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Sufficiency, Classification, and the Class-Specific Feature
Theorem

Steven Kay, Fellow, IEEE

Abstract—A new proof of the class-specific feature theorem is given. The
proof makes use of the observed data as opposed to the set of sufficient sta-
tistics as in the original formulation. We prove the theorem for the classical
case, in which the parameter vector is deterministic and known, as well
as for the Bayesian case, in which the parameter vector is modeled as a
random vector with known prior probability density function. The essence
of the theorem is that with a suitable normalization the probability den-
sity function of the sufficient statistic for each probability density function
family can be used for optimal classification. One need not have knowledge
of the probability density functions of the data under each hypothesis.

Index Terms—Bayes procedures, data models, information theory, pat-
tern recognition, signal detection.

I. INTRODUCTION

Optimal classification depends upon knowledge of the joint proba-
bility density function (pdf) of the observed data. When this is unavail-
able, as is always the case in practice, the pdf must be estimated. Un-
fortunately, it has been noted that high-dimensional pdf’s, on the order
of ten or higher, are notoriously difficult to estimate [7]. It is therefore
advisable to transform the data to a lower dimensional feature vector.
In fact, much of the research in classification is involved with the de-
termination of a set of features which describe the data, but which has
minimal dimension. Statistical hypothesis testing indicates that the op-
timal way to do this is to employ sufficient statistics, which reduce the
data but retain all the information of the original data. The theory of
sufficiency is well established when applied to a family of pdf’s that
are parameterized [8], i.e., each pdf in the family depends on a different
value of a parameter. Less is known about sufficiency when the possible
pdf’s may be from several parameterized families. For example, con-
sider for the data setxxx = [x1x2 � � � xN ]T the family of pdf’s

p(xxx; �) =
1

(2�)N=2
exp �1

2

N

i=1

(xi � �)2

where each pdf is parameterized by�, the mean ofxi. Then, a suffi-
cient statistic is well known to beT (xxx) = N

i=1 xi. Any decisions
concerning the value of� can be based on knowledge of the sufficient
statisticT (xxx) only [5]. The performance of the resultant decision rule
will be identical to that based on the original data setxxx. The hypothesis
test in this case might be a simple one such as deciding whether� = 0
or � = 1. A completely different situation arises when two or more
pdf families may describe the observed data. Such is the usual case
in classification. For example, say thatxxx is observed, where thexi ’s
are independent and identically distributed (i.i.d.) according to either
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an exponential pdf or a log-normal pdf [1]. The univariate exponential
pdf is given by

p1(x; �1) =

1

�1
exp(�x=�1); x > 0

0; x < 0

while the univariate log-normal pdf is

p2(x; �2) =

1

x
p
2��2

exp � 1
2�

ln2(x) ; x > 0

0; x < 0

where�1 > 0 and�2 > 0. The joint pdf’s are

p1(xxx; �1)=
1
�

exp � 1
�

N

i=1

xi ; x>0

0; x<0

p2(xxx; �2)=

1

x (2�� )

exp � 1
2�

N

i=1

ln2(xi) ; x>0

0; x<0.

It then follows from the Neyman–Fisher (NF) factorization theorem [3]
that each pdf admits a sufficient statistic as

T1(xxx) =

N

i=1

xi

T2(xxx) =

N

i=1

ln2(xi):

Hence,T1(xxx) can be used to make decisions about�1 andT2(xxx) can
be used to make decisions about�2. The question now arises as to
whether thejoint statisticTTT (xxx) = [T1(xxx) T2(xxx)]

T can be used to
make an optimal decision ifxxx was sampled from the exponential or
the log-normal pdf. The answer is, unfortunately,no. As an example,
if �1 and�2 are known, so that the hypothesis test is simple, a likeli-
hood ratio test would involve the additional statisticT3(xxx) = N

i=1 xi.
ThusT1(xxx) andT2(xxx), which we term thesingle family sufficient sta-
tistics is not a sufficient statistic for theset of pdf familiesgiven by
fp1(xxx; �1); p2(xxx; �2)g. We will formalize this result in the next sec-
tion.

Even though the single family sufficient statistic is not sufficient, it
is possible to base a decision rule on the pdf’s of the single family suf-
ficient statistics, when the pdf’s aresuitably normalized. In Section III,
the linear model family is used to illustrate the normalization necessary
for the classifier to be based on the single family sufficient statistic.
This is the essence of the class-specific feature theorem, as originally
formulated by [2], and which we describe more fully in Section IV.
Before doing so we examine sufficient statistics for the multiple pdf
family in the next section.

