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Rapid Estimation of the Range-Doppler
Scattering Function
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Abstract—Under wide sense stationary uncorrelated scattering
(WSSUS) conditions, the signal spreading due to a random
channel may be described by the scattering function (SF). In an
active acoustic system, the received signal is modeled as the super-
position of delayed and Doppler spread replicas of the transmitted
waveform. The SF completely describes the second-order statistics
of a WSSUS channel and can be considered a density function
that characterizes the average spread in delay and Doppler
experienced by an input signal as it passes through the channel.

The SF and its measurement will be reviewed. An estimator is
proposed based on a two-dimensional (2-D) autoregressive (AR)
model for the scattering function. In order to implement this esti-
mator, we derive the conditional minimum variance unbiased esti-
mator of the time-varying frequency response of a linear channel.
Unlike conventional Fourier methods, the AR approach does not
suffer from the usual convolutional smoothing due to the signal am-
biguity function. Simulation results are given.

Index Terms—Acoustic propagation, autoregressive processes,
estimation, range-Doppler, scatter channels, scattering function,
scattering parameters measurement.

I. INTRODUCTION

T RANSMISSION channels that spread the transmitted
signal in both time and frequency are commonly modeled

as random, time-varying, space-varying linear filters. Tem-
poral spread is usually associated with multipath effects and
frequency spread with scatterer motion. Under wide sense
stationary and uncorrelated scattering (WSSUS) conditions,
the scattering function completely describes the second-order
statistics of the channel. It can be viewed as a density function
giving the average power modulation as a function of delay and
Doppler [1]. The scattering function (SF) is typically defined as
being independent of the transmitted signal. However, for the
underwater channel especially, this should be considered true
only for signals of similar bandwidth and center frequency.

One of the common methods of identifying the channel scat-
tering function is by deconvolving the transmitted and received
signals [1]. Iterative methods for deconvolution of two-dimen-
sional (2-D) signals or images are discussed in [1]–[3]. A di-
rect measurement approach using specially designed waveform
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pairs and twin receivers is given in [4] and [5]. More recently,
Hahm et al. reviewed the effects of simultaneous range and
Doppler spreading on the results of various iterative deconvolu-
tion methods and discussed some resulting signal design issues
[6].

Another method of scattering function identification is given
by Jourdain in [7]. Jourdain transmits a large time-bandwidth
signal and calculates the scattering function from the interam-
biguity between the transmitted and received signals. He then
determines optimum receivers for a binary communications
scheme based on the form of the scattering function. The use
of pseudo-inversion of the linear system for scattering function
estimation is discussed in [8], and in [9], the equivalence of the
pseudo-inversion deconvolution via singular value decomposi-
tion (SVD) and the spectral division methods of deconvolution
is shown.

Signal design for scattering function estimation is also a
much discussed topic [10]. Persons not only considers opti-
mization of probe signals but also calculates a lower bound for
the mean square error of an unbiased estimate of the sampled
scattering function [11]. The problem of designing signals for
use in communications or detection systems in randomly time
varying channels is addressed in [12].

The identification of the one–dimensional (1-D) range scat-
tering function using AR models is addressed in [13] and [14]
while a method for detecting multiple targets in AR reverbera-
tion is given in [15]. The use of a 2-D autoregressive noise model
is used in [16] to model the temporally and spatially varying
noise field seen by a hydrophone array. Low-order 1-D AR
models are shown to provide good descriptions of forward-scat-
tered signals reflected from the sea surface [17].

The need for accurate characterization of the channel scat-
tering function is clear. Given a known scattering function, re-
ceiver and transmitter parameters may be optimized for detec-
tion [18], [19]. Recently, channel scattering functions have been
used in radio communications for modeling the wideband HF
(WBHF) channel impulse response over a high-latitude auroral
path [20] and for the HF skywave channel [21]. Methods have
been developed to predict performance of a WBHF communica-
tions system derived from the channel scattering function [22].

