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Abstract

In the problem of model order selection, it is well known that the widely used minimum description

length (MDL) criterion is consistent as the sample size N → ∞. But the consistency as the noise variance

σ2 → 0 has not been studied. In this paper, we find that the MDL is inconsistent as σ2 → 0. The result

shows that the MDL has a tendency to overestimate the model order. We also prove that another criterion,

the exponentially embedded family (EEF), is consistent as σ2 → 0. Therefore in a high signal-to-noise

(SNR) scenario, the EEF provides a better criterion to use for model order selection.

Index Terms

Consistency, exponentially embedded families, hypothesis testing, minimum description length, model

order selection

I. INTRODUCTION

Model order selection is a fundamental problem in signal processing. It has many practical applications

such as radar, computer vision and biomedical systems. Model order selection is essentially one of

composite hypothesis testing, for which the probability density functions (PDFs) are known except

for some parameters. Without the knowledge of those parameters, there exists no optimal solution.

A simple and common approach is the generalized likelihood ratio test (GLRT) which replaces the

unknown parameters by their maximum likelihood estimates (MLEs). However in the case when the
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model orders are hierarchically nested, the GLRT philosophy does not work since it will always choose

the largest candidate order (see [1] for a simple example). Many methods have been proposed to offset

this overestimating tendency based on different information criteria such as the Akaike’s information

criterion (AIC) [2], the MDL [3], [4], and the EEF [5]. The reader may wish to read [6] for a review

of information criterion rules on model order selection. One would prefer a criterion that will always

choose the true model order if we have a large enough number of samples. It has been shown in [7] the

consistency of the MDL and the inconsistency of the AIC as the sample size N → ∞, i.e., the MDL will

pick the true order with probability one and the AIC tends to overestimate the model order as N → ∞.

The consistency of the EEF as N → ∞ is shown in [8].

Except for the above consistency as N → ∞, one would also wish the criterion to have another

consistency that we call consistency as σ2 → 0. In this case the estimator will choose the true model order

in probability as the noise level decreases to zero. This is the consistency that we will discuss throughout

this paper. The Fisher consistency [9] is the same as the consistency as σ2 → 0 in parameter estimation

in curved exponential families [10]. To our knowledge, no work has been done on the consistency as

σ2 → 0 for the model order selection criteria. In this paper, we will show that the MDL and the AIC

are inconsistent as the noise variance σ2 → 0. This means that even under high SNR conditions, the

MDL and the AIC still tend to overestimate the model order. We then show that the EEF is consistent

as σ2 → 0. Simulation results are provided to support our analysis.

The paper is organized as follows. Section II presents the problem and the model order selection

criterions. Then we introduce a linear model and show the inconsistency as σ2 → 0 for the MDL and

the AIC in Section III. In Section IV, we prove that the EEF is consistent as σ2 → 0. Simulation results

are given in Section V to justify our derivation. Finally, Section VI draws the conclusion.

II. PROBLEM STATEMENT

Consider the multiple composite hypothesis testing problem where we have M candidate models.

Under each model Hi, we have

Hi : x = si(θi) + w = si(θi) + σu (1)

for i = 1, 2, . . . , M . x is an N × 1 vector of samples. The N × 1 signal si(θi) is known except for the

unknown i× 1 vector of parameters θi. w = σu is the N × 1 noise vector with known variance σ2, and

u has a well defined PDF. So each Hi is described by a PDF p(x; θi). We assume that the model orders
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are hierarchically nested, i.e., we can write the signal si(θi) as

si(θi) = s
(
[θ1, . . . , θi, 0, . . .]T

)
(2)

where s is a function of a M × 1 vector, for i = 1, 2, . . . , M . So the unknown parameters in signal

with higher order contain all of those in a lower order model. Let H0 be a reference hypothesis with

s
(
[0, 0, . . . , 0]T

)
= 0, so the PDF p(x; θ0) is completely known as noise only. Then the MDL, AIC and

EEF rules choose the model order that maximizes the following respectively:

− MDL(i) = lGi
(x) − i lnN

− AIC(i) = lGi
(x) − 2i

EEF (i) =
(

lGi
(x) − i

[
ln
(

lGi
(x)
i

)
+ 1

])
u

(
lGi

(x)
i

− 1
)

for i = 1, 2, . . . , M , where u(x) is the unit step function and lGi
(x) = 2 ln p(x;

ˆθi)

p(x;θ0)
. Here θ̂i is the MLE

for θi. Note that the inclusion of the term −2 ln p(x; θ0) does not affect the maximum and so we use

the log-likelihood ratio instead of the more usual log-likelihood for the MDL and the AIC. In the next

section we will implement these rules in the linear model to show the inconsistency of the MDL and the

AIC as σ2 → 0.

III. INCONSISTENCY OF THE MDL AND THE AIC

Without causing any confusion, we will use consistency instead of consistency as σ2 → 0 for the rest

of the paper unless otherwise mentioned. In this section, we will limit the derivation to the MDL. We

will start by introducing the linear model, from which we derive the performance of the MDL. Then

the inconsistency of the MDL is readily seen. The inconsistency of the AIC follows directly from the

analysis of the MDL.

