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Abstract

We derive the optimal Neyman-Pearson detector and it performance, and then present a methodology

for the design of the transmit signal for a multistatic radar receiver. The detector assumes a Swerling-I

extended target model as well as signal-dependent noise, i.e., clutter. It is shown that the Neyman-

Pearson detection performance does not immediately lead to an obvious signal design criterion so that

as an alternative, a divergence criterion is proposed for signal design. A simple method for maximizing

the divergence, termed the maximum marginal allocation algorithm, is presented and is guaranteed to

find the global maximum. The overall approach is a generalization of previous work that determined

the optimal detector and transmit signal for a monostatic radar.

1 Introduction

Signal design for optimal detection in signal-dependent noise has been a problem of long-standing interest.

In particular, the fields of radar and sonar have seen much work in this area. Some of the salient references

are listed in [1–9]. Signal-dependent noise is generally referred to as clutter in radar and reverberation in

active sonar. In either case, the fact that the received noise characteristics are dependent on the transmitted

signal greatly complicates the signal design. For the case of signal design in wide sense stationary (WSS)

colored noise whose power spectral density (PSD) does not depend on the transmitted signal, the solution
∗This work was supported by the Air Force Research Lab, Rome, NY and administered by Michigan Tech Research Institute

under contract FA8750-05-C-0237.
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is well known. It says to place all the signal energy into the frequency band for which the noise power is

minimum. For the detection of a discrete signal vector in correlated noise with a given covariance matrix

one should choose the signal as the eigenvector of the noise covariance matrix whose eigenvalue is minimum

[10]. However, it was shown in [11] that this latter design approach is no longer viable when the noise

covariance matrix depends on the transmitted signal, as for clutter. In that work the optimal transmit

signal in the presence of signal-dependent noise was derived. In this paper we extend those results to the

multistatic case.

The design of transmit waveforms for a multistatic radar is a topic of current interest. We henceforth

assume a single transmitter and multiple receivers. The use of multiple transmitters is an obvious extension

and falls under the category of MIMO radar. From a detectability standpoint, however, multiple transmit-

ters may not be desirable unless the available frequency spectrum can accommodate transmit signals with

nonoverlapping frequency bands. Otherwise, “crosstalk”, a common problem in MIMO communication

systems [12], will significantly raise the noise floor. For this paper we therefore address only the single

transmitter scenario. The use of a Neyman-Pearson (NP) detector, although not viable for a practical

implementation, can be viewed as providing an upper bound on the performance of any multistatic radar

system since all statistical quantities are assumed known. It also lends insight into the signal design prob-

lem. It should be noted that when, for example, some parameters are unknown, then either a generalized

likelihood ratio test (GLRT) or Rao test can be used to accommodate the unknown parameters [10]. This

will lead to an actual system implementation. Some preliminary results to this effect rely on the complex

linear model and can be found in [10,13].

Other attempts to design an optimal transmit signal in the multistatic case can be found in [14], where

an iterative algorithm is applied. The difficulty with this approach is that the algorithm is not guaranteed

to converge or may converge to only a local maximum. Other approaches can be found in [15,16] in which

mutual information is used as the design criterion. It is not clear, however, how this criterion is related to

detection performance and the reported results do not make this connection, if any, clear. Our approach

attempts to tie the detection performance to the signal design.

It should be mentioned that the use of signal diversity for better system performance is well known in

the communication literature and has been for some 40 years. The use of signal diversity and the optimal

receiver structure for time diversity can be found in [17]. As must be the case, since the likelihood ratio

forms the basis for the optimal receiver, the results there are similar to our NP formulation results.

In this paper we first define the problem and state the modeling assumptions in Section 2, followed by

the optimal detector in Section 3 and its performance in Section 4. In Sections 5 and 6 the main results of

the paper are given, which are the design of the signal with the optimal energy spectral density. Examples

are next given in Section 7 and finally conclusions are given in Section 8.
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2 Problem Statement and Modeling Assumptions

It is assumed that we have M receive sensors, physically separated so that all received clutter and noises

are statistically independent from sensor to sensor. The model for the received waveforms is shown in

Figure 1.
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Figure 1: Modeling of received complex envelope waveforms. s(t) is the transmitted signal, hi(t) is the

impulse response of the random linear time invariant (LTI) clutter channel filter to the ith sensor, ki(t) is

the impulse response of the random LTI target filter to the ith sensor, and ni(t) represents ambient noise

and interference at the ith sensor.