II. SUFFICIENT STATISTICS FORMULTIPLE PDF FAMILIES

We assume that there are two pdf families of interest, although the
general case ofM families follows easily. Let the families be described
by p1(xxx; ���1) andp2(xxx; ���2), where the parameters now are in general
vectorparameters. The dimensionalities of the parameter vectors need
not be the same. Also, assume that the families admit single family
sufficient statisticsTTT 1 andTTT 2, respectively. (We will henceforth drop
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the dependence ofTTT onxxx.) Then, to describe the set of possible pdf’s
we introduce an additional parameter, which takes on the values
0��1. Then, we can define the pdf for thecomposite pdf family[1]

p(xxx; ; ���1; ���2) =
p1 (xxx; ���1)p

1�
2 (xxx; ���2)

p1 (xxx; ���1)p
1�
2 (xxx; ���2)dxxx

(1)

where = 1 yieldsp1 and = 0 yieldsp2. We are now in a position
to find the sufficient statistic, if it exists, for the composite pdf family.
From the NF factorization theorem we have that

p1(xxx; ���1) = g1(TTT 1; ���1)h1(xxx)

p2(xxx; ���2) = g2(TTT 2; ���2)h2(xxx)

and using this in (1) produces

p(xxx; ; ���1; ���2)

=
g1 (TTT 1; ���1)g

1�
2 (TTT 2; ���2)(h1(xxx)=h2(xxx))

h2(xxx)

g1 (TTT 1; ���1)g
1�
2 (TTT 2; ���2)(h1(xxx)=h2(xxx))h2(xxx) dxxx

:

Note that ifh1(xxx)=h2(xxx) does not depend onxxx, thenTTT = [TTT 1 TTT 2]
T

will be a sufficient statistic for, ���1, ���2. For if this is true, then by the
NF factorization theorem

p(xxx; ; ���1; ���2) =
g1 (TTT 1; ���1)g

1�
2 (TTT 2; ���2)

g1 (TTT 1; ���1)g
1�
2 (TTT 2; ���2)h2(xxx) dxxx

g(T ; T ; ; ��� ; ��� )

�h2(xxx)

h(xxx)

:

In the exponential versus log-normal example

p1(xxx; �1) =
1

�N1
exp �

1

�1

N

i=1

xi

g (T ; � )

� I(0;1)(xxx)

h (xxx)

p2(xxx; �2) =
1

(2��2)N=2
exp �

1

2�2

N

i=1

ln2(xi)

g (T ; � )

�
I(0;1)(xxx)

N

i=1

xi

h (xxx)

whereI(0;1)(xxx) = 1 if all xi > 0 and is zero otherwise. Thus

h1(xxx)=h2(xxx) = 1=

N

i=1

xi; for all xi > 0

which clearly depends onxxx. Note that in this case the sufficient statistic
is

N

i=1

xi

N

i=1

ln2(xi)

N

i=1

xi

T

:

In general, the sufficient statistic will be[TTT 1 TTT 2 h1(xxx)=h2(xxx)]
T .

III. OPTIMAL DECISION RULES

As shown previously, the set of single pdf family sufficient statis-
tics is not in general a sufficient statistic in the multiple pdf family
case. However, an optimal decision rule can still be implemented if the
pdf’s of the single family sufficient statistics are known. This requires
a normalization, which in essence, accounts for the differenth(xxx) for
different pdf families. To illustrate the result we resort to the classical
Gaussian linear model using two pdf families with different dimension-
ality parameter vectors. The linear model is defined as [3]

xxx = HHH��� +www

whereHHH is anN�p known observation matrix,��� is ap�1 parameter
vector, andwww is a Gaussian random vector with mean0 and covariance
matrix�2III , with �2 known. The pdf can be factored as

p(xxx; ���) =
1

(2��2)N=2
exp �

1

2�2
(xxx�HHH���)T (xxx�HHH���)

= exp �
1

2�2
(TTT � ���)THHHTHHH(TTT � ���)

g(TTT; ���)

�
1

(2��2)N=2
exp �

1

2�2
(xxx�HHHTTT )T (xxx�HHHTTT )

h(xxx)