A. The Linear Model

Consider the following linear model:

Hi : x = Hiθi + w for i = 1, 2, . . . , M

where M is the maximum order of all the candidate models, Hi = [h1,h2, . . . ,hi] is an N × i (with

N > M ) known observation matrix with full column rank, θi = [θ1, θ2, . . . , θi]
T is an i × 1 unknown

parameter vector of the amplitudes, and w is an N ×1 white Gaussian noise vector with known variance

σ2. For the linear model, lGi
(x) = xT Pix

σ2 , where Pi = Hi(HT
i Hi)−1HT

i is the projection matrix that
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projects x onto the subspace Vi generated by h1,h2, . . . ,hi [11]. So the MDL rule chooses the model

order that minimizes:

MDL(i) = −xTPix
σ2

+ i lnN for i = 1, 2, . . . , M

Let yi = xT Pi+1x
σ2 − xT Pix

σ2 for i = 1, 2, . . . , M − 1 and we have the following theorem. (See Appendix

A for the proof of Theorem 1)

Theorem 1 (PDF of yj for j ≥ p). If the true model order is Hp (p ≤ M), that is, θi = 0 for all

i > k, then the yj’s for all j ≥ p do not depend on θp or σ2, and they are independent and identically

distributed (IID), each with a chi-square distribution with 1 degree of freedom.

As we will show next, this theorem gives us a way to find a lower bound of the probability that the

MDL will choose the wrong model order.

B. Inconsistency of the MDL

We will show that the probability of overestimation does not converge to zero as σ2 → 0.

If Hp (p < M) is true, then the probability that the MDL will choose the wrong model order is

Pe = Pr {Hj , j �= p|Hp}

= 1 − Pr{MDL(p) < MDL(j) for all j �= p|Hp}

≥ 1 − Pr{MDL(p) < MDL(j) for all j > p|Hp}

= Pr{MDL(p) ≥ MDL(j) for some j > p|Hp} (3)

Since MDL(j)−MDL(j +1) = yj − lnN , for j > p, MDL(p)−MDL(j) =
∑j−1

i=p yi − (j − p) lnN ,

we have

Pr{MDL(p) ≥ MDL(j) for some j > p|Hp}

= Pr{yp ≥ lnN or yp + yp+1 ≥ 2 ln N or · · · or
M−1∑

i=p

yi ≥ (M − p) ln N |Hp} (4)

By Theorem 1, yj ∼ χ2
1 and yj’s are independent for j ≥ p. So the probability in (4) can be found

analytically, although it may not easy. Alternatively, we can find a lower bound of (4) which is much

easier to calculate. Notice that

Pr{yp ≥ lnN or yp + yp+1 ≥ 2 lnN or · · · or
M−1∑

i=p

yi ≥ (M − p) lnN |Hp}

≥ Pr{yp ≥ lnN |Hp} = 2Q
(√

lnN
)

(5)
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where Q(x) function is the right-tail probability of a standard Gaussian distribution, that is, Q(x) =
∫∞
x

1√
2π

exp
(
−1

2 t2
)
dt. So 2Q

(√
lnN

)
is also a lower bound of the probability of error Pe for the MDL.

Note that this lower bound decreases slowly as N increases. For example, in order to have Pe ≤ 0.01,

we require that 2Q
(√

lnN
)
≤ 0.01 and we need as many as N = 761 samples. This lower bound only

depends on the number of samples N . So when N is fixed, this lower bound is fixed even as σ2 → 0.

This shows that the MDL is inconsistent and it has a tendency to overestimate the model order.

For the AIC, we just need to replace lnN by 2, so the lower bound is 2Q
(√

2
)
. Hence the AIC is also

inconsistent. Notice that 2Q
(√

lnN
)
→ 0 as N → ∞, but 2Q

(√
2
)

is a constant. This also justifies the

result in [7]. Since the MDL is consistent as N → ∞, the lower bound 2Q
(√

lnN
)

should decrease to

0. The lower bound 2Q
(√

2
)

for the AIC shows that the AIC is inconsistent as N → ∞.

IV. CONSISTENCY OF THE EEF

As a complement to Section III, we will first show that the EEF is consistent for the linear model.

Next, we will prove that the EEF is consistent in general.

A. Consistency of the EEF for the Linear Model

The next theorem will be used to prove the consistency of the EEF for the linear model. (See Appendix

B for the proof of Theorem 2)

Theorem 2 (PDF of yj for j < p). If the true model order is Hp, then for j < p, yj has a noncentral

chi-square distribution with 1 degree of freedom and noncentrality parameter

λj = (Hj+1,pθj+1,p)
T (Pj+1 − Pj)Hj+1,pθj+1,p/σ2

where Hj+1,p = [hj+1,hj+2, . . . ,hp] and θj+1,p = [θj+1, θj+2, . . . , θp]
T . Let

αj = (Hj+1,pθj+1,p)
T (Pj+1 − Pj)Hj+1,pθj+1,p

and we have λj = αj/σ2. Furthermore, the yj’s are independent for all j.

The EEF chooses the model order that maximizes

EEF (i) =
(

lGi
(x) − i

[
ln
(

lGi
(x)
i

)
+ 1

])
u

(
lGi

(x)
i

− 1
)

=
(

xTPix
σ2

− i

[
ln
(

xTPix
iσ2

)
+ 1

])
u

(
xTPix

iσ2
− 1

)
(6)
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If Hp is true, it is well known that [1]

lGp
(x) =

xTPpx
σ2

∼ χ
′2
p (λ) (7)

where λ = ‖Hpθp‖2

σ2 . In order to prove the consistency of the EEF in probability, we need to show that

Pr
{

arg max
i

EEF (i) = p

}
→ 1

as σ2 → 0. We start by first comparing EEF (j) with EEF (p) as σ2 → 0 for j > p and j < p.

For j > p, we know that [1]

lGj
(x) =

xTPjx
σ2

∼ χ
′2
j (λ)

where λ is the same as in (7). The lemma in [8] shows that if Y is distributed according to χ
′2
ν (an)

where a is a positive constant, then as n → ∞, Y
n converges to a in probability, or in symbols, Y

n

P→ a.

