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- Abstract

We apply Wijsman’s theorem for the ratio of den-
sities of the mazimal tnvariant to signal detection ap-
nlications. The method does not require the explicit
use of & marimal invariant statistic or its density to
derive the uniformly most powerful snvariant (UMPI)
test. We describe its use for common classes of detec-
tion problems and illustrate its use in examples. The
enalytic form of the representation provides new in-
sight into the relationship between the UMPI and gen-
eralized likelihood ratio tests.

1 Introduction

1.1 Hypothesis testing

The criterion used to select a test for signal detec-
tion applications such as sonar and radar is typically
the test that provides the highest probability of detee-
tion (Pd) subject to a given probability of false alarm
(Pfa) requirement. The detection problem is cast
as a hypothesis test in which the null hypothesis is
noise and the alternate hypothesis is signal plus noise.
However, use of the Neyman-Pearson lemma to derive
tests for these applications usually does not result in
a test that can be implemented due to unknown sig-
nal or noise parameters. A uniformly most powerful
(UMP) test, in which the test has the highest Pd over
the domain of unknown parameters, also usually does
not exist.

When the UMP test does not exist, various ap-
proaches can be used to select a suboptimal test. One
of the most widely used is the generalized likelihood
ratio test (GLRT). To derive the GLRT, the un-
known parameters under each hypothesis are replaced
by their maximum likelihood estimates {MLE’s) [1].
Among the known properties of the GLRT in invari-
ant problems are that it is invariant and asymptoti-
cally UMPI. However, it is not necessarily UMPI for

0-7803-7576-9/02$17.00 © 2002 IEEE

756

Steven M. Kay
University of Rhode Island
Kingston, RI 02881

finite data records, even when the UMPI test exists.

1.2 Invariance

The principle of statistical invariance is applied to
composite hypothesis testing problems, and in partic-
ular those for which a UMP test does not exist, as
an approach to find the most powerful test among the
class of invariant tests. Using the criterion that the
test be invariant, as a further requirement of a satis-
factory test, may be reasonable for the problem and
lead to a test with optimality properties. Even if the
UMPI test is found not to exist, then the derived re-
sult can be used as a performance bound for the class
of all invariant tests.

Application of invariance principles to bypothesis
testing is described in statistics texts such as Lehmann
[2]. The text of Scharf {3] applies invariance methods
to signal detection applications. The classic approach
of finding the UMPTI test is to: identify problem in-
variances, describe the invariance analytically in terms
of a transformation group, choose a maximal invari-
ant statistic, derive the probability density function
{(PDF) of the maximal invariant under each hypothe-
sis, and then construct the likelihood ratio. Another
method of deriving the UMPI test statistic, is to show
that a scalar maximal invariant has a monotone like-
lihood ratio. Scharf and Friedlander [4] use that ap-
proach to show that the GLRT is UMP] for classes of
detection problems that fit the linear model. Here,
we use Wijsman’s theorem for the likelihood ratio of
maximal invariant densities, which does not require a
maximal invariant or its density. We note that the
analytic form of the ratio provides insight into the re-
lationship between the UMPI and suboptimal tests.
In some problems, the UMPI test statistic can be in-
terpreted to be an average of the likelihood ratio over
the group and the GLRT statistic the maximum of the
ratio over the group.



1.3 Principal literature

Stein [5] is credited in the statistics literature for
the general method of averaging over a group to ohb-
tain the density of a maximal invariant statistic. He
also provided an expression for the ratio of maximal
invariant densities. Wijsman [6] further developed the
approach using a theory of cross sections of orbits and
providing conditions under which the ratio is valid.
In {7] Wijsman gives alternate conditions which can
be easier to apply using the concept of proper actions
(Andersson [8]) of a group. Using numerous exam-
ples, he also shows that the conditions are met for all
the “usual” problems arising in normal multivariate
analysis. Eaton [9] provides a description and exam-
ples of the approach, including a version of Wijsman's
theorem. We apply these results to the groups used
in signal processing applications, show that the ratio
validity conditions are met, and illustrate its use for
common classes of signal detection problems.