(2)

whereTTT = (HHHTHHH)�1HHHTxxx is a sufficient statistic for��� and is recog-
nized as the minimum variance unbiased estimator. Note thath(xxx) de-
pends on the dimensionality of���, as well asHHH . The pdf of the sufficient
statistic is easily shown to beN (���; �2(HHHTHHH)�1), whereN (���; CCC)
denotes a multivariate Gaussian pdf with mean vector��� and covariance
matrixCCC. Hence, we may rewrite (2) as shown in (3) at the bottom of
this page. Now consider a hypothesis test within the same linear model
family. An example might be to test��� = ���1 versus��� = ���0. The so-
lution, which is known to be a likelihood ratio test, decides in favor of
���1 if L(xxx), the likelihood ratio, exceeds a threshold. But from (3) this
becomes

L(xxx) =
p(xxx; ���1)

p(xxx; ���0)

=
p(TTT ; ���1)h

0(xxx)

p(TTT ; ���0)h0(xxx)

=
p(TTT ; ���1)

p(TTT ; ���0)
:

Clearly, we would obtain the same result if we had started with the
sufficient statistic instead of the data and formed the likelihood ratio
based on it. Now consider the problem of testing whether the data was
sampled from one of two different linear models or

H1: xxx = HHH1���+www1

H2: xxx = HHH2��� +www2

where the parameters��� and��� have different dimensionalities (and, of
course,HHH1,HHH2 are different). An example, might be whether the data

p(xxx; ���) =
1

(2�)p=2 det
1
2 (�2(HHHTHHH)�1)

� exp �
1

2
(TTT � ���)T (HHHTHHH=�2)(TTT � ���)

�
1

(2��2)(N�p)=2 det
1
2 (HHHTHHH)

exp �
1

2�2
(xxx�HHHTTT )T (xxx�HHHTTT )

h (xxx)

= p(TTT ; ���)h0(xxx) (3)
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originated from a DC level in white Gaussian noise or a straight line in
white Gaussian noise. Then, the likelihood ratio is from (3)

L(xxx) =
p1(xxx; ���)

p2(xxx; ���)
(4)

=
p(TTT�; ���)

p(TTT � ; ���)
�

h0

1(xxx)

h0

2(xxx)
: (5)

It is seen that because of the different modelsh0

1(xxx) 6= h0

2(xxx) and this
difference must be taken into account by the LRT. To do so note from
(4) and (5) that

h0

1(xxx)

h0

2(xxx)
=

p1(xxx; ���)

p2(xxx; ���)
�
p(TTT � ; ���)

p(TTT�; ���)
: (6)

Since the left-hand side depends only onxxx, the right-hand side cannot
depend on���, ���. Hence, if we can find an���, say���� and a���, say���� so
that

p1(xxx; ���
�) = p2(xxx; ���

�) (7)

then from (6) we have that

h01(xxx)

h02(xxx)
=

p(TTT � ; ���
�)

p(TTT�; ����)
:

This can be used in (5) to yield finally

L(xxx) =
p(TTT�; ���)=p(TTT�; ���

�)

p(TTT � ; ���)=p(TTT � ; ���
�)
: (8)

Note thatthe likelihood ratio depends only on the pdf’s of the single
family sufficient statistics. Thus in practice we need only estimate the
pdf of TTT as opposed to that ofxxx. This approach is called theclass-
specific model[2].

The class-specific model depends upon (7) being satisfied. An ob-
vious choice for the linear model is to choose��� = 000 and��� = 000, which
is the noise-only condition. In this case we have that

p1(xxx; ���
� = 000) = p2(xxx; ���

� = 000)

=
1

(2��2)
N

2

exp �
1

2�2
xxxTxxx :

To verify that the likelihood ratio computed from either the data as
p1(xxx; ���)=p2(xxx; ���) or (8) using���� = ���� = 0 are identical first recall
thatTTT� � N (���; �2(HHHT

1HHH1)
�1) andTTT � � N (���; �2(HHHT

2HHH2)
�1):

Then

p(TTT�; ���)

p(TTT�; ��� = 000)

=

exp � (TTT ����) (TTT ����)

(2�) det
1
2 (� (HHH HHH ) )

exp � TTT TTT

(2�) det
1
2 (� (HHH HHH ) )

= exp �
1

2
�2���T

HHHT
1HHH1

�2
TTT� + ���T

HHHT
1HHH1

�2
���

and, similarly, forp(TTT � ; ���)=p(TTT � ; ��� = 000). The likelihood ratio be-
comes from (8)

L(xxx) =
exp � 1

2
�2���T

HHH HHH

�
TTT� + ���T

HHH HHH

�
���

exp � 1
2
�2���T

HHH HHH

�
TTT � + ���T

HHH HHH

�
���

: (9)

