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ABSTRACT

This paper proposes a method of target classification using
three dimensional (3-D) data. The data consists of multi-
ple realizations (pings) of range versus bearing plots, so the
three dimensions of the data are range, bearing and time (or
pings). The data is assumed to consist of independent non-
identically distributed complex gaussian noise, and a target.
The Target (TGT) is of known constant size (extent in range
and bearing) and known speed. The TGT power, and head-
ing are unknown. In the derivation of the classifier a nor-
malization step is necessary and we propose an approach to
the normalization of multidimensional (m-D) data. This pa-
per contains the derivation of the classifier, a description of
the normalizer, a description of the algorithm that follows
from the classifier and simulation results.

1. INTRODUCTION

In the past SONAR data has been processed by breaking
up the 3-D data into one (and sometimes 2-D) pieces (see
[1] and [2]). This has been done to simplify processing
and reduce computational load. The normalization step has
been done by windowing the data in one or sometimes two
dimensions as well. This has the disadvantage of not us-
ing all available information to perform the normalization.
This paper will present an algorithm developed by using the
generalized likelihood ratio test (GLRT) (see [3]). The re-
sulting algorithm operates on 3-D data without windowing
or breaking the data up into one or two dimensional parts.
This algorithm can be used to normalize, cluster (group like
threshold crossings) and classify the data. In particular, this
algorithm inputs pings of data that have been beamformed
and outputs a list of possible TGTs.

2. PROBLEM STATEMENT

Sonar data can be thought of as existing in three dimen-
sions. In this case, the 3-D data is formed by stacking N

range-bearing plots (see Figure 1 with N = 3). Each range-
bearing plot is referred to as a ping’s worth of data. Other
dimensions could be added such as doppler but in this pa-
per we will be considering the discrete 3-D case of range,
bearing and ping.

Ping 1
L
in

e
s

5 10 15 20 25 30

100

200

300

400

500

Ping 2

L
in

e
s

5 10 15 20 25 30

100

200

300

400

500

Ping 3

Beams

L
in

e
s

5 10 15 20 25 30

100

200

300

400

500

Fig. 1. Three range bearing plots

The following derivation and simulation are indepen-
dent of units. Throughout the paper, range is in lines, bear-
ing is in beams, and time is in pings. Lines could be any
distance. Beams could be any number of degrees, and the
time between pings is not specified.



3. DERIVATION OF THE ALGORITHM

3.1. Derivation of the Classifier

Consider multiple range-bearing plots (multiple pings of range-
bearing data). We are assuming the noise is independent
non-identically distributed complex gaussian noise (CN). A
range-bearing-ping cell of CN is denoted by w(m0, n0, t0) =
u(m0, n0, t0)+jv(m0, n0, t0) where u and v are real, inde-
pendent and distributed as u ∼ N(0, σ2

w/2), v ∼ N(0, σ2
w/2)

and σ2
w is the power of the cell.

In the absence of a TGT we assume, the “signal” is noise
only,

x(m,n, t) = w(m,n, t) (1)

where w(m,n, t) ∼ CN(0, Pm,n,t) for m-lines, m = 0, . . . ,M−
1, for n-beams, n = 0, . . . , N − 1, and for, t-pings, t =
0, . . . , T − 1.

When a TGT is present we observe

x(m,n, t) = si(m,n, t) + w(m,n, t) (2)

where i = 1, 2, . . . k with k being the number of TGT Mod-
els and with,

si(m,n, t) =
{

CN(0, Ptgt) (m,n, t) ∈ A(m0, n0)i

0 otherwise
(3)

Ptgt is the TGT power, an unknown constant and

A(m0, n0)i = {a(t = 0)i, a(t = 1)i, . . . a(t = T − 1)i}

a(t = 0)i = [m0 + 0rsi,m0 + re + 0rsi] ×
[n0 + 0bsi, n0 + be + 0bsi]

a(t = 1)i = [m0 + 1rsi,m0 + re + 1rsi] ×
[n0 + 1bsi, n0 + be + 1bsi]

...

a(t = T − 1)i = [m0 + (T − 1)rsi,

m0 + re + (T − 1)rsi] ×
[n0 + (T − 1)bsi,

n0 + be + (T − 1)bsi] (4)

where,

• m0 is the start of the non-zero range cells

• n0 is the start of the non-zero bearing cells

• re is the range extent

• be is the bearing extent

• rsi is the range speed

• bsi is the bearing speed

The TGT speed is assumed known, but the heading is not,
so that rsi and bsi are constrained but not known.

