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Abstract

A new test to determine the stationarity length of a locally wide sense stationary Gaussian random

process is proposed. Based on the modeling of the process as a time-varying autoregressive process, the

time-varying model parameters are tested using a Rao test. The use of a Rao test avoids the necessity of

obtaining the maximum likelihood estimator of the model parameters under the alternative hypothesis,

which is intractable. Computer simulation results are given to demonstrate its effectiveness and to

verify the asymptotic theoretical performance of the test. Applications are to spectral analysis, noise

estimation, and time series modeling.

1 Introduction

There are many statistical signal processing approaches that are based on the assumption of a wide sense

stationary (WSS) Gaussian random process. Some of these are spectral analysis [1,2], signal detection [3],

and general time series modeling [1,4]. For example, in spectral analysis we wish to base our estimate on

the largest data record that retains the stationarity of the process, while in signal detection, it is imperative

that an accurate estimate of the stationary noise floor be available. In time series modeling such as for

autoregressive, moving average, and autoregressive moving average models the primary assumption is that
∗This work was supported by the Naval Air Warfare Center, Patuxent, MD under the Office of Naval Research contract

N0001404-M-0331.
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of a WSS random process. In practice, however, a test for stationarity is seldom invoked before choosing a

data record length. Generally, the choice of a stationarity interval is based on physical arguments, which

may not always be valid, or even if valid, may become violated as time evolves. Performing, for example, a

spectral analysis on a data record that exhibits a nonstationarity will result in a severely biased estimate.

The difficulty in designing an efficient test for stationarity is in having to assume an alternative hy-

pothesis and to estimate some set of parameters under the alternative hypothesis. In this paper we will

consider a Gaussian random process that exhibits a “slowly varying” type of nonstationarity. That is to

say, the power spectral density (PSD) of the process is slowly varying as opposed to an abrupt change for

which many efficient tests exist [3,5]. In order to design an efficient test, i.e., one that is able to quickly

determine when the PSD has changed significantly, we will require a model for the alternative hypothesis

that is accurately estimated using only a short data record. Such a model for a WSS random process is

the AR model [1] and its extension to the locally stationary case is the time-varying AR (TVAR) model

[6,7,8]. The main advantages of this model is that it is capable of representing any PSD and the AR filter

parameters may be accurately estimated using a linear model type of estimate. Some areas in which the

TVAR model has been used successfully are in speech processing [7,8], in estimation of the time-varying

center frequency of a narrowband process [18], and in classification of EEGs [19]. Note that in the pre-

vious work cited, it had to be assumed that the excitation noise variance was constant and known. This

restriction was placed on this parameter in order to retain the linearity since otherwise the estimation

problem become highly nonlinear. The approach that we will describe shortly will be able to accommodate

a time-varying excitation noise by circumventing the estimation problem under the alternative hypothesis.

It is critical that this time variation be allowed since in practice it is quite common for the spectral shape

to remain nearly constant but to have an overall power that is time-varying.

Some previous tests for general nonstationarity can be found in [9–12], as well as many other papers

that treat only special cases of nonstationarity, for example in [13]. The tests of [9–12] are based on the

statistics of the Fourier transform, which are only true asymptotically. Therefore, it is not clear that the

approaches are viable for the shorter data records employed here. For hypotheses that only prescribe that

the process be WSS, there do not appear to be many approaches.

In summary, we propose the use of the TVAR model for the alternative hypothesis. This is because

under the null hypothesis, i.e., the stationary case, the AR model has been shown to be easily estimated

using an approximate maximum likelihood estimator (MLE). The approximate MLE is linear and yields

the asymptotic properties of the MLE for relatively short data records, less than 100 data samples. Also,

the model is capable of representing any PSD [1]. The TVAR model retains most of the properties of the

time invariant AR model, except that the estimation of the excitation noise variance makes the estimation

procedure nonlinear. To circumvent this problem we propose the Rao test [3], which only requires the
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MLE under the null hypothesis.

The paper is organized as follows. Section 2 summarizes the modeling used and the resultant nonsta-

tionarity detector. In Section 3 some examples are given to illustrate the evaluation of the test, as well as

some computer simulation results. An application to a practical problem of interest is described in Section

4 while Section 5 discusses the proposed test and possible desired extensions.

2 Modeling and Summary of Test

The TVAR model is given as [6]

x[n] = −
p∑

i=1

ai[n − i]x[n − i] + b[n]w[n] (1)

where w[n] is white Gaussian noise (WGN) with unit variance and the time-varying AR parameters are

ai[n] =
m∑

j=0

aijfj[n] i = 1, 2, . . . , p

b[n] =
m∑

j=0

bjfj[n]

for some suitable set of basis functions {f0[n], f1[n] . . . , fm[n]}. We select f0[n] = c, for c a constant, so

that if fj[n] = 0 for j = 1, 2, . . . ,m, then x[n] corresponds to a stationary AR process. (Note that with the

Gaussian assumption wide sense stationarity implies the stronger condition of stationarity.) In order for

the model to be identifiable we assume that b[n] > 0 for all n. A nonstationary process will result whenever

any of the parameters {a1j , a2j , . . . , apj, bj} for j = 1, 2, . . . ,m are nonzero. Hence, the Rao test will be

testing whether or not aij = 0 for i = 1, 2, . . . , p; j = 1, 2, . . . ,m and bj = 0 for j = 1, 2, . . . ,m. Under H0

the AR process is stationary so that we have the usual representation (letting fj[n] = 0 for j = 1, 2, . . . ,m)

x[n] = −
p∑

i=1

ai0cx[n − i] + b0cw[n] (2)

with AR filter parameters {a10c, a20c, . . . , ap0c} and excitation noise variance b2
0c

2.

