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Abstract

Probability density functions of high dimensionality are impractical to estimate from real data.
For accurate estimation the dimensionality of the PDF can be at most 5-10. In order to reduce the
dimensionality a sufficient statistic is usually employed. When none is available, there is no universal
agreement on how to proceed. We show how to construct a high dimension probability density function
based on the probability density function of a low dimensional statistic that is closest to the true one
in the sense of divergence. The latter criterion asymptotically minimizes the probability of error in a

decision rule. An application to feature selection for classification is described.

1 Introduction

In many problems of practical interest it is necessary to estimate a multidimensional probability density
function (PDF). One important application is to pattern recognition or classification [1]. Typically, when
faced with training data from several known classes, a multidimensional PDF is estimated. As the dimen-
sionality increases, however, we require more training data for good PDF estimates. The requirement for

training data cannot always be met. For example, in space-time adaptive radar this additional training
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data is obtained from adjacent range cells. The net result is a sharp decrease in detection performance
when the range cells are inhomogeneous [12]. In some cases it is possible to reduce the dimensionality of
the PDF by appealing to the theory of sufficient statistics [2]. Then, only the PDF of the sufficient statistic
need be estimated.

Recently, a new approach along these lines has been proposed for PDFs that do not admit sufficient
statistics [3]. Based on the PDF projection theorem, a multidimensional PDF may be constructed from a
lower dimensional PDF. For PDFs that admit sufficient statistics this method produces the true PDF, a
result that is well known [4]. For PDFs that do not admit sufficient statistics, which is usually the case
in practice, the constructed or projected PDF is only one of an infinite number of possible PDFs. From
the projection theorem there is no indication as to how good the projected PDF is as an approximation to
the true one. In this paper, we prove that the projected PDF as described in [3] is in fact an optimal one.
The criterion of optimality is the distance of the projected PDF from the true one. It is proven that this
“distance” is minimized in the Kullback-Liebler (K-L) or information divergence sense. It can be shown
that asymptotically, i.e., as the data record length becomes large, minimization of the K-L distance is
equivalent to minimization of the probability or error in any statistical decision problem [8,13] — hence our
choice of the word “optimal”. As a concrete application of this theorem we show how to compare potential
features for use in classification.

Section 2 reviews the projection theorem while Section 3 gives the main orthogonal projection theorem
of the paper. Some examples of the orthogonal projection are described in Sections 4 and 5. Finally, an

application of the theory to feature selection for classification is given in Section 6.

2 Review of the Projection Theorem

We first describe the construction of a PDF based on the PDF of its sufficient statistic (a slight general-
ization of that presented in [4]) and then, briefly summarize the projection theorem as described in [3].
Consider a family of N-dimensional PDFs indexed by a parameter vector @, where @ is p x 1 and p < N.
The restriction of the number of parameters p to being less than N, the number of data points (and in
practice usually much less than N) is to allow the unknown parameters to be estimated with reasonable
accuracy. Denoting the data vector by x = [z[0]z[1]...z[N — 1]]T, the N-dimensional PDF is given by
px(x;0). If a minimal sufficient statistic exists for , then by the Neyman-Pearson factorization theorem

[5], we can write the PDF as
px(%;0) = g(T(x),8)h(x) (1)



for g a nonnegative function and T(x) a p-dimensional function of x. This can be rewritten in normalized

form as

px(s0) = (AT R00 [ ot 0) )

where

Sy = {x: T(x) =t for x € RN}

and |J|du is the differential volume element for S;. If the normalization factor (the integral in (2)) is

independent of €, we have that upon denoting the integral by I(t)
px(x;0) = pr(t(x); 0)h(x)I(t).

Finally the likelihood ratios based on the data and the sufficient statistic are equal [4] or

px(x;:0) _ pr(t(x);0)
px(x;00)  pr(t(x);00)

As a result the N-dimensional PDF can be written as

_ pr(t(x);0)
pr(t(x);6o)

The PDF px(x;6)) is termed the reference PDF since it acts as an “origin” in the manifold of PDFs whose

px(x;0) px(x;69). (3)

coordinates are given by the values of @ [6]. More specifically, we can define a manifold M of log-PDF's by
M ={lnp(x;0): 0 € R"}.