Applications of the approach to obtain the density
or ratio of maximal invariants can be found in the
statistics literature (e.g., in Uthoff [10] and Kariya and
Sinha {11]). The only use of the approach in the en-
gineering literature known by us is Schwartz [12]. He
uses invariance principles to derive CFAR and mini-
max detectors for a signal of unknown phase in Gaus-
sian noise of unknown covariance. To obtain the ratio
of maximal invariant densities, he integrates over a
group (which is generated by the composition of two
groups). The integral form is then approximated for
the low SNR case to obtain a CFAR locally minimax
test. -

2 Representation of the ratio of
maximal invariant densities

To derive an UMPI test, the problem invariances
and a group (G under which transformations on the
data should leave the problem invariant are identified.
The group elements are denoted as g € G. We next
use Wijsman’s theorem to derive the ratio of maximal
invariant densities. In particular, we use the approach
as described in Eaton [9] (theorems 5.8 and 5.9) in
which the ratio is given by

S s (9% Ha) xo (9) dvi (g)
S x (9% Ho ) xo (g} dit (g)

Lower case bold notation is used to denote vectors
and later, upper case bold will be used to denote
matrices. The notation gx indicates group element
transformations on the data, and 3@ is the notation
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used to denote induced group actions on the parame-
ter space. To interpret this ratio, first consider that
given that the problem is invariant under the transfor-
mation group G, then densities under each hypothesis
must satisfy the relationship px {g7"x; 6} IJg—x (x)l =
px (x;6). The Jacobian |J,-: (x}| is the usual factor
obtained in transformation of random variables. The
factor xg (g) of Wijsman’s ratio is the inverse of this
Jacobian, [Jg-1 (x)l_l. The measure v, {g) is a left
invariant measure for the group. For signal process-
ing applications, this measure can usually be written.
in terms of a Lebesgue measure, making it possible
to evaluate the resulting integral form. For cases of
discrete groups, the integral is easily converted into a
summation. See Eaton [9] and Kariya [11] for other
examples.

2.1 Conditions

Wijsman [7] describes the conditions under which
the ratio is valid to be that the group is a Lie group,
the sample space is a subset of Euclidean space, and
the action is linear or affine. He states that these are
not much of a limitation in practice since all known
examples seemn to be of this nature. Additionally, the
group action must be proper, and under the assump-
tion of locally compact groups he provides a lemma
that is easy to apply. Eaton provides a version of
this lemma as Theorem 5.6, Wijsman alsc shows how
to apply his lemma to groups that have been gener-
ated by subgroups, which is analogous to a theorem
in Lehmann (Chap 6, Thm 2) in which a maximal in-
variant is generated in steps. This is important since
we are now working with groups instead of maximal
invariant statistics.

Appendix 1 provides descriptions and examples for
the lemma terms of proper action and locally compact.
A summary of common groups and those relevant to
signal processing applications is also provided. Al of
the groups shown meet the theorem conditions. In us-
ing this approach to derive UMPI tests, we work with
groups, subgroups, and group compositions, instead of
with maximal invariant statistics and their densities.

3 Signal detection examples

Two examples are provided in which the UMPI test
is derived and compared with the GLRT. Insights
gained by interpretation of the analytic form of the
integral are provided.

Example 1 Signal Known Except for Amplitude



The hypothesis test is

Hy
H,

X=w
x=As+w,

where s ig a known signal, w is the noise vector which
is distributed as NV (0, ¢*I), and A (—~co < A < 00) is
an unknown scaling factor on the signal. The noise
variance a2 is known. Hp and H; denote the null
and alternate hypotheses respectively. The UMP test
for this problem is sgn{A4)s¥x > -, where v is the
threshold established by the Pfa requirement. Hence,
for the UMP test to exist, we need to know sgn (4).

Since we do not know sgn (A), then we should con-
sider tests invariant to the sign. The discrete group
Gs = {gs : gs = —1,1} acts on the data samples x
under the operation of multiplication. To establish
that the problem is invariant [2], it is shown in Ap-
pendix II that the densities belong to the same fam-
ily after transformation, and the parameter spaces are
preserved.