Replacing n by 1/σ2 we have as σ2 → 0

σ2lGp
(x)

P→‖Hpθp‖2

σ2lGj
(x)

P→‖Hpθp‖2 for j > p (8)

Therefore

Pr
{

lGp
(x)
p

− 1 > 0
}

→ 1

Pr
{

lGj
(x)
j

− 1 > 0
}

→ 1 for j > p (9)

as σ2 → 0 and we can discard the unit step function. As a result,

EEF (k) − EEF (j)

= lGp
(x) − lGj

(x) − p ln lGp
(x) + j ln lGj

(x) + p ln p − j ln j − p + j

= lGp
(x) − lGj

(x) − p ln
(
σ2lGp

(x)
)

+ j ln
(
σ2lGj

(x)
)

+ c (10)

where

c = (p − j) lnσ2 + p ln p − j ln j − p + j (11)

By Theorem 1,

lGp
(x) − lGj

(x) ∼ −χ2
j−p (12)

Since σ2lGp
(x)

P→‖Hpθp‖2, σ2lGj
(x)

P→‖Hpθp‖2, by the continuity of the logarithm we have [12]

ln
(
σ2lGp

(x)
) P→ ln ‖Hpθp‖2

ln
(
σ2lGj

(x)
) P→ ln ‖Hpθp‖2 for j > p (13)
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We divide (10) by c and get

EEF (p) − EEF (j)
c

=
lGp

(x) − lGj
(x) − p ln

(
σ2lGp

(x)
)

+ j ln
(
σ2lGj

(x)
)

c
+ 1

Since 1
c → 0+ for j > p as σ2 → 0, as a result of (12) and (13), we have [12]

lGp
(x) − lGj

(x) − p ln
(
σ2lGp

(x)
)

+ j ln
(
σ2lGj

(x)
)

c

P→ 0 (14)

and hence
EEF (p) − EEF (j)

c

P→ 1 (15)

for j > p. This shows that as σ2 → 0, Pr{EEF (p) > EEF (j)} → 1.

For j < p, similar to the derivation in Appendix B, the distribution of lGj
(x) = xT Pjx

σ2 can be found

as

lGj
∼ χ

′2
j (λ′) (16)

where λ′ = (Hpθp)T
PjHpθp

σ2 . So we also have

Pr
{

lGp
(x)
p

− 1 > 0
}

→ 1

Pr
{

lGj
(x)
j

− 1 > 0
}

→ 1 for j < p (17)

as σ2 → 0. Thus we can also omit the unit step function and have

EEF (p) − EEF (j)

= lGp
(x) − lGj

(x) − p ln
(
σ2lGp

(x)
)

+ j ln
(
σ2lGj

(x)
)

+ c (18)

where

c = (p − j) lnσ2 + p ln p − j ln j − p + j (19)

Now by Theorem 2,

lGp
(x) − lGj

(x) ∼ χ
′2
p−j

(∑p−1

i=j
λi

)
= χ

′2
p−j

⎛

⎝
p−1∑

i=j

αi/σ2

⎞

⎠ (20)

so that by the lemma in [8], we have

σ2
(
lGp

(x) − lGj
(x)

) P→
p−1∑

i=j

αi (21)

Similarly to the above analysis, we have

ln
(
σ2lGp

(x)
) P→ ln ‖Hpθp‖2

ln
(
σ2lGj

(x)
) P→ ln

(
(Hpθp)

T PjHpθp

)
for j < p (22)
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Hence, with σ2 → 0 we have

σ2 ln
(
σ2lGp

(x)
) P→ 0

σ2 ln
(
σ2lGj

(x)
) P→ 0 for j < p (23)

Obviously, σ2c → 0. So by (18), (21) and (23), we have

σ2 (EEF (p) − EEF (j))

= σ2
(
lGp

(x) − lGj
(x)

)
− pσ2 ln

(
σ2lGp

(x)
)

+ jσ2 ln
(
σ2lGj

(x)
)

+ σ2c

P→
p−1∑

i=j

αi > 0 (24)

for j < p. This means that Pr{EEF (p) > EEF (j)} → 1 as σ2 → 0.

Finally we have shown that Pr{EEF (p) > EEF (j)} → 1 for all j �= p. Since Pr {A1 ∩ A2} → 1 if

Pr {A1} → 1 and Pr {A2} → 1 [12], as a result,

Pr
{

arg max
i

EEF (i) = p

}
→ 1

as σ2 → 0. This completes the proof that the EEF is consistent for the linear model.

B. Consistency of the EEF in General

In the general case, the signal s(θi) does not have to be a linear transformation of θi, and the noise w

does not have to be Gaussian. To prove the consistency of the EEF in general, we first write the model

in (1) as

Hi : x = si(θi) + σnu (25)

where the N×1 signal si(θi) depends on the i×1 unknown parameters θi, and u has a well defined PDF

and {σn} is an arbitrary positive sequence that converges to 0. Because if we consider the probability of

correct model order selection Pc as a function of σ2, then the following conditions are equivalent [13]:

Condition 1)

lim
σ2→0

Pc(σ2) = 1

Condition 2)

lim
n→∞

Pc(σ2
n) = 1 for any arbitrary sequence {σ2

n} that converges to 0

Hence we will prove Condition 2) to show the consistency of the EEF.
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Let us assume the following.

Assumption 1): s(θi) is Lipschitz continuous, i.e., there exists K > 0 such that
∥
∥si(θ1

i ) − si(θ2
i )
∥
∥ ≤

K
∥
∥θ1

i − θ2
i

∥
∥ for all θ1

i , θ2
i .