The Rao test is derived in Appendix A. It is important to note that in implementing the test we

only require the MLE of the TVAR parameters under H0, which is just the MLE of the stationary AR

process parameters. This greatly simplifies the implementation and amounts to a simple standard AR

parameter estimation where only the parameters in (2) need be estimated. In Appendix B we give a simple

explanation as to how the Rao test is able to avoid computing the MLE under H1, as this is a crucial

property. Also, note that the Rao test is referred to in the statistical literature as the Lagrange multiplier
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test [20]. We assume that we wish to decide whether a segment of the realization composed of the data

samples {x[0], x[1], . . . , x[N − 1]} is stationary. To do so we reject the stationarity hypothesis if

TN (x) =
∂ ln p(x′;θ)

∂a

∣∣∣∣T
θ=

˜θ

[
I−1
a′a′(θ̃)

]
aa

∂ ln p(x′;θ)
∂a

∣∣∣∣
θ=

˜θ

+
∂ ln p(x′;θ)

∂b

∣∣∣∣T
θ=

˜θ

[
I−1
b′b′(θ̃)

]
bb

∂ ln p(x′;θ)
∂b

∣∣∣∣
θ=

˜θ
> γ (3)

where the threshold γ is chosen to maintain a constant false alarm probability (a false alarm occurs if we

say it is nonstationary when it is actually stationary). All quantities are evaluated at θ = θ̃, where θ̃ is

the MLE under H0. The MLE required is that of the AR parameters under the assumption of stationarity

or for the process given by (2). The various gradients and matrices in (3) are defined as follows.

∂ ln p(x′;θ)
∂a

=




∂ ln p(x′;θ)
∂a11

...
∂ ln p(x′;θ)

∂ap1

−−−
...

−−−
∂ ln p(x′;θ)

∂a1m

...
∂ ln p(x′;θ)

∂apm




(mp × 1) (4)

where for θ = θ̃
∂ ln p(x′;θ)

∂ars

∣∣∣∣
θ=

˜θ
= −

N−1∑
n=p

û[n]fs[n − r]x[n − r]
b̂2
0c

2
(5)

for r = 1, 2, . . . , p; s = 1, 2, . . . ,m, and where û[n] = x[n] +
∑p

i=1 âi0cx[n − i]. Also,

[
∂ ln p(x′;θ)

∂b

]
r

∣∣∣∣
θ=

˜θ
=

∂ ln p(x′;θ)
∂br

∣∣∣∣
θ=

˜θ
=

N−1∑
n=p

fr[n]
b̂3
0c

3
(û2[n] − b̂2

0c
2) (6)

for r = 1, 2, . . . ,m. The estimates indicated, which are {â10c, â20c, . . . , âp0c, b̂
2
0c

2}, are just the usual covari-

ance method estimates for the parameters of an AR process based on the data x[n] for n = 0, 1, . . . , N − 1

[1].

The matrices are next defined. For the AR filter parameters we have

[
I−1
a′a′(θ)

]
aa

=
(
Iaa − Iaa0I

−1
a0a0

Ia0a

)−1
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where the matrices are partitions of the Fisher information matrix (FIM) given by

Ia′a′(θ) =




Ia′(0, 0) | Ia′(0, 1) . . . Ia′(0,m)

−−− −−− −−− −−− −−−
Ia′(1, 0) | Ia′(1, 1) . . . Ia′(1,m)

... | ...
. . .

...

Ia′(m, 0) | Ia′(m, 1) . . . Ia′(m,m)




(7)

=


 Ia0a0 Ia0a

Iaa0 Iaa


 =


 p × p p × mp

mp × p mp × mp




with the dimensions of the partitions indicated. Note that each submatrix of Ia′a′(θ) is p × p. The

submatrices when evaluated at θ = θ̃ are given by

[Ia′(r, s)]kl =
r̂x[k − l]

b̂2
0c

2

N−1∑
n=p

fr[n − k]fs[n − l] (8)

for k, l = 1, 2, . . . , p; r, s = 0, 1, . . . ,m. Since the FIM is evaluated under H0 the estimates r̂x[k − l] and

b̂2
0c

2 are obtained by first using the covariance method, which immediately gives the latter estimate, and

then constructing the estimated autocorrelation sequence estimates {r̂x[0], r̂x[1], . . . , r̂x[p − 1]} using the

step-down procedure followed by a recursive difference equation [1]. The excitation noise variance matrix

is defined as [
I−1
b′b′(θ)

]
bb

=
(
Ibb − Ibb0I

−1
b0b0

Ib0b

)−1

where the partitioned FIM matrix is defined as

Ib′b′(θ) =




Ib′(0, 0) | Ib′(0, 1) . . . Ib′(0,m)

−−− −−− −−− −−− −−−
Ib′(1, 0) | Ib′(1, 1) . . . Ib′(1,m)

... | ...
. . .

...

Ib′(m, 0) | Ib′(m, 1) . . . Ib′(m,m)




(9)

=


 Ib0b0 Ib0b

Ibb0 Ibb


 =


 1 × 1 1 × m

m × 1 m × m


 (10)

with the dimensions of the partitions indicated. The elements of Ib′b′(θ) when evaluated at θ = θ̃ are

Ib′(r, s) =
2

b̂2
0c

2

N−1∑
n=p

fr[n]fs[n]. (11)

The performance of the Rao test can be found asymptotically or as N → ∞. In practice, because

of our choice of an AR model the asymptotic performance will usually be attained for relatively short

5



data records. Depending on the sharpness of the PSD the necessary data record length can be as short

as N = 100 samples. Hence, under H0 it can be shown that [3] the Rao test has a central chi-squared

distribution or

TN (x) ∼ χ2
m(p+1) (12)

and under H1, it has a noncentral chi-squared distribution or

TN (x) ∼ χ′2
m(p+1)(λ) (13)

where the noncentrality parameter is given by

λ = aT
(
Iaa − Iaa0I

−1
a0a0

Ia0a

)
a + bT (Ibb − Ibb0I

−1
b0b0

Ib0b)b. (14)

The vector a, which is mp × 1, and b, which is m × 1, are the AR filter parameter and excitation noise

parameter vectors defined as

a =




a11

...

ap1

−−−
...