Choosing Inp(x;0) to be the origin, any “vector” in the manifold may be accessed by adding the log-

likelihood ratio or from (3)

pr(t(x); 0)
T (6(): 60)

This important result can be restated by saying that any vector is reached by adding the log-likelihood

Inpx(x;0) = Inpx(x;6))

ratio of the sufficient statistic only. In practice, this means that we need only determine the PDF of
the sufficient statistic. Also, for (3) to be useful in practice we must be able to determine the origin or
px(x;6p). This is usually possible by analytical evaluation or by using a saddlepoint approximation [7].

When a minimal sufficient statistic does not exist, which is usually the case in a real-world data
situation, one is tempted to use some other statistic which we denote as Z(x) in place of T(x) in (3). By
doing so we will have constructed a PDF as

pz(z(x); 6)

mﬁx (x; 80) (4)

Px(x;0) =



which is clearly only an approximation to the true PDF. The constructed PDF px(x;0) is termed the
projected PDF since it has been proven that px(x; @) is a valid PDF in that it integrates to one for all
@ [3]. In fact, one can construct an infinite number of PDFs based on Z(x) of which (4) is but one of
these. The others can be found by specifying the conditional PDF pyx |z (defined on a surface) so that
px = pr|ZpZdZ. However, we prove in the next section that the projected PDF given by (4) is the closest
PDF to the true PDF using the Kullback-Liebler definition of distance.

3 Orthogonal Projections in PDF Space

We now prove that (4) is an optimal projection and hence we will refer to it as the orthogonal PDF

projection.

Theorem 3.1 (Orthogonal PDF projection theorem) Consider a family of PDFs whose likelihood
ratio relative to a given reference PDF px(x;00) depends only on the data via the statistic Z(x). The

dimensionality of Z(x) is arbitrary. Then the family of PDFs can be written as
exp[f(z(x))]p(x; 69)
Jexp[f (z(x))]px (x'; 8o)dx’
where f(z) is an arbitrary function. The PDF in the set that minimizes the distance in the Kullback-Leibler

px(x;0) =

sense to a given PDF px(x;01) is

« (x) = P2(2(x);01)
pX(x) - pz(Z(X); 00)

Furthermore, the minimum distance is given by D(px(x;61)||p% (x)) = Dx(1]|0) — Dz(1]|0), where Dx

px (x;60).

is the K-L distance between px(x;01) and px(x;00) and Dy is the K-L distance between pz(z;01) and
pz(z;600). Finally, this minimum distance is zero if and only if Z(x) is a sufficient statistic (not necessarily

minimal) for the PDF family px(x;0), in which case p%(x) = px(x;61).

Proof:
Dl (x: 0|l (x:01)) = .9, In X (X501
(px(x;01)[|px (x;01)) = [ px(x;601)In"=———=Cdx
Px(x;601)
px(x;01) pi(x)
= x;01)In dx
/pX( 1) l p}(x) pX( 0)
= D(px(x;01)|lpx (x +/ x(x;01)1 ((O))dX-
é(f)
Now replace p% (x) and px(x; @) by their definitions to yield
pz(2(x);01) .0
2(x):0 )pX(X, 0)
_ 0 pz(z(x);00 d
¢) / Px(x01) expl (#()lpx (x0) |




pz(2(x); 01)

exp[f ( (x))|pz (2(x);600)
fexp z(x'))|px (x ’oo)dx’

dx.

= /pX(x;Ol)ln

But using a transformation of variables from x to z we have that

[ expl (@lx)lpx (x'380)dx’ = [ explf (2)lpz (a: 0)da

and then using the same transformation of variables in the main integral for £(f) we have that

B ' pz(2;61)
() = /pz(zvel)ln sl npz(zoo) 4

[ explf(z)Ipz(2';00)dz
= D(pz(z61)|[p(z)) >0

where

. exp[f(z)]pz(z;00)
PUE) = T oplf @) (o' Oo)da

Now &(f) will be zero if and only if p(z) = pz(z;61) in which case we have that

explf(z)|pz(z; 6o)
[ exp[f(2')]lpz(2'; 00)dz’

= explf ()]p2(2 00)

pZ(Z§01) =

where c is the value of the integral in the denominator, which is a constant. Thus,

pz(2;01)

f(z) =lnc+1n p7(7:00)

Since

explf (2(x))px (x; 00)
Px(x:01) = o T ) px (o B0

we have upon substitution of

that
CpZ(Z(X)le)pX (x;0¢)

J exp[f (2(x'))]px (x'; ) dx""

But from (5) we see that the denominator in the above expression is just ¢, so that finally we have

Px(x;01) =
px(x) = px(x;01) = %px(x 6).