Note that the linear signal si(θi) = Hiθi is Lipschitz continuous since si(θi) is a linear

transformation of θi [14].

Assumption 2): The PDF pU(u) of u satisfies

pU(un)/pU(vn) → ∞ if ‖vn‖ − ‖un‖ → ∞

and

ln pU(u) is Lipschitz continuous on set {u : ‖u‖ ≤ l} for any l > 0

i.e., for any l > 0, there exists L > 0 such that | ln pU(u1)− ln pU(u2)| ≤ L ‖u1 − u2‖ for all

u1, u2 with ‖u1‖ ≤ l, ‖u2‖ ≤ l.

Note that the Gaussian and Gaussian mixture PDFs will satisfy Assumption 2). For example, let the

Gaussian mixture PDF be

pU(u) =
m∑

i=1

αi√
2πσ2

i

e
− ‖u‖2

2σ2
i

where αi > 0 and
∑m

i=1 αi = 1. Let σ2
max = max{σ2

1, . . . , σ
2
m}, σ2

min = min{σ2
1, . . . , σ

2
m}, and α be the

αi that corresponds to σ2
max. Then we have

pU(u)
pU(v)

=

m∑

i=1

αi√
2πσ2

i

e
− ‖u‖2

2σ2
i

m∑

i=1

αi√
2πσ2

i

e
− ‖v‖2

2σ2
i

>

α√
2πσ2

max

e
− ‖u‖2

2πσ2
max

1√
2πσ2

min

e
− ‖v‖2

2σ2
max

= α

√
σ2

min

σ2
max

exp

(
‖v‖2 − ‖u‖2

2σ2
max

)

So if ‖vn‖ − ‖un‖ → ∞, it follows that ‖vn‖2 − ‖un‖2 → ∞ and hence pU(un)/pU(vn) → ∞.

Let Hp be the true model. With the above assumptions, the following theorems are proved in Appen-

dices C-E.

Theorem 3 (lGj
(x) unbounded in probability for j ≥ p). There exists a sequence {Nn} with Nn → ∞

such that Pr{lGj
(x) > Nn} → 1 as σn → 0 for j ≥ p.

Note that each {Nn} implicitly depends on σn. For example, in the linear model for j ≥ p,

lGj
(x) =

xTPjx
σ2

∼ χ
′2
j (λ)

where λ = ‖Hpθp‖2

σ2
n

. If we choose Nn = ‖Hpθp‖2

2σ2
n

, it can be shown that Pr{lGj
(x) > Nn} → 1 as

σn → 0.
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Theorem 4 (lGj
(x)− lGp

(x) bounded in probability for j > p). For any sequence {mn}, Pr{lGj
(x)−

lGp
(x) < mn} → 1 as mn → ∞ for j > p.

Here the sequence {mn} can be an arbitrary sequence with mn → ∞, so mn does not depend on σn.

For example, in the linear model for j > p,

lGj
(x) − lGp

(x) ∼ χ2
j−p

So for any {mn}, Pr{lGj
(x) − lGp

(x) < mn} → 1 as mn → ∞ for j > p.

Theorem 5 (lGp
(x)− lGj

(x) unbounded in probability for j < p). There exists a sequence {Mn} with

Mn → ∞ such that Pr{lGp
(x) − lGj

(x) > Mn} → 1 as σn → 0 for j < p.

Note that each Mn also implicitly depends on σn. For example, in the linear model for j < p, by (20),

lGp
(x) − lGj

(x) ∼ χ
′2
p−j

⎛

⎝
p−1∑

i=j

αi/σ2
n

⎞

⎠

If we choose Mn =
∑p−1

i=j αi/2σ2
n, it can be shown that Pr{lGj

(x) > Mn} → 1 as σn → 0.

First we consider when j > p. For each σn, let Dj
n = {u : lGj

(x) > Nn}, Dp
n = {u : lGp

(x) >

Nn}, En = {u : lGj
(x) − lGp

(x) < mn}, and Fn = {u : EEF (p) > EEF (j)}. Then for any

u ∈ Dj
n ∩ Dp

n ∩ En, since Nn → ∞, we can omit the unit function in the EEF. So we have

EEF (p) − EEF (j) = lGp
(x) − p

(
ln

lGp
(x)
p

+ 1
)
− lGj

(x) + j

(
ln

lGj
(x)
j

+ 1
)

= p ln
lGj

(x)
lGp

(x)
+ (j − p) ln lGj

(x) −
(
lGj

(x) − lGp
(x)

)
+ p ln p − j ln j − p + j

(26)

Note that
lGj

(x)

lGp (x) ≥ 1, ln lGj
(x) > lnNn, and lGj

(x)−lGp
(x) < mn. Since mn is arbitrary, we can choose

mn < (j − p) lnNn + p ln p − j ln j − p + j but still with mn → ∞ so that EEF (p) − EEF (j) > 0.

This shows that Dj
n ∩ Dp

n ∩ En ⊆ Fn. By Theorems 3 and 4, we have Pr{Dj
n} → 1, Pr{Dp

n} → 1

and Pr{En} → 1, and hence Pr{Dj
n ∩ Dp

n ∩ En} → 1. This shows that Pr{Fn} → 1 as σn → 0, i.e.,

Pr{EEF (p) > EEF (j)} → 1 as σn → 0 for j > p.