−−−
a1m

...

apm




b =




b1

b2

...

bm




and are evaluated at the true values of the parameters under H1, i.e., for the nonstationary AR process.

The matrices, on the other hand, are all evaluated under H0. Hence, all matrices are defined as before

except that we evaluate them for the true parameters under H0 and not estimates. As a result, we have

that

[Ia′(r, s)]kl =
rx[k − l]

b2
0c

2

N−1∑
n=p

fr[n − k]fs[n − l]

and

Ib′(r, s) =
2

b2
0c

2

N−1∑
n=p

fr[n]fs[n]. (15)

3 Some Examples

In this section we explicitly evaluate the Rao test and illustrate its performance for two simple cases. The

first is that of a white Gaussian noise (WGN) process whose power is changing in time and the second is

an AR process of order one whose filter parameter is changing in time.
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3.1 WGN process with time-varying power

Assume that x[n] = w[n], where w[n] is nominally WGN but whose power, which is b2[n], may be time-

varying. Since b[n] =
∑m

j=0 bjfj[n], we will test if b1 = b2 = · · · = bm = 0, i.e., our hypothesis under H0.

The Rao test is then given from (3) as

TN (x) =
∂ ln p(x′;θ)

∂b

∣∣∣∣T
θ=

˜θ

[
I−1
b′b′(θ̃)

]
bb

∂ ln p(x′;θ)
∂b

∣∣∣∣
θ=

˜θ
> γ

where the elements of the gradient vector are from (6) with û[n] replaced by x[n] since for this example,

x[n] = u[n],
∂ ln p(x′;θ)

∂br

∣∣∣∣
θ=

˜θ
=

N−1∑
n=0

fr[n]
b̂3
0c

3
(x2[n] − b̂2

0c
2) (16)

for r = 1, 2, . . . ,m. Also, the FIM is given by (9) and (10) with elements defined in (11). The required

MLE of b0 under H0 can be obtained from the known result for the MLE of the variance of WGN [16]

σ̂2
x =

1
N

N−1∑
n=0

x2[n]

and noting that since u[n] = x[n], b̂2
0c

2 = σ̂2
x.

For basis functions we will choose those corresponding to a second-order polynomial or the set {1, n, n2}.
The choice of the basis functions is dictated by the need to represent a slowly varying function since the

nonstationarity is slowly varying. Other possible basis functions could be a set of low frequency sinusoids.

We have found satisfactory performance with a low-order polynomial and thus have not pursued this

matter further. The number of basis functions should be kept as small as possible since ultimately we will

have to estimate the parameters. Too many basis functions will result in having to raise the detection

threshold to maintain a given probability of false alarm. It is even possible to estimate the number of basis

functions and incorporate this estimate into the nonstationarity detector. Such techniques as the minimum

description length (MDL) [14] and the exponentially embedded family (EEF) model order estimator [15]

could be used. This could be the topic of a future paper.

To simplify the computations and implementation we use the orthogonal polynomials given for n =

0, 1, . . . , N − 1 by [17]

f0[n] =
1√
N

f1[n] =
n − µ1

||n − µ11||
f2[n] =

(n − µ1)2 − (µ3/µ2)(n − µ1) − µ2

||n̄2 − (µ3/µ2)(n − µ11) − µ21||
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where n = [0 1 . . . N − 1]T , n̄2 = [(0 − µ1)2 (1 − µ1)2 . . . ((N − 1) − µ1)2]T , 1 = [1 1 . . . 1]T , || · || denotes

Euclidean norm, and

µ1 =
1
N

N−1∑
n=0

n

µi =
1
N

N−1∑
n=0

(n − µ1)i i = 2, 3.

Note that a linear combination of these polynomials produces a second-order polynomial and also that the

orthogonality property is
N−1∑
n=0

fr[n]fs[n] = δrs.

The orthogonalized polynomials are the result of a Gram-Schmidt orthogonalization of the set {1, n, n2}.
Finally, we have that f0[n] = c = 1/

√
N . An example of the polynomials is shown in Figure 1.

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

n

f[n
]

 

 

f
0
[n]

f
1
[n]

f
2
[n]

Figure 1: Orthogonal polynomials for N = 100.

The elements of the Fisher information matrix evaluated at θ = θ̃ are now from (15)

I ′b(r, s) =
2

b̂2
0c

2

N−1∑
n=0

fr[n]fs[n] =
2

σ̂2
x

δrs

so that

Ib′b′(θ̃) =
2

σ̂2
x

I3
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where In denotes an n × n identity matrix. As a result, we have that

[
I−1
b′b′(θ̃)

]
bb

=
σ̂2

x

2
I2. (17)

Finally, we have from (16) and (17) that we should reject the hypothesis of stationarity if

TN (x) =
1

2
(
σ̂2

x

)2

2∑
r=1

[
N−1∑
n=0

fr[n]
(
x2[n] − σ̂2

x

)]2

> γ.

To determine the asymptotic detection performance we use (12)–(14) with p = 0 and m = 2 to yield

TN (x) ∼ χ2
2 under H0, TN (x) ∼ χ′2

2 (λ) under H1, where

λ = bT (Ibb − Ibb0I
−1
b0b0

Ib0b)b = bT
([

I−1
b′b′(θ0)

]
bb

)−1
b.

