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Abstract

It is shown that in order to maximize the detectability of a radar target in clutter whose Doppler is
unknown and is uniformly distributed over the Doppler bandwidth a simple CW or narrowband signal
is optimal. The optimality criterion is the average deflection coefficient, with the averaging being over
target Doppler frequency. Most remarkably the result does not depend on the clutter spectrum but

holds for any distribution of clutter energy with frequency.

1 Introduction

For radar detection in clutter it is normally assumed that low-Doppler targets are best detected with a
wideband waveform while high-Doppler targets require a narrowband signal. Usually the Doppler frequency
due to target motion is unknown. It is therefore customary to use an average figure of merit to assess
detection performance. An example is the improvement factor for an MTI radar in which the output target-
to-clutter ratio to the input target-to-clutter ratio is averaged uniformly over all Doppler frequencies to
produce an overall measure of detectability [1]. We show in this paper that somewhat surprisingly, the
optimal transmit signal for detectability, using an averaged (over target Doppler) deflection coefficient as
the performance measure, is the sinusoid. In addition, this result holds for all clutter spectra. In the
case of a pulsed Doppler radar a similar result is that for a sequence of pulses the optimal modulation is
no modulation at all. In “slow-time” [4] the optimal sampled transmit waveform is therefore a discrete
sinusoid. Note that this result assumes that the optimal detector as described in [2] is used in which the

target Doppler shift is known and therefore, the optimal prewhitener/matched filter is matched to the



known Doppler shift. In practice, for an unknown Doppler shift the performance will be degraded slightly
due to a necessary search over Doppler bins [3]. However, it is expected that the same result will hold.

For the detection of a radar signal in clutter and noise the optimal detector is a prewhitener followed
by a matched filter. The clutter, however, is a signal-dependent noise since the clutter spectrum depends
on the transmit signal. It is well known that for a slowly fluctuating point target the optimal receiver for
a radar is given by the filter with frequency response [2]

S*(F — Fy)
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where F' is the frequency in Hz, S(F') is the Fourier transform of the complex envelope of the transmitted
signal, Fy is the target Doppler shift in Hz, E;(F) = |S(F)|? is the energy spectral density (ESD) of the
transmitted signal, Py(F') is the Doppler scattering function, x indicates convolution, Ny is the noise power
spectral density (PSD) of the received complex envelope noise, and W is the baseband bandwidth in Hz.
This optimal receiver assumes a constant Doppler profile in range and an infinite range. The detection
performance of this receiver is given by the probability of detection Pp with a probability of false alarm
Pr 4 as )

Pp = P " (2)

where the deflection coefficient is defined as

w/2 F Fd)
dF 3
F) == /W/QE *Pd(F)JrNO )

and & is the energy of the transmitted signal while E,. is the average received signal energy (E, = 2025 ,
where O'g models the effect of reflection from the slowly fluctuating point target). The detection performance
as quantified by Pp is monotonically increasing with Ay (Fy). Note that the difficulty in detecting a signal
in clutter is the degradation due to the term FEg(F) x Py(F) in the denominator, which is the clutter
PSD. The signal design problem is to choose FEs(F') so as to maximize Ay(Fy) subject to an energy and
bandwidth constraint. It is assumed that the bandwidth of the transmitted signal is Bs or that its ESD
is concentrated in the frequency band —Bs/2 < F < B,/2 and also that the maximum Doppler shift is
+F,, ... Hence, the bandwidth W of the baseband processor is found from W/2 = By/2 + Fy,_ ., which
is chosen to accommodate the received signal with a maximum Doppler shift. For the purposes of this
analysis we will assume that the signal may be infinite in length. Of course, in practice this is only
approximate. (This assumption is theoretically required for (3) to hold although the approximation will
be a good one if the time-bandwidth product exceeds 16 [7].) Also, note that we are not considering any
subsidiary design criteria such as range or Doppler resolution but only detectability. In the next section

we set up the problem and give its solution.



