and is known by the layman as
the law of averages. More generally for a Bernoulli subexperiment with probability
p, we have that

)(p] —p= l?)([)(].

The sample mean random variable converges to the expected value of a single ran-
dom variable. Note that since Xy is the relative frequency of heads and p is the
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probability of heads, we have shown that the probability of a head in a single coin
toss can be interpreted as the value obtained as the relative frequency of heads in a
large number of independent and identical coin tosses. This observation also justifies
our use of the sample mean random variable as an estimator of a moment since

N
— 1
EX[X]:NZXi%EX[X] as N — 0o
i=1

and more generally, justifies our use of (1/N) Zf\;l X' as an estimate of the nth
moment E[X"] (see also Problem 15.6).

A more general law of large numbers is summarized in the following theorem. It
is valid for the sample mean of IID random variables, either discrete, continuous, or
mixed.

Theorem 15.4.1 (Law of Large Numbers) If Xy, Xs,...,Xy are IID random
variables with mean Ex[X] and var(X) = 02 < oo, then limy 00 Xy = Ex[X].

Proof:
Consider the probability of the sample mean random variable deviating from the
expected value by more than e, where € is a small positive number. This probability
is given by

P[|Xn — Ex[X]| > €] = P[|Xn — Ex[Xn]| > €.

Since var(Xy) = 02?/N, we have upon using Chebyshev’s inequality (see Section
11.8)
var(Xy) o?

P[| Xy — Ex[X]| > €] < T N

and taking the limit of both sides yields

S g
lim P || Xy — Ex X < lim — =0.
i, PP = BxXIl > o < i e =0

Since a probability must be greater than or equal to zero, we have finally that
lim P [|[Xy — Ex[X]| >¢€] =0 (15.4)
N—o0

which is the mathematical statement that the sample mean random variable con-
verges to the expected value of a single random variable.
O
The limit in (15.4) says that for large enough N, the probability of the error
in the approximation of Xy by Ex[X] exceeding e (which can be chosen as small
as desired) will be exceedingly small. It is said that Xy — Ex[X] in probability
[Grimmett and Stirzaker 2001].
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A Convergence in probability does not mean all realizations will
converge

Referring to Figure 15.3 it is seen that for all realizations except the top one, the
error is small. The statement of (15.4) does allow some realizations to have an error
greater than e for a given N. However, the probability of this happening becomes
very small but not zero as N increases. For all practical purposes, then, we can ignore
this occurrence. Hence, convergence in probability is somewhat different than what
one may be familiar with in dealing with convergence of deterministic sequences. For
deterministic sequences, all sequences (since there is only one) will have an error less
than € for all N > N, where N, will depend on € (see Figure 15.1). The interested
reader should consult [Grimmett and Stirzaker 2001] for further details. See also

Problem 15.8 for an example.

We conclude our discussion with an example and some further comments.
Example 15.114 - Sample mean for IID Gaussian random variables
Recall from the real-world example in Chapter 14 that when a signal is present we

have
Xsrw, ~N(A,0%) i=1,2,...,N.

Since the random variables are ITD, we have by the law of large numbers that
XN — EX [X] = A.

Thus, the upper curve shown in Figure 14.6 must approach A = 0.5 (with high
probability) as N — oo.

¢
In applying the law of large numbers we do not need to know the marginal PDF.
If in the previous example, we had X, w, ~ U(0,2A4), then we also conclude that
Xy — A. As long as the random variables are IID with mean A and a finite
variance, Xy — A (although the error in the approximation will depend upon the
marginal PDF — see Problem 15.3).

15.5 Central Limit Theorem

By the law of large numbers the PMF/PDF of the sample mean random variable
decreases in width until all the probability is concentrated about the mean. The
theorem, however, does not say much about the PMF /PDF itself. However, by con-
sidering a slightly modified sample mean random variable, we can make some more
definitive assertions about its probability distribution. To illustrate the necessity
of doing so we consider the PDF of a continuous random variable that is the sum
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of N continuous IID random variables. A particularly illustrative example is for
X; ~U(-1/2,1/2).
Example 15.115 - PDF for sum of IID %/(—1/2,1/2) random variables

Consider the sum N
Sn=Y_X;
i=1

where the X;’s are IID random variables with X; ~ U4(—1/2,1/2). If N = 2, then
S = X1 + X9 and the PDF of S5 is easily found using a convolution integral as
described in Section 12.6. Therefore,

oo

ps (&) = px () * px (¢) = / px (w)px (¢ — u)du

— 00
where x denotes convolution. The evaluation of the convolution integral is most
easily done by plotting px(u) and px(z — u) versus u as shown in Figure 15.4a.
This is necessary to determine the regions over which the product of px(u) and
px (z — u) is nonzero and so contributes to the integral. The reader should be able
to show, based upon Figure 15.4a, that the PDF of S5 is that shown in Figure 15.4b.
More generally, we have from (14.2277) that

pX((I; —u) \ pX(u) p52($)
/
L 1+ 1—x
N
N
N
| - T o
T . - 1
2 2
(a) Cross-hatched region con- (b) Result of convolution

tributes to integral

Figure 15.4: Determining the PDF for the sum of two independent uniform random
variables using a convolution integral evaluation.

dw

pvle) = [ ) exn(—juwn) 5

;?X(x) *px () * - *px(z)

/

(N—1) coﬁzzolutions
Hence to find pg,(x) we must convolve pg,(z) with px(z) to yield px(z) * px(z) *
px (z) since pg,(z) = px(z) *px (). This is

psslo) = [ " sy (wpx (& — w)du

—00
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but since px(—xz) = px(z), we can express this in the more convenient form as

pss(@) = /00 ps, (u)px (u — )du.

— 00

The integrand may be determined by plotting pg,(u) and the right-shifted version
px (u — x) and multiplying these two functions. The different regions that must be
considered are shown in Figure 15.5. Hence, referring to Figure 15.5 we have

A A |
-1 1 -1 1 -1

AN AN AR

(a) =3/2 <z < —1/2 (b) —1/2 <z <1/2 (c)1/2 <z < 3/2

Figure 15.5: Determination of limits for convolution integral.

z+1/2
ps,(z) = / ps, (u) - 1du

g S P
2 2 8 2 -"—= 2
z+/2
psle) = [ ps)-1du
z—1/2
= —(II2+§ —l<:1c<l
- 4 2 )
1
ps,(5) = / Py (u) - 1du
z—1/2
1, 3 9 1_ .3
- ¥ T3y 2 ST=73

and pg,(z) = 0 otherwise. This is plotted in Figure 15.6 versus the PDF of a
N(0,3/12) random variable. Note the close agreement. We have chosen the mean
and variance of the Gaussian approximation to match that of pg,(x) (recall that
var(X) = (b — a)?/12 for X ~ U(a,b) and hence var(X;) = 1/12). If we continue
the convolution process, the mean will remain at zero but the variance of Sy will
be N/12.

¢
A MATLAB program that implements a repeated convolution for a PDF that is
nonzero over the interval (0,1) is given in Appendix 15A. It can be used to verify
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solid - exact PDF
dashed - N(0,3/12) approximation
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Figure 15.6: PDF for sum of 3 IID #/(—1/2,1/2) random variables and Gaussian
approximation.

analytical results and also to try out other PDFs. An example of its use is shown in
Figure 15.7 for the repeated convolution of a ¢/(0,1) PDF. Note that as N increases
the PDF moves to the right since E[Sy] = NEx[X] = N/2 and the variance also
increases since var(Sy) = Nvar(X) = N/12. Because of this behavior it is not
possible to state that the PDF converges to any PDF. To circumvent this problem
it is necessary to mormalize the sum so that its mean and variance are fixed as IV
increases. It is convenient, therefore, to have the mean fixed at 0 and the variance
fixed at 1, resulting in a standardized sum. Recall from Section 7.9 that this is easily
accomplished by forming

Sx — E[Sy] _ Sy — NEx[X]
var(Sy) Nvar(X)

(15.5)

By doing so, we can now assert that this standardized random variable will converge
to a N'(0,1) random variable. An example is shown in Figure 15.8 for X; ~ (0, 1)
and for N = 2,3,4. This is the famous central limit theorem, which says that the
PDF of the standardized sum of a large number of continuous IID random variables
will converge to a Gaussian PDF. Its great importance is that in many practical
situations one can model a random variable as having arisen from the contributions
of many small and similar physical effects. By making the ITD assumption we can
assert that the PDF is Gaussian. There is no need to know the PDF of each random
variable or even if it is known, to determine the exact PDF of the sum, which may
not be possible. Some application areas are:

1. Polling (see Section 15.6) [Weisburg, Krosnick, Bowen 1996]
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Figure 15.7: PDF of sum of N IID (0, 1) random variables. The plots were obtained
using clt_demo.m listed in Appendix 15A.