In this paper, we present a new method for the estimation
of the channel scattering function based on AR modeling
techniques. Preliminary results using this method were pre-
sented in [23]–[25]. In Section II, we model the channel as
a stochastic linear time-varying system which is wide sense
stationary (WSS) with uncorrelated scattering. We then define
the spreading and scattering functions based on this model and
finally present pictographs of the various Fourier relationships
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between various channel and channel correlation function
representations. The difficulty of estimating the SF is discussed
in terms of estimation of the channel transfer function or its
autocorrelation function (ACF). We then review the AR model
including a simple adaptation to fit the SF estimation problem
into an AR spectral estimation framework. The problem is then
defined in terms of the linear model [26] allowing the use of
simplified matrix notation.

Estimation of the channel ACF is addressed in Section III.
The conditional minimum variance unbiased (MVU) estimator
and its properties are reviewed in the context of estimation of
the channel’s time-varying frequency response in this underde-
termined problem. Using this result, the channel (ACF) is esti-
mated and reduced to a simple ratio of the time–frequency au-
tocorrelation functions of the transmitted and received signals.

The capabilities and limitations of the method are demon-
strated through simulation in Section IV. The results of the paper
are summarized in Section V.

II. PROBLEM FORMULATION

A. Definitions

We first summarize the mathematical models that give rise
to the scattering function estimation problem. The channel is
modeled as a stochastic linear time-varying system with impulse
response , where describes the response of the
system at time to an impulse applied seconds prior [27], [28].
Therefore, if the input to the channel is a signal , then the
output can be written as

(1)

It is assumed that the output is the complex envelope and there-
fore both and are complex. We also assume that

is zero mean for all and , WSS in and, uncorrelated
in . This embodies the usual WSSUS condition [29]. Taking
the Fourier transform of with respect to yields the
spreading function

(2)

which determines the amount of spread in delayand Doppler
that an input signal undergoes in passing through a time-varying
linear channel [27]. Solving for and substituting into (1)
yields

(3)

We see that is now represented as the weighted sum of
delayed and Doppler shifted replicas of the transmitted signal.
Hence, the name spreading function for is appropriate.

Because is WSS in and uncorrelated in it can be
shown that is uncorrelated in both and so that, de-
noting the expectation operator by

(4)

Fig. 1. Fourier transform relationships between channel function
representations.

Fig. 2. Fourier transform relationships between channel correlation function
representations.

where the power for a given Doppler and
delay is defined as the scattering function

(5)

By noting that the Fourier transform of with respect to
yields the time-varying frequency response (TVFR) ,

which is WSS in both and , we can define the channel ACF
as

(6)

Finally, it can be shown that the scattering function is related to
the channel ACF by the 2-D Fourier transform

(7)
or equivalently, is the power spectral density of

. The channel ACF is also referred to as the
two-frequency correlation function [30].

Fig. 1 summarizes the Fourier relationships between the var-
ious channel model representations. Fig. 2 does the same for the
corresponding correlation functions [27], [28]. The bifrequency
function and its correlation function are shown for completeness
but will not be discussed further.
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B. Estimation Problem

To estimate the scattering function, it is necessary to either
explicitly or implicitly estimate the channel ACF due to the
relationship in (7). This is difficult since the random process

is only observed via the frequency domain equivalent
of (1)

(8)

where

and is the Fourier transform of the signal (and not the
spreading function; the number of arguments easily distinguish
the two). Since the signal is assumed to be the complex enve-
lope and hence is bandlimited and since is the Nyquist
frequency, then (8) can be expressed in discrete form as

(9)

where for
, and and is the frequency sampling

interval. The complex envelope is assumed to be defined
over the frequency interval. There are unknown
samples of but only observed data samples so that a
consistent solution cannot be found. This is known as an over-
spread channel [29].

To get around the consistency problem, one might use mul-
tiple returns. For each return we could transmit a sinusoid at
a given frequency, say . Then, each return could be used to
obtain . For enough densely spaced frequencies, we
could use this information to estimate . However, if
the channel changes from ping to ping this may lead to er-
roneous results. Alternatively, we could transmit a broadband
signal, say a sum of sinusoids and then separate the various re-
sponses using a bank of narrowband filters whose bandwidths
are matched to the bandwidth of or the Doppler spread
of the channel. This approach and others based on it are fre-
quently used [31]–[33]. This is equivalent to a Fourier based
spectral estimator and suffers from leakage between the narrow-
band filters leading to a loss in resolution. Once an estimate of

is found, the ACF and/or the scattering function may
be directly estimated.