We assume that the received waveforms are the complex envelopes of the real bandpass data, and

are denoted by xi(t) for |t| ≤ T/2 at the ith sensor. When no target return is present, i.e., under

hypothesis H0, we have that xi(t) = ci(t) + ni(t), where ci(t) denotes clutter and ni(t) is the sum of

ambient noise and interference, i.e., jamming. Under the hypothesis H1, the target return at the ith

sensor is modeled as s(t) � ki(t) = Ais(t) � gi(t), where � denotes convolution. Hence, s(t) is the complex

envelope of the transmitted signal, Ai is a complex reflection factor with the probability density function

(PDF) Ai ∼ CN (0, σ2
Ai

) (a Swerling-I target-type model), and gi(t) is the deterministic part of the target

response, which models the impulse response of the extended target. The designation CN means complex
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normal or Gaussian. We have assumed a zero Doppler target, which represents a worst case scenario. It

is felt that if we can make progress on this signal design problem, then the nonzero Doppler target should

yield improved performance as well. Note that it is only the optimality of the transmit signal that is in

question for nonzero Doppler targets. The proposed approach can easily be modified to address the nonzero

Doppler target but of course will require separate Doppler channels. Also, ni(t) is modeled as a complex

WSS Gaussian random process with zero mean and PSD Pni(F ). The noises at the sensors as well as the

target reflection amplitudes are assumed to be independent of each other. The baseband frequency band

is assumed to be −W/2 ≤ F ≤ W/2 and hence all PSDs are defined over this band. Finally, we model the

clutter return ci(t) as the output of a random LTI filter with impulse response hi(t), whose input is the

transmitted signal. This is the model used in [18,19,20]. This type of modeling is appropriate for multipath

[8] since the filtering will model the altered frequency spectrum of the return signal. (Note, however, that

in [8] the statistical characteristics of the filter are different. There the uncorrelated scattering model is

used, whereby each point of the impulse response is uncorrelated with any other point and the variance

varies from point to point.) However, Doppler spreading due to clutter motion and/or platform motion is

not accommodated. To model the latter the more usual model is a convolution in frequency, which yields

frequency spreading, as opposed to a multiplication. We do not pursue this further.

Continuing with the clutter modeling, if s(t) is the transmit signal, then the clutter return will be

ci(t) = s(t) � hi(t) at the receiver. All clutter returns are assumed independent from sensor to sensor. By

reversing the convolution we can write this as ci(t) = hi(t) � s(t), where now the filter input is hi(t) and

the filter impulse response is s(t). If we now assume that hi(t) is a complex WSS Gaussian random process

with zero mean and PSD Phi
(F ), then ci(t) will also be a complex WSS Gaussian random process [21,22]

with zero mean and PSD Pci(F ) = T |S(F )|2Phi
(F ), where S(F ) is the normalized Fourier transform (the

usual Fourier transform multiplied by 1/
√

T ) of s(t).

3 The Neyman-Pearson Detector

Next we describe the Neyman-Pearson (NP) detector which assumes that all statistical quantities are

known. In practice, these may need to be estimated and hence implementations based on the GLRT or

Rao test will need to be derived. The detection problem can be summarized as

H0 : xi(t) = ci(t) + ni(t)

H1 : xi(t) = Airi(t) + ci(t) + ni(t) (1)

for i = 1, 2, . . . ,M and |t| ≤ T/2, and ri(t) = gi(t) � s(t). The assumptions on the signal, clutter, and

noises have already been set forth. Based on these assumptions it is shown in Appendix A that the NP
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detector, which is implemented in the frequency domain, decides a signal is present if

T (X) = 2
M∑
i=1

σ2
Ai

RH
i K−1

i Ri

1 + σ2
Ai

RH
i K−1

i Ri

∣∣∣XH
i K−1

i Ri

∣∣∣2
RH

i K−1
i Ri

> γ (2)

where

Xi =
[

Xi(F−N/2) . . . Xi(FN/2)
]T

Ri =
[

Ri(F−N/2) . . . Ri(FN/2)
]T

are vectors of dimension (N + 1) × 1 containing Fourier transform samples. The “two factor” multiplying

the sum is included to produce a recognizable PDF for T (X). Also we define the vector of all the sensor

outputs in the frequency domain as

X =
[

XT
1 . . . XT

M

]T
.

The Fourier transforms are defined as

Xi(F ) =
1√
T

∫ T/2

−T/2
xi(t) exp(−j2πFt)dt

Ri(F ) =
1√
T

∫ T/2

−T/2
ri(t) exp(−j2πFt)dt (3)

and Ki is the covariance matrix of Ci + Ni where

Ci =
[

Ci(F−N/2) . . . Ci(FN/2)
]T

Ni =
[

Ni(F−N/2) . . . Ni(FN/2)
]T

.

In effect, the detection statistic is just the sum of the statistics that would be used for a single sensor.

This is obviously due to the assumption of independence of the signal return, clutter, and noise between

sensors. For a time-bandwidth product WT > 16 [24], the detection statistic of (2) can be approximately

written as (see Appendix A)

T (X) = 2
M∑
i=1

αi

∣∣∣∑N/2
n=−N/2

X∗
i (Fn)Ri(Fn)

Pci (Fn)+Pni (Fn)

∣∣∣2∑N/2
n=−N/2

|Ri(Fn)|2
Pci

(Fn)+Pni
(Fn)

(4)

where Ri(Fn) = S(Fn)Gi(Fn)
√

T , Pci(Fn) = T |S(Fn)|2Phi
(Fn) = Es(Fn)Phi

(Fn), and

αi =
σ2

Ai

∑N/2
n=−N/2

|Ri(Fn)|2
Pci(Fn)+Pni (Fn)

1 + σ2
Ai

∑N/2
n=−N/2

|Ri(Fn)|2
Pci (Fn)+Pni (Fn)

.
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We next examine the meaning of (2). Clearly, the weighting term given by

