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Abstract

This paper considers the problem of detecting and classifying surface chemicals by analyzing the

received Raman spectrum of scattered laser pulses received from a moving vehicle. An autoregressive

(AR) model is proposed to model the spectrum and a two-stage (detection followed by classification)

scheme is used to control the false alarm rate. The detector decides whether the received spectrum

is from pure background only or background plus some chemicals. The classification is made among

a library of possible chemicals. The problem of mixtures of chemicals is also addressed. Simulation

results using field background data have shown excellent performance of the proposed approach when

the signal-to-noise ratio (SNR) is at least -10 dB.
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I. INTRODUCTION

Raman spectroscopy has been widely used in detection and classification of chemical agents in the

presence of a material, termed the background [2], [3], [4], [5]. Many spectral data analysis techniques

have been developed for this application. Supervised approaches such as regression analysis [6] and

the generalized likelihood ratio test (GLRT) [7], [8] can be used when the background spectrum is

known since this is a standard subspace detection problem. Unsupervised approaches such as independent

component analysis (ICA) [9], canonical correlation [10], [11] and a correlation scheme based on a

Gaussian filter [12] can be used when the background spectrum is unknown or varies due to noise.

In this paper, we study the unsupervised problem of detecting and classifying surface chemicals based

on Raman spectral returns received from a moving vehicle. The Raman spectral data are collected by the

laser interrogation of surface agents (LISA) system developed by ITT Industries. LISA provides standoff

detection and identification of surface-deposited chemical agents based on short-range Raman sensing

(see [13] for more information about the system). This detection and classification problem is complicated

by many factors. Some of these are:

1. A background surface whose spectrum is unknown a priori and is changing with time.

2. Target chemicals that, even if present, are presented to the detector only a fraction of the time.

This is due to an uneven and incomplete distribution of deposited surface chemicals.

3. The energy in the target return varying with the amount of chemical, the type of chemical, and

the range to the chemical.

4. The possible presence of more than one chemical, i.e., a chemical mixture.

5. Impurities in the background that present themselves as unknown chemical deposits.

In order to design algorithms that are able to handle this multitude of unknown situations we rely

heavily on adaptive processing. The approaches to be described take advantage of any information

that is known and that can reasonably be assured to be valid in an operational environment. For the

remaining uncertainties the algorithms will estimate on-line the information necessary for their successful

implementation. We will first discuss detection and classification (identification) of a single chemical from

a library of possible chemicals. Next, we will extend the results to the mixture problem, i.e, when one

or two or possibly three chemical targets may be present in a single scattered spectrum.

The paper is organized as follows. Section II describes the problem and the two-step detection followed

by classification scheme that is proposed. An AR model that models the Raman spectrum is described

in Section III. In Section IV we derive the detection test statistic and the overall algorithm in order to
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maintain a low false alarm rate which [1] did not consider. The experimental detection performance for

field background data is shown in Section V. Simulation results in Section VI show that a very low

false alarm rate can be obtained. The classification algorithm is derived in Section VII. Here we extend

the case of a single chemical present to mixtures of chemicals, which was not treated in [1]. In Section

VIII, we present the classification performance for field background data. Finally, Sections IX draws the

conclusion.

II. PROBLEM STATEMENT AND RATIONALE OF APPROACH

Consider the case when a moving vehicle is mounted with a Raman spectroscopy unit that probes the

ground surface every short time interval (40 milliseconds in our case). A Raman spectrum or a pulse

Ii(F ) is received at the ith probe and consecutive Raman spectra of the road surface are received as

the vehicle moves. Each Raman spectrum is an Nf × 1 vector given at equally space wavenumbers F .

We assume that the background is relatively stationary in composition, that is, it is a road of the same

type for a certain time interval. There are also possibly some of M target chemicals present on the

background. As a result, the received spectrum at the ith probe could be from background plus noise or

background plus noise and one or several chemicals. We wish to design a testing procedure that decides

if no chemicals are present or if chemicals are present, which chemicals are deposited on the background.

Current approaches to the detection problem have been plagued with high false alarm rates. Indeed for

any operational system the false alarm rate must be controlled or else the system is deemed unreliable and

cannot be used. Nearly identical considerations arise in sonar [14] and radar [15]. It has been generally

accepted, and this philosophy is reflected in the design of these systems, that one first performs a decision

of either a detection or no detection and then follows this with a classification. In this way the false alarm

rate can be controlled since the initial step does not consider which target may be present but only that

some target is present. This initial binary hypothesis test then allows one to control the false alarm rate

and to reduce it to a reasonable level. This is in contrast to attempting to decide whether no target is

present versus a subset of M possible targets. The latter approach requires one to formulate a decision

strategy that can decide among multiple hypotheses, for which an error rate or false alarm rate will be

much higher.

III. SPECTRAL MODELING

As mentioned in Section 1 the background spectrum is unknown and can change in time. For the

algorithms to accommodate this uncertainty, it is necessary to estimate the spectrum on-line. To do so
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a spectral estimator that can estimate the spectrum from a single pulse accurately and with reasonable

computation to allow a real-time implementation is the autoregressive (AR) spectral estimator [16]. Similar

approaches have been used in radar [17] and sonar [18]. To implement this estimator it is assumed that

spectral data from the output of the Raman spectroscopy unit is available over a spatial frequency band,

i.e., wavenumber band, which by letting F denote spatial frequency, extends from F = 0 to F = Fc,

the cutoff frequency. This spectral data I(F ) is also called the periodogram in analogy with Fourier

based methods of spectral estimation. Given I(F ) for 0 ≤ F ≤ Fc, the AR spectral estimate is found as

follows, with details given in [16]:

1. Assume a model order, denoted by p, for the AR spectral estimate. This order is an integer,

with smaller values preferred since it relates to the number of parameters in the model and

hence the number of unknowns to be estimated.

2. Based on I(F ) find the real-valued autocorrelation sequence, denoted as {r[0], r[1], . . . , r[p]},

which is a sampled version (at a rate of 1/Δ samples per sec) of the inverse continuous-time

Fourier transform of I(F ) as

r[k] =
∫ 2Fc

0
I(F ) exp(j2πFkΔ)dF k = 0, 1, . . . , p (1)

where Δ is the interval in time between successive samples of the autocorrelation function.

The sample interval should be chosen to be less than 1/(2Fc). Note that since the spectral data

I(F ) has a spectrum that is one-sided, we let I(F ) = I(2Fc − F ) for Fc ≤ F ≤ 2Fc. In

this way I(F ) can be viewed as one period of a periodic spectrum and therefore r[k] becomes

real-valued. The implied sampling rate is then 2Fc.

3. Solve the Yule-Walker equations to estimate the AR filter parameters {a[1], a[2], . . . , a[p]} from⎡
⎢⎢⎢⎢⎢⎢⎣

r[0] r[−1] . . . r[−(p − 1)]

r[1] r[0] . . . r[−(p − 2)]
...

...
. . .