2. Noise characterization [Middleton 1960]
3. Scattering effects modeling [Urick 1975]
4. Kinetic theory of gases [F. Reif 1965]
5.

Economic modeling [Harvey 1989]

and many more.
We now state the theorem for continuous random variables.
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Figure 15.8: PDF of standardized sum of N IID ¢(0, 1) random variables.

Theorem 15.5.1 (Central limit theorem for continuous random variables)
If X1, X9,..., XN are continuous IID random variables, each with mean Ex[X] and
variance var(X), and Sy = sz\; X, then as N — oo

Sy — E[Sy] 2N, X, — NEx[X]

Vvar(Sy) B v/ Nvar(X)

Equivalently, the CDF of the standardized sum converges to ®(x) or

Sy — ElSn] gg] - /w %exp (—%t2> dt = ©(z). (15.7)

var(Sy) —0

— N(0,1). (15.6)

The proof is given in Appendix 15B and is based on the properties of characteristic
functions and the continuity theorem. An example follows.

Example 15.116 - PDF of sum of squares of independent N (0,1) random
variables

Let X; ~ N(0,1) for i = 1,2,..., N and assume that the X;’s are independent.
We wish to determine the approximate PDF of Yy = Zf\;l Xf as N becomes large.
Note that the exact PDF for Yy is a X%\r PDF so that we will equivalently find
an approximation to the PDF of the standardized X?\, random variable. To apply
the central limit theorem we first note that since the X;’s are IID so are the XiZ’s
(why?). Then as N — oo we have from (15.6)

>, X — NEx([X?]
Nvar(X?)

— N(0,1).
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But X? ~ x? so that Ex[X?] =1 and var(X?) = 2 (see Section 10.5.6?7 and Table
11.1 for a x% =T'(N/2,1/2) PDF) and therefore

N 2
Lin Xi - N XT;V N — N(0,1).

Noting that for finite IV this result can be viewed as an approximation, we can use
the approximate PDF

N
Yn =) X7 ~N(N,2N)
i=1

in making probability calculations. The error in the approximation is shown in
Figure 15.9, where the approximate PDF (shown as the solid curve) of Yy, which
is a N'(NV,2N), is compared to the exact PDF, which is a x3; (shown as the dashed
curve). It is seen that the approximation becomes better as N increases.

0.1 T T T 0.05
0.081 0.04}
= L = L
a 0.06 a 0.03
ol ol
0.04} 0.02}
0.02} 0.01}
0 0
40 60 80 0 80
T
(a) N =10

Figure 15.9: x% PDF (dashed curve) and Gaussian PDF approximation of
N(N,2N) (solid curve).

&

For the previous example it can be shown directly that the characteristic function of
the standardized X?v random variable converges to that of the standardized Gaussian
random variable, and hence so do their PDFs by the continuity theorem (see Section
11.7 for third property of characteristic function and also Problem 15.17). We next
give an example that quantifies the numerical error of the central limit theorem
approximation.

Example 15.117 - Central limit theorem and computation of probabilities
- numerical results



15.5. CENTRAL LIMIT THEOREM ol1

Recall that the Erlang PDF is the PDF of the sum of N IID exponential random
variables, where X; ~ exp(A) for 7 = 1,2,..., N (see Section 10.5.677). Hence,
letting Yy = S | X; the Erlang PDF is

N

A N—-1
_) gy exp(=hy) y =20 15.8
pyy (y) { 0 )< 0. (15.8)

Its mean is N/ and its variance is N/A? since the mean and variance of an exp()\)
random variable is 1/) and 1/\2, respectively. If we wish to determine P[Yy > 10],
then from (15.8) we can find the exact value for A =1 as

o0
1
P[Yy > 10 :/ — N lexp(—y)dy.
But using
/y” exp(—y)dy = —nlexp(-y) ) 5
k=0
[Gradshteyn and Ryzhik 1994], we have
1 N—-1 %
PlYy >10] = (V= Dlexp(—y) Y L
(N —-1) = ",
N-1
10
= exp(—10) -
k=0

A central limit theorem approximation would yield Yy ~ N(N/X, N/A2) = N(N, N)

so that - N
P[YN>10]:Q( \/_N )

where the P denotes the approximation of P. The true and approximate values
for this probability are shown in Figure 15.10. The probability values have been
connected by straight lines for easier viewing.

¢

For the sum of IID discrete random variables the situation changes markedly. Con-
sider the sum of N IID Ber(p) random variables. We already know that the PMF
is binomial so that

N _
psylk] = (k>pk(1—p)N o k=0,1,...,N—1.

Hence, this example will allow us to compare the true PMF against any approxima-
tion. For reasons already explained we need to consider the PMF of the standardized
sum or

Sy —E[Sy]  Sv—Np

var(Sy) B V/Np(1 —p)'
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Figure 15.10: Exact and approximate calculation of probability that Y > 10. Exact
value shown as dashed curve and Gaussian approximation as solid curve.

The PMF of the standardized binomial random variable PMF for p = 1/2 is shown
in Figure 15.11 for various values on N. Note that it does not converge to any given

PMF

o o
= =
Aso0as Ao1s
el
x T x
(a) N =10 (b) N =30 (c) N = 100

Figure 15.11: PMF for standardized binomial random variable with p = 1/2.

PMF, although the “envelope”, whose amplitude decreases as [N increases, appears
to be Gaussian. The lack of convergence is because the sample space or values that
the standardized random variable can take on changes with N. The possible values
are

k—Np _k—N/2
VNp(l—p)  /N/4

which become more dense as N increases. However, what does converge is the CDF

k=0,1,...,N
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as shown in Figure 15.12. Now as N — oo we can assert that the CDF converges,

12 12 12
1 1 1
Fos Fos Fos
A A A
Oos Oos Oos
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
=5 0 5 =5 0 5 =5 0
X X X
(a) N=10 (b) N =30 (¢) N =100

Figure 15.12: CDF for standardized binomial random variable with p = 1/2.
and furthermore it converges to the CDF of a A/(0,1) random variable. Hence, the

central limit theorem for discrete random variables is stated in terms of its CDF. It
says that as N — oo

P [&V;T]fgf)] < x] — /; %exp (—%F) dt = ®(x)

and is also known as the DeMoivre-Laplace theorem. We summarize the central
limit theorem for discrete random variables next.