Here, we have that b = [b1 b2]T and from (17) (with the true value of σ2
x under H0 used)

[
I−1
b′b′(θ0)

]
bb

=
σ2

x

2
I2 =

b2
0

2N
I2

so that

λ =
2N(b2

1 + b2
2)

b2
0

.

As an example, first consider a stationary WGN process for N = 100. The parameters are chosen as

b0 = 0.3, b1 = b2 = 0. The estimated PDF (shown as a bar plot) and the theoretical asymptotic χ2
2 PDF

are shown in Figure 2. Next, we simulate a nonstationary WGN process using b0 = 0.3, b1 = 0.04, and

b2 = 0.01. A typical realization is shown in Figure 3 along with the square-root of the time-varying variance,

i.e., the standard deviation (shown dashed). Finally, in Figure 4 is shown the estimated PDF (shown as

a bar plot) and the theoretical asymptotic χ′2
2 (λ) PDF. It is seen that the performance is described quite

accurately using the asymptotic results, even for the relatively short data record of 100 samples. Another

example follows.

3.2 AR process with time-varying filter parameter

For this example we assume an TVAR process for p = 1 with a time-varying filter parameter and a constant

excitation noise variance so that x[n] = −a1[n− 1] + b0cw[n]. As before, we let m = 2 and hence the time-

varying filter parameter is given by a1[n] = a10f0[n] + a11f1[n] + a12f2[n]. To determine the Rao test

statistic we first note that since b[n] is constant, we have from (3)

TN (x) =
∂ ln p(x′;θ)

∂a

∣∣∣∣T
θ=

˜θ

[
I−1
a′a′(θ̃)

]
aa

∂ ln p(x′;θ)
∂a

∣∣∣∣
θ=

˜θ

9
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Figure 2: Estimated and theoretical PDF for N = 100 - stationary WGN.
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Figure 3: Typical realization for nonstationary WGN and time-varying standard deviation.

where from (4)

∂ ln p(x′;θ)
∂a

=


 ∂ ln p(x′;θ)

∂a11

∂ ln p(x′;θ)
∂a12



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Figure 4: Estimated and theoretical PDF for N = 100 - nonstationary WGN.

and from (5)
∂ ln p(x′;θ)

∂ars

∣∣∣∣
θ=

˜θ
= −

N−1∑
n=1

û[n]fs[n − r]x[n − r]
b̂2
0c

2
(18)

where û[n] = x[n] + â10cx[n − 1]. Since p = 1 the FIM is a 3 × 3 matrix of scalars. The FIM is from (7)

Ia′a′(θ) =




Ia′(0, 0) Ia′(0, 1) Ia′(0, 2)

Ia′(1, 0) Ia′(1, 1) Ia′(1, 2)

Ia′(2, 0) Ia′(2, 1) Ia′(2, 2)




where the elements are from (8) with k = l = 1 and evaluated at θ

Ia′(r, s) = [Ia′(r, s)]11 =
rx[0]
b2
0c

2

N−1∑
n=1

fr[n − 1]fs[n − 1].

Once more, by using the orthogonal basis functions we can assert that approximately (for N � 1)∑N−1
n=1 fr[n − 1]fs[n − 1] = δrs and therefore

Ia′(r, s) =
rx[0]
b2
0c

2
δrs

and as a result we have

Ia′a′(θ) =
rx[0]
b2
0c

2
I3.

Thus, it follows that [
I−1
a′a′(θ)

]
aa

=
b2
0c

2

rx[0]
I2.
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Since we are evaluating the latter matrix under H0 for which x[n] is a stationary AR process of order one,

we can use the result that rx[0] = b2
0c

2/(1 − (a10c)2) [1]. This produces[
I−1
a′a′(θ)

]
aa

=
(
1 − (a10c)2

)
I2 (19)

which when evaluated for θ = θ̃ yields[
I−1
a′a′(θ̃)

]
aa

=
(
1 − (â10c)2

)
I2. (20)

Finally, from (18) with r = 1 and s = 1, 2 we decide that the process is nonstationary if

TN (x) =
(
1 − (â10c)2

) 2∑
j=1

[
N−1∑
n=1

û[n]fj[n − 1]x[n − 1]
b̂2
0c

2

]2

> γ

where û[n] = x[n] + â10cx[n− 1]. The estimates that are needed are for a10c and b0c under H0. Using the

covariance method estimate [1] we have

â10c = −
∑N−1

n=1 x[n]x[n − 1]∑N−1
n=1 x2[n − 1]

b̂2
0c

2 =
1

N − 1

N−1∑
n=1

û2[n].

As before the asymptotic PDF of the Rao test statistic is χ2
2 under H0 and χ′2

2 (λ) under H1. The

noncentrality parameter is from (14) and (19)

λ =


 a11

a12




T ([
I−1
a′a′(θ0)

]
aa

)−1


 a11

a12




=
a2

11 + a2
12

1 − (a10c)2
.

As an illustration, under H0 we have that a11 = a12 = 0 and we choose a10 = −0.8
√

N . The estimated PDF

and theoretical asymptotic PDF are shown in Figure 5 for N = 1000. Under H1 we let a10 = −0.8
√

N ,

a11 = −0.0015N , and a12 = 0.000005N3/2 to produce the time-varying AR filter parameter shown in Figure

6, along with a typical realization of the process. The estimated PDF and the theoretical asymptotic PDF

are shown in Figure 7. It can be seen that under either hypothesis the agreement is good. Note, however,

that in order for the asymptotic PDF to hold we have had to increase the data record to N = 1000.