But TTT� = (HHHT
1HHH1)

�1HHHT
1 xxx so that

�2���T
HHHT

1HHH1

�2
TTT� + ���T

HHHT
1HHH1

�2
���

= �2���T
HHHT

1HHH1

�2
HHHT

1HHH1

�1

HHHT
1 xxx+

���THHHT
1HHH1���

�2

=
1

�2
�2���THHHT

1 xxx+ ���THHHT
1HHH1���

and similarly for the denominator term in (9). Hence

L(xxx) =
exp � 1

2�
�2���THHHT

1 xxx+ ���THHHT
1HHH1���

exp � 1
2�

�2���THHHT
1 xxx+ ���THHHT

2HHH2���

which is identical to

L(xxx) =
p1(xxx; ���)

p2(xxx; ���)

=

1

(2�� )
N
2

exp � 1
2�

(xxx�HHH1���)
T (xxx�HHH1���)

1

(2��2)
N
2

exp � 1
2�

(xxx�HHH2���)T (xxx�HHH2���)
:

IV. CLASS-SPECIFICFEATURE THEOREM

We now state the class-specific feature theorem. Two cases are of
interest. The classical case assumes the parameter is deterministic and
known while the Bayesian case assumes the parameter is random but
with a known prior pdf. We now utilize a more descriptive notation for
the pdf’s to avoid confusion between the classical and Bayesian cases.
For the classical case, the pdf for the dataxxx, which is parameterized
by the vector���, is denoted bypX(xxx; ���). In the Bayesian case, the pa-
rameter vector is assumed random with known prior pdfp�(���) and the
conditional pdf is denoted bypXj�(xxxj���). In general,xxx isN�1 and��� is
p�1. The following lemma is used to prove the main theorem and is of
interest in its own right. It states that not only does a sufficient statistic
provide all the information necessary for a decision problem [5], but in
the case of a simple versus simple hypothesis the likelihood ratios are
identical. A similar result is implicit in the proof of the equivalence of
the Kullback–Leibler information discrimination measure based on the
data and a sufficient statistic [6].

Lemma 4.1 (Equivalence of Likelihood Ratio Based on Data and Suf-
ficient Statistics): Let TTT (xxx) be a sufficient statistic for the pdf family
pX(xxx; ���) and letpT (ttt; ���) be the pdf ofTTT . Then for any two values of
��� we have that

pX(xxx; ���1)

pX(xxx; ���0)
=

pT (ttt; ���1)

pT (ttt; ���0)
(10)

wherettt = TTT (xxx). Note that the equivalence of the likelihood ratios is
at the pointxxx for the data likelihood and at the pointttt = TTT (xxx) for the
sufficient statistic likelihood ratio.

The proof is based on the Neyman–Fisher factorization theorem
and is omitted. We now state the main theorem, starting with the
classical case. Consider the problem of choosing among the hy-
pothesesfH1; H2; � � � ; HMg, where theith hypothesis has the
prior probabilityP (Hi). If Hi occurs, the data has the conditional
pdf pXjH (xxx; ���i). The pdf families under each hypothesis need
not be the same nor the dimensionalities of the���i ’s. The decision
rule that minimizes the probability of error is well known to be the
maximuma posteriori(MAP) decision rule [4]. That is, we choose the
hypothesis for which thea posterioriprobability or�i = P (Hijxxx; ���i)
is maximum. We note that this procedure may be effected by a
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sequence of binary decisions as follows. Compare�1 to �2 and choose
the larger. If, say,�1 is larger, then compare�1 to �3 and choose the
maximum. We repeat the procedure until all�i ’s have been examined.
The surviving� will be the maximum. We will term this somewhat
obvious approachbinary decision making.

Theorem 4.1 (Class-Specific Feature—Classical Case):Assume
that for each hypothesis the pdf familypXjH (xxx; ���i) admits a
sufficient statisticTTT i for ���i. Each���i is assumed known. If we can find
a set of values of the���’s so that for each binary decision betweenHi

andHj we have

pXjH (xxx; ����i ) = pXjH (xxx; ����j ) (11)

then the MAP rule for choosing amongfH1; H2; � � � ; HMg is to
make binary decisions (a total ofM � 1) betweenHi andHj and
to decideHi if

pT jH (ttti; ���i)

pT jH (ttti; ���
�
i )

P (Hi) >
pT jH (tttj ; ���j)

pT jH (tttj ; ���
�
j )