Theorem 15.5.2 (Central limit theorem for discrete random variables) If

X1,Xa,...,Xn are IID discrete random variables, each with mean Ex[X] and vari-
ance var(X), and Sy = Zf\;l Xi, then as N — oo
Sy — E[S o1 1
p |y BN ) / —— exp <——t2> dt = ®(x) (15.9)
var(Sy) oo V21 2

An example follows.
Example 15.118 - Computation of binomial probability

Assume that Yy ~ bin(N, 1/2), which may be viewed as the PMF for the number of
heads obtained in N fair coin tosses, and consider the probability P[k; < Yy < k3.
Then the exact probability is

Pllt < Y < ko] = i (27) (%)N (15.10)
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A central limit theorem approximation yields

JN/4A — JN/A ~ \/N/4

d (M) ;) (LW) (see (10.25)77)
N/4 N/4

YN—Np :YN—N/2
VNp(l—p)  /N/4

is the standardized random variable for p = 1/2. For example, if we wish to compute
the probability of between 490 and 510 heads out of N = 1000 tosses, then

1 4
P[490 < Yy < 510] ~ @(50 500) @(90 500)

- ( )(1 (_21500»

—N/2 Yy —NJ/2 —N/2
Plk < Vi < ko] = P[lﬂ / <IN / <k2 /]

since

= 1-— (\/—_> = 0.4729.
The exact value, however, is from (15.10)
510 /AN 71\
P[490 < Yy < 510] = k%g ( L ) (§> = 0.4933 (15.11)

(see Problem 15.24 on how this was computed). A slightly better approximation
using the central limit theorem can be obtained by replacing P[490 <Y < 510] with
P[489.5 <Y < 510.5], which will more closely approximate the discrete random
variable CDF by the continuous Gaussian CDF. This is because the binomial CDF
has jumps at the integers as can be seen by referring to Figure 15.12. By taking a
slighter larger interval to be used with the Gaussian approximation, the area under
the Gaussian CDF more closely approximates these jumps at the endpoints of the
interval. With this approximation we have

489.5 — 500 510.5 — 500
P[489.5 <Y <510.5] ~ Q (W) -Q (W)
= 0.4934

which is quite close to the true value!
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15.6 Real-world Example — Opinion Polling

A frequent news topic of interest is the opinion of people on a major issue. For
example, during the year of a presidential election in the United States, we hear
almost on a daily basis the percentage of people who would vote for candidate A,
with the remaining percentage voting for candidate B. It may be reported that 75%
of the population would vote for candidate A and 25% would vote for candidate
B. Upon reflection, it does not seem reasonable that a news organization would
contact the entire population of the United States, almost 294,000,000 people, to
determine their voter preferences. And indeed it is unreasonable! A more typical
number of people contacted is only about 1000. How then can the news organization
report that 75% of the population would vote for candidate A? The answer lies in
the polling error — the results are actually stated as 75% with a margin of error
of £3%. Hence, it is not claimed that exactly 75% of the population would vote
for candidate A, but between 72% and 78% would vote for candidate A. Even so,
this seems like a lot of information to be gleaned from a very small sample of the
population.

An analogous problem may help to unravel the mystery. Let’s say we have a
coin with an unknown probability of heads p. We wish to estimate p by tossing the
coin N times. As we have already discussed, the law of large numbers asserts that
we can determine p without error if we toss the coin an infinite number of times
and use as our estimate the relative frequency of heads. However, in practice we are
limited to only N coin tosses. How much will our estimate be in error? Or more
precisely, how much can the true value deviate from our estimate? We know that
the number of heads observed in N independent coin tosses can be anywhere from
0 to N. Hence, our estimate of p for N = 1000 can take on the possible values

1 2 .
71000° 1000
Of course, most of these estimates are not very probable. The probability that the
estimate will take on these values is

p=0

1000
P[ﬁ:k/lOOO]:( L )pk(l—p)looo_k k=0,1,...,1000

which is shown in Figure 15.13 for p = 0.75. The probabilities for p outside the
interval shown are approximately zero. Note that the maximum probability is for
the true value p = 0.75. To assess the error in the estimate of p we can determine the
interval over which say 95% of the p’s will lie. The interval is chosen to be centered
about p = 0.75. In Figure 15.13 it is shown as the interval contained within the
dashed vertical lines and is found by solving

k2
1
> ( %?0> (0.75)% (0.25) 1000k — .95 (15.12)
k=k1 < — _
P[k heads]
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yielding ky = 724 and ko = 776, which results in p; = 0.724 and po = 0.776. Hence,

0.03

0.025

0.02

PMF

0.015

0.01f

0.005

0.7 0.72 0.74 0.76 0.78 0.8

Figure 15.13: PMF for estimate of p for a binomial random variable. Also, shown
as the dashed vertical lines are the boundaries of the interval within which 95% of
the estimates will lie.

for p = 0.75 we see that 95% of the time (if we kept repeating the 1000 coin toss
experiment), the value of p would be in the interval [0.724,0.776]. We can assert
that we are 95% confident that for p = 0.75

p—0.026 < p < p+0.026

or
—p+0.026 > —p > —p — 0.026

or finally
p—0.026 < p < p+0.026.

The interval [p—0.026, p+0.026] is called the 95% confidence interval. 1t is a random
interval that covers the true value of p = 0.75 for 95% of the time. As an example
a MATLAB simulation is shown in Figure 15.14. For each of 50 trials the estimate
of p is shown by the dot while the confidence interval is indicated by a vertical line.
Note that only 3 of the intervals fail to cover the true value of p = 0.75. With 50
trials and a probability of 0.95 we expect 2.5 intervals not to cover the true value.

Instead of having to compute k; and k2 using (15.12), it is easier in practice to
use the central limit theorem. Since p = Zf\;l(Xi/N), with X; ~ Ber(p), is a sum
of IID random variables we can assert from Theorem 15.5.2 that

~ A

p— E[p]
var(p)

P|-b<

< b] = B(b) — (D).



15.6. REAL-WORLD EXAMPLE - OPINION POLLING 017

0.9

0.85F

” ::lllllhh”hhll..ll..{ |.||1||.,|l||.“ll.||,|lll
é: 0_7“'”|T'T' i IH”” ‘ il ” |] p”{

Trial number

Figure 15.14: 95% confidence interval for estimate of p = 0.75 for a binomial random
variable. The estimates are shown as dots.

Noting that X; ~ Ber(p), E[p] = E[ZZ]\LI X;/N] = Np/N = p and var(p) =
var(Zf\;l X;/N) = Np(l —p)/N? =p(1 —p)/N, we have

pP—p
p(L—p)/N

For a 95% confidence interval or ®(b) — ®(—b) = 0.95, we have b = 1.96, as may be
easily verified. Hence,

P|-b< <b

= &(b) — B(—b).

—-1.96 < <1.96

which after the same manipulation as before yields the confidence interval

1— 1
ﬁ—l.gﬁy/wgpgjﬂ—l.% p(Np). (15.13)

The only difficulty in applying this result is that we don’t know the value of p, which
arose from the variance of p. To circumvent this there are two approaches. We can
replace p by its estimate to yield the approximate confidence interval

S e
p—1.96,/’% <p<p+1.96y 2 Np). (15.14)

Another more conservative approach is to note that p(1—p) is maximum for p = 1/2.
Using this number yields a larger interval than necessary. However, it allows us to
determine before the experiment is performed and the value of p revealed, the length
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of the confidence interval. This is useful in planning how large N must be in order
to have a confidence interval not exceeding a given length (see Problem 15.25). If
we adopt the latter approach then the confidence interval becomes

. p(l—-p) . /4 1
+1.961) ———= =p+ 1961/ 4= ~p+ ——.
P ~ P N SPES

In summary, if we toss a coin with a probability p of heads N times, then the interval
[p — 1/v/N,p + 1/v/N] will contain the true value of p more than 95% of the time.
It is said that the error in our estimate of p is :l:l/\/N.

Finally, returning to our polling problem we ask N people if they will vote for
candidate A. The probability that a person chosen at random will say “yes” is p,
because the proportion of people in the population who will vote for candidate A
is p. We liken this to tossing a single coin and noting if it comes up a head (vote
“yes”) or a tail (vote “no”). Then we continue to record the responses of N people
(continue to toss the coin N times). Assume for example, 750 people out of 1000 say
“yes”. Then p = 750/1000 = 0.75 and the margin of error is +1/v/N ~ 3%. Hence,
we report the results as 75% of the population would vote for candidate A with a
margin of error of 3%. (Probabilistically speaking, if we continue to poll groups of
1000 voters, estimating p for each group, then about 95 out of 100 groups would
cover the true value of 100p % by their estimated interval [100p — 3,100p + 3] %.)
We needn’t poll 294,000,000 people since we assume that the percentage of the 1000
people polled who would vote for candidate A is representative of the percentage of the
entire population. Is this true? Certainly not if the 1000 people were all relatives of
candidate A. Pollsters make their living by ensuring that their sample (1000 people
polled) is a representative cross-section of the entire United States population.
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Problems

15.1 (f) For the PMF given by (15.2) plot the CDF for N = 10, N = 30, and
N = 100. What function does the CDF appear to converge to?