σ2
Ai

RH
i K−1

i Ri

1 + σ2
Ai

RH
i K−1

i Ri

serves to include the contributions of sensors that exhibit a large target return. If σ2
Ak

RH
k K−1

k Rk << 1,

then the contribution of sensor k will not be included in the sum of (2) while if σ2
Ak

RH
k K−1

k Rk >> 1, the

weighting is unity and the test statistic for sensor k is included without downweighting. Assuming for the

sake of interpretation that σ2
Ai

RH
i K−1

i Ri >> 1 for all i, we have from (2)

T (X) = 2
M∑
i=1

∣∣∣XH
i K−1

i Ri

∣∣∣2
RH

i K−1
i Ri

(5)

and if we let Âi = (RH
i K−1

i Ri)−1RH
i K−1

i Xi, then this becomes

T (X) = 2
M∑
i=1

|Âi|2
(RH

i K−1
i Ri)−1

. (6)

Since by Fourier transforming (1) we have the complex linear model form of Xi = AiRi + Wi, where

Wi = Ci +Ni, and Ai is independent of Wi, we see that the estimator Âi is just the conditional minimum

variance unbiased (MVU) estimator of Ai, and is also efficient conditionally. By conditional we mean that

we are given Ai so that equivalently it can be regarded as deterministic in a conditional sense. It follows

that var(Âi) = (RH
i K−1

i Ri)−1 is the conditional minimum variance, and satisfies the Cramer-Rao lower

bound. Hence, the NP detector sums the normalized estimated powers of the signal received at the sensors.

Interestingly, the detector of (5) has also been derived but under the assumption of deterministic and

unknown Ai’s as a GLRT [10,13]. It should be noted, however, that if some of the sensors have little signal

power, then the GLRT performance will be degraded. In this case, the test statistic of (5) will add in noise

only. On the other hand, the NP detector of (2) recognizes this possibility by incorporating the weighting

factor αi, which will downweight any sensor contribution for which σ2
Ai

RH
i K−1

i Ri << 1. Of course, to do

so it requires a priori knowledge of the signal power, i.e., knowledge of the σ2
Ai

’s, which the GLRT does not

have privy to. In radar it is quite often the case that the bistatic radar cross-section can vary by as much

as 30 dB [23] so that this problem of adding in noise only is a concern. The GLRT can still be used but

should be modified to alleviate this problem. Results to this effect will be reported on in a future paper.

In the next section we determine the detection performance of (2).

4 Performance of the NP Detector

It is shown in Appendix B that the detection statistic of (2) has the distribution

T (X) ∼
M∑
i=1

α
(0)
i χ2

2(i) under H0
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∼
M∑
i=1

α
(1)
i χ2

2(i) under H1

where “∼” means is distributed according to, and

α
(0)
i =

σ2
Ai

RH
i K−1

i Ri

1 + σ2
Ai

RH
i K−1

i Ri

α
(1)
i = σ2

Ai
RH

i K−1
i Ri (7)

and {χ2
2(1), χ

2
2(2), . . . , χ

2
2(M)} are a set of independent and identically distributed chi-squared random

variables with two degrees of freedom. Note that if σ2
Ai

RH
i K−1

i Ri >> 1, then α
(0)
i = 1, and T (X) ∼ χ2

2M

under H0 but otherwise not. It is well known that a weighted sum of independent χ2
2 random variables

has a mathematically tractable probability density function (PDF). Following the results in [10], we can

determine the probability of false alarm PFA and probability of detection PD. To do so note that the

characteristic function of T =
∑M

i=1 αiχ
2
2(i) for independent χ2

2(i)’s is given by

φT (ω) =
M∏
i=1

1
1 − 2jαiω

=
M∑
i=1

Pi

1 − 2jαiω

where

Pi =
M∏

n=1
n�=i

1
1 − αn/αi

.

The second equality assumes that the αi’s are all distinct in employing a partial fraction expansion.

Inverting the characteristic function produces the PDFs

p(T ;H0) =
M∑
i=1

Pi

2α(0)
i

exp[−T/(2α(0)
i )]

p(T ;H1) =
M∑
i=1

Qi

2α(1)
i

exp[−T/(2α(1)
i )]

with both PDFs being zero for T < 0 and

Pi =
M∏

n=1
n�=i

1

1 − α
(0)
n /α

(0)
i

Qi =
M∏

n=1
n�=i

1

1 − α
(1)
n /α

(1)
i

. (8)

Upon integrating the PDFs from γ to infinity we have the final results

PFA =
M∑
i=1

Pi exp[−γ/(2α(0)
i )] (9)
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PD =
M∑
i=1

Qi exp[−γ/(2α(1)
i )]. (10)

Although we have obtained a closed form expression for the detection performance, it unfortunately lends

little insight into optimal signal design. Hence, in the next section we utilize an approximate measure of

detection performance that is more amenable to signal optimization. Once the signal has been chosen,

(9) and (10) can be used to determine the actual detection performance. An example of this is given in

Section 7.

5 Alternative Signal Design Criterion - Divergence

The influence of the transmitted signal on the detection performance of the NP detector is embedded in

the parameters α
(0)
i and α

(1)
i as seen by (7–10). If we let ρi = σ2

Ai
RH

i K−1
i Ri, then we have from (7) that

α
(0)
i =

ρi

1 + ρi

α
(1)
i = ρi.