P (Hj): (12)

Proof: Consider the binary decision betweenHi andHj . Then,
the MAP rule choosesHi if

pXjH (xxx; ���i)P (Hi) > pXjH (xxx; ���j)P (Hj):

Now using (10) we have that

pXjH (xxx; ���i) = pXjH (xxx; ����i )
pT jH (ttti; ���i)

pT jH (ttti; ���
�
i )

and thus we chooseHi if

pXjH (xxx; ����i )
pT jH (ttti; ���i)

pT jH (ttti; ���
�
i )

P (Hi)

> pXjH (xxx; ����j )
pT jH (tttj ; ���j)

pT jH (tttj ; ���
�
j )

P (Hj)

or, finally, using (11), we have the result.
It is sufficient but not necessary for the condition of (11) to hold that

pXjH (xxx; ����1) = pXjH (xxx; ����2) = � � � = pXjH (xxx; ����M):

In practice, it appears that this sufficient condition is most easily satis-
fied. For example, in the linear model example of Section III we could
have considered the problem of

H1: xxx = HHH1���+www1

H2: xxx = HHH2��� +www2

H3: xxx = HHH3 +www3:

Then, the sufficient condition is satisfied if we choose����,����,� equal
to the zero vector of commensurate dimension.

For the Bayesian case we have the following corresponding theorem.

Theorem 4.2 (Class-Specific Feature—Bayesian Case):Assume
that for each hypothesis the conditional pdf familypXj� ;H (xxxj���i)
admits a sufficient statisticTTT i for ���i. The prior pdf for���i is p(���i) and
is assumed known. If we can find a set of values of the���’s so that for
each binary decision betweenHi andHj we have

pXj� ;H (xxxj����i ) = pXj� ;H (xxxj����j ) (13)

then the MAP rule for choosing amongfH1; H2; � � � ; HMg is to
make binary decisions (a total ofM � 1) betweenHi andHj and
to decideHi if

pT jH (ttti)

pT j� ;H (tttij���
�
i )

P (Hi) >
pT jH (tttj)

pT j� ;H (tttj j���
�
j )

P (Hj): (14)

Proof: Consider the binary decision betweenHi andHj . Then,
the MAP rule choosesHi if

pXjH (xxx)P (Hi) > pXjH (xxx)P (Hj) (15)

where

pXjH (xxx) = pXj� ;H (xxxj���i)p(���i)d���i:

But from the Bayesian equivalent of (10)

pXjH (xxx) =
pT j� ;H (tttij���i)

pT j� ;H (tttij���
�
i )

pXj� ;H (xxxj����i )p(���i)d���i

= pT j� ;H (tttij���i)p(���i) d���i
pXj� ;H (xxxj����i )

pT j� ;H (tttij���
�
i )

= pT jH (ttti)
pXj� ;H (xxxj����i )

pT j� ;H (tttij���
�
i )
:

Using (15) we have

pT jH (ttti)
pXj� ;H (xxxj����i )

pT j� ;H (tttij���
�
i )

P (Hi)

> pT jH (tttj)
pXj� ;H (xxxj����j )

pT j� ;H (tttj j���
�
j )

P (Hj)

and, finally, using (13), we have the desired result.
It is sufficient but not necessary for the condition of (13) to hold that

pXj� ;H (xxxj����1) = pXj� ;H (xxxj����2) = � � � = pXj� ;H (xxxj����M):

V. DISCUSSION ANDCONCLUSIONS

A more rigorous proof and justification for the class-specific fea-
ture theorem has been given. The importance of the result is that in
classification problems one need not “lump” all the features for all the
classes together. Doing so requires the determination of a large dimen-
sionality pdf, which in practice is usually impossible. Alternatively, we
can restrict attention to the sufficient statistic for each class separately,
when appropriately normalized. Then, it is only the pdf of the sufficient
statistic for each class that is required. However, the normalization con-
dition cannot always be satisfied. In the exponential versus log-normal
pdf classification problem this condition does not appear to be satis-
fied. For signal in noise problems, such as was illustrated using the
linear model in Section III, the normalization condition is easily sat-
isfied. We need only choose the parameters to result in the noise-only
case.