15.2 (¢) If X; ~ N(1,1) for i = 1,2..., N are IID random variables, plot a real-
ization of the sample mean random variable versus N. Should the realization
converge and if so to what value?

15.3 (w,c) Let Xy, ~ U(0,2) for i = 1,2..., N be IID random variables and let
Xy, ~N(1,4) fori =1,2..., N be another set of IID random variables. If the
sample mean random variable is formed for each set of IID random variables,
which one should converge faster? Implement a computer simulation to check
your results.

15.4 (.- ) (w) Consider the weighted sum of N IID random variables Yy = ZZ]\LI a; X;.
If Ex[X] = 0 and var(X) = 1, under what conditions will the sum converge
to a number? Can you give an example, other than o; = 1/N, of a set of a;’s
which will result in convergence?

15.5 (w) A random walk is defined as Xy = Xy_1 + Uy for N = 2,3,... and
X1 = Uy, where the U;’s are IID random variables with P[U; = —1] = P[U; =
+1] = 1/2. Will Xy converge to anything as N — oo?

15.6 (w) To estimate the second moment of a random variable it is proposed to
use (1/N) Zf\;l X?2. Under what conditions will the estimate converge to the
true value?

15.7 () (w) If X; for i = 1,2..., N are IID random variables, will the random
variable (1/v/N) sz\; X; converge to a number?

15.8 (t,c) In this problem we attempt to demonstrate that convergence in prob-
ability is different than standard convergence of a sequence of real numbers.
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Consider the sequence of random variables

Xn Xn )
Yvn=—"—%+u|l—=-0.1
NTUN (m

where the Xy’s are IID, each with PDF Xy ~ N(0,1) and u(z) is the unit
step function. Prove that P[|Yx| > €] = 0 as N — oo by using the law of
total probability as

Pl[Yn|>¢ = P[Vn|> | Xn/vN > 0.1)P[Xy/vN > 0.1]
+P[|YN| > 6|XN/\/N < O.I]P[XN/\/N < 0.1].

This says that Yy — 0 in probability. Next simulate this sequence on the
computer for N = 1,2,...,200 4 realizations of {Y7,Ys,...,Y200}. Exam-
ine whether for a given N all realizations lie within the “convergence band”
of [-0.2,0.2]. Next generate an additional 6 realizations and overlay all 10
realizations. What can you say about the convergence of any realization?

15.9 (w) There are 1000 resistors in a bin labeled 10 ohms. Due to manufacturing
tolerances, however, the resistance of the resistors are somewhat different.
Assume that the resistance can be modeled as a random variable with a mean
of 10 ohms and a variance of 2 ohms. If 100 resistors are chosen from the
bin and connected in series (so the resistances add together), what is the
approximate probability that the total resistance will exceed 1030 ohms?

15.10 (w) Consider a sequence of random variables X1, X1, X9, X9, X3, X3,..., where
X1, X9, X3... are I[ID random variables. Does the law of large numbers hold?
How about the central limit theorem?

15.11 (w) Consider an Erlang random variable with parameter N. If N increases,
does the PDF become Gaussian? Hint: Compare the characteristic functions
of the exponential random variable and the I'(V, A\) random variable in Table
11.1.

15.12 (f) Find the approximate PDF of Y = ;% X2, if the X;’s are IID with
X; ~ N (—4,8).

15.13 () (f) Find the approximate PDF of ¥ = 1% X;, if the X;’s are IID
with X; ~ U(1,3).

15.14 (f) Find the approximate probability that ¥ = Zgl X; will exceed 7, if the
X;’s are IID with the PDF

(z) = 2r O<z<l1
PX\T) =1 0  otherwise.
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15.15 (¢) Modify the computer program clt_demo.m listed in Appendix 15A to
display the repeated convolution of the PDF

.
_J §sin(mz) 0<z<1
px(z) = { 0 otherwise.

and examine the results.

15.16 (c) Use the computer program clt_demo.m listed in Appendix 15A to display
the repeated convolution of the PDF #/(0,1). Next modify the program to
display the repeated convolution of the PDF

(z) = 2—4z| 0<z<1
PX\T) =1 o otherwise .

Which PDF results in a faster convergence to a Gaussian PDF and why?

15.17 (t) In this problem we prove that the PDF of a x4, converges to a Gaussian
PDF as N — oo. To do so let Yy ~ X%\r and show that the characteristic

function is )

(1 — 2jw)N/2
by using Table 11.1. Next define the standardized random variable
P YN — E[YN]
= ——
var(Yy)

Pyvy (w) =

and note that the mean and variance of a X?v random variable is N and 2N,
respectively. Show the characteristic function of Zy is

b (W) = exp(—jw+/N/2)
N (1 — jw+\/2/N)N/?
Finally, take the natural logarithm of ¢z, (w) and note that for a complex

variable z with |z| < 1, we have that In(1 — z) =~ —z — 2%/2. You should be
able to show that as N — oo, In ¢z, (w) — —w?/2.

15.18 (w) A particle undegoes collisions with other particles. Each collision causes
its horizontal velocity to change according to a N'(0,0.1) cm/sec random vari-
able. After 100 independent collisions what is the probability that the parti-
cle’s velocity will exceed 5 cm/sec if it is initially at rest? Is this result exact
or approximate?

15.19 () (f) The sample mean random variable of N IID random variables with
X; ~ U(0,1) will converge to 1/2. How many random variables need to be
averaged before we can assert that the approximate probability of an error of
not more than 0.01 in magnitude is 0.997
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15.20 (.-) (w) An orange grove produces oranges whose weights are uniformly
distributed between 3 and 7 ozs. If a truck can hold 4000 lbs of oranges, what
is the approximate probability that it can carry 15,000 oranges?

15.21 (w) A sleeping pill is effective for 75% of the population. If in a hospital 160
patients are given a sleeping pill, what is the approximate probability that 125
or more of them will sleep better?

15.22 (- ) (w) For which PDF will a sum of IID random variables when added
together have a PDF that converges to a Gaussian PDF the fastest?

15.23 (o) (w) A coin is tossed 1000 times, producing 750 heads. Is this a fair
coin?

15.24 (f,c) To compute the probability of (15.11) we can use the following approach
to compute each term in the summation. Each term can be written as

= (1)) - B )

Taking the natural logarithm produces

N k
Inpyy[k]= Y In(i)—> In(k) — Nn(2)
i=N—k+1 i=1

which is easily done on a computer. Next, exponentiate to find py, [k] and add
each of the terms together to finally implement the summation. Carry this
out to verify the result given in (15.11). What happens if you try to compute
each term directly?

15.25 (f) In a poll of candidate preferences for two candidates, we wish to report
that the margin of error is only +1%. What is the maximum number of people
that we will need to poll?

15.26 (:-) (w) A clinical trial is performed to determine if a particular drug is
effective. A group of 100 people is split into two equal groups at random. The
drug is administered to group 1 while group 2 is given a placebo. As a result
of the study, 40 people in group 1 show a marked improvement while only
30 people in group 2 do so. Is the drug effective? Hint: Find the confidence
intervals (using (15.14)) for the percentage of the people in each group who
show an improvement.