Hence, unlike the previous case it has been found that the time variation of the AR filter parameter must

be sufficiently slow for the asymptotic PDF to be valid. The Rao test can still be used for shorter data

records although the exact performance under H1 will be difficult to quantify analytically. However, the

PDF under H0, which is needed to set the threshold and hence implement the test is quite accurate even

for short data records of N = 100 samples.
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Figure 5: Estimated and theoretical PDF for N = 1000 - stationary AR process.
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Figure 6: Typical realization of the nonstationary AR process and the time-varying AR filter parameter.

4 An Application to Real-time Detection - WGN process with time-

varying power

In a practical implementation of the nonstationarity detector just described one might want to monitor

the process in real-time. Hence, the Rao test statistic TN (x) would be computed for each value of N as
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Figure 7: Estimated and theoretical PDF for N = 1000 - nonstationary AR process.

N increased to assess the maximum data record length possible for stationarity to hold. To illustrate this

application assume that the Rao test statistic is computed for the first case examined, that of the WGN

process with time-varying power. A realization of this process is shown in Figure 8 along with the standard

deviation of the noise (shown as the dashed line). A gradual increase in the noise power is seen. Note that

it is not until about n = 150 to n = 200 that the noise power appears to increase substantially. This is

due to the influence of the linear and quadratic terms in the basis functions relative to the constant term,

which is dominant for n < 150. It would be expected that for a reasonable probability of false alarm the

threshold would be exceeded in this region. The Rao test statistic is shown in Figure 9 as a function

of the data record length N . Also, is shown the threshold which produces a false alarm probability of

PFA = 0.01. It is given by γ = 2 ln(1/PFA), which is found by noting that the test statistic under H0

is χ2
2. It should be observed that the false alarm probability is the probability that the threshold will be

exceeded at a single value of N , based on the data record up to and including that data sample at time N ,

not the probability that there will be at least one false alarm up to that time. It is seen that by comparing

Figures 8 and 9 the data record length during which the process is stationary appears to have been found

with reasonable accuracy.
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Figure 8: Typical realization for nonstationary WGN and time-varying standard deviation.
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Figure 9: Rao test statistic as a function of data record length and threshold for PFA = 0.01.

5 Discussion and Conclusions

A new test for stationarity of a WSS Gaussian random process has been introduced. It allows the user

to determine how long a data record should be employed for a statistical analysis before a slowly varying

nonstationarity will cause the results to be biased. To do so the user will be required to set a threshold,

15



as is customary in hypothesis testing, in order to assure a required probability of false alarm. Since this is

problem dependent, we have omitted any discussion of this necessary step. The test is based in the time

domain so that the usual asymptotic assumptions that must be made in the frequency domain are avoided.

It is believed that this is responsible for the test achieving its predicted performance for relatively short

data records. A future paper will explore this in more detail. Also, the use of a Rao test allows us to

circumvent the nonlinear parameter estimation problem. As a byproduct of the approach, the test allows

one to assess the stationarity interval of an AR random process. In speech or economics, for example, this

is of great concern. One issue that has not been addressed and that warrants further study is the question

of what model order to use for the TVAR model. Such techniques as the MDL [14] and the EEF [15] would

appear to be possible solutions to the problem of automating the procedure and will be addressed later.

Finally, it would appear that a sequential technique to be able to estimate the maximum data record length

for stationarity would be important in practice. The current algorithm requires the user to recompute the

statistic for each new data sample or block of data, if the test is applied to successive blocks.
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A Derivation of the Rao Test and its Performance

It is assumed that the TVAR process is given by

x[n] = −
p∑

i=1

ai[n − i]x[n − i] + b[n]w[n] (21)
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where w[n] is WGN noise with unit variance and the time-varying AR parameters are

ai[n] =
m∑

j=0

aijfj[n] i = 1, 2, . . . , p

b[n] =
m∑

j=0

bjfj[n].

Furthermore, f0[n] = c, for c a constant. Hence, the Rao test will be testing whether aij = 0 for i =

1, 2, . . . , p; j = 1, 2, . . . ,m and bj = 0 for j = 1, 2, . . . ,m. This corresponds to H0 for which the AR process

is stationary so that

x[n] = −
p∑

i=1

ai0cx[n − i] + b0cw[n].

To set up the Rao test we define the total set of AR filter parameters by the p × (m + 1) matrix

A =
[

a0 a1 . . . am

]
where each ai is a column vector of dimension p × 1 with [A]ij = aij = [aj ]i and the excitation noise

variance vector

b′ =
[

b0 b1 . . . bm

]T
=

[
b0 bT

]T
.

The entire parameter vector can now be written as

θ =




a1

a2

...

am

b

−−−−
a0

b0




=




θr

−−−−

θs




and thus we have the hypothesis test

H0 : θr = θr0 = 0,θs

H1 : θr �= θr0 = 0,θs

where θs can take on any values. For this hypothesis test the Rao test statistic is

TR(x) =
∂ ln p(x;θ)

∂θr

∣∣∣∣T
θ=

˜θ

[
I−1(θ̃)

]
θrθr

∂ ln p(x;θ)
∂θr

∣∣∣∣
θ=

˜θ

where θ̃ = [θT
r0

= 0T θ̂
T

s0
]T is the MLE under H0 or assuming that θr = 0. We therefore need to determine

the probability density function (PDF) p(x;θ), its gradient, and the Fisher information matrix. We begin

with the PDF.
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A.1 PDF

Assuming observed samples of x[n] for n = 0, 1, . . . , N − 1 we let x = [x[0]x[1] . . . x[N − 1]]T . Since from

(21) we have x[n] +
∑p

i=1 ai[n − i]x[n − i] = b[n]w[n], we can transform from the w[n]’s to the x[n]’s for

n = p, p + 1, . . . , N − 1 using


1 0 0 0 0 0 0 0

a1[p] 1 0 0 0 0 0 0

a2[p] a1[p + 1] 1 0 0 0 0 0
...