Alternatively, the channel ACF may be estimated directly
from the data. The theoretical relationship between the corre-
lation function and the transmitted and received signals can be
expressed in terms of the time-frequency (T-F) autocorrelation
functions of the signal and the received time series,
and [34]

(10)

where the T-F ACF is defined as

(11)

We note that the T-F ACF is the Fourier transform of the Wigner
distribution [35]–[37]. The signal ambiguity function
is the magnitude squared of the T-F ACF

Using (10), one might be inclined to use the unbiased estimate

(12)

as was done in [34]. However, the correlation estimate becomes
infinite if . This places severe restrictions on
signal design for realizable signals. In Section III-B, we will
show that the conditional MVU solution for yields
the correlation function estimate

(13)

which is finite for all signals.
Kailath showed [38] that the instantaneous TVFR was unam-

biguously measureable only if , where is the extent
of the frequency spreading of the channel, andis the extent
of the time spreading of the channel. This is the so-called un-
derspread channel. The criterion was later shown to be
overly restrictive in [39]. It is important to note that Kailath’s re-
strictions are based on the measurement of each instantaneous
value of using a train of impulses or a similar sampling
scheme. He further showed that when we are not interested in
the instantaneous values of the filter but only the statistical av-
erages much less information is required and the can
be relaxed. For instance, he showed that the channel autocorre-
lation function can be unambiguously determined if
and that the average TVFR can be determined without regard to

if ensemble averages are used. In the following section, we
will invoke the autoregressive model for the scattering function
to allow us to estimate the SF for the overspread channel or for

. Just as in the case of spectral estimation, the parame-
terization of the problem will allow estimation of the scattering
function without the need for ensemble averaging. Because the
problem is parameterized, and we assume a small number of
coefficients are required to describe the scattering function, the
solution should be tractable, as long as is not too large. We
will assume without proving it that the requirement can be
further relaxed to finite.

C. AR Approach

We propose a parametric approach to scattering function es-
timation based on autoregressive spectral modeling [40]. Since
only a few parameters must be estimated for the AR approach,
it often can function well when Fourier-based methods do not.
Since simulations and any practical implementations must be
done on a digital computer, a discussion of sampling require-
ments and assumptions is appropriate. As a result of sampling,
the scattering function can only be estimated over the Nyquist
band. Thus, we make the very practical assumptions that the
multipath (delay) spread is less thans, and the Doppler spread
is less than Hz. With these assumptions the scattering func-
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tion will be estimated over the band

To prevent aliasing, the ACF must be sampled on
a grid, where , and . We assume that

and that .
The scattering function is now written using the sampled form

of (7) as

If we ignore the scale factor and normalize the Doppler
and delay by letting , , and

, this becomes

(14)

(15)

which is the usual definition of the power spectral density
(PSD), except for the sign change ( ). To use standard
AR estimation techniques [40], we must account for this sign
change. Letting , (14) becomes

which is the usual definition of the discrete-time PSD. There-
fore, the usual methods of 2-D AR spectral estimation may be
applied to find the AR parameters and .

The spectral estimator for an quarter plane (QP)
model is given by [40]

(16)

where and are the AR model orders. We note that the 2-D
AR PSD is completely determined by param-
eters. The examples that will be shown in this paper use either the
2-Dautocorrelationmethod(ACM)orthe2-Dcovariancemethod
(CM),asdefined in [40].Thesemethodsareappropriatewhenthe
AR model order is known. Recursivemethods are available when
one [41] or both [42] model orders are unknown.

1) Autocorrelation Method (ACM):The ACM requires
an estimate of the ACF, samples of which are used in the

Yule–Walker equations to estimate the AR parameters [40].
The 2-D Yule–Walker equations are

...
...

.. .
...

...

...
(17)

where

and

...
...

...
...

To estimate the AR parameters, we therefore need to calcu-
late the autocorrelation function only at the lags shown in these
equations using .