Next, when j < p, let Dp
n = {u : lGp

(x) > Nn}, Gn = {u : lGp
(x) − lGj

(x) > Mn}, and

Hn = {u : EEF (p) > EEF (j)} for each σn. Note that Hn and Fn are different since the former is for

j < p and the latter is for j > p. For any u ∈ Dk
n ∩ Gn, we have

EEF (p) − EEF (j) =
(
lGp

(x) − lGj
(x)

)
+ j ln lGj

(x) − p ln lGp
(x) + p ln p − j ln j − p + j (27)
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Since x − p lnx increases as x increases for x > p, we can find Nn and Mn such that EEF (p) −

EEF (j) > 0. This shows that Dp
n ∩ Gn ∈ Hn. By Theorem 3 with j = p and Theorem 5, the rest of

the proof is the same as for j > p.

Since we have shown that Pr{EEF (p) > EEF (j)} → 1 for all j �= p, we have Pr {arg maxi EEF (i) = p} →

1 as σ2 → 0 using the property that Pr {A1 ∩ A2} → 1 if Pr {A1} → 1 and Pr {A2} → 1 [12].

V. SIMULATION RESULTS

A. Linear Signal

For the linear model when M = 2:

H1 : x = h1θ1 + w

H2 : x =
[

h1 h2

]
⎡

⎣ θ1

θ2

⎤

⎦+ w = H2θ2 + w

If H1 is true, by (4) and (5), the probability that the MDL will choose H2 is

Pr {H2|H1} = Pr{MDL(1) ≥ MDL(2)|H1} = Pr{y1 ≥ ln N |H1} = 2Q
(√

lnN
)

(28)

So in this case, the lower bound is exactly the probability of overestimation error for the MDL. For

the AIC, the lower bound 2Q
(√

2
)

is also exactly the probability of overestimation error. Hence the

probabilities of correct model order selection Pc (note here that there is no underestimation error since

the correct order is k = 1) for the MDL and the AIC are

Pc(MDL) = 1 − 2Q
(√

lnN
)

Pc(AIC) = 1 − 2Q
(√

2
)

For the simulation, we use N = 20, h1 = [1, 1, . . . , 1]T , h2 = [1,−1, 1,−1, . . . , 1,−1]T , θ1 = 1 and

θ2 = 0. We plot Pc versus 1/σ2. It can be expected that Pc(MDL) = 1 − 2Q
(√

ln 20
)

= 0.917 and

Pc(AIC) = 1−2Q
(√

2
)

= 0.843, and Figure 1 verifies our result. We can see that the EEF appears to be

consistent in accordance with theorem, and the MDL and the AIC are inconsistent. Also the performances

of the MDL and the AIC do not depend on σ2.

Next we consider polynomial order estimation, which is essentially a linear model. We assume that M =

4, N = 20 and the true model order is H3 with the nth element of s(θ3) being s[n] = 0.1+0.3n+0.1n2 for

n = 0, 1, . . . , N−1. Pc is plotted versus 1/σ2. As shown in Figure 2, the EEF is consistent and the MDL

and the AIC are inconsistent. In this case, we cannot find Pc explicitly for the MDL and the AIC, but we

can see that the performances of the MDL and the AIC are bounded above by 1−2Q
(√

ln 20
)

= 0.917

and 1 − 2Q
(√

2
)

= 0.843 respectively.
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Fig. 1. Performance of MDL, AIC and EEF for the linear model when H1 is true (M=2, N=20).
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Fig. 2. Performance of MDL, AIC and EEF in estimating the polynomial model order when H3 is true (M=4, N=20).
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B. Non-Linear Signal

We consider a problem of estimating of number of sinusoids. Suppose that under the ith model, the

signal consists of i sinusoids embedded in white Gaussian noise. That is,

Hi : x[n] =
i∑

j=1

Aj cos (2πfjn + φj) + w[n]

for n = 0, 1, . . . , N − 1, i = 1, 2, . . . , M , where the amplitudes Aj’s, the frequencies fj’s and the phases

φj’s are unknown. To make the problem identifiable, we assume that Aj > 0, 0 < fj < 1/2, and

0 ≤ φj < 2π. It can be easily checked that Assumptions 1) and 2) are satisfied for this example. Notice

that if the frequencies fj’s are known, the model can be reduced to the linear model [11]

Hi : x = Hiαi + w (29)

where

Hi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 1 0

cos 2πf1 sin 2πf1 · · · cos 2πfi sin 2πfi

...
... · · ·

...
...

cos (2πf1(N − 1)) sin (2πf1(N − 1)) · · · cos (2πfi(N − 1)) sin (2πfi(N − 1))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is an N × 2i observation matrix for the ith model, and

αi = [A1 cos φ1,−A1 sinφ1, . . . , Ai cos φi,−Ai sinφi]
T

is a one-to-one transformation of the amplitudes Aj’s and phases φj’s. As a result, the MLEs of Aj’s

and φj’s can be found from the MLE of αi according to the linear model in (29) whose observation

matrix Hi depends on fj’s. So the MLE of αi is

α̂i =
(
HT

i Hi

)−1
HT

i x (30)

which is a function of fj’s for j = 1, 2, . . . , i.

If the frequencies fj’s are unknown, as a result of (30), the MLEs of fj’s can be found by maximizing

the following over the fj’s

g(f1, f2, . . . , fi) = xTHi

(
HT

i Hi

)−1
HT

i x (31)

Note that (31) is a function of fj’s because Hi depends on fj’s.

