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Reducing Probability of Decision Error
Using Stochastic Resonance

Steven Kay, James H. Michels, Hao Chen, and Pramod K. Varshney

Abstract—The problem of reducing the probability of decision
error of an existing binary receiver that is suboptimal using the
ideas of stochastic resonance is solved. The optimal probability
density function of the random variable that should be added to
the input is found to be a Dirac delta function, and hence, the op-
timal random variable is a constant. The constant to be added de-
pends upon the decision regions and the probability density func-
tions under the two hypotheses and is illustrated with an example.
Also, an approximate procedure for the constant determination is
derived for the mean-shifted binary hypothesis testing problem.

Index Terms—Modeling, pattern classification, signal detection.

I. INTRODUCTION

THE phenomenon of stochastic resonance has garnered
much attention [1]–[4]. In short, it asserts that many

physical processes in nature can be modeled as a detector over
which we normally have no control. However, the stimulus to
the process or equivalently the input to the detector is a quantity
over which we do exert some measure of control. For example,
in human image perception, it is well known that contrast
enhancement aids recognition of objects seemingly “buried”
within the image. Hence, it is of importance to understand how
one can modify the input to enhance the decision process. In
stochastic resonance, the input is modified by adding a random
variable or more generally noise. Recently, some approaches
to determine the optimal type of noise to be added to a data
set to improve detection performance have been derived [5]. In
this letter, we address the similar hypothesis testing problem
of attempting to decide between two hypotheses but where the
performance criterion is the probability of decision error. In
[5], a Neyman–Pearson criterion is utilized.

We consider the problem of deciding between two hypotheses
and that can occur with a priori probabilities
and , respectively. Our criterion for

performance will be probability of error , although the deriva-
tion is easily modified to minimize the Bayes’ risk by assigning
costs associated with each decision [6]. It is assumed that the
decision regions have already been specified, that they are not
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optimal in terms of minimizing , and that a single data sample
is used to make a decision. The already specified decision re-

gions may be arbitrary, and hence, our solution encompasses
such regions as if one would decide if or
as examples. The single sample is usually a test statistic, i.e.,
a function of a set of observations, which is a common proce-
dure for decision making. To improve the performance, a “noise
sample” is added to form prior to decision making.
We allow to be a random variable and determine the proba-
bility density function (PDF) of that will yield the minimum

. It is proven next that the optimal PDF is a Dirac delta func-
tion, which leads to the conclusion that the optimal random vari-
able to be added is a degenerate one, i.e., a constant.

II. OPTIMAL PDF OF ADDITIVE NOISE SAMPLE

To write the probability of error for the original problem, we
define the decision rule (also called the test function or critical
region indicator function) as

decide
decide .

Then, we have

decide decide

where are the PDFs under and , respec-
tively. This can be rewritten as

Now assume that we modify by adding so that the test
statistic becomes , where is a random variable in-
dependent of , and whose PDF is . Since the identical
decision rule is to be used, we have

but
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We have then that

where denotes expected value. Hence, we wish to choose
so that the slightly more convenient form

(1)

is maximized. This is done in the next section. We will see that
the random variable may be chosen as a constant, and there-
fore, we need only maximize the expression within the brackets
of (1) over a constant . However, this is equivalent to shifting

, the decision region function, by . Hence, the solution
effectively shifts the decision region by a constant. This suggests
that another means for improving performance is to transform
the decision region using a nonlinear transformation (instead of
the simple shift). It can be done by transforming the data sample

using a nonlinear transformation as . A future paper will
address this alternative and more general approach.