Note that ρi is a signal-to-noise ratio (SNR) and in fact using the large time-bandwidth approximation it

becomes

ρi = σ2
Ai

N/2∑
n=−N/2

|Ri(Fn)|2
Pci(Fn) + Pni(Fn)

=
N/2∑

n=−N/2

σ2
Ai
|Gi(Fn)|2T |S(Fn)|2

Pci(Fn) + Pni(Fn)

which in the case of a single sensor has been shown to be the deflection coefficient of the NP detector [11].

This means that for M = 1 the detection probability of the NP detector is monotonically increasing with

ρ1. Hence, any reasonable detection measure for the multistatic case should be a monotonic function of

the ρi’s. Such a measure, as we now show, is the divergence or symmetrized Kullback-Liebler measure. It

can be connected with performance of a hypothesis test asymptotically via the Stein lemma [25, 26] and

as a bound on performance as shown in [27]. The divergence is defined as

D = D(p1||p0) + D(p0||p1)

where

D(pi||pj) =
∫

pi(x) ln
pi(x)
pj(x)

dx

and represents a type of “distance” between the two PDFs p0(x) and p1(x). For our problem p0(x) =

p(X;H0) and p1(x) = p(X;H1). Since each PDF is factorable due to the independence assumption, the

divergence is additive and so can be shown to result in

D =
M∑
i=1

Di
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where

Di =
∫

p(Xi;H0) ln
p(Xi;H0)
p(Xi;H1)

dXi +
∫

p(Xi;H1) ln
p(Xi;H1)
p(Xi;H0)

dXi

= E0

[
ln

p(Xi;H0)
p(Xi;H1)

]
+ E1

[
ln

p(Xi;H1)
p(Xi;H0)

]

and the subscripts on the expected values indicate the averaging PDF. This can be evaluated by using

results in Appendix A where it is shown that (see (22))

li(Xi) = ln
p(Xi;H1)
p(Xi;H0)

= ci + α
(0)
i

∣∣∣XH
i K−1

i Ri

∣∣∣2
RH

i K−1
i Ri

and therefore

Di = E0


−ci − α

(0)
i

∣∣∣XH
i K−1

i Ri

∣∣∣2
RH

i K−1
i Ri


 + E1


ci + α

(0)
i

∣∣∣XH
i K−1

i Ri

∣∣∣2
RH

i K−1
i Ri




=
α

(0)
i

RH
i K−1

i Ri

[
−E0

[∣∣∣XH
i K−1

i Ri

∣∣∣2] + E1

[∣∣∣XH
i K−1

i Ri

∣∣∣2]]

=
α

(0)
i

RH
i K−1

i Ri

[
−RH

i K−1
i Ri + RH

i K−1
i Ri + σ2

Ai
(RH

i K−1
i Ri)2

]
= α

(0)
i σ2

Ai
RH

i K−1
i Ri.

We have that

D =
M∑
i=1

σ2
Ai

RH
i K−1

i Ri

1 + σ2
Ai

RH
i K−1

i Ri

σ2
Ai

RH
i K−1

i Ri

and for mathematical expediency as well as a practical implementation, we assume that σ2
Ai

RH
i K−1

i Ri >>

1. Finally, we have that

D ≈
M∑
i=1

σ2
Ai

RH
i K−1

i Ri

≈
M∑
i=1

σ2
Ai

N/2∑
n=−N/2

|Ri(Fn)|2
Pci(Fn) + Pni(Fn)

. (11)

It is seen that the divergence is the sum of the SNRs of the sensors. Observe that the weighting coefficients

are still present but are now given by σ2
Ai

and also that the detectability measure is monotonic with the

SNR at each sensor. Although not directly tied to the performance of the NP detector as it was for a single

receive sensor, it nonetheless appears to be a reasonable measure. And in fact, it appears to accurately

predict performance gains as will be described in Section 7. As mentioned previously, under some large
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data record conditions the probability of detection can be written as a monotonic function of the divergence

but not in general for finite data records. In the next section we will see how to maximize (11) by a suitable

choice of the transmit signal.

6 Signal Design

The signal design problem is to maximize D as given by (11) subject to a constraint on the signal energy.

This generalizes the problem that was solved in [11]. Since Fn = n/T = n∆F , we have from (11) that

D =
N/2∑

n=−N/2

M∑
i=1

σ2
Ai

|Ri(Fn)|2T
Pci(Fn) + Pni(Fn)

∆F

≈
∫ W/2

−W/2

M∑
i=1

σ2
Ai

T |Ri(F )|2
Pci(F ) + Pni(F )

dF

and since ri(t) = s(t) � gi(t), we have that
√

TRi(F ) =
√

TS(F )
√

TGi(F ), and also Pci(F ) =

Phi
(F )T |S(F )|2. Letting the signal energy spectral density (ESD) be Es(F ) = T |S(F )|2, we have

D =
∫ W/2

−W/2

M∑
i=1

σ2
Ai

T |Gi(F )|2Es(F )
Es(F )Phi

(F ) + Pni(F )
dF. (12)