As noted in section II.B and in Appendix I, this
group is locally compact and acts properly since it
is discrete.  Hence the conditions of Wijsman's the-
orem are met. For this group, xg(gs) = 1 since
Dx (9:X; §50) = P (x;8). A counting measure is a left
invariant measure and used since the group is discrete.
Hence, the ratio of maximal invariant densities is given

3 mi—ay Pxlgae M) xH,)
Leyy={-1,1} 1 PxlgaxH,s
by Sami—t,1} PrldsXiHo) 2 E§e={“‘111} PulxiFHy)

since py (%;Ho) = px (—%;Hp). Expanding the ex-

pression gives

exp [#%ﬂ- (gsx — As)T {gox — As)}

1
2, exp |— 52z x7X]
1 A? A —A
= 3 exp [-FSTS] (exp [gsTx] + exp [?STX]) .

The expression is monotonic with respect to |s"x|,
which can be used as the UMPI test statistic. Observe
that the above expression is a summation over a two
element group which can be interpreted as an average
over the group. The GLRT will be seen to have an
interpretation of the maximum over the group.
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The GLRT is obtained by substituting the MLE of
A, which is A = (s7s) ~!sTx, into the likelihood ratio,

Px (x; As, Hl)
Px (x;Hp)

exp [? ((g,,x ~ As)" (gix - 4s) - xTx)]

exp [2—(17-5 (sTs)™ (sTx)z] .

This is also monotonic with respect to |sTxl, and
hence the GLRT and the UMPI tests are the same.
Next consider the case in which it is given that
A > 0. Here, the UMP test exists and is s7x
since we know sgn(A). The two element group
G, used in the A # 0 case reduces to a group
with a single element, G = {1}. This trivial case
is shown for illustration of the concept, and will
be extended later.  Using this group in the ra-
Tem1y Peloxi¥) e[ Zh (x—A8) (x=4s)]

tio gives

2 p=p1) PxlgxsHe) — exp[ﬁ_—}x"‘"x}
2 T .
exp [;—'?;STX — #sTs|, which is increasing in sTx, the

UMPI (and UMP) test statistic. However, the GLRT
for this example is not UMPI. The MLE for A is

A = max (O, (sT )_1 STX). The likelihood ratio is

p(dnr)
R, S — exp —

Px (%) [2‘72
{ exp(0], for A=0

exp [2—;5 (ssTs)—1 (sTx)z] Jor A>0
Taking the natural log, we see that the GLRT can
be written as max (0,s7x). This test has a lower
probability of detection (Pd) than the UMPI test for
probability of false alarms (Pfa) in the interval [.5,1).
Notice that in the GLRT derivation, the parameter A
is replaced. The UMPI test obtained by integrating
over the sign group, induces action only on the param-
eter sgn (A) and not A, which is sgn(A) |A]. In re-

(—QAsTx + Asts)]

" placing all parameters, the GLRT may imply a larger

group invariance than indicated by the problem itself,
and can result in a suboptimal test. Eaton ([9], ex-
ample 6.5) provides a different example in which the
GLRT is not UMPI and also attributes the result to a
bit “too much invariance,” noting that fully invariont
procedures such as the likelihood ratio test {GLRT) can
be improved upon by simply requiring less inveriance.

We now extend the example beyond the trivial
group to the case in which we have interference of



unknown level. The hypothesis test is

Ho
Hy

x=dl+w
x =dl + As +w,

where the noise w is Gaussian with known variance
o?I, and the 1 denotes an N x 1 vector whose el-
ements are all 1. It is also given that 4 > 0, 4
is unknown, and s = [ 1 ~1 ]T. The two sam-
ple case is considered for simplicity. The density
is N(dl,azl) under Hy , and A (d1+A4s, 021) un-
der H;. The problem is invariant under the transla-
tion group, Gp = {gp : gpX = x+ b1, b € R'}. The
group transformations of x are Gaussian, with means
(b1 +d1 and b1+ d1+As) and covariance matrices the
same as before. The conditions of Wijsman’s theo-
rem are met since the group is locally compact and
acts properly (Appendix I). The multiplier xq{gs)
is 1 since px (gox; Go8) = px (X + b1;(d — b) 1+ As) =
Px (x; d1+As) = pe (x:8). That is, the random vari-
able transformation by the group elements has a Ja-
cobian of 1. For the left invariant measure we use
Lebesgue measure db since subintervals of equal length
have equal measure along R! (see Appendix III for
a different example). Transformation by translation
group elements does not change the size of the subin-
terval and hence the measure is unchanged. Further-
more, since the integrand is continuous, the Lebesgue