...

r[p − 1] r[p − 2] . . . r[0]

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a[1]

a[2]
...

a[p]

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

r[1]

r[2]
...

r[p]

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

and then use these estimated filter parameters to find the excitation noise variance σ2
u as

σ2
u = r[0] +

p∑
k=1

a[k]r[−k]. (3)

Note that the matrix is symmetric and Toeplitz since r[−k] = r[k].

4. Once the parameters {a[1], a[2], . . . , a[p], σ2
u} have been found the estimated AR spectrum is

P (F ) =
σ2

uΔ
|1 + a[1] exp(−j2πFΔ) + · · · + a[p] exp(−j2πpFΔ)|2

(4)
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for 0 ≤ F ≤ Fc.

Note that this procedure estimates the AR spectrum for a given AR model order p. However in practice,

we also need to estimate the appropriate order p since a large p will cause overfitting and a small p will

cause underfitting. We next assume that the frequencies have been normalized to discrete frequencies as

f = FΔ so that 0 ≤ f ≤ 1 and hence digital techniques can be used. Clearly, the upper cutoff frequency

Fc corresponds to f = 1/2. The AR model order can be estimated as follows (see Appendix A for the

derivation):

1. For the spectral data I(f), and for each model order p, estimate the AR filter parameters or

{a[1], a[2], . . . , a[p]} using (1) and (2), and then estimate the AR filter frequency response as

Âp(f) = 1 + a[1] exp(−j2πf) + · · · + a[p] exp(−j2πfp) (5)

2. Calculate the generalized likelihood ratio lGp
(x) for each model order p by

lGp
(x) = −N ln

∑Nf

k=1 |Âp(fk)|2I(fk)Δf∑Nf

k=1 I(fk)Δf
(6)

where N is the unknown number of samples in the time domain since x is fictitious. We will

use N = 2Nf , which produces good results.

3. Choose the model order with the largest of the following

EEF (p) =

⎧⎨
⎩

lGp
(x) − p

[
ln
(

lGp (x)

p

)
+ 1
]

if lG(x)
p > 1

0 if lGp (x)

p ≤ 1
(7)

This is the exponentially embedded families (EEF) as a model order selection criterion that has

been recently proposed [19].

As an example, using an estimated model order of p = 40 and a single pulse from a background of

asphalt, the AR spectral estimate and original periodogram data are shown in Figure 1. Note that the

AR spectral estimate is able to model the general shape of the data spectrum as well as the prominent

peaks and valleys. Additionally, if an artificial signal is included in the spectral data, then the AR spectral

estimate (with a different estimated AR model order of p = 44) appears as in Figure 2. Similar results

have been obtained for other surfaces such as gravel and grass. What this says is that the AR spectral

model with appropriate order p is adequate for representing the main details of a spectrum using Raman

spectroscopy. This includes the cases of background only being present as well as a target chemical

deposited on a background. Consequently, for the development of signal processing algorithms it allows

us to consider the spectral data as having been obtained from a hypothetical AR time series that has been

Fourier transformed and magnitude-squared. If we further assume that this hypothetical time series is
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Gaussian, then many of the powerful techniques of statistical signal processing [20], [7] can be brought

to bear upon this problem. As we will see later, the Gaussian assumption is not entirely accurate but

algorithms based on it still perform exceptionally well.

IV. DETECTION ALGORITHM

The detection algorithm consists of two parts. This is necessary to avoid a high false alarm rate

as described previously. It is assumed that when a chemical is present it must be present in a certain

percentage of the returned pulses. A detector based upon a single pulse with a reasonably low false alarm

rate would require a high threshold and hence a poorer probability of detection. Hence, the chemical

present condition is defined to be in effect when a certain percentage of successive pulse returns indicate

a chemical. The pulse returns which do not indicate a chemical, when indeed a chemical present condition

is in effect, results from the lack of presence of a chemical in the illuminated area of the laser imaging

system. Thus, we have designed a detection system that

1. Examines each successive pulse for a threshold crossing of a test statistic.

2. Registers a chemical present condition when a suitable number of threshold crossings are present

over a fixed interval of time

We next examine each of these procedures in detail.

A. Test Statistic

The test statistic is computed for each pulse return or sequentially in time. To estimate the background,

we will need spectral data from the MB previous pulse returns that do not have a threshold crossing.

The choice of MB is made to ensure that the background has not changed over this time period. For

example, if MB = 25, then for a laser firing rate of 25 pulses/sec, we have effectively assumed that the

background spectral shape is stationary over the time interval of MB/25 = 1 second. Analysis of field

data supports this assumption. However, it has also been found that although the background spectral

shape is stationary over a short period of time, its overall level may change significantly from pulse to

pulse. This necessitates us to base any test statistic on the shape of the spectrum but not its total power.

This can be done by assuming for the background a fixed set of AR filter parameters from pulse to

pulse but with a time varying excitation noise variance. Also, if some of the previous pulse returns have

threshold crossings of the test statistic, then we exclude them from the MB pulses used in estimating

the background. The test statistic is computed as follows (see Appendix B for the derivation and explicit

statistical assumptions):
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1. Using the previous MB pulses that do not have threshold crossings, compute the average Raman

spectrum. Because the overall background power level can change from pulse to pulse we must

first normalize the power before we average. To do so we set the total power of each pulse to

one by scaling appropriately. Let IBi
(f) represent the Raman spectrum for the ith pulse after

power normalization. Then, we compute the sample average of the background spectral data as

ĪB(fk) =
1

MB

MB∑
i=1

IBi
(fk) (8)

for k = 1, 2, . . . , Nf , where Nf is the number of spectral data points of the Raman spectrum.

Also, IBi
(fk) is the Raman spectral data for the ith pulse at frequency fk, assuming that it

previously did not produce a threshold crossing.

2. Estimate the AR model order p using the procedure described in (5), (6) and (7). For this

estimated order p, use the procedure described in (1) and (2) to find the AR filter parameters

of ĪB(fk). These are denoted by {aB[1], aB[2] . . . , aB[p]}, where the subscript refers to the

background spectral model. Note that these may change in time and therefore will have to be

updated periodically. The estimated background AR filter frequency response then becomes

AB(f) = 1 + aB[1] exp(−j2πf) + · · · + aB[p] exp(−j2πfp) (9)

3. Using the Raman spectrum for the return pulse under consideration, which we denote as IT (f)

and where T refers to a potential target, estimate the AR model order q using the procedure

described in (5), (6) and (7). Compute the AR parameters, again using (1) and (2). Note that

power normalization is not needed since only the AR filter parameters are estimated. This

produces the AR filter parameters or {aT [1], aT [2], . . . , aT [q]} and the estimated AR filter

frequency response for the current pulse under consideration as

ÂT (f) = 1 + aT [1] exp(−j2πf) + · · · + aT [p] exp(−j2πfq) (10)

4. The generalized likelihood ratio test (GLRT) statistic is finally computed as

TD = ln

Nf∑
k=1

|AB(fk)|2IT (fk)

Nf∑
k=1

|ÂT (fk)|2IT (fk)

(11)

will yields values TD ≥ 0. Note that power normalization is not required for IT (f) since TD

does not depend on scaling of IT (f).
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This test statistic, which may be viewed as an anomaly detector, will indicate when the return from

any pulse produces a spectrum significantly different from the background. No information, however, is

obtained about the type of departure and hence of a particular chemical. A threshold crossing, which

occurs if TD > γ for a threshold γ, indicates that the spectrum of the current pulse does not match

the background spectrum. As an example, impurities in the surface will also cause a threshold crossing.