Appendix 15A

MATLAB Program to Compute
Repeated Convolution of PDF's

% This program demonstrates the central limit theorem. It determines the
% PDF for the sum S_N of N IID random variables. Each marginal PDF is assumed
% to be nonzero over the interval (0,1). The repeated convolution integral is
% implemented using a discrete convolution. The plots of the PDF of S_N as
% N increases are shown successively (press carriage return for next plot).
b
% clt_demo.m
clear all
delu=0.005;
u=[0:delu:1-delul’; % p_X defined on interval [0,1)
p_X=ones(length(u),1); % try p_X=abs(2-4xu) for really strange PDF
x=[u;u+1]; % increase abcissa values since repeated
% convolution increases nonzero width of output
p_S=zeros(length(x),1);
N=12; % number of random variables summed
for j=1:length(x) % start discrete convolution approximation
% to continuous convolution
for i=1:length(u)
if j-i>0&j-i<=length(p_X)
p-S(j)=p_S(j)+p_X(i)*p_X(j-i)*delu;
end
end
end
plot(x,p_S) % plot results for N=2
grid
axis([0 N 0 1]) 7% set axes lengths for plotting
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xlabel(’x’)
ylabel(’p_S’)
title (’PDF for S_N’)
text (0.75%N,0.85,°’N = 2’) % label plot with the
% number of convolutions
for n=3:N
pause
x=[x;u+n-1]; ) increase abcissa values since
% repeated convolution increases
% nonzero width of output
p_S=[p_S;zeros(length(u),1)];
g=zeros (length(p_S),1);
for j=1:length(x) % start discrete convolution
for i=1:length(u)
if j-i>0
g(j,1)=g(j,1)+p_X(i)*p_S(j-i)*delu;
end
end
end
p_S=g; % plot results for N=3,4,...,12
plot(x,p_S)
grid
axis([0O N 0 11)
xlabel(’x’)
ylabel(’p_S’)
title (’PDF for S_N’)
text(0.75%N,0.85,[’N = ’ num2str(n)])
end



Appendix 15B

Proof of Central Limit Theorem

In this appendix we prove the central limit theorem for continuous random variables.
Consider the characteristic function of the standardized continuous random variable

_ Sy — NEx[X]

Z
N Nvar(X)

where Sy = Zl]\il X; and the X;’s are IID. By definition of Zy the characteristic
function becomes

¢zy (W) = Ezylexp(jwZy)]
N
. X; — NEx|X
= FEx |exp jwzl:l ’ x[X]
Nvar(X)
N
 X; — Ex[X]
= FE exp | jw———=——
X 11;[1 p(] Nvar(X))]
al X, — Ex[X]
= HEXi exp | jot—=EX0 (independence of X;’s)
ey Nvar(X)
x - x\ 11"
= | By |exp | jot it identically distributed).
X p(] Nvar(X)>” ( y )

But for a complex variable £ we can write its exponential as a Taylor series yielding
exp(§) = Z = (see Problem 5.22).

k!
k=0

. X — Ex[X]
e G Nvar(X)
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= (o)t (X = Bx[x])
Jw — Lbx
= F
* z_: k! ( Nvar(X))
o .
(jw) X — Ex[X]
D Al ey
k! Nvar(X)

1. X — Ex[X]
E(jW) b ( Nvar(X)

X — Ex[X]

+
Nvar(X)

2
= 1+ jwEyx ) + Ex[R(X)]

where R(X) is the third-order and higher terms of the Taylor expansion. But

X - Ex[X]|  Ex[X] - Ex[X] 0
Nvar(X) | B Nvar(X)
o (2 -mxx))] | sl - mxp 1
X = =
Nvar(X) Nvar(X) N
and so 2 N
2(0) = 1= g+ Bx RO
The terms comprising R(X) are
. 3
o - 15 (5528

oGP | (X —BxX))
T ONsZz 3 var(X)

which can be shown to be small, due to the division of the successive terms by
N3/2 N2, ... relative to the —w?/(2N) term. Hence as N — oo, they do not
contribute to ¢z, (w) and therefore

2

2\
¢ZN (CU) — (]. — ﬁ)
—  exp (—%cﬁ) = ¢z(w) (see Problem 5.15)

where Z ~ N(0,1). Since the characteristic function of Zy converges to the char-
acteristic function of Z, we have by the continuity theorem (see Section 11.7) that
the PDF of Zy must converge to the PDF of Z. Therefore, we have finally that as
N — o0

P2y (2) = pa(z) = jg_ﬁ exp (_é) |



Appendix A

Glossary of Symbols and
Abbreviations

Symbols

Boldface characters denote vectors or matrices. All others are scalars. Random
variables are denoted by capital letters such as U, V, W, X, Y, Z and random vectors

by U,V,W,X,Y,Z and their values by corresponding lower case letters.

* complex conjugate
I convolution
r denotes estimator
denotes complex quantity
I~ denotes s distributed according to
~ denotes is asymptotically distributed according to
lx] denotes the largest integer < x
™ denotes a number slightly larger than x
e~ denotes a number slightly smaller than x
1Ax B cartesian product of sets A and B
[A];j ijth element of A
[bl; ith element of b
'Ber(p) Bernoulli random variable
'bin(M, p) binomial random variable
le complement of set
I chi-squared distribution with N degrees of freedom
'(JIX ) number of combinations of N things taken k at a time
lcov(X,Y) covariance of X and Y
IC covariance matrix
1ICx covariance matrix of X
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16 (¢)
d[n]
oy
Az
ldet(A)
ldiag(a11,

PN ,aNN)
!ei
In
B[]
IE[X"]
\E[(X — B[X])"]
Ex[]
'Exyl[]
'Ex, Xs,..xx ]
lEx [ ]
By x[Y]X]
By | x[Y|z]
By x[Y|z]
le
/
\F
IN!
(N),
IN4
'Fx (z)
P! (z)
'Fxy(z,y)
!FXl,...,XN (:El, e
!FY|X(?J|$)
\F
IF-1
lg(-)
lg=*()
IT'(z)
lgeom(p)

h(-)

axN)

covariance matrix of X and Y

covariance matrix of Y with respect to PDF of Y conditioned on X
complex normal distribution with mean /i and variance o2
multivariate complex normal distribution with mean g

and covariance C

Dirac delta function

discrete-time impulse sequence

Kronecker delta

small interval in x

determinant of matrix A

diagonal matrix with elements a;; on main diagonal
natural unit vector in ¢th direction

signal-to-noise ratio

expected value

nth moment

nth central moment

expected value with respect to PMF or PDF of X
expected value with respect to joint PMF or joint PDF of (X,Y)
expected value with respect to N-dimensional joint PMF
short notation for above

conditional expected value considered as random variable
expected value of PMF pyx[y;|xi]

expected value of PDF py|x (y|z)

element of set

discrete-time frequency

continuous-time frequency

N factorial

equal to N(N —1)--- (N —r +1)

number of elements in set A

cumulative distribution function of X

inverse cumulative distribution function of X

cumulative distribution function of X and Y

cumulative distribution function of Xy,..., Xy
cumulative distribution function of Y conditioned on X = =
Fourier transform

inverse Fourier transform

general notation for function of real variable

general notation for inverse function of g(-)

Gamma function

geometric random variable

general notation for function of real variable



Im( ) imaginary part of
T4(z) indicator function for the set A
'1 identity matrix
N intersection of sets
lj V-1
!g?’,’;)) Jacobian matrix of transformation of w = g(z,y),z = h(z,y)
'g(izizzx )) Jacobian matrix of transformation from y to x
A diagonal matrix with eigenvalues on main diagonal
Imse mean square error
i mean
iy mean vector
! ( ko ok 2]\’/[’ . ) multinomial coefficient
n discrete-time index
IV (i, 02) normal distribution with mean y and variance o2
N(p, C) multivariate normal distribution with mean p

and covariance C
10 null or empty set
lopt optimal value
x| Euclidean norm or length of vector x
1 vector of all ones
'Pois(A) Poisson random variable
'ox[xi] probability mass function (PMF) of X
'px[k] PMF of integer-valued X (or px[i], px[j])
'pxy[zi,y)] joint PMF of X and Y
'x,,..xylT1,-..,zN] joint PMF of random variables X1,..., Xn
px [x] short notation for above
"x,,..xylk1,...,kn] joint PMF of integer-valued random variables X,..., Xn
Py x [yjlmi] conditional PMF of Y given X = z;
!pXN\Xl,...,XN_l [ZNn|z1,. . 2N-1]

conditional PMF of Xy given Xy,..., Xny_1

'px.yvli, 7] joint PMF of integer-valued X and Y
'pyx[71i] conditional PMF of integer-valued Y given X = z;
'px () probability density function (PDF) of X
'pxy(z,v) joint PDF of X and Y
"x,,..xy(@1,...,2n) joint PDF of continuous random variables X1,..., Xy
Ipx (x) shorthand notation for px, . xy(z1,...,zN)
'pyx (y]2) conditional PDF of Y given X =z
P[E] probability of the event E
P, probability of error
% gradient vector with respect to x