Hence,

D(px(x;01)|[px (x;01)) > D(px(x;01)|Ipk (x))



with equality if and only if px (x;01) = p¥ (x).

Also, we have as the minimum K-L distance

D(px(x;01)|lpXx(x)) = [ px(x;601)In \ dx
Sl St (e rery
oy [POEO) T hstation)]
= [rxteogm PTG ax = [oxtonm|PZEEEE d
— Dx(1]|0) - /pz(z;el)ln [%] dz

= Dx(1]|0) = Dz(1[|0) = 0

with equality if and only if Z(x) is a sufficient statistic (standard result of Kullback [9], page 19). If
D(px(x;01)|[p% (x)) =0, then it follows that (standard result of Kullback [9], page 20)

pz(z(x);61)

P2 (2(x); oo)px(x; 6o)

Py (x) = px(x;01) =

which concludes the proof.

4 Example of an Orthogonal PDF Projection - Minimal Sufficient
Statistic Exists

As a simple example of the theorem consider the linear model defined by x = HO + w. Here H is a known
matrix of dimension N X p with p < N, @ is a parameter vector of dimension p X 1, and w is a N X 1 noise
vector distributed as A'(0, 0%I). Consider a statistic of dimension p x 1 which is a linear function of the data
vector. As such it can be written as Z(x) = ATx, where A is N x p. It is well known that for the linear
model, the statistic H” x is a minimal sufficient statistic for . To show that this agrees with the theorem,
we construct the orthogonal projection PDF and then show that the divergence is minimized for A = H.
Furthermore, the divergence in this case will be zero. The reference PDF is chosen as px(x;60y) = px(x;0).
Although the value of @ chosen for the reference PDF is arbitrary, we usually use a value that simplifies
the PDF. This is because in practice we will need to specify this high dimensional PDF (since it is a PDF
on x, which is N x 1) analytically. Thus, noting that Z(x) ~ N (ATH,02AT A), we have from (4) that

pxexo) = P o

— exp {—%(z(x) — ATHO)[0?(AT A)]" (2(x) — ATHO) + %z(x)T[(;?(ATA)]—Iz(x)

- [_L T }

(2mo2)N/2 P | T2 ¥
1 1

(2wo2)N/2 P [_EQ}



where

Q = (z(x) —ATHO)T(ATA) '(z(x) — ATHO) — z(x)" (ATA)'z(x) + x'x
= (ATx— ATHO)T(ATA) 1(ATx — ATHO) — xTA(ATA)'ATx + x"x.

After some simplification this can be written as
Q= (x—P,HO) (x — P,HO)

where P4 = A(ATA)7'A”T is the N x N orthogonal projection matrix which projects an N x 1 vector

onto the columns of A. As a result we have that the orthogonal projection PDF is

L (x —P,HO)  (x —P,HO)| . (6)

Dx(x56) = foromge P | 302

The divergence between (6) and the true PDF is easily shown to be (see [9], page 189)

HO — P, HO||?
Dlpx (x:0)||p (x:0)) = |10~ POl
o?
where || - || denotes the Euclidean norm. Since D > 0, the divergence is minimized for all 8 if P,4H = H.

This will be satisfied if A = H or equivalently if Z(x) = H'x. As expected the divergence is zero since

the statistic chosen is sufficient (and in this case also minimal).

5 Example of an Orthogonal PDF Projection - No Minimal Sufficient
Statistic Exists

We now give an example of an orthogonal projection for a PDF family for which no minimal sufficient
statistic exists. This will illustrate the key ideas. However, this example assumes independent and identi-
cally distributed (IID) random variables, a situation in which the joint PDF is easily estimated in practice.
Hence, the following is to be regarded as only a mathematically tractable and illustrative example. If
x consists of N independent and identically distributed (IID) Laplacian random variables with unknown

mean A and known variance o2, then the joint PDF is

i = i o] T4
_ ( 02> exp[ \/72@ ] (7)

In this case there is no minimal sufficient statistic for A (a statistic of dimension one), and in fact, there

is not sufficient statistic of dimension less than V. Hence, the data cannot be reduced without loss. It is



reasonable then to use the maximum likelihood estimator of A as a statistic for data reduction. It can be
shown that the MLE for A is just the median of the data, which we denote by M [10]. Assuming now that
N is odd, it can be shown that the PDF of M is [11]

pu(m; A) = %"2 [Fyy (m — A)(1 = Fyy(m — AN D2 p (m — A) (8)
2
where
o) = s esn | Sl o)

is the Laplacian PDF and Fyy (w) is its corresponding cumulative distribution function, both of which

assume that A = 0. The latter can be shown to be

Fur () = u(w) — Ssgn(u) exp [—@ |w|] (10)

where u(w) = 0 for w < 0, u(0) = 1/2, and u(w) = 1 for w > 0, and sgn(w) = 1 for w > 0, sgn(w) = —1
for w < 0, and sgn(0) = 0.