Hopefully, however, these will be isolated occurrences and not produce a chemical present condition. If

this is not the case, then a classification indicating impurities will be needed.

B. Overall Detection Algorithm

The test statistic given by (11) is computed for each pulse. A threshold crossing indicates a possible

chemical detection in that pulse. In order to declare a chemical present, however, we expect a certain

percentage of the pulse returns to have a chemical in them. This percentage is currently set to 10%.

For example, if a chemical is present, then for 100 pulses, we expect 10 or more of them to produce

threshold crossings, assuming the test statistic always produces a threshold crossing when a chemical is

present in the pulse return. The remaining 90 test statistics will not have a threshold crossing since they

are based on data for which the laser did not illuminate the chemical, as explained previously. With this

assumption we can now set the desired threshold for TD. We assume that a chemical is present if 10%

or more of the test statistics in a given block of pulse data produce threshold crossings. These threshold

crossings need not be sequential, but can be scattered anywhere within the block. For example, if the

block consists of 100 successive pulse returns, then a chemical is declared to be present if at least 10

of the test statistics produce a threshold crossing. This block of 100 successive pulses is assumed to

“slide along” in time. For the example described below, the blocks are overlapped by 50%, although

other overlaps can be used.

Next in order to ensure a fixed false alarm rate, we need to set the threshold, which we call γ,

for TD appropriately. Thus, we must specify the probability of a threshold crossing for TD, which is

PFAp
= Pr[TD > γ|H0], and is the probability of false alarm for a single pulse. Then, once PFAp

is

found, the threshold γ can be specified. It is shown in Appendix B how PFAp
can be found so that the

overall false alarm rate is less than one false alarm per h hours.

First we find PFAb
, which is the probability of a false alarm for a single block, and is given as the

solution of

(1 − PFAb
)L + L (1 − PFAb

)L−1 = 0.99 (12)
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where L = 1800h is the number of blocks analyzed in h hours. This value for L assumes a pulse rate of

25 per second, a block size of 100 pulses, and a 50% block overlap. Each block is therefore 4 sec long

with an overlap of 2 sec. This can be solved for PFAb
. Once PFAb

is found we can determine PFAp
by

solving the equation

PFAb
= 1 −

9∑
i=0

(
100
i

)
P i

FAp

(
1 − PFAp

)i
. (13)

This is just the calculation that a false alarm occurs in a block, which is defined as 10 or more threshold

crossings out of 100 possible ones. For example, if h = 2 hours and therefore L = 3600, then from

(12) we have that PFAb
= 5 × 10−5. Using this value in the left-hand-side of (13) we can solve for

PFAp
, which is about PFAp

= 0.02. The details are given in Appendix B. As a result we need to find

the threshold γ so that the probability that TD > γ for a single pulse is 0.02.

Theoretically, the GLRT statistic TD should have a chi-squared probability density function (PDF) with

q degrees of freedom [7], which would allow us to determine γ. It has been found through analysis of field

data, however, that this theoretical PDF is not sufficiently accurate. (This is why, as mentioned earlier,

the Gaussian assumption for the fictitious time series is not always accurate.) As a result, it is necessary

to estimate the PDF of TD when background only is present and then use this to set the threshold. It is

conceivable that this threshold will depend upon the background statistics, which are unknown. We next

indicate how this is done on-line.

Assume that we have I independent and identically distributed test statistics TDi
for i = 1, 2, . . . , I .

We can estimate on-line the right-tail probability of the PDF by using an AR model for the PDF [21],

[22]. The procedure is as follows:

1. Normalize the test statistics by a constant equal to the maximum value of the TDi
’s. If we

denote this as Tmax = maxi=1,...,I TDi
, then we form the new data set T̃Di

= TDi
/Tmax. Thus

all values are now in the range [0, 1] since TDi
≥ 0.

2. Next we use the AR spectral estimator, but as a PDF estimator, with the “estimated autocorre-

lation” sequence (actually the estimated characteristic function)

r[k] =
1
I

I∑
i=1

exp
(
j2πkT̃Di

)
(14)

for k = 0, 1, . . . , p and will in general be complex-valued. The AR parameters are estimated

using (2) and (3) but with r[−k] = r∗[k]. The estimated PDF of TD then becomes

pTD
(t) =

σ2
u

|1 + a[1] exp(−j2πt/Tmax) + · · · + a[p] exp(−j2πpt/Tmax)|2
(15)
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for 0 ≤ t ≤ Tmax, where σ2
u is real-valued and σ2

u > 0, and the a[k]’s are complex-valued.

3. Determine the threshold by numerical integration as the value of γ that solves
∫ ∞

γ
pTD

(t)dt = PFAp
. (16)

V. EXPERIMENTAL DETECTION PERFORMANCE FOR FIELD BACKGROUND DATA

The following results make use of 10,000 pulses of concrete field background data to which chemical

signatures obtained in the laboratory were added using a computer. The first 500 pulses of background

data only are used for initialization so that the background spectrum can be estimated as needed for

|AB(fk)|2 in (11). Also, using the same 500 pulses the threshold γ is found for the detector using (14–

16). The threshold is then fixed for the entire remaining 9500 pulses. From the results to be presented it

is found that the threshold will have to be periodically updated. After the initialization period a chemical

signature is added to the background at a rate of 10% in a random manner. As explained previously, a

window of 25 previous pulses without threshold crossings is used to update the background spectrum.

As an example of the detection performance for concrete field background data we set the threshold so

that the false alarm rate is at most 1 per 2 hours, as explained previously. Then, we plot the probability

of detection PD versus signal-to-noise ratio (SNR) for a single chemical. The SNR is defined as the

broadband SNR. This is

SNR = 10 log10

∑Nf

k=1 θPs(fk)∑Nf

k=1 PB(fk)
(17)

where PB(f) is the PSD of the background, Ps(f) is the known spectral signature for the chemical, and

θ is a scaling factor that produces the desired SNR. We next plot the probability of detection PDp
based

on a single pulse, which is the probability of a threshold crossing, versus SNR. This is done by examining

the pulses where we know that a chemical has been added throughout the 9500 pulses. The spectra of all

the chemicals that are used in the simulations are plotted in Figure 3 (one or more chemicals are added

to the background for either detection performance or classification performance). When chemical 15 is

added to the background, the probability of detection is shown in Figure 4. It is seen that the probability

of detection is perfect for SNRs in excess of -10 dB. If we instead add chemical 31, the results are as

shown in Figure 5. Again the detection performance is nearly perfect at a fairly low SNR.