To set up the classifier we have:

H0 : x(m,n, t) = w(m,n, t)
Hi : x(m,n, t) = si(m,n, t) + w(m,n, t) (5)

Assumptions in the classifier:

• All range-bearing-ping cells are independent (but not
identically distributed) random variables.

• Pmnt is known.

• Ptgt is known and constant

• One of the TGT models matches the true TGT head-
ing. See section 5 on relaxing this requirement.

Under Hi : p(x;m0, n0, si,Hi) =

∏ ∏ ∏
(m,n,t)∈A(m0,n0)i

1
πSmnt

exp
(−|x(m,n, t)|2

Smnt

)

.
∏ ∏ ∏

(m,n,t)/∈A(m0,n0)i

1
πPmnt

exp
(−|x(m,n, t)|2

Pmnt

)
(6)

with Smnt = Ptgt + Pmnt.

Under H0 : p(x;H0) =

∏ ∏ ∏
(m,n,t)∈A(m0,n0)i

1
πPmnt

exp
(−|x(m,n, t)|2

Pmnt

)

.
∏ ∏ ∏

(m,n,t)/∈A(m0,n0)i

1
πPmnt

exp
(−|x(m,n, t)|2

Pmnt

)
(7)

As a result we have, p(x;m0,n0,si,Hi)
p(x;H0)

=

∏∏∏
(m,n,t)∈A(m0,n0)i

1
πSmnt

exp
(

−x|(m,n,t)|2
Smnt

)
∏ ∏ ∏

(m,n,t)∈A(m0,n0)i

1
πPmnt

exp
(

−x|(m,n,t)|2
Pmnt

) (8)

Simplifying we have p(x;m0,n0,si,Hi)
p(x;H0)

=

A exp
(∑ ∑ ∑

(m,n,t)∈A(m0,n0)i

−|x(m,n,t)|2
Smnt

)
B exp

(∑ ∑ ∑
(m,n,t)∈A(m0,n0)i

−|x(m,n,t)|2
Pmnt

) (9)

with A =
∏ ∏ ∏

(m,n,t)∈A(m0,n0)i

1
πSmnt

and B =
∏ ∏ ∏

(m,n,t)∈A(m0,n0)i

1
πPmnt



Taking ln of both sides we have ln
(

p(x;m0,n0,si,Hi)
p(x;H0)

)
=

ln
(A
B

)
+

∑ ∑ ∑
(m,n,t)∈A(m0,n0)i

|x(m,n, t)|2
(

1
Pmnt

− 1
Smnt

)
(10)

Equation 10 leads to the test statistic T (x) =

max
m0,n0,i

∑ ∑ ∑
(m,n,t)∈A(m0,n0)i

|x(m,n, t)|2
(

Ptgt

PmntSmnt

)
(11)

The combination of m0,n0, and i that produces the largest
test statistic is the most likely TGT Model at the most likely
initial position in range and bearing.

In practice Pmnt is not known. It is estimated and the
data normalized (whitened). After, normalization Pmnt and
Smnt are constant. Therefore ,(

Ptgt

PmntSmnt

)
= c > 0 (12)

where c is a constant.
So, equation 11 simplifies to,

max
m0,n0,i

∑ ∑ ∑
(m,n,t)∈A(m0,n0)i

|x(m,n, t)|2c (13)

Ignoring the constant term in we have,

max
m0,n0,i

∑ ∑ ∑
(m,n,t)∈A(m0,n0)i

|x(m,n, t)|2 (14)

which is the test statistic used in this paper. Eq. 14 could be
written as,

max
m0,n0,i

∑∑∑
(m,n,t)

I(m0, n0)i|x(m,n, t)|2 (15)

where,

I(m0, n0)i =
{

1 (m,n, t) ∈ A(m0, n0)i

0 otherwise

∑ ∑ ∑
(m,n,t) I(m0, n0)i|x(m,n, t)|2 is a correlation be-

tween the data and the TGT models. If we were using one
TGT model we would be maximizing in 2-D. The maxi-
mum range-bearing (m0,n0) value would be the most likely
initial range and bearing of the true TGT. In this paper we
are assuming k TGT models and therefore, will therefore
maximize over k sets of range-bearing values.

3.2. Description of the Normalizer

The range-bearing-time data is normalized by estimating
the background power with a 3-D minimum variance spec-
tral estimator (MVSE) and then dividing the data by the es-
timate. For a discussion on why it was chosen see section
4. This section follows closely the description of the 2D
MVSE found in [4].