integral can be interpreted as a Riemann integral.
T2, palx+b17H: )db

Using these results, the ratio is T R L e)d
which is
k(x4 (b—d)1— 4s)”

f:oexp[ _-(X-{-(b-—d)l—-As) ]db
[ exp [2;,,15 (x+b1)T (x+bl)] db

and simplified further to

I exp [5-;1, (x + b1 — As)T (x + b1 — As)] db
5 exp [5‘;}; (x+01)T (x + bl)] db

where b1 — d1 has been replaced with b1 since the
integration is over the interval (—o0,00). The As
factor can be brought outside the integral since s71 =
0 and it is not a function of b, giving

[ e [ (x+ 51T (x4 1)) b

AT*f‘]

exp | 35 x
P [02 a?

S e [-2-*;12- (x+51)7T (x + bl)] y

.
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This is increasing in sTx, since A > 0. Hence,
the UMPI test statistic is s7x. Note that since
s=[1 -1 ]T, the statistic s7x = x [1]~x [2}, which
is invariant to the interference.

The GLRT is obtained by substituting A, do, and
d;, the MLEs of the parameters under each hypothesis
into % The MLE’s are A = max (0,1sx),
and dg = d; = $17x. Making the substitutions and

some cancellations gives exp [4—;7 (sTx)Q] for the A >

0 case, and O for the A = 0 case. This is increasing in
max(0,s7x), which can be used as the GLRT statistic.

Hence, this is an example for which the UMPI test
exists, but is not given by the GLRT. As noted for the
two-sided case, in deriving the GLRT we replaced all
unknown parameters. In the UMPI derivation, inte-
gration over the translation group implies an induced
action on the interference parameter only.

Example 2 Signal in ¢ Known Subspace

This example is of the form of the classic linear
model

Ho
Ha

X=w
x=H8 +w.

The N x p matrix H is known, the noise w is Gaus-
sian with known variance o2, and the p x 1 parameter
vector 8 is unknown.

We use the p x 1 sufficient statistic =z

(HTH)_J" H7x, and write the equivalent hypothesis
test using z = w under Hp, and z = (HTH)% a9+

(HTH)Y% H?w under H;. Since the noise term
still has a density N (0,0%I), the density of z is
N ((HTH)EI 9,021) under H; and N (0,021) under
Ho.  Note that we use this version of the suffi-
cient statistic since it is invariant under the group
G, = {go : gz =0z, 0TO = I}. The matrix O is
the p x p orthogonal group. The problem is shown to
be invariant in Appendix II. Other statistics of the
data and different groups can be used for this problem
{[3] and [4]). The statistic and group used rotates the
component of the data that lies in the signal subspace
and leave other components unchanged.

The p = 2 case is now developed. Extension to the
general p case can be easily made using generalized
spherical coordinates. For this p = 2 case, the orthog-
onal group is a rotation in R? and can be written as

G, cosT —smy ]z, ne[—ﬂ',ﬂ},
sinp  cos7

Gn:gnZ =



which is a set of 2 x 2 matrices that act under multipli-
cation on z. Alternatively, consider the group G, =
{gy: & (r,a) =2 (r,y+ ), ye[—7, 7|}, which is a
set of translation elements in &' acting under mod-
ulo addition on the angle elements (of the polar form)
of z. Define z(r,a) = { reosy rsiny ]T. Since
it can be shown that G, and G, are isomorphic (ie.,
there is a 1-1 correspondence between elements and
also between the results of computations}, we can use
either group and its associated action on the data to
describe the problem invariance. This is a translation
group and hence is locally compact and acts properly
(Appendix I). For the group G, the left invariant
measure dv; (g, ) is the Lebesgue measure dv since the
composite group actions are translations in R! and
Lebesgue measure for an interval is invariant under
translation. The group multiplier xp (g4) is 1.

The group acts on the angle component of z (7, o).
Under H;,

pa (9.2 (ra); (HTH)? 6,0°1)

(27”72) : [202 (z (ra+7) - HTH)% B)T

- (z (ra+~)— (HTH)% 9)] .

to

The exponent

2r6” (HTH)* [

simplifies
cos (o + )
sin (& + )

o (r?