VI. EXPERIMENTAL FALSE ALARM RATE PERFORMANCE

Since the threshold is critical to maintain a reasonable false alarm rate, we performed an experiment

to determine if the computed one was reasonable. For the same 10,000 pulses (6.67 minutes of data),
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we used the first 500 pulses for initialization. Then, for a concrete background (no added chemical) we

implemented the detection algorithm previously described. A false alarm will occur if the number of

threshold crossings for a block of 100 pulses exceeds 10. The same threshold as found from the first

500 pulses was used throughout the remaining 9500 pulses. It was found that for blocks that are 50%

overlapped, as assumed in the analysis, there were 3 false alarms as shown in Figure 6. However, two

of the false alarms are close together and so can be considered as the same one. Hence, there are 2 false

alarms. This is still higher than predicted. In a two-hour period there would be on the average 36 false

alarms, instead of the prediction of 1. This would imply that the background is not stationary over this

time interval. Thus we should update the threshold periodically.

In this example we then updated the threshold for every 500 pulses. That is, if there is no detection

declared for all blocks within 500 pulses, we update the threshold using all the 500 test statistic TD’s,

and use the updated threshold for the next 500 pulses. Otherwise if there is detection of chemicals for

some blocks in these 500 pulses, we use the test statistic TD’s in the blocks within these 500 pulses that

do not declare detections to update the threshold. It was found that for blocks that are 50% overlapped,

there were no false alarms for the remaining 9500 pulses. When we updated the threshold every 500

pulses, even for successive blocks, there were no false alarms either. This suggests our derivation of the

required threshold needed to control the false alarm rate.

VII. CLASSIFICATION

For the purpose of this paper, we constrain ourselves to single pulse classification, that is, we perform a

classification based on a single pulse that has a threshold crossing. Once the detection algorithm declares

that some chemicals are present in a block of data (of say 100 pulses, for which 10 or more have

had threshold crossings), we proceed with single pulse classification on those pulses that have threshold

crossings within this block, and choose the chemicals that appear most often in single pulse classification.

In subsection VII-A, it is assumed that only one of M chemicals may be present. In subsection VII-B,

we consider the problem of mixtures of chemicals, i.e., the case when two or possibly three chemicals

are present in a single scattered pulse. To do it, we initially assume that we know there are K out of M

chemicals on the background in VII-B, so we just need to decide which combination of K chemicals is

present. Then we will use a model order selection criterion to decide how many chemicals are present,

i.e., the value of K, in subsection VII-C.
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A. Classification if Only One of M Chemicals Is Present

To determine which chemical is present we compute M test statistics and choose the chemical with

the largest value of the test statistic. The test statistic that is used is that associated with a locally most

powerful (LMP) test [7]. It can also be interpreted as an estimate of the chemical amplitude normalized

by its standard deviation. The overall classification procedure is as follows (see Appendix D for the

derivation and detailed model):

1. For the pulse I(f) that has a threshold crossing, estimate the background by using the previous

25 pulses that did not have threshold crossings. To do so first normalize the power in each of

these pulses to have a total power of one and then average the spectra to yield Ī(f). Then,

estimate the AR parameters to obtain PB(f) as given by (4). Next normalize I(f) to make∑Nf

k=1 I(f) =
∑Nf

k=1 PB(f). By doing this we make sure the pulse has the same power as the

background. Since the chemical signature power is assumed to be small, this also guarantees

the pulse has about the same background power, which satisfies the assumption of the M -ary

hypothesis test as in (30) in Appendix D. (Note also that by this assumption, the background

normalization needed to form PB(f) should not be affected by the chemical present.)

2. For each chemical signature Psi
(f), use the estimate of the background PB(f) and the pulse

data to be classified I(f) to compute the classification test statistic

TCi
=

Nf∑
k=1

Psi
(fk)

PB(fk)

(
I(fk)

PB(fk)
− 1
)

√√√√ Nf∑
k=1

P 2
si

(fk)
P 2

B(fk)

(18)

Note that the chemical signature Psi
(f) need not be power normalized since TCi

does not

depend on the scaling of Psi
(f).

3. Repeat step 2 for i = 1, 2, . . . , M .

4. Choose the chemical that produces the largest TCi
.

Preliminary results indicate that even with a single pulse nearly a perfect classification can be made as

described in Section VIII.

B. Classification if K out of M Chemicals Are Present

This problem is more complicated since we now need to pick K out of M chemicals instead of just

picking one out of M . The total number of possible combinations is
(
M
K

)
. An asymptotic likelihood
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function method is proposed. The idea is that we first find the asymptotic maximum likelihood estimate

(MLE) of the unknown powers for chemical signatures and plug it into the corresponding log-likelihood

function of this hypothesis. The chemical combination that produces the largest log-likelihood is chosen.

The classification procedure is as follows (see Appendix E for the derivation and detailed model):

1. The first step is the same as in the previous subsection. Obtain the average spectrum of the

chemical plus background Ī(f).

2. For each chemical combination hypothesis, compute the asymptotic MLE of the chemical

signature powers by

θ̂ = I−1(0)
∂ ln p(x; θ)

∂θ

∣∣∣∣
θ = 0

(19)

where
∂ ln p(x; θ)

∂θi

∣∣∣∣
θ = 0

=
N

2

Nf∑
k=1

Pski
(fk)

PB(fk)

(
I(fk)

PB(fk)
− 1
)

Δf. (20)

and

Iij(0) =
N

2

Nf∑
k=1

Pski
(fk)Pskj

(fk)

(PB(fk))
2 Δf. (21)

If there is at least one negative element in θ̂, set the log-likelihood of this hypothesis to −∞.

Otherwise plug θ̂ into the following log-likelihood function

ln p(x; θ) = −N

2

Nf∑
k=1

[
ln
(∑K

i=1
θiPski

(fk) + PB(fk)
)

+
I(fk)∑K

i=1 θiPski
(fk) + PB(fk)

]
Δf

−N

2
ln(2π). (22)

Also note that the chemical signatures Pski
’s do not need to be power normalized since the ith

element θ̂i of θ̂ from (19) is proportional to 1/Pski
. Thus θiPski

in (22) does not depend on

the scaling of Pski
.

3. Repeat step 2 for all the
(
M
K

)
hypotheses.

4. Choose the chemical combination that corresponds to the hypothesis having the largest log-

likelihood. Note that the number of data samples N in the time domain is unknown. However,

we can compare the log-likelihoods without knowing N . This is because that θ̂ does not depend

on N since N cancels in (19) and N is just a scaling factor in (22).