Note that for M = 1 and T |Gi(F )|2 = 1 we have the same measure of detectability as given in [11]. The

energy constraint can now be expressed as ∫ W/2

−W/2
Es(F )dF ≤ E

and as has been shown in [11], the maximum of D will be attained when

∫ W/2

−W/2
Es(F )dF = E . (13)

Maximization of D can by accomplished by two different numerical methods. Both ensure that the

global maximum will be found. The methods are dynamic programming (DP) [28] and the maximum

marginal allocation (MMA) approach [29]. To see how to apply these approaches we first revert back to

the discretized version of D since ultimately a numerical solution will be sought. From (12) this is

D =
N/2∑

n=−N/2

M∑
i=1

σ2
Ai
Es(Fn)T |Gi(Fn)|2

Es(Fn)Phi
(Fn) + Pni(Fn)

∆F (14)

and next relabel the frequencies as Fk = −W/2 + k∆F for k = 0, 1, . . . , N and ∆F = W/N so that

D =
N∑

k=0

M∑
i=1

σ2
Ai
Es(Fk)T |Gi(Fk)|2∆F

Es(Fk)Phi
(Fk) + Pni(Fk)

.
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The constraint becomes
N∑

k=0

Es(Fk)∆F = E .

To simplify the notation we let u(k) = Es(Fk) and

a
(k)
i =

Phi
(Fk)

σ2
Ai
|Gi(Fk)|2

b
(k)
i =

Pni(Fk)
σ2

Ai
|Gi(Fk)|2

so that

D =
N∑

k=0

M∑
i=1

u(k)

a
(k)
i u(k) + b

(k)
i

and the constraint becomes
∑N

k=0 u(k) = E/∆F = umax and of course u(k) ≥ 0. Hence we seek to maximize

D =
N∑

k=0

L(u(k), k) (15)

where

L(u(k), k) =
M∑
i=1

Li(u(k), k) (16)

for

Li(u(k), k) =
u(k)

a
(k)
i u(k) + b

(k)
i

. (17)

As shown in [11] Li(u(k), k) is a concave function and therefore L(u(k), k), being a sum of concave functions,

is also concave. As a result D is a concave function. Also, it is easy to see that each Li(u(k), k) is

monotonically increasing and so L(u(k), k) is also monotonically increasing. This type of problem has

been well studied and is termed the resource allocation problem [30]. Because of the concavity the use

of a Lagrangian multiplier approach will produce the global maximum. Unfortunately, the equations

obtained by differentiation cannot easily be solved, as was the case when M = 1. Alternative numerical

means, however, are possible and include the DP and the MMA approaches. DP can be used even if the

L(u(k), k)’s are not concave and even if additional constraints on the u(k)’s are necessary [30]. However,

for our current problem we can take advantage of the form of the L(u(k), k)’s to utilize the very simple

and computationally efficient approach of MMA, which we now describe.

We first discretize the range of u(k). Since
∑N

k=0 u(k) = umax and 0 ≤ u(k) ≤ umax for all k, we let

u(k) take on values in the set {0,∆, 2∆, . . . , P∆}, where P∆ = umax. We then allocate the P∆ units

of “energy” by allocating ∆ units at each step of the algorithm. In the first step, we set u(j) = ∆ if

L(u(j), j) > L(u(k), k) for all k �= j. We then repeat the same procedure except we choose to allocate the

next ∆ to the value of k that produces the maximum value of

{L(∆, 0), L(∆, 1), . . . , L(∆, j − 1), L(2∆, j) − L(∆, j), L(∆, j + 1), . . . , L(∆, N)}
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or to the k that results in the maximum marginal increase. Note that since we have already allocated ∆ to

k = j in step 1, the marginal increase for k = j is L(2∆, j) − L(∆, j) in going from an allocation of ∆ to

2∆. For the other values of k the marginal increases are the same as before. We continue this process until∑N
k=0 u(k) = P∆ and so only P steps are needed for completion. A simple numerical example follows.

As an illustration let N = 2, M = 1, and u(0) + u(1) + u(2) = umax = 4, and say we wish to maximize

D = L(u(0), 0) + L(u(1), 1) + L(u(2), 2) =
u(0)

2u(0) + 4
+

u(1)
2u(1) + 1

+
u(2)

3u(2) + 2
.

We let ∆ = 1 so that we can allocate either 0, 1, 2, 3, or 4 units to u(0), u(1), u(2) subject to the total

energy constraint. The possible values of L(u(k), k) are shown in Table 1, and correspond to the values of

L(u(k), k) for u(k) = 0, 1, 2, 3, 4. Note that the values of the L(u(k, k)’s for an initial allocation of ∆ = 1

units are 0.167, 0.333, and 0.200 for k = 0, 1, 2, respectively so that at step 1 ∆ units are allocated to k = 1.