] + (H6)T H8). Under

Hos Pa (942 (r, @) ;0,0%1) = mexp [—2—’:—5] Us-
ing these densities in the ratio, where the integration
is with respect to Lebesgue measure and since the
integrand is continuous over the domain of integration
we have the ratio of Riemann integrals, giving

ff-,r Pz (g‘yz {, a); Hy)dy
JT-,, Pz (g"fz (?", O‘) ;HU) d’)’

= % /_: exp [%(—2’1‘9T (HTH)% [
+(HO)T He)] d.

il

Denoting the 1 x 2 matrix 67 (HTH)? in its polar

form by [ rgcos 3 rpsin ] and dropping the non-
data dependent term gives

1 (" T3 . cos(a+7) |

'wexp [?[ cos§ sinf | [ sin {a + ) &y

1

L[ e [eilor ()

2r
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wherey' = f—a—7, and I (Z£) is a modified Bessel
function mcreasmg in =F, Hence, the UMPI test
statistic is r (since 34 is positive and not & function of
the data}, Wthh in terms of the sufficient statistic is
equivalent to z7z. In terms of the ongmal data sam-
ples, we have 27z = xTH (HTH)ﬁ HTx. Letting
Ppx=H(H'H)" ' HTx, which is the projection of
x onto the signal subspace, the statistic can be writ-
ten as x' Pyx = (P Hx) Pgx. The test statistic can
be interpreted as the energy of the components of the
signal that lie in the signal subspace. This statistic
is the GLRT for the linear model. Hence the GLRT
is UMPI. Scharf and Friedlander [4] show that the
GLRT is UMPI for classes of problems which include
this example.

3.1 Relationship between tests

The integral form of Wijsman’s theorem gives
insight on the relationship between the GLRT
and UMPI tests. The form of equation 1,
J7 exp [ T4 cosy] dv, can be viewed as an ‘average
over the group.’ Let T{y) = Tf cos~y and let 4 be
the value of v € [—m, 7] that maximizes T'(y). Then,

/_ : exp [T ()] dy
explT ) [ exp(T () - T (Rl

exp [:Lf] [:;exp [gg {cosy — 1)] d.

The resulting integral is an increasing function of T (%)
which is the GLRT for this problem. This inte-
gral form suggests the additional interpretation that
the GLRT is UMPI since the maximum on the group
{GLRT) and the average over the group (UMPI) are
1-1.

Use of this analytic form to investigate the relation-
ship between tests can also be applied to problems for
which the integral of the previous equation is not a 1-1
function of the maximum on the group factor. The
integral factor may provide insight into the difference
between the UMPI and maximum on the group statis-
tics, as well as the conditions under which they become
equivalent tests.



Appendix
I Groups

For the lemma described in Section 2.1, the group
action must be proper and it is assumed that the
groups are locally compact. Consider that for the
case of RV, the action is proper if for any closed
and bounded subsets, say a and b, the set of all
group actions such that {g: ganb # ¢} is closed and
bounded. In essence, the collection of group ele-
ments that transform some point is bounded. As
another example consider the scale group G, (defined
below). For any two closed and bounded subsets of
RN, there exists a set {¢: can'b # ¢} which is closed
and bounded.

It is assumed that the groups are locally compact.
Recall that a space in RV is compact if and only if
it is closed and bounded (Heine-Borel theorem). A
space is locally compact if and only if every point has
at least one compact neighborhood. As an exam-
ple, on the rea? line (which is not compact) each point
p is interior to a closed interval [p — é,p + 8], which
makes it locally compact. A compact space is auto-
matically locally compact and every discrete space is
locally compact [13].

A brief description of groups relevant to signal de-
tection applications that meet the conditions of Wijs-
man’s theorem follows.

1. Al, = {gas: 945X =Ax+b}, where A are N
x N nonsingular matrices and b € RY. This
is known as the affine group. This group is not
compact. It is locally compact [9], and the group
action is proper [7].

2. Gl, = {ga:gax = Ax}, where A are N x N
nonsingular matrices. This is the general linear
group. This is a subgroup of the affine group.
The group is not compact, is locally compact [9]
and acts properly [7).

R" = {gb:g;,x=x+b, bERN} is a subgroup
of Al,. This group is not compact, is locally
compact [9], and acts properly [7]. A subgroup
of this is the translation group, where b = b1,
which is locally compact and acts properly.