C. Model Order Selection on How Many Chemicals Are Present in the Mixture

We have considered the case when we know the number of chemicals that are present. But in practice,

this information is unknown a-priori. Thus, we need to select the model order, i.e., how many chemicals
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are present. Again, we will use the EEF as the model order selection criterion. For each hypothesis, the

EEF can be calculated by

EEF =

⎧⎨
⎩

lG(x) − K
[
ln
(

lG(x)
K

)
+ 1
]

if lG(x)
K > 1

0 if lG(x)
K ≤ 1

(23)

where K is the assumed number of chemicals deposited on the background and

lG(x) = 2 ln
p(x; θ̂)
p(x;0)

.

The log-likelihood functions ln p(x; θ̂) and ln p(x;0) can be found by plugging (19) and θ = 0 into

(22), respectively. We choose the hypothesis with the largest EEF value.

Since EEF is increasing with lG(x), for the same model order K, the largest lG(x) corresponds to

the largest EEF. So for each K, we just need to find lG(x)’s for all the
(
M
K

)
hypotheses, choose largest

lG(x), and plug it into (23). Then, we compare the EEF’s for different K’s and choose the model with

the largest EEF. We select the hypothesis with the largest lG(x) for the model order that has been chosen.

Again, we need the number of data samples N in the time domain in computing the EEF, since (22)

depends on N . We will assume that same number of samples in the time domain as in the frequency

domain. Since we have Nf = 1024 samples equally spaced on half a period in the frequency domain,

we will use N = 2Nf = 2048. By simulation we have seen that the performance is excellent with

N = 2048.

VIII. EXPERIMENTAL CLASSIFICATION PERFORMANCE FOR FIELD BACKGROUND DATA

For the same data conditions as for the detection experiment, we isolate all the pulses that have had

threshold crossings. The probability of a correct single pulse classification is found by

PC =
number of correct classifications for the pulses that have the added chemical

number of pulses that have the added chemical

First we consider the case when there is only one chemical present. Using a library of M = 60 possible

chemicals we classify the pulses with threshold crossings as per the discussion in Section 6. The results

for chemicals 15, 31 and 45 are shown in Figures 7, 8 and 9 respectively. Again nearly perfect results

are obtained for an SNR in excess of -10 dB.

Next we added the two chemicals 15 and 16 to the background, each chemical with the same SNR.

We assume that we know the number of chemicals present. In the simulation, we have found that the

classifier will sometimes choose chemicals 16 and 29. In Figure 10, we see that the probability of

choosing chemicals 15 and 16 does not go to 1 as SNR increases. But if we consider chemicals 15 and
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29 to be the same, the performance is much improved. This is because the spectrum of chemical 15 is

very similar to that of chemical 29 as shown in Figure 3. The correlation between the spectra of the two

chemicals is 0.968, which means that they are approximately linearly dependent. In this case, it is hard to

distinguish between these two chemicals. Two approaches are possible. We can either treat chemicals 15

and 29 as the same, or remove chemical 29 from the library. When the classifier chooses chemical 15 in

the case chemical 29 is removed, a second stage classification can be performed to further discriminate

between chemical 15 and chemical 29. The same approach is considered in [11] where one spectrum of

the spectrum pairs whose correlations are greater than a threshold is removed. The performance is shown

in Figure 11 when chemical 29 is removed from the library. The simulation results for the chemical 20

and 45 combination and for the chemical 31 and 45 combination are shown in Figure 12 and Figure 13

respectively. These combinations are easily classified.

Next we would like to ascertain how the EEF works for the case when the number of chemicals in the

mixture is unknown. We assume that there are at most 3 chemicals present. Thus, we need to compare

the EEF for K = 1, 2, 3. Chemicals 15, 56 and 58 with the same SNR are added to the background. The

performance of the EEF is compared to that of the minimum description length (MDL) criterion. The

MDL is based on coding arguments [23] and can also be derived by an asymptotic Bayesian procedure

[24]. We still consider chemicals 15 and 29 as the same chemical because of the high correlation between

them. The resulting probability of correct classification versus SNR is shown in Figure 14. The result for

the chemical 15, 31 and 45 combination is shown in Figure 15. The result for the chemical 20 and 45

combination is shown in Figure 16. Comparing Figure 12 and Figure 16, we see that the former produces

a slightly higher probability of correct classification. This is because for Figure 12, we assume that we

know the number of chemicals, but for Figure 16, we need to estimate the number of chemicals.

As we have seen, some of the target chemicals in the library are highly correlated. As a result, we

need to remove some of them from the library or else treat them as a group of similar chemicals. A

further consideration is that a linear combination of some chemicals might appear similar to another

single chemical. Then the classifier would not perform well if that single chemical were present, since

we might choose the chemicals that form the equivalent linear combination instead. A future paper will

address this issue.

IX. CONCLUSION

An AR model has been proposed for a chemical detector and a chemical classifier based on Raman

spectra. The use of a detection procedure followed by a classification scheme is used to control the false
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alarm rate. This is an unsupervised approach which estimates on-line the information of the non-stationary

background data. Experiments with field background data have shown excellent performance of both the

detector and the classifier.

APPENDIX A

DERIVATION OF ESTIMATING THE AR MODEL ORDER

The basic assumption is that the spectral data obtained through the action of the Raman spectroscopy

unit can be modeled as a periodogram of real-valued Gaussian data. This implies certain statistics of the

spectral data, which although not completely satisfied, allows us to derive a detector that will perform

well in practice. As an example of this modeling discrepancy, in analyzing field obtained spectral data

it has been found that the probability density function of the spectral data is not chi-squared with two

degrees of freedom, which is implied by the Gaussian model. Hence, algorithms which push this Gaussian

assumption too far may not work as predicted. Fortunately, for the problem at hand the algorithms so

derived appear to perform exceedingly well.

Assume that N samples {x[0], x[1], . . . , x[N − 1]} in the time domain of the Gaussian AR random

process are observed (this is fictitious). We assume that we have the same number of samples in the

time domain as in the frequency domain (as in a discrete Fourier transform). Since Nf is the number

of samples equally spaced on half a period in the frequency domain, we have N = 2Nf . We need to

estimate the order of the AR process. This is a multiple hypothesis testing problem with

H0 : a[1] = 0, a[2] = 0, . . . , a[pM ] = 0, σ2
u > 0

H1 : a[1] �= 0, a[2] = 0, . . . , a[pM ] = 0, σ2
u > 0

...

HpM
: a[1] �= 0, a[2] �= 0, . . . , a[pM ] �= 0, σ2

u > 0

where pM is the largest candidate model order. That is, for the AR process with order p, only the first p

AR parameters are nonzero. Let p(x;ap, σ
2
u,Hp) denote the PDF under Hp, where x denotes the random

process data vector and ap is the p×1 vector of the first p nonzero AR filter parameters. Note that under

H0, the AR process with order 0 is white Gaussian noise, so we write the PDF under H0 as p(x; σ2
u,H0).