...
...

...
...

...
...

ap[p] ap−1[p + 1] . . . a1[2p − 1] 1 . . . 0 0

0 ap[p + 1] ap−1[p + 2] . . . a1[2p] 1 0 0
...

...
...

...
...

...
...

0 0 . . . 0 ap[N − 1 − p] . . . a1[N − 2] 1




︸ ︷︷ ︸
T




x[p]

x[p + 1]
...

x[N − 1]




︸ ︷︷ ︸
x′

≈




b[p]w[p]

b[p + 1]w[p + 1]
...

b[N − 1]w[N − 1]




︸ ︷︷ ︸
u′

.

It is an approximate transformation since we have set the initial conditions {x[0], x[1], . . . , x[p − 1]} equal

to zero to effect a one-to-one transformation from u′ to x′. For N � p this will be a good approximation.

Since u′ ∼ N (0,Cu′), where the covariance matrix is Cu′ = diag(b2[p], b2[p + 1], . . . , b2[N − 1]), we have

pU′(u′) =
1

(2π)(N−p)/2
√∏N−1

n=p b2[n]
exp

[
−1

2

N−1∑
n=p

u2[n]
b2[n]

]
. (22)

Noting now that det(T) = 1, the PDF of x′ is just

p(x′;θ) =
1

(2π)(N−p)/2
√∏N−1

n=p b2[n]
exp

[
−1

2

N−1∑
n=p

(x[n] +
∑p

i=1 ai[n − i]x[n − i])2

b2[n]

]
(23)

The log-likelihood function is therefore approximately

ln p(x′;θ) = c1 − 1
2

N−1∑
n=p

ln b2[n] − 1
2

N−1∑
n=p

(x[n] +
∑p

i=1 ai[n − i]x[n − i])2

b2[n]
(24)

where c1 is a constant not dependent on θ.
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A.2 Gradients and Expected Value of Second-order Partial Derivatives

First consider the partials with respect to br. Then, since b[n] =
∑m

j=0 bjfj[n] we have from (24)

∂ ln p(x′;θ)
∂br

= −
N−1∑
n=p

fr[n]
b[n]

− 1
2

N−1∑
n=p

u2[n]
( −2

b3[n]

)
fr[n]

=
N−1∑
n=p

[
u2[n]fr[n]

b3[n]
− fr[n]

b[n]

]
r = 0, 1, . . . ,m (25)

where we have let u[n] = x[n] +
∑p

i=1 ai[n − i]x[n − i]. Next the partials with respect to ars are using

∂u[n]/∂ars = fs[n − r]x[n − r]

∂ ln p(x′;θ)
∂ars

= −1
2

N−1∑
n=p

2u[n]∂u[n]/∂ars

b2[n]

= −
N−1∑
n=p

u[n]fs[n − r]x[n − r]
b2[n]

r = 1, 2, . . . , p; s = 0, 1, . . . ,m. (26)

The second-order partials are from (25)

∂2 ln p(x′;θ)
∂br∂bs

=
N−1∑
n=p

[
u2[n]fr[n]

(
− 3

b4[n]
fs[n]

)
+

fr[n]
b2[n]

fs[n]
]

=
N−1∑
n=p

[
1

b2[n]
− 3u2[n]

b4[n]

]
fr[n]fs[n] r = 0, 1, . . . ,m; s = 0, 1, . . . ,m (27)

and from (26)

∂2 ln p(x′;θ)
∂ars∂bk

= 2
N−1∑
n=p

u[n]fs[n − r]x[n − r]
b3[n]

fk[n] r = 1, . . . , p; s = 0, . . . ,m; k = 0, 1, . . . ,m (28)

and also from (26)
∂2 ln p(x′;θ)

∂ars∂akl
= −

N−1∑
n=p

fs[n − r]x[n − r]
b2[n]

∂u[n]
∂akl︸ ︷︷ ︸

fl[n−k]x[n−k]

. (29)

To compute the expected values for the Fisher information matrix we have from (27) with E[u2[n]] = b2[n]

−E

[
∂2 ln p(x′;θ)

∂br∂bs

]
= 2

N−1∑
n=p

fr[n]fs[n]
b2[n]

which becomes upon evaluation at θ̃ since under H0, b[n] = b0c

−E

[
∂2 ln p(x′;θ)

∂br∂bs

]∣∣∣∣∣
θ=

˜θ
= 2

N−1∑
n=p

fr[n]fs[n]
b2[n]

∣∣∣∣∣
θ=

˜θ

= 2
N−1∑
n=p

fr[n]fs[n]
b̂2
0c

2
r = 0, . . . ,m; s = 0, . . . ,m (30)
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where b̂0 is the MLE of b0 under H0. Also, under H0 we have E[u[n]x[n − r]] = 0 for r = 1, 2, . . . , p. As a

result, from (28)

E

[
∂2 ln p(x′;θ)

∂ars∂bk

]
= 0 (31)

for r = 1, 2, . . . , p, s = 0, 1, . . . ,m, and k = 0, 1, . . . ,m. Clearly, evaluating this at θ = θ̃ also produces

zero. Finally, from (29) under H0 we have

−E

[
∂2 ln p(x′;θ)

∂ars∂akl

]
=

N−1∑
n=p

fs[n − r]fl[n − k]
rx[k − r]

b2
0c

2

where rx[k] is the autocorrelation sequence of x[n] under H0. Evaluating this term at θ = θ̃ yields

−E

[
∂2 ln p(x′;θ)

∂ars∂akl

]∣∣∣∣∣
θ=

˜θ
=

N−1∑
n=p

fs[n − r]fl[n − k]
r̂x[k − r]

b̂2
0c

2
r, k = 1, . . . , p; s, l = 0, . . . ,m (32)

A.3 Fisher Information Matrix

We reorder the parameters to take advantage of the block diagonal nature of the FIM. To do so define

θ =




a0

a1

...

am

−−−−
b0

b




=




(m + 1) × p

−−−−−
(m + 1) × 1


 .