2 Optimal Signal Design

The problem we address is the maximization of Ay(Fy), when averaged uniformly over target Doppler Fg,
by choosing F,(F) subject to the energy constraint. Hence, dropping the E,./& in (3), which does not

affect the solution, we wish to maximize
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and F¢(F) > 0. Note that the phase of the signal can be chosen arbitrarily since it does not affect
detectability. It is usually chosen for realizability and other design criteria such as range resolution.

Next interchanging integrals in (4) we have
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The integral denoted by I is equal to £. We will show later that the optimal signal has a bandwidth of
zero or Bs; = 0 so that W/2 = B;/2. As a result, we can maximize the upper bound on I(E;) to obtain

the maximum of I(F;). Hence, the criterion to be maximized becomes the upper bound

J(E,) = —< / v ! dF (8)
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subject to the energy and nonnegativity constraints. But it is shown in Appendix A that the functional

J(E;) is convex so that for 0 < @ < 1, we must have
J(aBs + (1 - )Bs,) < al(Bs) + (1 - a)J(E,). (9)

This says that any signal ESD that can be decomposed as a convex combination of ESDs will have a
detectability index that is less than or equal to max(Fjs,, Fs,). It is well known that the maximum of a
convex functional is at an extreme point [5] or at a point that cannot be decomposed as in (9).

The only ESD that cannot be decomposed as in (9) is shown in Appendix B to be one that is concen-
trated at a single frequency. Hence, the signal that maximizes J(F) subject to the energy and nonnega-

tivity constraints is

By, (F) = E6(F — Fy)
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for any Fj such that Fy < B,/2, where §(-) is the Dirac delta function. This ESD thus corresponds to a
sinusoidal signal of frequency Fy. To determine the optimal frequency we substitute E, , (F) into (8) to
yield

& w2 1
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The optimal signal is therefore sinusoidal with a frequency Fj that maximizes

w/2 1
dF. 11
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We next make the reasonable assumption that the scattering function Pp(F') is concentrated on the fre-
quency interval —Fy < F < Fy . This says that the spreading due to Doppler of the clutter, which
typically consists of ground clutter, bird clutter, and weather will be less the maximum Doppler shift of
the target. As a result Pp(F — Fj) will be concentrated in the baseband and hence, the choice of F in (11)
is arbitrary. We choose the transmit frequency of the complex envelope as Fy = 0. As alluded to earlier,
the optimal signal has zero bandwidth and hence for this signal the upper bound on I(Fj) is achieved (let
Bs; = 0 in the inner integral in (7)).

In summary, the optimal transmit signal is sinusoidal at the radar center frequency. It is interesting to
note that the optimal signal is the same irregardless of the clutter scattering function. Also, with Fy = 0

the average deflection coefficient Ay now becomes from (10) with W/2 = F,;_, and Ag = (E,/E)J(Es)

i / e L p (12)
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This result says that on the average the detectability is enhanced by using a signal that detects high-
Doppler targets. This is because low-Doppler targets have poor detectability so that it is more important
to ensure that high-Doppler targets are easily detected. In this way the overall detectability is maximized
on the average. (We also point out that the use of the expected value of Ag(Fy) as our detectability
criterion is not the same as using the expected value of the probability of detection as would be given by
averaging (2). This is because the relationship between Pp and Ag(F,) is nonlinear and the expectation
does not commute over nonlinear operations [6]. However, we expect the same general type of result, that
the transmit signal should be narrowband.) In the next section, we revisit the results in [2] to show for a

specific example that a sinusoidal signal is optimal.



3 Van Trees’ Example [2] — Revisited
In [2] it was assumed that the Doppler scattering function was Gaussian with the form

Pp(F) =

exp|—=F“/o
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where op is the root-mean-square (RMS) Doppler spread in Hz, and N, is used to adjust the clutter power.