In summary, when applicable, the class-specific feature approach re-
sults in a much simpler pdf estimation problem and a subsequent reduc-
tion in the complexity of the classification problem. It thus yields more
accurate classification and/or requires less training data [2].
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Asymptotic Performance Analysis of Bayesian Target
Recognition

Ulf Grenander, Anuj Srivastava, Member, IEEE, and Michael I. Miller

Abstract—This correspondence investigates the asymptotic performance
of Bayesian target recognition algorithms using deformable-template rep-
resentations. Rigid computer-aided design (CAD) models represent the un-
derlying targets; low-dimensional matrix Lie-groups (rotation and trans-
lation) extend them to particular instances. Remote sensors observing the
targets are modeled as projective transformations, converting three-dimen-
sional scenes into random images. Bayesian target recognition corresponds
to hypothesis selection in the presence of nuisance parameters; its perfor-
mance is quantified as the Bayes’ error. Analytical expressions for this error
probability in small noise situations are derived, yielding asymptotic error
rates for exponential error probability decay.

Index Terms—Bayesian ATR, deformable templates, Laplace’s asymp-
totics, nuisance integration.

I. INTRODUCTION

A variety of civilian and military applications require recognizing
targets of interest, either stationary or moving, situated in unknown
surroundings, using standard remote sensors such as cameras and
radars. The data collected by sensors are analyzed by computer
algorithms fordetectionandrecognitionof the targets in the observed
scene. This data collection and the algorithmic inference together form
an automated target recognition (ATR) system. An inherent part of
any recognition system description are its performance specifications.
In view of the diverse recognition algorithms proposed (please refer
to the special issue of IEEE TRANSACTIONS ON IMAGE PROCESSING
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[19]) and the advancing sensor technology, resulting in new modalities
and better performance, the need for methods of evaluating recog-
nition systems is becoming more acute. Several target recognition
performance studies have been presented in the literature. Lower and
upper bounds, on the performance in localization and recognition of
flexible shapes, are presented in [16]. Agarwalet al. [1] provide an
overview of the target recognition performance under three popular
paradigms: Bayesian, neural networks, and rule-based approaches.
In [12], the authors evaluate the performance of an optimum receiver
designed for a noise-free target in terms of unknown rotation and scale
parameters. A variety of other researchers have reported analyses of
target recognition performance, but restricted to specific systems or
algorithms [8], [18]. In [7], the author provides a broad analysis of
several target recognition algorithms in terms of their performance.

The goal of this correspondence is to present a quantitative analysis
on the asymptotic performance of the recognition systems, not lim-
ited to any particular model. We shall use a Bayesian pattern-theoretic
framework as in [17], [26], and [27] in which the recognition problem
is treated in a unified way, so that, for example, multitarget and multi-
sensor situations do not require separate treatment, nor do obscuration,
structured clutter, and tactical aims; they are all instances of the same
general recognition problem. In fact, detection, tracking, and recogni-
tion are all treated as partial solutions of a single Bayesian problem.
Given precise models of the shapes and reflectance characteristics of
the targets of interest, and the physics of remote sensors, the observed
variability is reduced to low-dimensional attributes such as pose, mo-
tion, illumination, temperature, in addition to the target labels. The vari-
ability in these targets-attributes is modeled by group actions (rotation
and translation) on the rigid templates and, hence, target inference re-
duces to optimization over the these groups (IRn andSO(n)). For mod-
eling image formation via remote sensing, we will assume statistical
models motivated by the physics of sensor operation. The resulting im-
ages are random realizations with means given by the projections of
the three-dimensional scenes.

To recognize a target, estimation of the associated target attributes,
such as pose, motion, lighting, and thermal profile, becomes essential.
Target recognition is performed through Bayesian hypothesis testing;
for a given observation the likelihood ratios are compared to the ratio
of priors and a hypothesis is selected. In a binary case, for an observed
imageID , the Bayesian hypothesis testing problem is

p(IDjH1)=p(I
DjH0)

H

>
<
H

P (H0)=P(H1) � �:

In the presence of nuisance parameters, such as pose and location,
p(IDjHi); i = 0; 1 is defined via the integral

p(IDjHi) =
S

p(ID js; Hi)p(sjHi)(ds)

wheres is a nuisance parameter. In most practical situations, the inte-
grand is too complicated to be computed analytically. One common so-
lution is to formulate a generalized likelihood-ratio test orpseudo-like-
lihood test [29] according to the rule

p(IDjH1; s
�

1)=p(I
DjH0; s

�

0)
>

<
�

for some� and

s�i = argmax
s2S

p(IDjHi; s):

s�i ’s are the maximum-likelihood estimates (MLE’s), of the unknown
target parameters, under the two hypotheses. A similar ratio, of the
maximized posterior densities under the two hypotheses, is proposed
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