We denote the observation matrix Hi corresponding to the MLE of fj’s as Ĥi. Note that the number

of unknown parameters is 3i under Hi. Similar to the previous subsection, the MDL, the AIC and the
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EEF choose the model order with the largest of the following respectively

− MDL(i) =
xT Ĥi

(
ĤT

i Ĥi

)−1
ĤT

i x

σ2
− 3i lnN

− AIC(i) =
xT Ĥi

(
ĤT

i Ĥi

)−1
ĤT

i x

σ2
− 6i

EEF (i)

=
(

xT Ĥi(ĤT
i Ĥi)−1

ĤT
i x

σ2 − 3i

[
ln
(

xT Ĥi(ĤT
i Ĥi)−1

ĤT
i x

3iσ2

)
+ 1

])

· u
(

xT Ĥi(ĤT
i Ĥi)−1

ĤT
i x

3iσ2 − 1
)

(32)

In the simulation, we assume that M = 3, N = 20 and the true model order is H2 with s[n] =

cos(2π0.1n) + 0.8cos(2π0.3n + π/5) for n = 0, 1, . . . , N − 1. The MLEs of fj’s that maximizes (31)

are found by grid search. In Figure 3, we also observe the consistency of the EEF and the inconsistency

of the MDL and the AIC as σ2 → 0. The probabilities of correct selection appear to have upper bounds

for the MDL and the AIC, although no explicit bounds are calculated in this non-linear signal case.
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Fig. 3. Probability of correct selection for MDL, AIC and EEF in estimating the number of sinusoids when H2 is true (M=3,

N=20).
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VI. CONCLUSION

The inconsistency as σ2 → 0 of the MDL and the AIC has been shown. A simple lower bound

is provided for their overestimating tendency. The consistency as σ2 → 0 of the EEF is also proved.

Simulation results show that the EEF performs perfect under small noise while the MDL and the AIC

do not.

APPENDIX A

DERIVATION OF THE DISTRIBUTION OF yj ’S FOR j ≥ p

We need the following lemma to derive the distribution of yj’s.

Lemma 1. Pj+1 − Pj has rank 1.

Proof: Suppose that for the subspace Vj generated by h1,h2, . . . ,hj , we have an orthonormal basis

{v1,v2, . . . ,vj}. Then for the subspace Vj+1 generated by h1,h2, . . . ,hj+1, we can have an orthonormal

basis {v1,v2, . . . ,vj ,vj+1}. Since Pj is the projection matrix onto the subspace Vj , for any N×1 vector

x, we have

Pjx =
j∑

i=1

< x,vi > vi (33)

where < x,vi > is the inner product defined by

< x,vi >= xTvi

Similarly, we also have

Pj+1x =
j+1∑

i=1

< x,vi > vi (34)

So (33) and (34) tell us that for any x,

(Pj+1 − Pj)x =< x,vj+1 > vj+1 = αvj+1 (35)

for a scalar α. This shows that Pj+1 − Pj has rank 1 since it projects any x onto the 1-dimensional

subspace generated by vj+1.

Since we assume under Hp that x = Hpθp + w,

yp =
(Hpθp + w)T (Pp+1 − Pp) (Hpθp + w)

σ2
. (36)

Since Hpθp =
p∑

i=1
θihi ∈ Vp, the projection of Hpθp onto Vp remains the same. That is,

PpHpθp = Hpθp.
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Also Hpθp =
p∑

i=1
θihi + 0hp+1 ∈ Vp+1 , thus Pp+1Hpθp = Hpθp. So we have

(Pp+1 − Pp)Hpθp = 0

and hence

yp =
wT (Pp+1 − Pp)w

σ2
= uT (Pp+1 − Pp)u (37)

where u = w/σ is an N × 1 white Gaussian noise vector with unit variance.

For j > p, we can think of Hpθp as Hjθj where θj = [θ1, θ2, . . . , θp, 0, . . . , 0]T . By the same derivation

as above, we can also show that

yj = uT (Pj+1 − Pj)u. (38)

It is well known that Pj is a symmetric idempotent matrix and Pj+1Pj = Pj . So

(Pj+1 − Pj) (Pj+1 − Pj) = Pj+1 − Pj .

This says that Pj+1 − Pj is also idempotent. By Lemma 1 Pj+1 − Pj has rank 1, so by [1]

yj = uT (Pj+1 − Pj)u ∼ χ2
1 for all j ≥ p. (39)

where χ2
1 is the chi-square distribution with 1 degree of freedom.

We still need to show the independence of yj’s for all j ≥ p. Let zj = (Pj+1 − Pj)u. Since zj is a

linear transform of u, zj is also Gaussian with zero mean. For any l > 0, we will show next that zj and

zj+l are independent for any j ≥ p.

Let

⎡

⎣ zj

zj+l

⎤

⎦ =

⎡

⎣ Pj+1 − Pj

Pj+l+1 − Pj+l

⎤

⎦u, whose covariance matrix is

Czj ,z+l
=

⎡

⎣ Pj+1 − Pj

Pj+l+1 − Pj+l

⎤

⎦
[

Pj+1 − Pj Pj+l+1 − Pj+l

]

=

⎡

⎣ (Pj+1 − Pj) (Pj+1 − Pj) (Pj+1 − Pj) (Pj+l+1 − Pj+l)

(Pj+l+1 − Pj+l) (Pj+1 − Pj) (Pj+l+1 − Pj+l) (Pj+l+1 − Pj+l)

⎤

⎦ .

By the property of Pj that PmPm+n = Pm for n > 0, we have

(Pj+1 − Pj) (Pj+l+1 − Pj+l) = Pj+1Pj+l+1 − PjPj+l+1 − Pj+1Pj+l + PjPj+l

= Pj+1 − Pj − Pj+1 + Pj

= 0N×N .
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This shows that zj and zj+l are uncorrelated and hence independent by Gaussianity. Also by Gaussianity,

pairwise independence will lead to the independence of all zj’s. Since yj = zT
j zj , we can say yj’s are

independent j ≥ p.