The transmitted signal is one that has a Gaussian envelope and a linear FM sweep

s(t) = VE <%> v exp [— (— —jb) tﬂ — 00 <t < oo.

The ESD of the transmit signal is

Es(F ———eX ——F2 B )
o(F) = V2nB P ( /
where B, the RMS bandwidth in Hz, is given by
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Upon convolving the ESD with the Doppler scattering function we have

N,& ( 1, 2)
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where v = /0% + B? is the RMS bandwidth of the clutter PSD. There are several parameters of interest

Es(F)x Pp(F) =

in this example. One is the clutter power to noise power in the equivalent rectangular bandwidth of the
clutter. Denoting this by D it is given as EN,./(Nov2mog). The target Doppler to RMS Doppler spread
is given by Fy/or, and finally, the signal bandwidth to Doppler spread is B/or. With these parameters
the deflection coefficient is given by

Wiz (2 B)~Lexp [~ (1/(2B2))(F — Fy)?]
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dF (13)

and a normalized version is given by
Ao(Fy)

E.
No

A0 n(Fd)

In Figure 1 is plotted the normalized deflection coefficient Ag ,,(Fy) versus B/og, which is the normalized
signal bandwidth, for D = 100. Note that each curve is for a different target Doppler, expressed in terms
of target Doppler to RMS clutter bandwidth ratio or Fyj/or. This matches the results in [2]. Some extra
curves have been added for clarity. Note that for zero Doppler the performance is poor but even for
Fj/or = 4 the performance is nearly the upper bound of 1 for small signal bandwidths. Equivalently,

Ao(Fy) = E./Ng, which is the performance when no clutter is present. By averaging these curves in
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Figure 1: Normalized deflection coefficient of optimal receiver in the presence of clutter [2].

the vertical direction or uniformly over F; we obtain from (13) the average deflection coefficient. As an
example, if F; =100 Hz, 0 < B <100 Hz, and or = 1, then for each signal we require a bandwidth as
determined by W/2 = 3B + 100. Hence, the average deflection coefficient is

1
2F s

_ Famax
Ay = / Ao(Fg)dFy

Famax

where Ag(Fy) is given by (13). The normalized average deflection coefficient Ag,, = Ag/(E,/Np) is shown
in Figure 2. Note that as predicted from our analysis the performance is best for a signal bandwidth of
zero. It also is seen to decrease monotonically as the bandwidth increases until a certain bandwidth, when
it begins to increase. However, it is still poorer than for the zero bandwidth signal. If we had infinite
bandwidth, then it can be shown that the deflection coefficient as well as the average deflection coefficient
could be made to equal that for the case of no clutter. This is possible because the clutter spectrum would
fall below the ambient noise level. This is seldom possible in practice. For this example of D = 100 the loss
incurred is not that great. However, for larger clutter to noise ratios it can be substantial. For example,

if D = 100,000, a clutter to noise ratio of 50 dB, the corresponding curve in dB is shown in Figure 3.
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Figure 2: Normalized average deflection coefficient of optimal receiver in the presence of clutter for D = 100.
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Figure 3: Normalized average deflection coefficient of optimal receiver in the presence of clutter for D =
100, 000.

A Appendix — Convexity of Deflection Coefficient Functional

From (8) we have that

J(B,) = L/W/Q ! dF (14)
Y 2Fy... Jowy2 Es(F)x Py(F)+ Ny

First note that the function g(z) = 1/(z + ¢) for z > 0 and ¢ > 0 is convex. This is easily verified by
showing that the second derivative is ¢"(x) = 2/(z + ¢)® > 0. Hence, it follows that for 0 < o < 1

glaz; + (1 — @)zz) < ag(zy) + (1 — a)g(zs)

and as a result
1 < « 11—«
a1+ (l—a)za+c = z1+c  x2+C

Thus, (14) becomes
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proving the convexity of J(Ej).