Px x(f) power spectral density of discrete-time random process X [n]
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Px vy (f) cross-spectral density of discrete-time random processes X[n] and Y'[n]

Px x(F) power spectral density of continuous-time random process X (¢)

lpx (w) characteristic function of X

lox,y (wx,wy) joint characteristic function of X and Y

"ox, ... xy(wi,...,wn) joint characteristic function of X;,..., Xy

1®(x) cumulative distribution function of A/(0,1) random variable

'oxy correlation coefficient of X and Y

1Q(x) probability that a A (0,1) random variable exceeds

1Q *(u) value of N'(0,1) random variable which is exceeded
with probability of u

rx,x|k] autocorrelation function of discrete-time random process X[n]

rx,x(T) autocorrelation function of continuous-time random process X ()

rx,v k] cross-correlation function of discrete-time random processes X [n]
and Y [n]

rx,y(T) cross-correlation function of continuous-time random processes
X (t) and Y (¢)

'R or R} denotes real line

IRN denotes N-dimensional Euclidean space

Re() real part

'S sample space

ISx sample space of random variable X

'Sxy sample space of random variables X and Y

'Sx1, X0, Xy sample space of random variables Xq, Xo,..., Xy

Is; element of discrete sample space

Is element of continuous sample space

lo? variance

s[n] discrete-time signal

I's vector of signal samples

Is(t) continuous-time signal

sgn(x) signum function (=1 for z > 0 and = —1 for z < 0)

't continuous time

T transpose of matrix

U(a,b) uniform distribution over the interval (a, b)

U union of sets

lu[n] discrete unit step function

lu(x) unit step function

Ivar(X) variance of X

var(Y|z;) variance of conditional PMF or of py|x [y;|z]

var(Y|x) variance of conditional PDF or of py | x (y|z)

lz; value of discrete random variable

'z value of continuous random variable

'X, standardized version of random variable X



lz, value for X,

X[n] discrete-time random process

z[n] realization of discrete-time random process
X(t) continuous-time random process

z(t) realization of continuous-time random process
X sample mean random variable

'z value of X

X random vector (X1, Xo,..., Xy)

Ix value (z1,x9,...,zy) of random vector X
Y|(X = ;) random variable Y conditioned on X = x;
'z sample mean of multiple outcomes of X
Z z-transform

z-1 inverse z-transform

0 vector or matrix of all zeros
Abbreviations

ACF autocorrelation function

AR autoregressive

AR(p) autoregressive process of order p

CCF cross-correlation function

!CDF cumulative distribution function

CWGN complex white Gaussian noise

DC constant level (direct current)

DFT discrete Fourier transform

FFT fast Fourier transform

FIR finite impulse response

11D independent and identically distributed

IIR infinite impulse response

LPC linear predictive coding

LS least squares

LSE least squares estimator

LSI linear shift invariant

MA moving average

MMSE minimum mean square error

MSE mean square error

OOK on-off keyed

'PMF probability mass function

'PDF probability density function

PG processing gain



PRN
PSD
ISNR
TDL
2-D
WGN
WSS

APPENDIX A. GLOSSARY OF SYMBOLS AND ABBREVIATIONS

pseudorandom noise

power spectral density
signal-to-noise ratio

tapped delay line (same as FIR)
two-dimensional

white Gaussian noise

wide sense stationary
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Appendix C

Linear and Matrix Algebra

Important results from linear and matrix algebra theory are reviewed in this ap-
pendix. It is assumed that the reader has had some exposure to matrices. For
a more comprehensive treatment the books [Noble and Daniel 1977] and [Graybill
1969] are recommended.

C.1 Definitions

Consider an M x N matrix A with elements a;;, ¢ =1,2,...,M;j7=1,2,...,N. A
shorthand notation for describing A is

[Alij = aij.

Likewise a shorthand notation for describing an N x 1 vector b is

An M x N matrix A may multiply an N x 1 vector b to yield a new M x 1 vector
c whose ith element is

N
ci:Zaijbj iZl,Q,...,M.
j=1

Similarly, an M x N matrix A can multiply a N x L matrix B to yield an M x L
matrix C = AB whose (4,7) element is

N
CZ]:Zalkbk] i:1,2’__.,M;j:1,2’...,L-
k=1

Vectors and matrices that can be multiplied together are said to be conformable.

9
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The transpose of A, which is denoted by A’ is defined as the N x M matrix
with elements aj; or
[A"]ij = aji.

A square matrix is one for which M = N. A square matrix is symmetric if
AT = A or aj; = Qj-
The inverse of a square N x N matrix is the square N x N matrix A~! for which

ATTA=AAT =1

where I is the N x N identity matrix. If the inverse does not exist, then A is
singular. Assuming the existence of the inverse of a matrix, the unique solution to
a set of N simultaneous linear equations given in matrix form by Ax = b, where A
is NxN,xis Nx1l,andbis N x1,isx=A"'b.

The determinant of a square N x N matrix is denoted by det(A). It is computed
as

N
det(A) = a;;Cy;
P

where o
Cij = (=1)"7 Dy

D;; is the determinant of the submatrix of A obtained by deleting the sth row and
jth column and is termed the minor of a;;. Cj; is the cofactor of a;;. Note that any
choice of i for : = 1,2,..., N will yield the same value for det(A). A square N x N
matrix is nonsingular if and only if det(A) # 0.

A quadratic form @Q, which is a scalar, is defined as

N N
Q: E E aijxixj.

i=1 j=1

In defining the quadratic form it is assumed that aj; = a;;. This entails no loss in
generality since any quadratic function may be expressed in this manner. () may
also be expressed as

Q =x"Ax

where x = 1 22 ...zy]" and A is a square N x N matrix with aji = ajj or Ais a
symmetric matrix.
A square N x N matrix A is positive semidefinite if A is symmetric and

Q=x"Ax>0

for all x. If the quadratic form is strictly positive for x # 0, then A is positive
definite. When referring to a matrix as positive definite or positive semidefinite, it
is always assumed that the matrix is symmetric.
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A partitioned M x N matrix A is one that is expressed in terms of its submatrices.
An example is the 2 x 2 partitioning

A Ap ]
A= .
[ A Ay

Each “element” A;; is a submatrix of A. The dimensions of the partitions are given
as

K x L K x (N —-1L)
[(M—K)XL (M—K)X(N—L)]'

C.2 Special Matrices

A diagonal matrix is a square N x N matrix with a;; = 0 for ¢ # j or all elements
not on the principal diagonal (the diagonal containing the elements a;;) are zero.
The elements a;; for which 7 # j are termed the off-diagonal elements. A diagonal
matrix appears as

aill 0 e 0
0 a9 0
A= i
0 0 ... ann
A diagonal matrix will sometimes be denoted by diag(aii,ass,...,any). The in-
verse of a diagonal matrix is found by simply inverting each element on the principal
diagonal, assuming that a;; # 0 for i = 1,2,..., N (which is necessary for invertibil-

ity).
A square N x N matrix is orthogonal if

Al =A"
For a matrix to be orthogonal the columns (and rows) must be orthonormal or if
A:[al az ... aN]
where a; denotes the ith column, the conditions

Taj:{o for i # j

A 1 fori=j

must be satisfied. Other “matrices” that can be constructed from vector operations
on the N x 1 vectors x and y are the inner product, which is defined as the scalar

N
x'y = Z TiYi
i=1
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and the outer product, which is defined as the N x N matrix

riy:r *1Yy2 ... T1YN

T ZT2yr X2Yy2 ... XT2YN
Xy = . . .

INY1T ITNY2 ... INYN

C.3 Matrix Manipulation and Formulas

Some useful formulas for the algebraic manipulation of matrices are summarized in
this section. For N x N matrices A and B the following relationships are useful.

(AT)—I — (A—I)T
(AB)"' = B'A"!
det(AT) = det(A)

det(cA) = N det(A) (ca scalar)
det(AB) = det(A)det(B)
det(A™1) = m.