Now using the orthogonal projection theorem the PDF that is closest to the true one of (7) is given by
(4). This becomes upon substitution of (8), (9), and (7) with A = 0 as the reference PDF into (4), and
replacing m by med(x)

py(med(x); A)
py(med(x); 0)

[Fi (med(x) — A)(1 — Fyy (med(x) — A))]V =" exp [~/ Z|med(x) — Al
[Fiv (med(x)) (1 — Fiy (med(x)))] X /2 exp [/ Z [med (x)]

(a) 0 |2 X st

In the next section we use this result to indicate how to choose between two competing statistics.

px(x; A) px(x;0)

6 Application to Feature Selection

We now apply our results to the problem of comparing which of two statistics would yield a better classifier.
Specifically, assume that we have two potential statistics Z(x) and Zs(x), on which to base a classifier
for a given class. By using the orthogonal projection theorem we construct the two PDFs px, (x) and
Px,(x). Then, we choose the statistic for which the distance between the true PDF and the projected one
is minimum. It is important to note that we can accomplish this goal without actually knowing the true

PDF, which is our situation in practice. This is done as follows. The Kullback-Liebler distance between



the true PDF px(x) and the orthogonal projection PDF is D(px(x)||px,(x)), which is

Diox (o, 00) = [ pxlm 2

pXi(X)
- /pX(x) Inpx (x)dx — /px(x) Inp, (x)dx.

This is minimized by minimizing the second term since the first term does not depend on the approximating

PDF. Thus, we should mazimize
/pX(x) Inpx, (x)dx

which from (4) is
pz;(2i(x); 1)
x)In |[—=—— 2
Jrrtom S a

or since px (x;0p) does not depend on our choice of Z;(x), we should choose the statistic for which

pz;(2i(x); 01)}
pz:(2i(x); 00)

is maximum. Note that the expectation is with respect to the ¢frue PDF, which allows its estimation from

px (x; 00)] dx

FE |In

(11)

actual data. In practice, if we have the training data x; for j = 1,2,..., L, then we base our decision on

the estimated average log-likelihood ratio
L
}_EjlnpzAZAXj%01)
L= pz(zi(x)):00)
The PDFs pz, would also be estimated from training data. Note that these are low dimensional PDFs.
For the example of the last section we might be interested in comparing the feature vector of the MLE,

which is the median, to that of the mean. Let pjs;(med(x); A) denote the PDF of the median and pg(z; A)
denote the PDF of the mean. The PDF of the median was given by (8). The PDF of the mean can be

patast) = 2 e |2 - al

N=l/oN -2k (2\/2/71\7|95—AI)1c
'§:< N -1 ) k! '

k=0

shown to be

The required average log-likelihood ratios are from (11)

py(med(x); A)
B {ln puy(med(x); 0) ]

and



The importance of the reference PDFs pjs(med(x);0) and px(z;0) is apparent. Without the reference
PDF's to act as normalizers, in effect measuring the distance or discrimination from a fixed hypothesis, the
comparisons using the numerator PDFs would produce severely biased results. Also, as an upper bound,
we compute the average log-likelihood ratio of the original data

B [ln px (x; A)] .
px (x;0)

Using a computer simulation we compare the average log-likelihood ratios versus data record length. We

have chosen A = 0.4 and 02 = 1. In Figure 1 it is seen that the median provides a higher average log-

likelihood ratio and hence would be chosen as the better statistic to use for classification. This is consistent

with the known loss of statistical efficiency of the sample mean for a Laplacian PDF versus the median

[10].

Average log-likelihood ratios for median and mean statistics
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Figure 1: Comparison of average log-likelihood ratios for two statistics. The statistic with the higher

average log-likelihood ratio will result in a better performing classifier.

7 Conclusions

A new method for approximating high dimensional PDFs using lower-order ones has been presented. The
approximation is asymptotically optimal in that it minimizes the probability of error in a decision rule. An
application to the selection of feature vectors for classification was given. In particular, a simple method

is proposed to discern among multiple competing feature vectors.
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