After doing so the new marginal energies are 0.167, 0.067, and 0.200 as shown in Table 2 so that k = 2 is

chosen in step 2. For step 3 the new marginal energies are 0.167, 0.067, and 0.050 as shown in Table 3 so

that k = 1 is chosen, etc. Similarly, the last allocation is determined by examination of Table 4. The final

allocations are summarized in Table 5. The final allocation is 2∆ for k = 0, ∆ for k = 1, and ∆ for k = 2

resulting in the maximizing values of u(0) = 2∆ = 2, u(1) = ∆ = 1, and u(2) = ∆ = 1. The maximum

value of D is 0.783. Note that if ∆ is decreased the maximizing values can be found more accurately. In

fact, by letting u(0) = 4 − u(1) − u(2) and tabulating D versus u(1) and u(2) over the allowable range

of 0 ≤ u(1) + u(2) ≤ 4, it is found that the maximum value of D is 0.791 by using ∆ = 0.01. The

corresponding values of the u(k)’s are u(0) = 1.63, u(1) = 1.32, and u(2) = 1.05.

u(k) = 4 0.333 0.444 0.286

u(k) = 3 0.300 0.429 0.273

u(k) = 2 0.250 0.400 0.250

u(k) = 1 0.167 0.333 0.200

u(k) = 0 0 0 0

k = 0 k = 1 k = 2

Table 1: Values of L(u(k), k) for various values of u(k). The underlined entry is the maximum marginal

increase obtained by letting u(k) = ∆ = 1 at step one.

7 Signal Design Example

In this section we give an example of a signal design for M = 3 receive sensors. The signal bandwidth is

W = 5 Mhz, the signal time duration is T = 1µs , and the energy constraint is E = 106 joules. The noise

12



u(k) = 4 0.333 0.286

u(k) = 3 0.300 0.111 0.273

u(k) = 2 0.250 0.096 0.250

u(k) = 1 0.167 0.067 0.200

u(k) = 0 0 0 0

k = 0 k = 1 k = 2

Table 2: Marginal values of L(u(k), k) for various values of u(k) after first allocation. The underlined entry

is the maximum marginal increase obtained by letting u(k) = ∆ = 1.

u(k) = 4 0.333

u(k) = 3 0.300 0.111 0.086

u(k) = 2 0.250 0.096 0.073

u(k) = 1 0.167 0.067 0.050

u(k) = 0 0 0 0

k = 0 k = 1 k = 2

Table 3: Marginal values of L(u(k), k) for various values of u(k) after second allocation. The underlined

entry is the maximum marginal increase obtained by letting u(k) = ∆ = 1.

u(k) = 4

u(k) = 3 0.183 0.111 0.086

u(k) = 2 0.133 0.096 0.073

u(k) = 1 0.083 0.067 0.050

u(k) = 0 0 0 0

k = 0 k = 1 k = 2

Table 4: Marginal values of L(u(k), k) for various values of u(k) after third allocation. The underlined

entry is the maximum marginal increase obtained by letting u(k) = ∆ = 1.

characteristics are given by

Pni(F ) =
3∑

k=1

P
(i)
k

(
sin[π(F − Fk)T ]

π(F − Fk)T

)4

+ N0

where F1 = 1 Mhz, F2 = 0.5 Mhz, F3 = −2 Mhz. The interference peak powers P
(i)
k for the three sensors

are shown in Table 6, and N0 = 1. For the clutter we assume a worst case of Phi
(F ) = 1 for all sensors.
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Step k = 0 k = 1 k = 2 D

1 – ∆ – 0.333

2 – – ∆ 0.533

3 ∆ – – 0.700

4 ∆ – – 0.783

2∆ ∆ ∆

Table 5: Final allocation of energies.

Sensor σ2
Ai

P
(i)
1 P

(i)
2 P

(i)
3

i = 1 10 1 × 104 10 × 104 100 × 104

i = 2 1 10 × 104 1 × 104 100 × 104

i = 3 1 100 × 104 10 × 104 1 × 104

Table 6: Signal powers and interference peak powers for the three sensors.

This says that the clutter return has the same spectral shape as the transmit signal. The target frequency

response is also assumed flat so that T |Gi(F )|2 = 1 for all sensors and the target reflection powers σ2
Ai

are

given in Table 6. The interference PSD (which is Pni(F )−N0) for the three sensors is plotted in Figure 2.

Note that sensor 1 has the largest target return, although its minimum interference, which occurs at at
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Figure 2: Interference PSD for the three sensors.
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Figure 3: Optimal transmit signal when sensor 1 has largest target power.

F = 2.5 Mhz, is slightly higher than the minimum interference of sensor 2, which occurs at 2.1 Mhz. As

a result, as shown in Figure 3 the optimal transmit signal places most of its energy at about 2.5 Mhz. If,

however, we reduce the target power for sensor 1 from σ2
A1

= 10 to σ2
A1

= 1 so that all three sensors have

the same target reflection powers, then the signal design is quite different as shown in Figure 4. Now the

design is determined by the disparity of interference power with frequency. Since sensor 2 exhibits the least

amount of power versus frequency in bands around −1 Mhz and 2 Mhz, this is where the signal energy is

concentrated. To determine the improvement in the sum of SNRs of the sensors for this example we can

use (14) with T |Gi(Fn)|2 = 1 to yield

D =
N/2∑

n=−N/2

M∑
i=1

σ2
Ai
Es(Fn)

Es(Fn)Phi
(Fn) + Pni(Fn)

∆F. (18)

A typical transmit signal is a linear FM whose ESD is Es(F ) = E/W for |F | ≤ W/2. Using this in (18) with

N = 200 so that ∆F = W/N = 2.5×104 and for the conditions shown in Table 6 produces Dlfm = 44.8 dB.