Recall that ai is just the ith column of A. Because of (31) the FIM will be block diagonal with respect

to the partitions of θ given above. We need only determine the FIM for each of the partitions of θ. First

consider b′ = [b0 bT ]T , which is (m + 1) × 1. Define the partitioned FIM as

Ib′b′(θ) =




Ib′(0, 0) | Ib′(0, 1) . . . Ib′(0,m)

−−− −−− −−− −−− −−−
Ib′(1, 0) | Ib′(1, 1) . . . Ib′(1,m)

... | ...
. . .

...

Ib′(m, 0) | Ib′(m, 1) . . . Ib′(m,m)




=


 Ib0b0 Ib0b

Ibb0 Ibb


 =


 1 × 1 1 × m

m × 1 m × m


 .
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For the Rao test we will need the (b,b) partition of the inverse of Ib′b′(θ). This is given by[
I−1
b′b′(θ)

]
bb

=
(
Ibb − Ibb0I

−1
b0b0

Ib0b

)−1
.

When evaluated under H0 the elements of Ib′b′(θ̃) become from (30)

Ib′(r, s) =
2

b̂2
0c

2

N−1∑
n=p

fr[n]fs[n]. (33)

Similarly, we will partition

a′ =




a0

a1

...

am




=


 a0

a


 =


 p × 1

mp × 1


 .

Each ai is a p × 1 vector so that a′ is (m + 1)p × 1. The FIM is written in partitioned form as

Ia′a′(θ) =




Ia′(0, 0) | Ia′(0, 1) . . . Ia′(0,m)

−−− −−− −−− −−− −−−
Ia′(1, 0) | Ia′(1, 1) . . . Ia′(1,m)

... | ...
. . .

...

Ia′(m, 0) | Ia′(m, 1) . . . Ia′(m,m)




(34)

=


 Ia0a0 Ia0a

Iaa0 Iaa


 =


 p × p p × mp

mp × p mp × mp




where each submatrix in (34) is p × p. For the Rao test we require the (a,a) partition of the inverse of

Ia′a′(θ), which is [
I−1
a′a′(θ)

]
aa

=
(
Iaa − Iaa0I

−1
a0a0

Ia0a

)−1
.

Note that the elements of Ia′a′(θ) are given from (32) when evaluated at θ = θ̃

[Ia′(r, s)]kl = −E

[
∂2 ln p(x′;θ)

∂akr∂als

]∣∣∣∣∣
θ=

˜θ

=
r̂x[k − l]

b̂2
0c

2

N−1∑
n=p

fr[n − k]fs[n − l]

for k, l = 1, 2, . . . , p; r, s = 0, 1, . . . ,m.

A.4 Evaluated Gradients

To evaluate the gradient under H0 we use (25) with b[n] = b0c and replace θ by θ̃ to yield

∂ ln p(x′;θ)
∂br

∣∣∣∣
θ=

˜θ
=

N−1∑
n=p

fr[n]
b̂3
0c

3
(û2[n] − b̂2

0c
2) (35)
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for r = 1, 2, . . . ,m and since under H0

u[n] = x[n] +
p∑

i=1

ai0f0[n − i]x[n − i]

where f0[n] = c, we have at θ = θ̃

û[n] = x[n] +
p∑

i=1

âi0cx[n − i] (36)

for use in (35). Next we have under H0 using (26) with b[n] = b0c

∂ ln p(x′;θ)
∂ars

= −
N−1∑
n=p

u[n]fs[n − r]x[n − r]
b2
0c

2

which when evaluated at θ = θ̃ becomes

∂ ln p(x′;θ)
∂ars

∣∣∣∣
θ=

˜θ
= −

N−1∑
n=p

û[n]fs[n − r]x[n − r]
b̂2
0c

2

where û[n] is given by (36) and r = 1, 2, . . . , p; s = 1, 2, . . . ,m. To construct the gradient vector for use in

the Rao test, we note the partitioned form

∂ ln p(x′;θ)
∂a

=




∂ ln p(x′;θ)
∂a1

...
∂ ln p(x′;θ)

∂am


 =




∂ ln p(x′;θ)
∂a11

...
∂ ln p(x′;θ)

∂ap1

−−−
...

−−−
∂ ln p(x′;θ)

∂a1m

...
∂ ln p(x′;θ)

∂apm




.

A.5 Final Rao Statistic and Performance

Because of the block-diagonal nature of the FIM we have that

TN (x) =
∂ ln p(x′;θ)

∂a

∣∣∣∣T
θ=

˜θ

[
I−1
a′a′(θ̃)

]
aa

∂ ln p(x′;θ)
∂a

∣∣∣∣
θ=

˜θ

+
∂ ln p(x′;θ)

∂b

∣∣∣∣T
θ=

˜θ

[
I−1
b′b′(θ̃)

]
bb

∂ ln p(x′;θ)
∂b

∣∣∣∣
θ=

˜θ

where a = [aT
1 aT

2 . . . aT
m]T and b = [b1 b2 . . . bm]T . The distribution of TN (x) is χ2

m(p+1) under H0 and

χ′2
m(p+1)(λ) under H1, where λ is the noncentrality parameter given in general for θr0 = 0 by

λ = θT
r1

[
Iθrθr

(0,θs) − Iθrθs
(0,θs)I−1

θsθs
(0,θs)Iθsθr

(0,θs)
]
θr1
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where θr1 is the value of θr under H1, and θs is the true value, which is the same under either hypothesis.