The MVSE is defined as:

P̂mv(m,n, t) =
1

eHR̂−1
xx e

(16)

where H is the hermitian transpose, e =

[z0
1z0

2z0
3 z1

1z0
2z0

3 . . . zM−1
1 z0

2z0
3 . . . z0

1z1
2z0

3 . . .

z0
1zN−1

2 z0
3 . . . zM−1

1 zN−1
2 zT−1

3 ]

with z1 = exp(j2πm/M) , z2 = exp(j2πn/N), z3 =
exp(j2πt/T ) and R̂xx is an estimate of the autocorrelation
matrix. R̂xx is composed of estimates of correlation lags.
In one dimension the lags are usually time so that the kth
lag is estimated by 1

N

∑N−1
n=0 x(n)∗x(n + k). In 3-D the

lags are in lines, beams and ping. A detailed discussion
of constructing the R̂xx matrix is beyond the scope of this
paper. For more details see [4] and [5].

4. ALGORITHM

The algorithm in this paper is developed from eq. 15. It is
implemented as follows:

1. Store N range-bearing plots to form 3-D data.

2. Estimate 3-D power spectral density using a 3-D esti-
mator on above data.

3. Divide data by the spectral estimate to generate nor-
malized data.

4. Implement the GLRT using normalized data.

5. Save the maximum initial range-bearing cell and the
associated TGT model. This is the range, bearing and
heading of the true TGT.

6. Center a re × be rectangle over the maximum range-
bearing cell from each of the k 2-D outputs and re-
place all the values covered by the rectangle with ze-
ros.

7. Repeat steps 5-6 until you have the desired number of
possible TGTs.

A more detailed description is given next.



4.1. Form 3-D Data

To form 3-D data in a realtime system, save the range-bearing
plots (pings of data) until the desired number of range-bearing
plots have been accumulated. Then stack the range-bearing
plots to form 3-D data. In a non-realtime system (or a sim-
ulation) just form the 3-D data using the desired number of
range-bearing plots.

4.2. Estimate 3-D Data

The data can be thought of as the power in range, bearing,
and time. Because of this, power spectral density techniques
can be used. In this paper the 3-D MVSE was chosen, as
noted above. The MVSE was chosen because it:

1. Has better resolution than moving average (MA). (see
[4])

2. Avoids the instability problems of the autoregressive
(AR) and autoregressive moving average (ARMA) es-
timators. (see [5])

3. Is extendable to any number of dimensions.

4. Is readily implemented in MATLAB or C.

An example of the spectral estimate is shown in Figure 3,
which corresponds to the data in Figure 2. Note Figures 2
and 3 are 2-D slices of 3-D data and a 3-D spectral estimate.
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Fig. 2. One ping slice of the range-bearing-time data before
normalization.

4.3. Generate Normalized Data

Point-wise divide the original 3-D Data by the estimate of
the power in each range-bearing-ping cell. The estimate was
found by using the MVSE on the original data containing
both target and noise.
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Fig. 3. Slice of the power spectral density estimate using
the MVSE.

4.4. Correlate Smoothed Data

The GLRT is now implemented see (15). This entails corre-
lating the normalized data with the TGT models. If the TGT
size (in range lines and beams), and the speed and heading
are all known, we would need only one TGT Model. In
MATLAB the TGT Model is a 3-D array, with ones in the
space that the TGT would occupy and zeros elsewhere. For
example, if the data set had four pings, Figure 4 is the TGT
model for a TGT that is twenty lines long, two beam wide,
and moving up twenty lines per ping. In this paper head-
ing is not assumed known. Therefore, we will need one
TGT model for each heading we wish to detect a TGT mov-
ing in. In practice, over small numbers of pings or for a
slowly moving TGT, the number of search headings would
be small.

4.5. Max Output of the Correlation

Find the maximum range-bearing cell over all the TGT mod-
els. This is the most likely TGT. This should have come
from the TGT model that is the closest match to the true
TGT in location and movement heading. Save this informa-
tion as it is a possible TGT.

4.6. Zero Out Possible TGT

If the TGT model (and the true TGT) were points (exist-
ing in only one range-bearing cell) then correlating the data
and the TGT model would produce a largest test statistic
for the true TGT with low outputs elsewhere. Since we are
not assuming a point TGT there will be large values close
in range and bearing to the true TGT location. So, if we
are looking for the location of the N most likely TGTs we
cannot just find the N largest correlation outputs from each
TGT model, because one true TGT or one area of high re-
verberation will produce many possible TGTs all close in
range and bearing. To eliminate this possibility, center a
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Fig. 4. Example of TGT model (red area is unity and blue
area is zero)

re × be rectangle over the possible TGT range and bearing
in each TGT model and replace the values in the rectangle
with zero.