For the optimal transmit signal we have Dopt = 53.3 dB, a gain of 8.5 dB. For the second condition in which

all three sensors have the same target reflection powers the results are Dlfm = 39.1 dB and Dopt = 47.1

dB, a gain of 8 dB.

To actually synthesize a transmit signal with the ESD given in Figures 3 or 4 the procedure described

in [11] can be used. There it was shown how to weight a pulse train using complex weights in order to

achieve the desired ESD.

15



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
6

−60

−50

−40

−30

−20

−10

0

10

Frequency (Hz)

O
pt

im
al

 E
S

D
 (

dB
)

Figure 4: Optimal transmit signal when target reflection powers are the same for all sensors.

Finally, we give an example of the detection performance via the use of (9) and (10). We use the same

conditions as used to generate the optimal transmit signal shown in Figure 4 except that we vary the target

reflection powers from σ2
Ai

= 10−4 to 10−2 and assume that the σ2
Ai

’s are the same for each sensor. When

the σ2
Ai

’s are equal the optimal signal will be the same as in Figure 4 as may be seen by examining D

as given in (18) (for Figure 4 we had set σ2
Ai

= 1 for i = 1, 2, 3). For σ2
Ai

= 0.001 for all i we have that

Dlfm = 9.1 dB and Dopt = 17.1 dB, a gain again of 8 dB. Note that by reducing σ2
A = 1 to σ2

A = 0.001,

the divergence criterion is reduced by 30 dB as expected. We next plot Pd for the optimal signal and an

LFM signal. A probability of false alarm of PFA = 10−5 is chosen. Note that to determine the threshold

from (9) we need to solve this for each set of α
(0)
i ’s since the latter will depend upon σ2

Ai
as given in (7).

After finding the threshold γ for the given PFA and also for each set of σ2
Ai

’s, we use (10) to determine

the PD for the corresponding set of α
(1)
i ’s. The detection performance versus σ2

A in dB is shown in Figure

5. Note that for PD = 0.5 the improvement in detection performance is about 8 dB as predicted by the

improvement in the divergence.

8 Conclusions

We have derived the optimal Neyman-Pearson detector for multiple independent receive sensors. Although

the probability of detection is not monotonically related to a single parameter that depends on the signal,

we have seen that the use of divergence for signal design is a reasonable alternative. It allows prediction
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Figure 5: Probability of detection performance when target reflective power is the same for all sensors.

The improvement in detection performance is accurately predicted by the divergence.

of the gain in detection performance. Furthermore, we have presented a numerical method for signal

design that is guaranteed to maximize the divergence and is simple to implement. It is believed that if the

assumed statistical quantities are known or can be accurately estimated in real-time, then the signal design

approach presented can be used “in-situ” to optimize radar performance. Finally, it should be noted that

the analysis and solution has included the effects of clutter as signal-dependent noise which complicates

the problem but is more realistic in practice.
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A Derivation of Neyman-Pearson Detector and its Performance

The modeling assumptions have been given in Section 2. We first transform xi(t), ci(t), ni(t) into the

frequency domain using the normalized Fourier transform of (3) and then take frequency samples at

Fn = n/T for n = −N/2, . . . , N/2. Assuming WT > 16 [24], the frequency samples are approximately

independent and are also complex Gaussian distributed. Hence, the detection problem of (1) can be recast

as

H0 : Xi = Ci + Ni

H1 : Xi = AiRi + Ci + Ni

for i = 1, 2, . . . ,M and where for example Xi = [X(F−N/2) . . . X(FN/2)]T is an (N +1)×1 complex random

vector. Since Ai ∼ CN (0, σ2
Ai

), where “CN ” denotes a complex Gaussian PDF, the clutter random process

hi(t) is Gaussian, the noise random process ni(t) is Gaussian, and ri(t) = s(t) � gi(t) is a deterministic

signal, it follows that AiRi, Ci, and Ni are all complex multivariate Gaussian random vectors with a zero

mean vector. Also, Ai, hi(t), ni(t) are independent of each other so that the PDF under H1 can be written

as

p(Xi;H1) =
1

πN+1 det(σ2
Ai

RiRH
i + Ki)

exp
[
−XH

i (σ2
Ai

RiRH
i + Ki)−1Xi

]
(19)

where Ki is the covariance matrix of Ci + Ni and the PDF under H0 is given by

p(Xi;H0) =
1

πN+1 det(Ki)
exp

[
−XH

i K−1
i Xi

]
. (20)

Since it was furthermore assumed that the sensor outputs are all independent, it follows that the Xi’s are

independent as well. Thus,

p(X;Hk) =
M∏
i=1

p(Xi;Hk) k = 0, 1 (21)

where the vector of all the Fourier transform samples from all the sensor outputs is X = [XT
1 . . .XT

M ]T .