APPENDIX B

DERIVATION OF THE DISTRIBUTION OF yj ’S FOR j < p

If Hp is true, for j < p we still have

yj =
(Hpθp + w)T (Pj+1 − Pj) (Hpθp + w)

σ2
. (40)

But when j < p,

(Pj+1 − Pj)Hpθp �= 0

so we cannot reduce (40) as in (38). However, we can write yj as

yj =
(

Hpθp

σ
+ u

)T

(Pj+1 − Pj)
(

Hpθp

σ
+ u

)

=
(

(Pj+1 − Pj)Hpθp

σ
+ zj

)T ((Pj+1 − Pj)Hpθp

σ
+ zj

)
(41)

where u = w/σ and zj = (Pj+1 − Pj)u as in Appendix A. Since we have shown that zT
j zj ∼ χ2

1, we

have

yj ∼ χ
′2
1 (λj) (42)

where χ
′2
1 (λj) is the noncentral chi-square distribution with 1 degree of freedom and noncentrality

parameter λj = ‖(Pj+1 − Pj)Hpθp‖2 /σ2 = (Hpθp)
T (Pj+1 − Pj)Hpθp/σ2 > 0. If we let Hj+1,p =

[hj+1,hj+2, . . . ,hp] and θj+1,p = [θj+1, θj+2, . . . , θp]
T , since (Pj+1 − Pj)Hjθj = 0, we have

λj = (Hjθj + Hj+1,pθj+1,p)
T (Pj+1 − Pj) (Hjθj + Hj+1,pθj+1,p) /σ2

= (Hj+1,pθj+1,p)
T (Pj+1 − Pj)Hj+1,pθj+1,p/σ2

So λj does not depend on the first j θi’s in θp.

Since the proof of the independence of zj’s in Appendix A does not depend on whether j ≥ p or j < p,

zj’s are independent for all j. Hence so are yj’s.
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APPENDIX C

PROOF OF THEOREM 3

Theorem 3 (lGj
(x) unbounded in probability for j ≥ p). There exists a sequence {Nn} with Nn → ∞

such that Pr{lGj
(x) > Nn} → 1 as σn → 0 for j ≥ p.

First we will prove the next lemma.

Lemma 2. Under the true model, sp(θ̂p)
P→ sp (θp) as σn → 0. That is, for any ε > 0, Pr

{∥∥
∥sp

(
θ̂p

)
− sp (θp)

∥
∥
∥ < ε

}
→

1 as σn → 0.

Proof: First we will introduce the work in [15], which considers the characteristics of the MLE

under high SNR. Let

f(θp,u) = [f1(θp,u), . . . , fp(θp,u)]T =
∂pU

(
x(u)−sp(θp)

σn

)

∂θp

where we consider x is a function of u, then the MLE of θp is found by solving

f(θp,u) = 0

If fi(θp,u) for i = 1, . . . , p are differentiable functions on a neighborhood of a point (θ0
p,u0) with

f(θ0
p,u0) = 0, and the Jacobian matrix Φ with respect to u is nonsingular at (θ0

p,u0), then by the

implicit function theorem, we have
θ̂p − θp

σn

P→−Φ−1Ψu (43)

where Φ and Ψ are determined matrices with

Φ =
[

∂f
∂u1

∣
∣
∣
(θ0

p,u0)
, . . . ,

∂f
∂uN

∣
∣
∣
(θ0

p,u0)

]

Ψ =
[

∂f
∂θ1

∣
∣
∣
(θ0

p,u0)
, . . . ,

∂f
∂θp

∣
∣
∣
(θ0

p,u0)

]

Although only Gaussian noise is considered in [15], (43) still holds for non-Gaussian noise by the implicit

function theorem.

It has been shown in [12] that if {Xn} is a sequence of random variables that converges to X in

probability and {cn} is a determined sequence that converges to c, then cnXn
P→ cX. As a result of (43),

since σn → 0, we have

θ̂p − θp = σn
θ̂p − θp

σn

P→ 0 (44)

Then by Assumption 1),
∥
∥
∥sp

(
θ̂p

)
− sp (θp)

∥
∥
∥

P→ 0. This completes the proof of Lemma 2.
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When the true model is Hp, for j > p, the MLE for θj is still under the true model if we write θj as

θj = [θT
p , 0, . . . , 0]T . So from (44), we have θ̂j

P→θj , i.e.,
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ̂1

θ̂2

...

...

...

θ̂j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

P→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ1

...

θp

0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence Lemma 2 still holds for j > p, and it extends to
∥
∥
∥sj

(
θ̂j

)
− sj (θj)

∥
∥
∥

P→ 0 for all j ≥ p (45)

So we have

lGj
(x) = 2 ln

pU

(
x−sj(

ˆθj)
σn

)
1

σn

pU

(
x
σn

)
1

σn

= 2 ln
pU

(
sj(θj)+σnu−sj(

ˆθj)
σn

)

pU

(
sj(θj)+σnu

σn

) (46)

Since pU(u) is a well defined PDF, we have

Pr{‖u‖ < ln} → 1 (47)

for any sequence {ln} with ln → ∞.