2) Covariance Method (CM):The covariance method, on
the other hand, requires an estimate of and not its ACF.
The standard formulation of the CM finds the AR parameters
from (18), shown at the bottom of the page, for

and where and the estimator for the white noise
variance is the case or

(19)

[40]. Letting

(18) and (19) can be written in matrix form, as shown
in the equation at the bottom of next the page, where

(18)
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. For convenience, we have used the
colon to signify all elements of range as is done in Matlab®, i.e.,

We see that each column of each submatrix, for example

...

is a block, which is Hermitian and positive
semidefinite. Now, letting

...

we can write

...
...

. . .
...

...

...
(20)

This covariance matrix is Hermitian and positive semidefinite.
We note that each column of the matrix has constant unconju-
gated lags, which is consistent with the notation used in [40] for
the 1-D case.

Again, we make an adjustment in sign convention due to the
fact that we are estimating a scattering function and not a true
2-D spectrum. It is simple to show that the resulting equation is
exactly (20), except that

Because both a direct estimate of and an estimate of
the ACF are required for the different methods of AR model esti-
mation, both will be derived. We will first formulate the problem
in terms of the linear model and then address the task of esti-
mating . Once this is done, an estimate of the ACF will
be found and given in terms of the received and transmitted sig-
nals as well as in terms of their time–frequency ACFs. Finally,
simulation results using both methods will be presented.

D. Linear Channel Model

Starting with the generic frequency domain representation of
a received signal , which is the result of a signal prop-
agating through a channel characterized by the time-varying
frequency response , as given in (9), we formulate the
problem in matrix notation with the hope of being able to solve
for the time-varying frequency response given the received
signal and the transmitted signal. We first letbe the
matrix

(21)

so that (9) becomes

Now, let , where

...

As previously mentioned, there are values of map-
ping into only values of . Therefore, the problem of de-
termining from is underdetermined. We now de-
fine the matrix as and write the
formula for in matrix form, noting that the summation at time

is simply the inner product of theth column of with the

...
...

...
...

...

...
...

. . .
...

...
...
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th column of so that

...
...

. . .
...

...

...

...

...

(22)

or , where has been partitioned as
, which is , and is a vector of

the rolled out columns of .
In Appendix A, we use the linear channel model of (22) to

show that the AR solution is identifiable as long as
, , and for .

III. ESTIMATION PROCEDURES

A. Conditional MVU Estimator

In sonar, the return from distributed interference is known as
reverberation. The scattering field can be modeled as a spatial
Poisson random process and, where there are a large number of
scatterers, the received envelope will be a zero mean complex
Gaussian random process [30]. We therefore model the received
data using the complex Bayesian linear model based on the re-
sult of (22). Let denote the complex Bayesian
linear model, where , ,
and are independent, is with , and the rank of

is [26]. Note that the matrix in our problem is usually
denoted as in the formulation of the linear model. Except in
Appendix B, we will use so that the linear model formulation
will not be confused with the TVFR. In Appendix B, we show
that the conditional MVU estimator for a linear function of the
parameters of a complex Bayesian linear model implies the fol-
lowing estimator for :

(23)

We note that this estimator is identical to the Moore–Penrose in-
verse of (22)[43] and could also be derived using singular value
decomposition or regression approaches. However, we prefer
the conditional MVU solution due to its optimality properties.
The expression for is expanded in terms of the transmitted and
received signals in Appendix C. The result of this expansion is
the explicit solution for the estimate of the TVFR given as

(24)

for

This can be written in continuous time frequency as

(25)

where the energy in the signal is

Substituting (25) into (8) yields an identity after integration
proving that this is a valid solution to the estimation problem. In
fact, it can also be shown that (25) is the solution of minimum
norm. We note that the conditional MVU estimator of the
time-varying frequency response (25) is deterministic in the
frequency direction (dependent only on the transmitted signal)
and random in the time direction. The estimate of (24) can be
directly used in the covariance method. The autocorrelation
function estimator of the TVFR, which is used in the autocor-
relation method, is derived in the next section.