III. DERIVATION OF OPTIMAL PDF FOR

It is well known that is maximized by placing all
the probability mass at the value of for which is maxi-
mized. We assume that the function has at least one point
at which a maximum is attained. Calling this point , the op-
timal PDF is then , where

or

A slightly more convenient form for is obtained by letting
so that

(2)

which is recognized as a correlation between and
. In summary, we should add the constant

c to x, where c is the value that maximizes the correlation given
in (2). Since the decision function in (2) is completely
general, the optimal solution is valid for a given binary decision

rule with any decision region. For example, if the original
decision rule were to decide if , then we would
use for and zero otherwise in (2). If it were
to decide if , then we would use for

and zero otherwise in (2). (Note that if for
and zero otherwise, then is

maximized for . This is because in this case, the decision
rule is optimal.) In the next section, we solve this for a
given example.

IV. GAUSSIAN MIXTURE EXAMPLE

We now consider the problem described in [4] but instead
choose the probability of error criterion. The problem is to de-
cide between and , where is
a dc level that is known, and the noise PDF is the Gaussian or
normal mixture

(3)

where

The original decision rule is to choose if so that
, where is the unit step function. Addition-

ally, we assume equal a priori probabilities so that
. As a result, we have from (2) that

where is the cumulative distribution function of under the
hypothesis . For our problem, we have that

, and so, . Thus

and differentiating and setting equal to zero produces

or equivalently, since is even, we have the general re-
quirement

(4)

Using (3) produces
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Fig. 1. Original PDFs. The left-most PDF modes cross at x = �2:5, which
is indicated by the dashed vertical line. The fixed decision regions are indicated
by R , while the optimal ML decision regions are indicated by R .

which upon simplification yields the equation

For , and , we have

The exact value of found through a numerical search is
, which could also be found by ignoring the terms

and since these are nearly zero
for this value of . Another solution is found by ignoring the
other set of terms to yield . Note that either of these
choices causes the PDFs of under and to cross at
the origin (see Figs. 1 and 2). If we did not have the right-most
Gaussian mode, then the choice of would result in
a maximum-likelihood (ML) receiver, which is optimum [6].
This is because an ML receiver chooses the hypothesis whose
PDF value is larger. In our case, the fixed decision regions are

for and for ,
as shown in Fig. 1. These decision regions are not optimal.
The optimal ML decision regions are indicated in Fig. 1 as
and . Therefore, the region in for which , which
corresponds to the dark PDF lines, will result in incorrect
decisions. By the addition of , however, the extent of this
incorrect decision region is reduced, as indicated in Fig. 2.

It is instructive to also plot the probability of error versus or
equivalently the probability of correct decision
versus . This is shown in Fig. 3. Note that as expected, the
probability of a correct decision is maximized at and
also at . This type of curve is normally associated
with the phenomenon of stochastic resonance, although here,
we see that it is not unimodal. This result is unlike that reported

Fig. 2. PDFs after c = 2:5 is added to x. The fixed decision regions are indi-
cated by R , while the optimal ML decision regions are indicated by R .

Fig. 3. Probability of correct decision versus the value of the constant c to be
added to data sample. The dashed lines are at c = �3:5 and c = 2:5.

in [1]–[3] and so debunks the common assumption that adding
too much noise will degrade performance. The latter is only true
if the performance curve is unimodal.

V. SIMPLE APPROXIMATION

In some cases ,we can simplify the determination of rather
than having to solve (4). Consider again the case when

and . This is an equal a priori
probability and mean-shifted decision problem. Furthermore,
assume that and is small. Finally, assume that the
decision is to choose if . Then, we have that in (2)
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where we have used a first-order Taylor expansion in about
. Therefore

by noting that the PDF must converge to zero as its argument
goes to infinity. Hence, to maximize , we need only find the
location of the maximum of . In practice, since knowl-
edge of the PDFs is usually lacking, this result will simplify the
required knowledge necessary for implementation. Armed with
actual data, one should then be able to estimate the most prob-
able value of the PDF under . Then, the optimal value of is

the negative of this. For example, in the Gaussian mixture ex-
ample, we have maxima of at approximately so
that the optimal value of is also . This is very close to our
previous results of and and will be exact as

.
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