Let An = {u :
∥
∥
∥sj

(
θ̂j

)
− sj (θj)

∥
∥
∥ < ε} and Bn = {u : ‖u‖ < ln} for each σn. Since ln and ε are

arbitrary, we let ln = ‖sj(θj)‖ /(3σn) and ε = ‖sj(θj)‖ /6. Then for each u ∈ An ∩ Bn, we have
∥
∥
∥sj(θj) + σnu − sj(θ̂j)

∥
∥
∥

σn
≤

∥
∥
∥sj(θj) − sj(θ̂j)

∥
∥
∥

σn
+ ‖u‖ <

ε

σn
+ ln (48)

Hence

‖sj(θj) + σnu‖
σn

−

∥
∥
∥sj(θj) + σnu − sj(θ̂j)

∥
∥
∥

σn

>

(‖sj(θj)‖
σn

− ‖u‖
)
−
(

ε

σn
+ ln

)

>
‖sj(θj)‖

σn
− 2ln − ε

σn

=
‖sj(θj)‖

6σn
→ ∞ (49)
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as σn → 0. By Assumption 2), this shows that lGj
(x) → ∞ as σn → 0 for each u ∈ An ∩ Bn. Let

C = {u : lGj
(x) → ∞ as σn → 0}. The previous analysis shows that An ∩ Bn ⊆ C. By (45) and (47),

Pr{An} → 1 and Pr{Bn} → 1 as σn → 0. Hence Pr{An ∩Bn} → 1. Note that An ∩Bn ⊆ C, and thus

Pr{C} = 1. From this “almost sure” event, it follows the “in probability” event, i.e., for any ε > 0 and

any M , there exists an integer K such that Pr{lGj
(x) ≤ M} < ε for all n ≥ K. Next, the existence of

a sequence {Nn} with Nn → ∞ such that Pr{lGj
(x) > Nn} → 1 as σn → 0 for j ≥ p will be shown

by constructing such a sequence {Nn}.

Let {Mm} be any sequence that goes to ∞. For each Mm, there exists Km such that Pr{lGj
(x) ≤

Mm} < ε for all n ≥ Km. We construct {Nn} as

{Nn} = 0
↑

1st term

, . . . , 0, M1

↑

K1th term

, . . . , M1, M2

↑

K2th term

, . . .

So Nn → ∞ since Mm → ∞. For any n, we can find a m such that Km ≤ n < Km+1, and Nn = Mm

by the above construction of {Nn}. Hence Pr{lGj
(x) ≤ Nn} = Pr{lGj

(x) ≤ Mm} < ε for all n. This

proves the existence of a sequence {Nn} with Nn → ∞ such that Pr{lGj
(x) > Nn} → 1 as σn → 0

for j ≥ p.

APPENDIX D

PROOF OF THEOREM 4

Theorem 4 (lGj
(x)− lGp

(x) bounded in probability for j > p). For any sequence {mn}, Pr{lGj
(x)−

lGp
(x) < mn} → 1 as mn → ∞ for j > p.

For j > p,

lGj
(x) − lGp

(x) = 2 ln pU

(
sj(θj) + σnu − sj(θ̂j)

σn

)

− 2 ln pU

(
sp(θp) + σnu − sp(θ̂p)

σn

)

(50)

Note that we can consider θj as θj = [θT
p , 0, . . . , 0]T , and so we have sj(θj) = sp(θp).

By (43) and Assumption 1),
∥
∥
∥sj(θ̂j) − sp(θ̂p)

∥
∥
∥

σn
≤

∥
∥
∥sj(θj) − sj(θ̂j)

∥
∥
∥

σn
+

∥
∥
∥sp(θp) − sp(θ̂p)

∥
∥
∥

σn
≤ K

∥
∥
∥θj − θ̂j

∥
∥
∥

σn
+K

∥
∥
∥θp − θ̂p

∥
∥
∥

σn

P→ 2K
∥
∥Φ−1Ψu

∥
∥

(51)
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By the Lipschitz continuity of ln pU(u), there exists L such that (50) can be written as

lGj
(x) − lGp

(x) =

∣
∣
∣
∣
∣
2 ln pU

(
sj(θj) + σnu − sj(θ̂j)

σn

)

− 2 ln pU

(
sp(θp) + σnu − sp(θ̂p)

σn

)∣∣
∣
∣
∣

≤ 2L

∥
∥
∥sj(θ̂j) − sp(θ̂p)

∥
∥
∥

σn
≤ K

∥
∥
∥θj − θ̂j

∥
∥
∥

σn
+ K

∥
∥
∥θp − θ̂p

∥
∥
∥

σn

P→ 4LK
∥
∥Φ−1Ψu

∥
∥ (52)

where the second inequality is by (51). Similar to (47), we have

Pr{
∥
∥Φ−1Ψu

∥
∥ < ln} → 1 (53)

and hence

Pr
{
lGj

(x) − lGp
(x) < 4LKln

}
→ 1 (54)

as ln → ∞. Since {ln} is an arbitrary sequence with ln → ∞, we have Pr{lGj
(x)− lGp

(x) < mn} → 1

as mn → ∞ for any sequence {mn}.

APPENDIX E

PROOF OF THEOREM 5

Theorem 5 (lGp
(x)− lGj

(x) unbounded in probability for j < p). There exists a sequence {Mn} with

Mn → ∞ such that Pr{lGp
(x) − lGj

(x) > Mn} → 1 as σn → 0 for j < p.

For j < p,

lGp
(x) − lGj

(x) = 2 ln pU

(
sp(θp) + σnu − sp(θ̂p)

σn

)

− 2 ln pU

(
sp(θp) + σnu − sj(θ̂j)

σn

)

(55)

Note that we do not have sj(θj) = sp(θp) as for the j > p case, because it is under the misspecified

model when j < p. This means that we cannot find θj such that sj(θj) = sp(θp) or sj(θj) is arbitrarily

close to sp(θp). So we assume that there exists δ > 0 such that ‖sj(θj) − sp(θp)‖ > δ for all θj . Then

the rest of the proof follows similarly to the proof of Theorem 3 in Appendix C using Lemma 2 and

Assumption 2).
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