B. Estimating the Autocorrelation Function

We now have a direct estimate of the TVFR of the channel.
This in general will be a noisy estimate as it is from a single mea-
surement of an overspread channel. Although the direct estimate
may be poor, it is possible that it may contain enough informa-
tion to estimate the scattering function. Both a direct Fourier
estimate and the ACM estimate require that the autocorrelation
function be estimated.

The 2-D autocorrelation function was defined in (6) as

and exists if is WSS in both time (space) and frequency.
Assuming ergodicity, we will estimate the ACF by replacing the
expected value with integration over time and frequency to yield

(26)
Using (25) in (26) and neglecting the constant factor , we
have (See Appendix D)

We see that this estimate of the ACF does not require that the
signal ambiguity function be nonzero as did the estimate of (12).

Next, to implement in the discrete domain, we as-
sume that the samples of are available for . Re-
calling that to prevent aliasing the ACF must be sam-
pled on a grid where and , we can esti-
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mate the ACF in the discrete domain using (11) as

Clearly, it is also required that be a multiple of the sam-
pling rate , or we must have for , which
is an integer. Finally, for use in the ACM, we use the discrete
ACF estimator

(27)

which can be used to estimate the ACF on an appropriate grid
for use in the ACM (17).

IV. SIMULATION RESULTS

In 2-D AR spectral estimation, all causal AR models are
based on a region of support which is either the nonsymmetric
half plane (NSHP) or the quarter plane (QP). In general, only
the NSHP will yield the correct PSD if the region of support is
infinite. However, it has been observed from simulations that,
for sinusoidal signals in noise, spectral estimators based on the
NSHP perform poorly, possibly because the required model
order is too high [40]. All of the results presented herein utilize
a 2-D quarter plane (QP) autoregressive (AR) model. Estimates
using the ACM and CM are compared. A comparison of results
using the NSHP and QP is beyond the scope of this paper and
is an area of future work.

Fig. 3. (a) Magnitude of transmitted Gaussian envelope. (b) Magnitude of
received signal envelope.

To demonstrate the validity of this approach the results of a
number of simulations are presented. We will assume all data
is sampled in delay and Doppler at intervals of and , re-
spectively. In the simulation we define a known scattering func-
tion, , with maximum time spread and maximum Doppler
spread . We also define a known transmit waveform with time
support . The samples of a realization of the spreading func-
tion are zero mean complex Gaussian variables with variance

so that ,
where and all the s are uncorrelated. The re-
ceived signal is calculated using a discrete version of (3), shown
at the bottom of the page, for . Note
that in this expression, samples of the transmit waveform
are needed over the range [ ]. If a transmitted
signal is given over an interval from 0 to, we zero-pad out-
side the interval. For a known analytical expression such as a
Gaussian pulse, the signal is calculated over the entire range.

The first example is for a known AR scattering function with
, which we denote AR(1,1) [defined by (16)] with

time spread s and Doppler spread support Hz,
which is interrogated by a Gaussian probe pulse of rms dura-
tion s. The rms bandwidth of a Gaussian pulse is

, which is 1.98 Hz in this case. The scattering func-
tion is characterized by the AR coefficients ,

, ,
. The received signal, whose bandwidth is

Hz, is sampled at 10 Hz, and the SF is sam-
pled in Doppler in 0.25-Hz increments. Fig. 3 shows exam-
ples of the envelopes of the transmitted and received signals
for this case. Note that the analytical expression for a Gaussian
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Fig. 4. (a) True scattering function used in the simulation. (b) One-ping
Fourier estimate. (c) One-ping AR(1,1) CM estimate. (d) One-ping AR(1,1)
ACM estimate.

Fig. 5. Scatter plot for 50 realizations of 1-ping AR coefficient locations using
both the ACM and CM estimators.

pulse was used to generate the transmitted signal over the range
[ ], and the received signal has time support
only over the range [0, ]. Fig. 4 shows the known SF and the
single ping estimates for various estimators. All contour plots
are shown on identical axes and contours are given in deci-
bels. The Fourier estimate is formed by calculating the 2-D pe-
riodogram of the conditional MVU estimate of the TVFR (24).
This is followed by AR(1,1) estimates using both the CM and
the ACM estimators. Clearly, the AR estimators give higher res-
olution and more accurate estimates of the scattering function
for this simple case.