B Appendix — Decomposition of Energy Spectral Density

It was shown in Appendix A that J(Es) is a convex functional on the space of nonnegative, energy
constrained ESDs. To find the maximum we need to determine the form of the extreme points of the
space, i.e., the ones that cannot be written as in (9). We next show that these extreme points take the
form of ESDs that are concentrated on a single point in frequency. To do so we will use the theory of
spectral measures, which may also be thought of as probability measures, although the total mass is &£.

We first prove the following lemma.

Lemma B.1 (Measure Decomposition) A nonnegative measure on a measure space X = [—a,a] with
wu(x) = &€ can be decomposed as p(A) = api(A) + (1 — a)ua(A) for 0 < a < 1 and for all measurable sets
A with py # po if and only if there exists a set S C x such that p(S) > 0 and p(S€) > 0.

Proof: If

We assume the existence of S with p(S) > 0 and ©(S°) > 0. Hence, by construction we arrive at the

required convex combination. To do so we have for an arbitrary set A
p(A) = p(ANx)

= wAN(SUSY))
= pu(ANS)+p(AnS°

_ n(ANS) ey H(AN S
= u(S) () + p(S°) (59
_ m(S) Ep(ANS) | p(SY) Ep(ANST)
£ s & uS9
° 1 (A) b= p(a)

Note that since by assumption p(S¢) > 0 and u(S) + p(S¢) = £, we must have p(S) < € and hence
0 < a < 1. Also, p1 and po are valid measures within the same space as p since p1(x) = p2(x) = €, and
p1 # pe since pp(S) = € while po(S) = 0. The convex combination is just a restatement of the law of total

probability [6].



Proof: Ounly if

Next assume that p(A) = api(A) + (1 — a)ua(A). Since py # pe there must exist a set S such that
p1(S) # p2(S). On this set we must have p(S) > 0 since otherwise (S) = 0 and hence p1(S) = u2(S) =0,
violating the assumption p1(S) # p2(S). Also, it follows that u(S) < & since otherwise u(S) = € and
therefore, p1(S) = p2(S) = &£, violating the assumption 1 (S) # p2(S). Thus, u(S) > 0 and u(S°) > 0,

completing the proof of the lemma. With this lemma we next prove the main theorem.

Theorem B.1 (Point measure as the extreme point) If u cannot be decomposed as pp = apy + (1 —
a) 2, then w is a point measure or pu = 0y, for some xy € x. Here 0y, is a measure with 05,(A) = 1 if

zo € A and zero otherwise.
Proof:

Since p cannot be decomposed as given in the theorem, we have from the preceding lemma that there
cannot exist a set S such that x(S) > 0 and u(S¢) > 0. Alternatively, for every set S if u(S) > 0, then
p1(S€) = 0. Consider the half-interval sets [—a,0) and [0,a]. Let S be the set for which the half-interval
set measure is positive, say S = [0, a], for example. (At least one of the sets must have a positive measure
since xy = S US® and p(x) = £.) Then, since u(S¢) = 0 if pu(S) > 0, we have u([—a,0)) = 0. Note that if
S¢ = [—a,0) had positive measure, then we could augment S¢ with the point set {0} to form [—a,0]. The
latter set is closed and has the same measure as S° since {0} C S, which has measure zero. Next partition
[0, a] into two half-intervals again. As before, since one of the half-intervals must have a positive measure,
the other has zero measure. Choose the half-interval with positive measure, augmenting it with an end
point if necessary to form a closed interval, and note that its measure is £ since the discarded half-interval
must again have measure zero since ;(S¢) = 0. Continuing to bisect the intervals we generate a sequence
of nested closed intervals (each closed set is a subset of the preceding one) whose length decreases to zero.
By the nested interval theorem, the intersection of these sets, i.e., the limit set is a point [8]. Also, by

construction the limit set has measure &£, proving the theorem.
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