The matrix in brackets is actually a partition of the inverse FIM and is given as

([
I−1
θθ

]
θrθr

)−1
∣∣∣∣∣
θr=0,θs

.

To evalute it we need to revert back to the original parameter ordering as

θ =


 θr

θs


 =




a

b

−−−
a0

b0




.

With this partitioning the FIM becomes under H0

Iθθ =




Iaa Iab | Iaa0 Iab0

Iba Ibb | Iba0 Ibb0

−− −− −− −− −−
Ia0a Ia0b | Ia0a0 Ia0b0

Ib0a Ib0b | Ib0a0 Ib0b0




where the partitions that are underlined are zero due to (31). We require the (θr,θr) = (1, 1) partition of

the inverse of Iθθ. To do so note that if

D =


 A B

BT C




and furthermore

D =




A11 0 | B11 0

0 A22 | 0 B22

−− −− −− −− −−
BT

11 0 | C11 0

0 B22T | 0 C22




then [
D−1

]
11

= (A − BC−1BT )−1

and therefore ([
D−1

]
11

)−1
= A− BC−1BT .
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Since A,B,BT ,C are all block-diagonal, we have that

([
D−1

]
11

)−1
=


 A11 − B11C−1

11 BT
11 0

0 A22 − B22C−1
22 BT

22




and finally because Ia0a = IT
aa0

we have

([
I−1

θθ

]
θrθr

)−1

=


 Iaa − Iaa0I

−1
a0a0

Ia0a 0

0 Ibb − Ibb0I
−1
b0b0

Ib0b


 .

As a result, the noncentrality parameter is

λ = aT
(
Iaa − Iaa0I

−1
a0a0

Ia0a

)
a + bT (Ibb − Ibb0I

−1
b0b0

Ib0b)b

= aT
([

I−1
a′a′(θ0)

]
aa

)−1
a + bT

([
I−1
b′b′(θ0)

]
bb

)−1
b

where a,b are the true values under H1, and the FIMs are evaluated under H0 using a = 0 and b = 0,

and also the true values of a0 and b0.

B The Rao Test - A Simplified Description

In this appendix we describe the essence of the Rao test and how it is possible to carry out a hypothesis test

without estimating unknown parameters under the alternative hypothesis. We consider only the simplest

case of an unknown scalar parameter θ and examine the test of whether θ = θ0 under H0 or θ �= θ0 under

H1. The MLE θ̂ is the value of θ that maximizes g(θ) = ln p(x; θ) (this is the log-likelihood function as

shown in Figure 10) for a given data set x = [x[0]x[1] . . . x[N − 1]]T . To test whether the parameter θ is a

known value θ = θ0 or not, a good hypothesis test relies on computing the normalized squared difference

or
(θ̂ − θ0)2

var(θ̂)

where the denominator normalizes the squared deviation of the estimated θ, i.e., the MLE θ̂, from the

known value of θ, i.e., θ0. It can be shown that

var(θ̂) ≈ 1

−∂2 ln p(x; θ)
∂θ2

∣∣∣∣∣
θ=θ0

=
1

−g′′(θ0)

if θ̂ is close to θ0. (The larger the curvature, as measured by the second derivative, the sharper g(θ) is and

thus, the smaller will be the variance of the MLE). Hence, the desired test is based on

(θ̂ − θ0)2|g′′(θ0)| (37)
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since the second derivative of the log-likelihood function will be negative at the MLE θ = θ̂ as shown

in Figure 10. To compute this, we usually require the MLE. However, the Rao test avoids this sometimes

impossible task. The Rao test approximates g′(θ) by a straight line as is usually done in a Newton-Raphson

approach to find the zero of a function. Then, the zero of the linearized g′(θ) will be approximately at

the MLE as shown in Figure 11. Hence, the value of the derivative of the log-likelihood function at θ = θ̂

approximately satisfies

0 = g′(θ̂) ≈ g′(θ0) + g′′(θ0)(θ̂ − θ0)

which yields

θ̂ − θ0 =
−g′(θ0)
g′′(θ0)

and upon squaring yields

(θ̂ − θ0)2 =
(g′(θ0))

2

(g′′(θ0))
2

so that finally

(θ̂ − θ0)2
∣∣g′′(θ0)

∣∣ =
(g′(θ0))

2

|g′′(θ0)| (38)

which is just (37), the desired result. Note that the left-hand-side of (38) contains the MLE while the

right-hand-side does not. In fact the right-hand-side only depends on θ0, which is assumed known. This is

the essence of the Rao test. To show that (38) is indeed the Rao test (although a special case in which

g(θ) = ln p(x; θ)

θ
θ̂ θ0

Figure 10: Log-likelihood function.

there are no nuisance paramters) we have upon rewriting it

(g′(θ0))
2

|g′′(θ0)| =

(
∂ ln p(x;θ)

∂θ

∣∣∣
θ=θ0

)2

∣∣∣∣− ∂2 ln p(x;θ)
∂θ2

∣∣∣
θ=θ0

∣∣∣∣
≈ ∂ ln p(x; θ)

∂θ

∣∣∣∣
θ=θ0

I−1(θ0)
∂ ln p(x; θ)

∂θ

∣∣∣∣
θ=θ0

which should be compared with (3).
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g′(θ)

θ

θ̂ θ0

Figure 11: Derivative of log-likelihood function and tangent approximation near the MLE.
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