To estimate the order, we resort to the exponentially embedded families (EEF) which is a model order

selection criterion that has been recently proposed [19]. It has been shown that asymptotically, the EEF

minimizes the divergence between the true PDF and the estimated one. For each hypothesis Hp, its EEF
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can be calculated by

EEF (p) =

⎧⎨
⎩

lGp
(x) − p

[
ln
(

lGp (x)

p

)
+ 1
]

if lG(x)
p > 1

0 if lGp(x)

p ≤ 1
(24)

where lGp
(x) is the generalized likelihood ratio for Hp [7] with

lGp
(x) = 2 ln

p(x; âp, σ̂
2
up

;Hp)
p(x; σ̂2

u0
,H0)

(25)

Here âp, σ̂
2
up

are the maximum likelihood estimators (MLE) of ap and σ2
u under Hp, and σ̂2

u0
is the MLE

of σ2
u under H0. The EEF criterion chooses the hypothesis with the largest EEF value.

The PDF can be written in the frequency domain (and hence the time series data can be replaced by

the spectral data) as [20]

ln p(x;ap, σ
2
u,Hp) = −N

2
ln 2π − N

2

∫ 1

0

[
lnPp(f) +

I(f)
Pp(f)

]
df (26)

where I(f) is the periodogram data and Pp(f) is the true power spectral density (PSD) of the AR process

with parameters ap, σ
2
u. Since

Pp(f) =
σ2

u

|Ap(f)|2

the log-PDF can be written as

ln p(x;ap, σ
2
u,Hp) = −N

2
ln 2π − N

2

∫ 1

0

⎡
⎣ln

σ2
u

|Ap(f)|2 +
I(f)

σ2
u

|Ap(f)|2

⎤
⎦ df

= −N

2
ln 2π − N

2

∫ 1

0

[
lnσ2

u +
|Ap(f)|2I(f)

σ2
u

]
df

since it can be shown that
∫ 1
0 ln |Ap(f)|2df = 0 [16]. Next we maximize the log-PDF over σ2

u to obtain

the MLE as

σ̂2
up

=
∫ 1

0
|Ap(f)|2I(f)df.

and substituting back into ln p(x;ap, σ̂
2
up

,Hp) yields

ln p(x;ap, σ̂
2
up

,Hp) = −N

2
ln 2π − N

2
ln
∫ 1

0
|Ap(f)|2I(f)df − N

2
.

Finally, we need to maximize this over ap to obtain âp. It can be shown that this maximization requires

one to use the Yule-Walker equations to estimate the AR filter parameters. Denoting the resultant MLE

of Ap(f) under Hp as Âp(f), we have that

ln p(x; âp, σ̂
2
up

,Hp) = −N

2
ln 2π − N

2
ln
∫ 1

0
|Âp(f)|2I(f)df − N

2
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Note that since we have white Gaussian noise under H0, we have A0(f) = 1. We maximize the log-PDF

over σ2
u for A0(f) = 1 to yield

σ̂2
u0

=
∫ 1

0
I(f)df.

and hence we have

ln p(x; σ̂2
u0

,H0) = −N

2
ln 2π − N

2
ln
∫ 1

0
I(f)df − N

2

As a result,

lGp
(x) = 2 ln

p(x; âp, σ̂
2
up

;Hp)
p(x; σ̂2

u0
,H0)

= −N ln

∫ 1
0 |Âp(f)|2I(f)df∫ 1

0 I(f)df
(27)

When this is discretized over the band 0 ≤ f ≤ 1/2 we have

lGp
(x) = −N ln

∑Nf

k=1 |Âp(fk)|2I(fk)Δf∑Nf

k=1 I(fk)Δf
(28)

Finally we choose the AR model with the largest EEF calculated by (24).

APPENDIX B

DERIVATION OF TEST STATISTIC FOR DETECTION

To begin, we assume that the background random process (in the time domain) is a real-valued Gaussian

AR process with parameters {aB[1], aB[2], . . . , aB[p], σ2
u}. Note that the parameters {aB[1], aB[2], . . . , aB[p], σ2

u}

and also the order p is estimated using the sample average of the background spectral data as in (8).

Under H0, which is background only, the AR filter parameters are assumed to be known but not the

excitation noise variance. Under H1, the AR filter parameters and the excitation noise variance are both

unknown. Let q be the estimated AR model order under H1 using the observed spectral data I(f). Then,

we set up the hypothesis test

H0 : AR parameters are aB[1], aB[2], . . . , aB[p], σ2
u > 0

H1 : AR parameters are a[1], a[2], . . . , a[q], σ2
u > 0

This effectively says that under H0 (no signal present) the spectrum is just the known background

spectrum, although with an unspecified σ2
u. Under H1 the shape of the spectrum is changed due to

the change in the AR filter parameters. This is caused by the presence of a signal, which has been

added to the background. We also assume that the fictitious N time samples {x[0], x[1], . . . , x[N − 1]}

of the Gaussian AR random process are observed. Let p(x;aB, σ2
u,H0) denote the PDF under H0 and

p(x;a, σ2
u,H1) denote the PDF under H1, where x denotes the random process data vector, aB is the
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known p × 1 vector of AR filter parameters and a is the unknown q × 1 vector of AR filter parameters.

The generalized likelihood ratio test statistic (GLRT) is [7]

lG(x) = ln
p(x; â, σ̂2

u1
;H1)

p(x;aB, σ̂2
u0

,H0)
(29)

where â, σ̂2
u1

is the maximum likelihood estimator (MLE) of a and σ2
u under H1, and σ̂2

u0
is the MLE

of σ2
u under H0.

From similar derivations as in Appendix A, and denoting the resultant MLE of A(f) under H1 as

ÂT (f), we have that

ln p(x;aB, σ̂2
u0

,H0) = −N

2
ln 2π − N

2
ln
∫ 1

0
|AB(f)|2I(f)df − N

2

ln p(x; â1, σ̂
2
u1

,H1) = −N

2
ln 2π − N

2
ln
∫ 1

0
|ÂT (f)|2I(f)df − N

2

and finally from (29)

lG(x) =
N

2
ln

∫ 1
0 |AB(f)|2I(f)df∫ 1
0 |ÂT (f)|2I(f)df

.

When this is discretized over the band 0 ≤ f ≤ 1/2 we have

lG(x) =
N

2
ln
∑Nf

k=1 |AB(fk)|2I(fk)∑Nf

k=1 |ÂT (fk)|2I(fk)
.

and omitting the N/2 factor, we have finally (11).

APPENDIX C

DERIVATION OF PROBABILITY OF DETECTION STATISTIC THRESHOLD CROSSING FOR GIVEN FALSE

ALARM RATE

We declare that a chemical has been detected if at least 10% of the pulses in a given block produce

threshold crossings. As an example, we consider the block to consist of 100 pulses and hence a detection

occurs if at least 10 threshold crossings are observed. Also, we assume an operational requirement of one

false alarm per two hours of time. To compute the desired probabilities exactly is difficult due to the fact

that the successive blocks, which differ by only one sample, are heavily dependent. As an approximation

we assume that the blocks are overlapped by 50% (which may be necessary in practice to avoid excessive

computation and is commonly done in practice) and therefore that the data in each block is approximately

independent. Then, in two hours we have examined

L = (2 × 3600 × 25)/50 = 3600 blocks
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for a 10% threshold crossing rate. Hence, the probability of false alarm for each block is obtained as

follows. Let PFAb
be the probability of a false alarm for a single block. Then, the probability of at most

one false alarm in L independent blocks is

P1 = P [at most one false alarm in L blocks] = P [no false alarms in L blocks]

+P [one false alarm in L blocks]

= (1 − PFAb
)L + LPFAb

(1 − PFAb
)L−1

since this is a binomial type of probability. We want the probability of at most one false alarm per two

hours to be large, say 0.99. Hence, we need to solve for PFAb
by finding that value that satisfies

(1 − PFAb
)L + LPFAb

(1 − PFAb
)L−1 = 0.99.