Also, for any conformable matrices (or vectors) we have
(AB)T = BTAT,
It is frequently necessary to determine the inverse of a matrix analytically. To do so
one can make use of the following formula. The inverse of a square N x N matrix is
T
—1_ C
det(A)

where C is the square N x N matrix of cofactors of A. The cofactor matrix is
defined by o

[Clij = (1) Dy
where D;; is the minor of a;; obtained by deleting the ith row and jth column of
A.

Partitioned matrices may be manipulated according to the usual rules of matrix
algebra by considering each submatrix as an element. For multiplication of parti-
tioned matrices the submatrices which are multiplied together must be conformable.
As an illustration, for 2 x 2 partitioned matrices

[ A Ap ] [ Bii B ]
Az Ay By Ba

_ [ A1Bi1 +A12Bo; A1Bio + A9By ]
A2Bii +ApBy Ay Bia+AxBy |

AB =
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Other useful relationships for partitioned matrices for an M x N matrix A and N x 1
vectors x; are

[Axl AX2 AXN]:A[Xl X9 ... XN] (CBI)

which is a M x N matrix and

ail 0 0
0 agy ... 0
[allxl a22X2 ... aNNXN]:[Xl X2 ... XN] . . .
0 0 ... QNN
(CB.2)

which is an N x N matrix.

C.4 Some Properties of Positive Definite (Semidefinite)
Matrices

Some useful properties of positive definite (semidefinite) matrices are:

1. A square N x N matrix A is positive definite if and only if the principal minors
are all positive. (The ith principal minor is the determinant of the submatrix
formed by deleting all rows and columns with an index greater than 7.) If the
principal minors are only nonnegative, then A is positive semidefinite.

2. If A is positive definite (positive semidefinite), then

a. A is invertible (singular)
b. the diagonal elements are positive (nonnegative)

b. the determinant of A, which is a principal minor, is positive (nonnegative).

C.5 Eigendecompostion of Matrices
An eigenvector of a square N x N matrix A is an N X 1 vector v satisfying
Av = )v (CB.3)

for some scalar A, which may be complex. A\ is the eigenvalue of A corresponding
to the eigenvector v. To determine the eigenvalues we must solve for the NV \’s in
det(A — MI) = 0, which is an Nth order polynomial in A. Once the eigenvalues are
found, the corresponding eigenvectors are determined from the equation (A—AI)v =
0. It is assumed that the eigenvector is normalized to have unit length or vI'v = 1.

If A is symmetric, then one can always find N linearly independent eigenvectors,
although they will not in general be unique. An example is the identity matrix for
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which any vector is an eigenvector with eigenvalue 1. If A is symmetric, then the
eigenvectors corresponding to distinct eigenvalues are orthonormal or viij =0 for
1 # j and viTv]- = 1 for 1 = j, and the eigenvalues are real. If, furthermore, the
matrix is positive definite (positive semidefinite), then the eigenvalues are positive
(nonnegative).

The defining relation of (CB.3) can also be written as (using (CB.1) and (CB.2))

[ AV’1 AV2 AVN ] = [ )\1V1 )\QVQ )\an ]
or
AV = VA (CB.4)
where
VvV = [vl Vo ... vn]

A = diag()\l,Ag,. .. ,)\n)

If A is symmetric so that the eigenvectors corresponding to distinct eigenvalues
are orthonormal and the remaining eigenvectors are chosen to yield an orthonormal
eigenvector set, then V is an orthogonal matrix. As such, its inverse is VT, so that
(CB.4) becomes

A=VAVT

Also, the inverse is easily determined as

Al — vITipA-Lyt
VAV
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Linear Systems and Transforms
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Appendix E

Answers to Selected Problems

Note: For problems based on computer simulations the number of realizations used
in the computer simulation will affect the numerical results. In the results listed
below the number of realizations is denoted by Niea. Also, each result assumes that
rand(’state’,0) or randn(’state’,0) has been used to initialize the random
number generator (see Appendix 2A).

Chapter 1

1. experiment: toss a coin; outcomes: {head, tail}; probabilities: 1/2,1/2
5. a. continuous; b. discrete; c. discrete; d. continuous; e. discrete

7. yes, yes

10. Pk = 9] = 0.0537, probably not

13. 1/2

14. 0.9973 for A = 0.001

Chapter 2
1. P[Y =0] = 0.7490, P[Y = 1] = 0.2510 (N,ea1 = 1000)

3. via simulation: P[-1 < X < 1] = 0.6863; via numerical integration with A =
0.01, P[-1 < X < 1] =0.6851 (Nyear = 10000)

6. values near zero
8. estimated mean = 0.5021; true mean = 1/2 (N = 1000)
11. estimated mean = 1.0042; true mean = 1 (Nyey = 1000)

13. 1.2381 (Nyea = 1000)

17
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14. no; via simulation: mean of VU = 0.6589; via simulation: v/mean of U =
0.7125 (Nyear = 1000)

Chapter 3

l.a. A={z:2<1}, B°={z:2>2}
b. AUB={z:—0o<z<oo}=8, ANB={zr:1<z<2}
c. A—-B={z:2>2},B-A={z:2<1}

7. A:{1,2,3}, B = {4,5}, C = {1,2,3}, D:{4,5,6}
10. AUBUC = (A°NB°NC°)°, ANBNC = (A°U B¢ U C°)°

12. a. 107, discrete b. 1, discrete c. oo (uncountable), continuous d. oo (uncount-
able), continuous e. 2, discrete f. oo (countable), discrete

14. a. § = {t : 30 <t < 100} b. outcomes are all ¢ in interval [30,100] c. set of
outcomes having no elements, i.e., {negative temperatures} d. A = {t : 40 <
t <60}, B={t:40<t<500r60<t<70}, C = {100} (simple event) e.
A={t:40 <t <60}, B={t:60<t<70}

18. a. 1/2b. 1/2 c. 6/36 d. 24/36

19. Payen = 1/2, Poyen = 0.5080 (Nyea = 1000)

21. a. even, 2/3 b. odd, 1/3 c. even or odd, 1 d. even and odd, 0
23. 1/56

25. 10/36

27. no

33. 90/216

35. 676,000

38. 0.00183

40. total number = 16, two-toppings = 6

44. a. 4 of a kind
13 -48

b. flush
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49. P[k > 95] = 0.4407, Pk > 95] = 0.4430 (Nyear = 1000)
Chapter 4

2. 1/4

5. 1/4

7. a. 0.53 b. 0.34

11. 0.5

14. yes

19. 0.03

21. a. no b. no

22. 4

26. 0.0439

28. 5/16

33. Plk]=(k—1)(1 —p)*2p% k=2,3,...,

38. 2 red, 2 black, 2 white

40. 3/64
43. 165/512
Chapter 5
4. Sx ={0,1,4,9}
% r; = 0
2
2 =1
pxlzd=¢ I
% r; = 9

6. 0<p<1,a=(1-p)/p?
8. 0.9919

13. Average value = 5.0310, true value shown in Chapter 6 to be A = 5 (Npea =
1000)

14. pxI[5] = 0.0029, px[5] = 0.0031 (from Poisson approximation)
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18. P[X = 3] = 0.0613, P[X = 3] = 0.0607 (Nyear = 10000)
20. py[k] = exp(—=M\)MN¥/2/k! for k=0,2,4,...