. Ge = {gc:gex=ex,ce R0} is the scale
group. It is a subgroup of G!,. It is not com-
pact, is locally compact. Proper action is inher-
ited from GI,,.

5. Gy = {gs:9:x=cx,c€ {—1,1}} is the sign
group. It is a subgroup of G.. It is discrete
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and hence is compact, locally compact, and acts
properly since discrete groups are compact and
act properly [7].

. Gy = {go: gox = Ox, OTQ =1} is the orthogo-
nal group. It is a subgroup of Gi,,. It is compact
and hence is locally compact and acts properly.

7. P, = {gk DX = sz}, where P* are the Nx N
permutation matrices. These contain rows and
columns with exactly one element equal to 1 and
the others are 0. This group is discrete and hence
is compact, locally compact and acts properly.

II Invariance of Examples

In example 1, the problem is invariant under G,
since px (g5 1x; As) IJg;1 (x)‘ is

1 1 N-1 ,
oty [5 2 lov e o] = sinl) ]

n=0

_l_.._ exp [:l Nif (35 [n] - gsAS [n])z]
(2‘.’1’0’2) ¥ 25° n=0

Px (x; ﬁsAS) s

since g;! = g,. The Jacobian |J . (x)| of the trans-
formation is 1. Hence, transformation of x by these
group elements results in a random variable belonging
to the same family of densities, with a different value
of the parameter that belongs to the same hypothesis.

In example 2, the problem is invariant under G,
since under H;

Pz (Q.,_lz; (HTH)% 0,0’2[) \Jg;n (z)]

1 T
1 o (0Tz— (HTH)? 0
T ey ¥ T ” (E,')Tz - (uTH)? 9))
1 AT
1 5 (z- 0 (HTH)?9)

1
2

(z-0(HTH)?9)

— (z; g (H7H)? 9,021) .

B (271’(72)1} P

After transformation, the PDF belongs to the same
family of PDF's with a value of the parameter be-
longing to the same hypothesis. Similarly, under Hp,

p= (9512, 0,0%T) |Jg;1 (z)‘ = p, (z; 0,0%1).



IIT Multiplier and left invariant
measure for the scale group

This appendix provides an additional example of
both the invariant measure and multiplier. The scale
group is an interesting example since the multiplier
is not 1 and the invariant measure is not simply a
counting measure or the measure of an interval.

Consider the transformation y = g.x = ex, ¢ # 0.
Assuming Gaussian densities with unknown mean #1
and variance ¢°I, the multiplier can be obtained from
the following PDF relationship,

e (971%; 41, 0°1) |Jg:: (x)l
2 (o) G

1
(2me2) xp [ﬁ
-1
exp [20262 (x— c,ul)T(x — cul)} .

(2‘rr¢:2c72)“21

Hence (see Section II, Jacobian and multiplier discus-
—1
sion) the multiplier is xg {g.) = ‘Jgr—l (x)' = \ciN.
A left invariant measure for scale group is described
next. Coansider that for this group, the composi-
tion of two group elements is gege, X = gee, X = €C1X,
and this composite action occurs in B'. An invari-
ant measure in R! with A = [a1,a2] € R' should
satisfy v (g.A) = v1{A}. Note that the Lebesgue
measiire fA dr = ag — a3 # ch dzr is not invariant.
We need an invariant measure, v (cA) = vy (A) Ve #
0. For v; absolutely continuous with respect to a
Lebesgue measure, then by the Radon-Nikodym the-
orem, 1 (A) = [, g(z)dz, where g () is a unique
nonnegative measurable function. Hence, for 1) (A)
to be invariant, it must equal v; (cA) = [ , g () dx.
Let u = £. Then v (cA) = [, g(cu)|c|du = v (A).
This implies that we need g{cu)lc] = g(u). A solu-
tion is g (u) = ]%I’ where we define g (0) = 0. Hence,
v (A= [, Tlﬂdu which in the notation of Wijsman’s

dvife) 1 .1
& = OF dvy (c) = rep -

For the problem of detection of a known signal of
unknown level in white Gaussian noise of unknown
variance, the substitutions into the theorem gives

[ pu(oesh ) |el¥ ~ de

J px{exiHo)le|™ ~lde?
test statistic

theorem is

which 1s easily simplified into the

STX
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