In general, for at most one false alarm per h hours we should use L = 1800h. For the example of h = 2

we plot the probability of at most one false alarm per two hours versus PFAb
in Figure 17. It is seen

that we should require that PFAb
= 4× 10−5, which is the probability of a false alarm for a single block

of 100 pulses. Next, since we declare a chemical present if there are at least 10 threshold crossings out

of a 100 possible ones, then the probability of a false alarm for a single block is

PFAb
=

100∑
k=10

(
100
k

)
P k

FAp
(1 − PFAp

)100−k = 1 −
9∑

k=0

(
100
k

)
P k

FAp
(1 − PFAp

)100−k

where PFAp
is the probability of a threshold crossing, i.e., probability of a false alarm for a single pulse.

In Figure 18 we plot PFAb
versus PFAp

. For PFAb
= 4 × 10−5 = −44 dB, we require from Figure

18 that PFAp
= 0.02. Hence, the threshold of the test statistic given by (11) should be set so that the

probability of TD exceeding this threshold γ is 0.02.

APPENDIX D

DERIVATION OF LMP TEST STATISTIC FOR CLASSIFICATION

It is assumed that one of M chemicals is present. The spectral data is assumed to be of the form

P (f) = θiPsi
(f) + PB(f) if the ith chemical is present. As usual PB(f) is the PSD of the background,

Psi
(f) is the known spectral signature for the ith chemical, and θi is an unknown scaling factor that

accounts for the unknown power of the chemical. To decide which chemical is present we set up an
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M -ary hypothesis test as

H1 : P (f) = θ1Ps1(f) + PB(f)

H2 : P (f) = θ2Ps2(f) + PB(f)

...
...

HM : P (f) = θMPsM
(f) + PB(f).

The θi’s are positive but otherwise unknown. They are assumed to be small so that an LMP approach

can be used. An LMP classification test statistic decides chemical k is present if among

TCi
(x) =

∂ ln p(x;Hi)
∂θi

∣∣∣
θi=0√

IFi
(0)

(30)

for i = 1, 2, . . . , M , TCk
(x) is the maximum value. In (30) IF (0) is the Fisher information for θ when

evaluated at θ = 0. To evaluate the test statistics, we first note that the log-PDF of the spectral data is

given as in Appendix A as

ln p(x) = −N

2
ln 2π − N

2

∫ 1

0

[
ln P (f) +

I(f)
P (f)

]
df.

Using P (f) = θPs(f) + PB(f) we have

ln p(x) = −N

2
ln 2π − N

2

∫ 1

0

[
ln (θPs(f) + PB(f)) +

I(f)
θPs(f) + PB(f)

]
df

and differentiating produces

∂ ln p(x)
∂θ

= −N

2

∫ 1

0

Ps(f)
θPs(f) + PB(f)

− I(f)Ps(f)
(θPs(f) + PB(f))2

df (31)

which when evaluated at θ = 0 yields

∂ ln p(x)
∂θ

∣∣∣∣
θ=0

= −N

2

∫ 1

0

Ps(f)
PB(f)

− I(f)Ps(f)
(PB(f))2

df

=
N

2

∫ 1

0

Ps(f)
PB(f)

(
I(f)

PB(f)
− 1
)

df. (32)

To determine the Fisher information we differentiate (31) a second time to produce

∂2 ln p(x)
∂θ2

= −N

2

∫ 1

0
− P 2

s (f)
(θPs(f) + PB(f))2

+ 2
I(f)P 2

s (f)
(θPs(f) + PB(f))3

df.

Taking the expected value and noting that E[I(f)] = P (f) = θPs(f) + PB(f) produces

E

[
∂2 ln p(x)

∂θ2

]
= −N

2

∫ 1

0
− P 2

s (f)
(θPs(f) + PB(f))2

+ 2
(θPs(f) + PB(f))P 2

s (f)
(θPs(f) + PB(f))3

df

= −N

2

∫ 1

0
− P 2

s (f)
(θPs(f) + PB(f))2

+ 2
P 2

s (f)
(θPs(f) + PB(f))2

df.
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Setting θ = 0 and taking the negative produces

IF (0) =
N

2

∫ 1

0

P 2
s (f)

P 2
B(f)

df. (33)

Therefore, the LMP statistic becomes from (32) and (33)

TC =

√
N
2

∫ 1
0

Ps(f)
PB(f)

(
I(f)

PB(f) − 1
)

df√∫ 1
0

P 2
s (f)

P 2
B(f)df

. (34)

When discretized over the band 0 ≤ f ≤ 1/2, this becomes√
N
2

∑Nf

k=1
Ps(fk)
PB(fk)

(
I(fk)

PB(fk) − 1
)

Δf√∑Nf

k=1
P 2

s (fk)
P 2

B(fk)Δf

and ignoring a scaling factor, which will not affect the maximum, we have finally

TC =

∑Nf

k=1
Ps(fk)
PB(fk)

(
I(fk)

PB(fk) − 1
)

√∑Nf

k=1
P 2

s (fk)
P 2

B(fk)

APPENDIX E

DERIVATION OF THE ASYMPTOTIC LIKELIHOOD FUNCTION METHOD FOR CLASSIFICATION OF

MIXTURE OF CHEMICALS

We assume that K out of M chemicals are present and they are additive. Hence, the spectral data is of

the form P (f) =
∑K

i=1 θki
Pski

(f) + PB(f) if chemicals k1, k2, . . . , kK are present. The total number of

candidate hypotheses is
(
M
K

)
. Let the unknown parameters be θ = [θk1 , θk2 , . . . , θkK

]T . Asymptotically

[7],

θ̂ = θ0 + I−1(θ0)
∂ ln p(x; θ)

∂θ

∣∣∣∣
θ=θ0

or in our problem θ0 = 0,

θ̂ = I−1(0)
∂ ln p(x; θ)

∂θ

∣∣∣∣
θ = 0

. (35)

For each candidate hypothesis,

ln p(x; θ) = −N

2

∫ 1

0

[
ln
(∑K

i=1
θki

Pski
(f) + PB(f)

)
+

I(f)∑K
i=1 θki

Pski
(f) + PB(f)

]
df

−N

2
ln(2π) (36)

and

∂ ln p(x; θ)
∂θki

= −N

2

∫ 1

0

⎡
⎢⎣ Pski

(f)∑K
i=1 θki

Pski
(f) + PB(f)