26. pxlk] =1/5for k=1,2,3,4,5

28. 0.4375

31. 8.68 x 107

Chapter 6

2. 9/2

4. 2/3

8. geometric PMF

12. (2/p%) —1/p

13. yes, if X = constant

14. predictor = E[X] = 21/8, msemin = 47/64 = 0.7343
15. estimated msempin, = 0.7371 (Npea = 10000)

20. A2+ A

26. S0y (~1)" (3) B F[X]B[XY]

27. ¢y (w) = exp(jwb)dx (aw)

28. (1+ 2cos(w) + 2cos(2w))/5

32. true mean = 1/2, true variance = 3/4 ; estimated mean = 0.5000, estimated
variance = 0.7500 (Nyear = 1000)

Chapter 7

3. §={(p.n), (p,d), (n,p), (n,d), (d,p), (d,n)}
Sxy ={(1,5),(1,10), (5,1), (5,10), (10,1), (10,5)}

8.
1;4 Ei,jizEO,O))
o 1/4 (i,7) = (1,-1
pxyli,j] = 1/4 (i,;) =(1,1)
1/4 (i,5) = (2,0)

10. 1/5



21

13. px[i] = (1 — p)~'p for i = 1,2,... and same for py[j]

16. pxy[0,0] = 1/4, px,v[0,1] =0, px,y[1,0] = 1/8, px y[1,1] = 5/8

19. no

23. yes, X ~ bin(10,1/2), Y ~ bin(11,1/2)

27. pz[0] = 1/4, pz[1] = 1/2, pz[2] = 1/4, variance always increases when uncorre-
lated random variables are added

33. 1/8

37. 0

38. 3/22

40. minimum MSE prediction = Ey[Y] = 5/8 and minimum MSE = var(Y) =
15/64 for no knowledge
minimum MSE prediction = Y = —(1/15)z + 2/3 and minimum MSE =
var(Y)(1 — p?Y,Y) = 7/30 based on observing outcome of X

41. W = 0.1063h + 164.6

43. pw,z = \/n/(n +1), where n = Ex[X?]/Ex[N?]

46. see solution for Problem 7.27

48. pxy[0,0] = 0.1190, px [0, 1] = 0.1310, px v [1,0] = 0.2410, px y[L, 1] = 0.5090
(Nrear = 1000)

49. pxy = /5/15=0.1490, pxy = 0.1497 (Nyea = 100000)

Chapter 8

2. py|x[jl0] =1 for j =0

pY|X[]|1] = 1/6 fOI‘j = 1?233a4a5a6
Py =1] = 1/12

5. no, no, no

6. py|x[j|0] =1/3 for j =0 and = 2/3 for j =1

py|x[jll] =2/3 for j =0 and = 1/3 for j =1
px|y[il0] =1/3 for i = 0 and = 2/3 for i =1
px|ylill] =2/3 fori=0and =1/3 fori =1

8. pyix[jli] =1/5 for j =0,1,2,3,4;4 = 1,2

pxpylilj] =1/2 fori=1,2;5 =0,1,2,3,4
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11. 0.4535

13. a. py|x[y;/0] = 0,1,0 for y; = —1/v/2,0,1//2, respectively
pyix[y;11/v2] = 1/2,0,1/2 for y; = —1/v/2,0,1/V/2, respectively
py|X[yj|\/§] =0,1,0 for y; = —1/+/2,0,1//2, respectively
not independent (conditional PMF depends on z;

b. pyix[y;|0] = 1/2,1/2 for y; = 0, 1, respectively
pyxyill] = 1/2,1/2 for y; = 0,1, respectively
independent

17. pl] = px K] 52 o] + py K] 21 px i)
21. By x[Y|0] =0, By x[Y|l]] =1/2, BEy|x[Y[2] =1
22. var(Y|0) =0, var(Y'|1) = 1/4, var(Y|2) = 2/3

28. optimal predictor: ¥ =0 for z = —1, Y = 1/2 for z =0, and V=0forz=1
optimal linear predictor: Y = 1/4 for x = —1,0,1

30. Ey x[Y]0] = 0.5204, Ey x[Y|1] = 0.6677, (Nrea = 10000)
Chapter 9

1. 0.0567
4. yes
6. (X1, X>) independent of X3

10. E[X] = Ex[X], var(X) = var(X)/N

2

1 2

13. CX:[2 4

], det(Cx) =0, no

17. a. no, b. no, c. yes, d. no

0. co-[2 ]

0.9056 —0.4242 ]
26. A = [ 04249 0.9056 _,Var(Yl) = 7.1898, var(Ys) = 22.8102
35 B — 3/2 5/2
—3/2 /5/2
2 4.0693 0.9996 ]
36. Cx = [ 0.9996  3.9300 | (Nrear = 1000)




Chapter 10

2. 1/80

4. a. no b. yes c. no

6. a1 >0,a9>0,and g +ag =1

12. 0.0252

14. Gaussian: 0.0013 Laplacian: 0.0072
17. first person probability = 0.393, first two persons probability = 0.090
19. Fx(xz) =1/2 + (1/7) arctan(z)

22. Fx(z) =@ (%Z4)

28. 2.28%

30. eastern U.S.

33. yes

36. cx 14

40.

43. py(y) = px(y) +px(-y)

46. X
7= 0<y<l1
- 2w
pr(y) { 0 otherwise
51.
P-2<X <2 = 1-1lexp(-2)
P-1<X <1 = 1-1exp(-1)
P-1<X <1] = 32— 1lexp(-1)
P-1< X <1] T —Llexp(-1)
P-1<X <1 = 2—lexp(-1)

54. g(U) = /2In(1/(1 - U))

Chapter 11
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1. 7/6

10. +9.12

11. 0.1353

14. N

19. 0.0078

21. /E[U] =+/1/2, E[NVU] =2/3

22. E[s(to)] =0, E[s%(ty)] = 1/2

26. 0%/2

27. 0%/2

30. Thin = 5.04, Ty = 8.96

35. E[X3] =3puo? + p3, E[(X —p)*] =0
38. E[X"] =0 for n odd, E[X"] = n! for n even
42. §(z — p)

44. /2var(X)

——

46. E[X] = 1.2533, E[X] = 1.2538; var(X) = 0.4202, var(X) = 0.4269 (Nyew =
1000)

Chapter 12

1. 7/16

3. no, probability is 1/4

5. T =4P[X?+Y? < 1], # = 3.1140 (Nyea = 10000)
7. 1/4

10. P =0.19, P = 0.1872 (Nyear = 10000)

11. 0

15. px(z) = 2z for 0 < z < 1 and zero otherwise, py(y) =2(1 —y) for 0 <y < 1
and zero otherwise
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18.
(0 z<0ory<0

%xy 0<z<2,0<y<4
Y z2>2,0<y<4
T 0<z<2,y>4
(1 r>2,y>4

FX,Y(way) =

D= =

23. (1 —exp(—2))?
25. no

26. Q(2)
30. Plbullseye] = 1 — exp(—2) = 0.8646, P[bullseye] = 0.8730 (Nyear = 1000)

36. W NN(:U'Wao-Iz/V)? Z NN(NZ,O’%)

w
38. [ ] ~ N (u, C), where
Z

2 5
C = [5 14]
43. /57

45. uncorrelated but not necessarily independent

47.
I
V2 V2
52. Q(1)
Chapter 13
2. yes,c=1/z

4. py|x(ylz) = exp(—y)/(1 —exp(—z)) for 0 <y <z, 2 >0
8. pxy(z,y)=1/zfor0<y<z,0<z<Lipy(y) =—lnyfor0<y<1

10. pyx(ylz) =1/zfor 0 <y <z, 0 <z <1;pxy(zly) =1/(1—y) fory <z <1,
O0<y<l1
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1
14. Use P = [2, P[|Xo| — |X1] < 0|X1 = @1]px, (z1)dz1 and note independence of
2

1
X, and Xy so that P = [2, P[|Xs| < z1]dzy
2

16. Q(—1), assume R and FE are independent
21. 1/2

24. Use E(xyy)x[X +Y|z] = By x[Y|r] + z to yield Exy)x[X +Y|X =50] =
77.45 and E(x 4y x[X + Y| X = 75] = 84.57

Chapter 14

1. Ey[Y] =6, var(Y) = 11/2

6. 1/16

9. Y ~N(0,07 + 03 + 03)

12. no since var(X) — 02/2 as N — oo

19. Ey[Y] =0, var(Y) =1

21. X3="17/5

24. msepi, = 8/15 = 0.5333

25. msepyi, = 0.5407 (Npea = 5000)

Chapter 15

4. limy 0o N 02 =0, oy = 1/N3/4

7. no since the variance does not converge to zero
13. Y ~ N(2000,1000/3)

19. N = 5529

20. 1 —Q(-77.78) =0

22. Gaussian, “converges” for all N > 1

23. no since approximate 95% confidence interval is [0.723,0.777]

26. drug group has approximate 95% confidence interval of [0.69,0.91] and placebo
group has [0.47,0.73]. Can’t say if drug is effective since true value of p could
be 0.7 for either group.