Twice the log-likelihood ratio becomes

2l(X) = 2 ln
p(X;H1)
p(X;H0)

= 2 ln
∏M

i=1 p(Xi;H1)∏M
i=1 p(Xi;H0)

= 2
M∑
i=1

ln
p(Xi;H1)
p(Xi;H0)

= 2
M∑
i=1

li(Xi)
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where li(Xi) denotes the log-likelihood ratio resulting from the ith sensor output. The use of (19) and (20)

produces the log-likelihood ratio for the ith sensor output of

li(Xi) = ci + XH
i K−1

i Xi − XH
i (σ2

Ai
RiRH

i + Ki)−1Xi

where ci is a constant term not dependent on Xi that will ultimately be dropped since it does not affect

the resultant NP test. We now have using Woodbury’s identity

li(Xi) = ci + XH
i

[
K−1

i − (σ2
Ai

RiRH
i + Ki)−1

]
Xi

= ci + XH
i

[
K−1

i − K−1
i +

σ2
Ai

K−1
i RiRH

i K−1
i

1 + σ2
Ai

RH
i K−1

i Ri

]
Xi

= ci + σ2
Ai

∣∣∣XH
i K−1

i Ri

∣∣∣2
1 + σ2

Ai
RH

i K−1
i Ri

= ci +
σ2

Ai
RH

i K−1
i Ri

1 + σ2
Ai

RH
i K−1

i Ri

∣∣∣XH
i K−1

i Ri

∣∣∣2
RH

i K−1
i Ri

(22)

Dropping the constant term ci, summing over i, and multiplying by two produces (2).

To express the log-likelihood ratio in simpler form we first note that since Ci and Ni are independent

Ki = E[(Ci + Ni)(Ci + Ni)H ] = E[CiCH
i ] + E[NiNH

i ].

For a large WT each covariance matrix is diagonal with diagonal elements equal to the PSD values [24].

Hence,

Ki = diag(Pci(F−N ) + Pni(F−N ), . . . , Pci(FN ) + Pni(FN ))

and as a result (22) becomes upon dropping ci

li(Xi) =
σ2

Ai

∑N/2
n=−N/2

|Ri(Fn)|2
Pci (Fn)+Pni (Fn)

1 + σ2
Ai

∑N/2
n=−N/2

|Ri(Fn)|2
Pci(Fn)+Pni (Fn)

∣∣∣∑N/2
n=−N/2

X∗
i (Fn)Ri(Fn)

Pci(Fn)+Pni (Fn)

∣∣∣2∑N/2
n−N/2

|Ri(Fn)|2
Pci(Fn)+Pni (Fn)

and hence we have (4).

B Detection Performance of NP Detector

The NP detector decides H1 if

2l(X) = 2
M∑
i=1

αi
|XH

i K−1
i Ri|2

RH
i K−1

i Ri

exceeds a threshold. Under H0 we have that Xi = Ci + Ni = Wi and therefore Xi ∼ CN (0,Ki). Under

H1 we have that Xi = AiRi + Wi and therefore Xi ∼ CN (0, σ2
Ai

RiRH
i + Ki). First considering the PDF

of l(X) under H0, we have

XH
i K−1

i Ri = WH
i K−1

i Ri ∼ CN (0, σ2
0)
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and under H1

XH
i K−1

i Ri = (AiRi + Wi)HK−1
i Ri ∼ CN (0, σ2

1)

since the random vectors are complex Gaussian and therefore a linear transformation produces a scalar

complex Gaussian random variable [21]. The variances are found as

σ2
0 = E[|XH

i K−1
i Ri|2] = E[RH

i K−1
i WiWH

i K−1
i Ri] = RH

i K−1
i Ri

and similarly

σ2
1 = RH

i K−1
i Ri + σ2

Ai
(RH

i K−1
i Ri)2.

Thus, under H0 we have that

2|XH
i K−1

i Ri|2
RH

i K−1
i Ri

= 2

∣∣∣∣∣∣∣∣∣∣
XH

i K−1
i Ri

σ0︸ ︷︷ ︸
CN (0,1)

∣∣∣∣∣∣∣∣∣∣

2

∼ χ2
2

and under H1

2|XH
i K−1

i Ri|2
RH

i K−1
i Ri(1 + σ2

Ai
RH

i K−1
i Ri)

= 2

∣∣∣∣∣∣∣∣∣∣
XH

i K−1
i Ri

σ1︸ ︷︷ ︸
CN (0,1)

∣∣∣∣∣∣∣∣∣∣

2

∼ χ2
2.

Now under H0

2li(Xi) =
σ2

Ai
RH

i K−1
i Ri

1 + σ2
Ai

RH
i K−1

i Ri︸ ︷︷ ︸
α

(0)
i

2|XH
i K−1

i Ri|2
RH

i K−1
i Ri︸ ︷︷ ︸

∼χ2
2(i)

and under H1

2li(Xi) = σ2
Ai

RH
i K−1

i Ri︸ ︷︷ ︸
α

(1)
i

2|XH
i K−1

i Ri|2
RH

i K−1
i Ri(1 + σ2

Ai
RH

i K−1
i Ri)︸ ︷︷ ︸

∼χ2
2(i)

and where all χ2
2(i) random variables are independent. Finally, we have

2l(X) =




∑M
i=1 α

(0)
i χ2

2(i) under H0∑M
i=1 α

(1)
i χ2

2(i) under H1.
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