Scatter plots of AR parameter estimate locations for 50 real-
izations of the two AR(1,1) estimators are shown in Fig. 5. Solid
lines on the graph are drawn from the actual model locations to
the average of the 50 realizations. In almost all cases, the av-
erage location of each parameter estimate is biased toward the
origin. The one notable exception is for the coefficient
using the ACM. The exact cause of this bias is a matter of future

Fig. 6. (a) True scattering function. (b) Average of 50 Fourier estimates.
(c) Average of 50 AR(1,1) CM estimates. (d) Average of 50 AR(1,1) ACM
estimates.

Fig. 7. Scatter plots of 50 AR[1,1] coefficient locations for both CM and ACM
estimators. Three pings are averaged to form each estimate.

investigation. It is also notable that in this case the ACM esti-
mates of the coefficient have significantly less scatter
than the CM estimates. The average scattering function esti-
mates for these 50 single ping realizations are shown in Fig. 6.
Qualitatively, the average of CM results appears to match the
true scattering function better than the average of the ACM re-
sults.

Although we wish to estimate the scattering function with a
single ping, the use of multiple pings will improve the accuracy
of the estimates if the channel can be considered stationary over
the time spanned by the multiple pings. Fig. 7 shows a similar
scatter plot for a case where three pings are used to form the esti-
mate. Here, the conditional MVU estimate of the TVFR is calcu-
lated and the corresponding correlation functions [(27) into (17)
for ACM or (24) into (20) for CM] for AR estimation is formed
for each ping. The correlation functions are then averaged be-
fore finally calculating the AR parameters. We see that the vari-
ance of the estimates is significantly reduced although the bias
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remains. Although it is beyond the scope of this paper, this in-
dicates that multiping and/or recursive estimation schemes may
provide robust estimates in environments where some stability
may be assumed from ping to ping.

V. CONCLUSIONS

A novel method of scattering function estimation based on
autoregressive spectral modeling has been proposed. The cur-
rent implementation of this method uses the conditional MVU
estimate of the TVFR, given a known input waveform and the re-
ceived envelope. Preliminary simulation results exhibit promise
of obtaining high-resolution estimates of the scattering func-
tion from a single ping. The results also indicate that the co-
variance method may be slightly more accurate on average than
the autocorrelation method. However, no claims of optimality
can be made regarding the current estimator. Attempts by these
authors to calculate the maximum likelihood estimate using the
EM algorithm have failed due to the extreme computational and
storage requirements of the algorithm. Continuing research is
focused on improving this technique using optimal estimators
and waveforms and the use of quarter plane versus nonsym-
metric half plane estimators.

APPENDIX A
IDENTIFIABILITY OF THE AR PARAMETERS

Assume that we have access to , where
is given by (22). Can we determine the AR parame-

ters describing , where

(28)

and is defined in (22), is , is , and
is ? is Hermitian and block Toeplitz con-

sisting of unique blocks of size , which are themselves
Toeplitz. Therefore, each block has unique complex
elements. Thus, to describe , we need coeffi-
cients. As we now show, an AR parameterization of allows
us to identify from . This says that an estimate of
is possible based on .

We now expand (28) as

...
...

.. .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

where has unique complex elements. Let denote
the th diagonal of so that

...

for . Each is 1. Therefore,
the estimates of different ’s can be decoupled. Since is

1, each vector can be expressed as a system of
linear equations in the unknown parameters of .
These equations are assumed consistent. In addition, assume
that is chosen so that , and therefore,
there is a unique solution, as we now show.

We now assume we are looking for an solution
and derive an explicit solution for . Let

...
...

. . .
...

for . Now, expand the th
element of , which is , as

...

for . Collecting the ’s yields

Let , and define

(29)
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for , and
. Now, , and

...
(30)

where is 1, is , and
is 1. This is naturally partitioned as

, where and correspond with and
, respectively.

In order to show that (30) is uniquely solvable, we must show
that is of full column rank. We note that by assumption,
is in the range space of . Clearly, a bounding requirement is

or . We recall from
(21) that .