−
I(f)Pski

(f)(∑K
i=1 θki

Pski
(f) + PB(f)

)2

⎤
⎥⎦df
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∂ ln p(x; θ)
∂θki

∣∣∣∣
θ = 0

=
N

2

∫ 1

0

Pski
(f)

PB(f)

(
I(f)

PB(f)
− 1
)

df. (37)

The second derivative is

∂2 ln p(x; θ)
∂θki

∂θkj

= −N

2

∫ 1

0

⎡
⎢⎣− Pski

(f)Pskj
(f)(∑K

i=1 θki
Pski

(f) + PB(f)
)2 +

2I(f)Pski
(f)Pskj

(f)(∑K
i=1 θki

Pski
(f) + PB(f)

)3

⎤
⎥⎦df

and therefore, the Fisher information matrix is

Iij(θ) = −E

[
∂2 ln p(x; θ)

∂θki
∂θkj

]

=
N

2
E

⎡
⎢⎣
∫ 1

0

⎡
⎢⎣− Pski

(f)Pskj
(f)(∑K

i=1 θki
Pski

(f) + PB(f)
)2 +

2I(f)Pski
(f)Pskj

(f)(∑K
i=1 θki

Pski
(f) + PB(f)

)3

⎤
⎥⎦df

⎤
⎥⎦

=
N

2

∫ 1

0

⎡
⎢⎣− Pski

(f)Pskj
(f)(∑K

i=1 θki
Pski

(f) + PB(f)
)2 +

2E (I(f))Pski
(f)Pskj

(f)(∑K
i=1 θki

Pski
(f) + PB(f)

)3

⎤
⎥⎦df

=
N

2

∫ 1

0

⎡
⎢⎣− Pski

(f)Pskj
(f)(∑K

i=1 θki
Pski

(f) + PB(f)
)2 +

2Pski
(f)Pskj

(f)(∑K
i=1 θki

Pski
(f) + PB(f)

)2

⎤
⎥⎦df

=
N

2

∫ 1

0

Pski
(f)Pskj

(f)(∑K
i=1 θki

Pski
(f) + PB(f)

)2 df

or

Iij(0) =
N

2

∫ 1

0

Pski
(f)Pskj

(f)

(PB(f))2
df. (38)

When discretized over the band 0 ≤ f ≤ 1/2, (36), (37) and (38) become

ln p(x; θ) = −N

2

Nf∑
k=1

[
ln
(∑K

i=1
θki

Pski
(fk) + PB(fk)

)
+

I(fk)∑K
i=1 θki

Pski
(fk) + PB(fk)

]
Δf

−N

2
ln(2π) (39)

∂ ln p(x; θ)
∂θki

∣∣∣∣
θ = 0

=
N

2

Nf∑
k=1

Pski
(fk)

PB(fk)

(
I(fk)

PB(fk)
− 1
)

Δf. (40)

Iij(0) =
N

2

Nf∑
k=1

Pski
(fk)Pskj

(fk)

(PB(fk))
2 Δf. (41)

Now we have the MLE of θ from (35), (40) and (41). The asymptotic likelihood function approach then

substitutes θ̂ for θ into (39) and chooses the hypothesis that has the largest likelihood.
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One important issue that should be described is our assumption that θki
≥ 0 for i = 1, 2, . . . , K.

However, the MLE of θ without these nonnegative constraints may produce negative solutions. However,

this can be easily resolved by the Kuhn-Tucker conditions.

From the Kuhn-Tucker conditions, we know that if the MLE without those positivity constraints has

negative solutions, then the MLE under these constraints will have at least one θki
= 0 [25]. Then this

hypothesis is reduced to at least the (K−1)th order model. Then, any other Kth order hypothesis that has

the same chemical signatures as the reduced (K−1)th order hypothesis and one arbitrary other chemical

signature would have likelihood not less than the reduced (K−1)th order hypothesis. For example, for the

hypothesis H1 that has chemical signatures P1(f), P2(f), . . . , PK(f), if the unconstrained MLE of θ has

negative solutions, then the MLE under positivity constraints would have at least one θi = 0 by the Kuhn-

Tucker conditions, say θ1 = 0. Thus, any other hypothesis that includes P2(f), P3(f), . . . , PK(f) and any

other chemical signature (say Ps1(f)) would have likelihood not less than H1, since we would at least get

the same likelihood by using the same constrained MLE for hypothesis H1. This argument implies that

we can just ignore the hypothesis that yields an unconstrained MLE with at least one negative solution,

and therefore, the greatest likelihood must correspond to the hypothesis with a nonnegative unconstrained

MLE.

Since we have as many as
(
M
K

)
candidate hypotheses, we do not have to consider the case when all

hypotheses have at least one negative solution in unconstrained MLE. In this case, it can be considered

that there are less than K chemicals present, and we should decrease the value of K.
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Fig. 1. AR spectral estimate and background spectral data for asphalt surface (Fc = 3300).
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Fig. 2. AR spectrum for asphalt surface plus an artificial signal (Fc = 3300).
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Fig. 3. Spectra of the chemicals that are used in simulations.
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Fig. 4. Probability PDp of detecting chemical 15 versus SNR based on a single pulse.
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Fig. 5. Probability PDp of detecting chemical 31 versus SNR based on a single pulse.
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Fig. 6. False alarms for a concrete background and fixed threshold.
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Fig. 7. Probability of correct single pulse classification versus SNR. Chemical 15 is present.
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Fig. 8. Probability of correct single pulse classification versus SNR. Chemical 31 is present.
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Fig. 9. Probability of correct single pulse classification versus SNR. Chemical 45 is present.
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Fig. 10. Probability of correct single pulse classification versus SNR. Chemicals 15 and 16 are present.
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Fig. 11. Probability of correct single pulse classification versus SNR. Chemicals 15 and 16 are present. Chemical 29 is removed

from the library.
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Fig. 12. Probability of correct single pulse classification versus SNR. Chemicals 20 and 45 are present.
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Fig. 13. Probability of correct single pulse classification versus SNR. Chemicals 31 and 45 are present.
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Fig. 14. Probability of correct single pulse classification versus SNR using EEF and MDL. Chemicals 15, 56 and 58 are

present.
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Fig. 15. Probability of correct single pulse classification versus SNR using EEF and MDL. Chemicals 15, 31 and 45 are

present.
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Fig. 16. Probability of correct single pulse classification versus SNR using EEF and MDL. Chemicals 20 and 45 are present.

0 0.2 0.4 0.6 0.8 1 1.2
x 10−4

0.94

0.95

0.96

0.97

0.98

0.99

1

PFAb

P 1

Fig. 17. Probability P1 of at most one false alarm per two hours versus PFAb .



34

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−80

−70

−60

−50

−40

−30

−20

−10

PFAp

P F
A

b (d
B

)

Fig. 18. Probability of at most one false alarm per two hours versus PFAp .