4.7. Repeat Search for Possible TGTs

Eq. 15 produces the most likely true TGT range, bearing
and heading (TGT model). However, in practical systems
the possibility of missing the true TGT necessitates accept-
ing a few false alarms. Therefore, the N largest test statis-
tics are found and treated as possible TGTs. The possible
TGTs could be passed to an automatic tracker or displayed
on a screen.

5. COMPUTER SIMULATION

5.1. Noise Data

The data for each trial is made by generating a 3-D array of
independent non-identically distributed squared CN random
variables. The size of the array is 512 range lines, 64 beams
and 4 pings. The noise is non-identically distributed be-
cause the power (variance) of the noise changes with each
cell. The power in range starts low, quickly grows, then
slowly decays (similar to what one might see in a reverberation-

limited environment). The beams are combined to make
range-bearing plots and the range-bearing plots are com-
bined to make range-bearing-ping plots (see Figure 1).

5.2. Target Data

The TGT is then placed into the data. The TGT consists
of the square of CN random variables with power equal to
twice the average power in the area where the TGT is to be
injected. The TGT is twenty range lines long and two beams
wide. In the first 100 trials the simulated TGT is moving up
in beam number at the rate of two beams per ping. In the
second 100 trials the simulated TGT is moving up in line
number at the rate of twenty lines per ping.

5.3. Algorithm

The normalization step is accomplished with a MVSE as
noted above. The MVSE used in the simulation makes use
of a one ping, four lines, and four beams lag estimate.

The eight TGT models that are used in this simulation
are matched in speed to the injected TGT. They cover eight
combinations of moving left/right in beam and up/down in
line (see Figure 5).
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Fig. 5. The eight TGT model vectors

Fig 4 is an example of one of the TGT models. This al-
gorithm allows for the addition of more unknowns. For in-
stance if speed were unknown, a different TGT set matched
to each speed could be be used. Also non-constant velocity
TGT models could be used and even different TGT models
for different size TGTs. But in this simulation only the eight
TGT models mentioned above are used.

5.4. Simulation Details

The performance of the algorithm is tested by repeatedly in-
jecting a simulated TGT into the range-bearing-ping data at
a position when the data is reverberation dominated. The
reverberation dominated portions are in the early lines (20
to 60) of the data (see Figure 6) The data is processed with
the above algorithm. The algorithm then produces a list of
100 possible TGTs sorted by likelihood. The 20-line by 2-
beam rectangle (the size of the true TGT) is placed over the
possible TGTs, starting with the highest likelihood. If the
true TGT is within the rectangle the true TGT is considered
found. The possible TGT location and model are recorded.
If none of the 100 possible TGTs find the true TGT the algo-
rithm is considered as having missed the true TGT for that



realization. The results are summarized in tabular form in
Figures 7 and 8.
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Fig. 6. Example of reverberation dominated portion of one
ping of data

One hundred range-bearing-ping data sets were simu-
lated. The data sets were comprised of four pings worth
of range-bearing plots, each consisting of 512 lines and 64
beams.

5.5. Simulation Results

The results of 100 trials where the TGT is moving up in
beams is shown in Figure 7.

true TGT found in the Percent
first 82
2-25 13
26-50 5
51-75 0
76-100 0
Not Found 0

Fig. 7. Performance of the algorithm

The results of a second 100 trials where the TGT is mov-
ing up in lines is shown in Figure 8.

true TGT found in the Percent
first 49
2-25 38
26-50 13
51-75 0
76-100 0
Not Found 0

Fig. 8. Performance of the algorithm

In the above simulations, the performance of the algo-
rithm for a TGT moving up in beams is better than the per-
formance for a TGT moving up in lines. This could be

caused by the much greater changes in noise power down
the lines versus the lesser changes in noise power across the
beams.

6. CONCLUSIONS

In this paper we have developed an algorithm that inputs
multiple pings of range-bearing data and outputs a list of
possible TGTs. In the simulation the estimated TGT that
matches the true TGT is usually one of the highest rank-
ing possible TGTs. Often the highest ranking possible TGT
matches the true TGT. This means the true TGT can be
found with very few false alarms. A complete implemen-
tation in MATLAB is available upon request.
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