Now, expand (29) into the first equation shown at the bottom
of the page. We want to show that the columns of are inde-
pendent. Note that two of the terms in each sum do not depend
on the column index. For later convenience, we write these as
vectors depending on and and indexed by so that we have
the second equation at the bottom of the page. Therefore

diag

diag

and we have the third equation at the bottom of the page.
is defined similarly, except that each of the frequency

indicies is reduced by , i.e., becomes
.

Now, assuming , , any
is of full column rank, and the set is linearly independent. In
addition, since is of full column rank, diag is of
full column rank as long as . This is equivalent to
requiring that for . The set
diag is therefore also independent and forms a basis
for . is therefore of full column rank.

The same argument holds for , adding the requirement
that for . Clearly, will
be of full column rank and , are independent sets, and
therefore, will be of full column rank.

In summary, we have shown that is identifiable if
, and an solution is identifiable as long

as , , and
for .

APPENDIX B
CONDITIONAL MVU ESTIMATOR FOR A LINEAR FUNCTION OF

THE PARAMETERS OF ACOMPLEX BAYESIAN LINEAR MODEL

Let denote the complex Bayesian linear model,
where and is 1, and is

1, and are independent, is with , and
the rank of is [26]. The conditional PDF of is

By attempting to find a conditional estimator of, we avoid
the need for prior knowledge. However, because , there
are an infinite number of that yield the same . Hence, is
not identifiable. A reasonable approach is to estimate a linear
function of , say , where is 1. Then, from this
result we infer a reasonable estimator for. Note that ultimately
we do not use directly but only a function of , specifically, a

...
...

. ..
...
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Hermitian function used as an ACF estimator. The restriction to
a linear function is made for mathematical tractability.

Now, our goal is to find the conditional MVU estimator of.
Similar results are available for real linear models in [44]–[46],
where is referred to as an estimable function of.

Theorem 1: Let denote the complex
Bayesian linear model where and is 1,

and is 1, and are independent,
is with , and the rank of is . Let ,
where is 1, and lies in the range space of . Then,
the conditional MVU estimator of is given by

Proof: Let , where is some complex
valued function of , and is 1 and complex. For to be
unbiased, we must have

For this to hold for all , we must have (let )
and or so that must lie in the range
space of . To minimize the variance

var

since

where denotes conjugation. Finally

var

(31)

Next, we prove that . Since

We set the complex gradient of or [26],
as shown in the equation at the bottom of the page, but

[26] so that

Since is full rank, we must have

Substituting this result into (31) yields

var

with equality iff .
Finally, to minimize var over with , note

that is full rank so that is a consistent set of
equations, and is constrained to lie in the range space of .
The general solution is

where is 1 and arbitrary, and is the generalized
inverse of [44]. However

and using (since is full rank)
[43], [44]

so that

with equality iff . This implies that the optimal is
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and finally

We take as our estimator of and note

that is the unique conditional MVU estimator of .
To avoid confusing the used to define the linear model

with the TVFR, we replace with as in (22) so that the
conditional MVU estimator of the rolled out TVFR becomes

.

APPENDIX C
EXPLICIT SOLUTION OF

We now explicitly determine for the TVFR using (22) and
(23). Thus

...
...

.. .
...

...
...

. . .
...

...
...

. ..
...

and

...

Using this in (23) produces

...

...

...

...

where .
From the original definition of (21)

We note that this last expression holds for all. The conditional
MVU estimate now becomes

...

...

...

...

APPENDIX D
DERIVATION OF THE ACF IN TERMS OFAMBIGUITY FUNCTIONS

Since we defined the theoretical autocorrelation function in
terms of time–frequency autocorrelation functions in (10), it is
instructive to rewrite the estimate in a similar fashion
by substituting (25) into (26). We ignore the constant factor

as we will normalize our results.



KAY AND DOYLE: RAPID ESTIMATION OF THE RANGE-DOPPLER SCATTERING FUNCTION 267

Now, recalling the definition of the time–frequency autocorrela-
tion function (11) and letting and and
assuming that the signal is truly time limited and bandlimited
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