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Rapid Estimation of the Range-Doppler
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Abstract—Under wide sense stationary uncorrelated scattering pairs and twin receivers is given in [4] and [5]. More recently,
(WSSUS) conditions, the signal spreading due to a random Hahm et al. reviewed the effects of simultaneous range and

channel may be described by the scattering function (SF). In an pqgn51er spreading on the results of various iterative deconvolu-
active acoustic system, the received signal is modeled as the super;

position of delayed and Doppler spread replicas of the transmitted tion methods and discussed some resulting signal design issues

waveform. The SF completely describes the second-order statistics[6]-
of a WSSUS channel and can be considered a density function Another method of scattering function identification is given
that characterizes the average spread in delay and Doppler py Jourdain in [7]. Jourdain transmits a large time-bandwidth
eX'Fl)'ﬁ(releglgez;lntc)iyitznr:;gitusrgrgzln??/vlitlIpt?essr:\?i(ter\]/\rlggggﬁlhgs(;ihrﬁgpoerl'is signal and calculates the scattering function from the interam-
proposed based on a two-dimensional (2-D) autoregressive (AR)blgwty _between_ the transmltted and reqelved signals. _He_then
model for the scattering function. In order to implement this esti- ~determines optimum receivers for a binary communications
mator, we derive the conditional minimum variance unbiased esti- scheme based on the form of the scattering function. The use
mator of the time-varying frequency response of a linear channel. of pseudo-inversion of the linear system for scattering function
Unlike conventional Fourier methods, the AR approach does not ggimation is discussed in [8], and in [9], the equivalence of the
suffer from the usual convolutional smoothing due to the signal am- do-i ion d Iuti I I lue d -
biguity function. Simulation results are given. p_seu O-inversion deconvoiu '.Or] Y'a Singuiar value ecomp_osr
tion (SVD) and the spectral division methods of deconvolution
'is shown.

Signal design for scattering function estimation is also a
much discussed topic [10]. Persons not only considers opti-
mization of probe signals but also calculates a lower bound for
. INTRODUCTION the mean square error of an unbiased estimate of the sampled

RANSMISSION channels that spread the transmittetfattering function [11]. The problem of designing signals for

T signal in both time and frequency are commonly model® in communications or detection systems in randomly time
as random, time-varying, space-varying linear filters. Ten¥arying channels is addressed in [12].
poral spread is usually associated with multipath effects and'he identification of the one—dimensional (1-D) range scat-
frequency spread with scatterer motion. Under wide sen§&ing function using AR models is addressed in [13] and [14]
stationary and uncorrelated scattering (WSSUS) conditiondhile a method for detecting multiple targets in AR reverbera-
the scattering function completely describes the second-ord€f is givenin [15]. The use of a 2-D autoregressive noise model
statistics of the channel. It can be viewed as a density functishused in [16] to model the temporally and spatially varying
giving the average power modulation as a function of delay aR@ise field seen by a hydrophone array. Low-order 1-D AR
Doppler [1]. The scattering function (SF) is typically defined agmdels_ are shown to provide good descriptions of forward-scat-
being independent of the transmitted signal. However, for th@ed signals reflected from the sea surface [17].
underwater channel especially, this should be considered trud Ne need for accurate characterization of the channel scat-
only for signals of similar bandwidth and center frequency. tering function is clear. Given a known scattering function, re-

One of the common methods of identifying the channel sc&eiver and transmitter parameters may be optimized for detec-
tering function is by deconvolving the transmitted and receivét®n [18], [19]. Recently, channel scattering functions have been
signals [1]. Iterative methods for deconvolution of two-dimeriSed in radio communications for modeling the wideband HF
sional (2-D) signals or images are discussed in [1]-[3]. A dtWBHF) channel impulse response over a high-latitude auroral

rect measurement approach using specially designed wavefd@ [20] and for the HF skywave channel [21]. Methods have
been developed to predict performance of a WBHF communica-

, _ _ . tions system derived from the channel scattering function [22].
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between various channel and channel correlation function time-varying impulse response

representations. The difficulty of estimating the SF is discussed h (l‘, T)
in terms of estimation of the channel transfer function or its
autocorrelation function (ACF). We then review the AR model .
including a simple adaptation to fit the SF estimation problem :E;ii'i‘:)':g
into an AR spectral estimation framework. The problem is then S (¢ T)
defined in terms of the linear model [26] allowing the use of ’
simplified matrix notation.

Estimation of the channel ACF is addressed in Section |lI.
The conditional minimum variance unbiased (MVU) estimator

(4 time-varying
Frequency response

H.f)

and its properties are reviewed in the context of estimation of B (¢,f)
the channel’s time-varying frequency response in this underde-
termined problem. Using this result, the channel (ACF) is esti- bifrequency function

mated and reduced to a simple ratio of the time—frequency au-
tocorrelation functions of the transmitted and received signal,%%‘re
The capabilities and limitations of the method are demon-
strated through simulation in Section IV. The results of the paper correlation function
are summarized in Section V.
R,

A. Definitions scattering u Z two-frequency
function correlation function

1. Fourier transform relationships between channel function
sentations.

Il. PROBLEM FORMULATION

We first summarize the mathematical models that give rise
to the scattering function estimation problem. The channel is P(sz RH(M’V)
modeled as a stochastic linear time-varying system with impulse
responseé: (¢, 7), whereh (¢, 7) describes the response of the 1 u
system at time to an impulse applied seconds prior [27], [28].

Therefore, if the input to the channel is a sigeét), then the
outputz (t) can be written as RB(¢2V)

oo Fig. 2. Fourier transform relationships between channel correlation function
z(t) = / h(t,7)s(t—7)dr. (1) representations.
J —oo

Itis assumed that the output is the complex envelope and thefgrere the power |5(¢_7.)|2) for a given Dopplers and

fore boths (¢) andh (t,7) are complex. We also assume thaﬁelayr is defined as the scattéring function
h(t,7) is zero mean for all andr, WSS int and, uncorrelated

in 7. This embodies the usual WSSUS condition [29]. Taking p —r(is 2 5
the Fourier transform of. (¢,7) with respect tot yields the (¢,7) (| (¢:7)] ) ’ )

spreading function By noting that the Fourier transform éf(¢, 7) with respect to

o ] 7 yields the time-varying frequency response (TVHR]t, f),
S(p,1) = /OO h(t,7)exp (—j2mpt) dt (2 which is WSS in botht and f, we can define the channel ACF

as

which determines the amount of spread in delayd Doppleg)

that an input signal undergoes in passing through a time-varying Ry (u,v)=E[H* (t, f)H (t+u, f + v)]. (6)

linear channel [27]. Solving faki(¢, 7) and substituting into (1)

yields Finally, it can be shown that the scattering function is related to
the channel ACF by the 2-D Fourier transform

2 (t) = / / S(¢,7) 5 (t— 7) exp (j2rdt) drdgp. (3) S
J—oo J—oo P(¢,7)= / / Ry (u,v) exp (—j27 (pu — Tv)) dudv

We see that: (t) is now represented as the weighted sum of e (7)
delayed and Doppler shifted replicas of the transmitted signat. equivalently, P (¢,7) is the power spectral density of
Hence, the name spreading function fof¢, 7) is appropriate. H (¢, f). The channel ACHRy (u, v) is also referred to as the

Becauseé: (¢, 7) is WSS int and uncorrelated im it can be two-frequency correlation function [30].
shown thatS (¢, 7) is uncorrelated in botk andr so that, de-  Fig. 1 summarizes the Fourier relationships between the var-
noting the expectation operator () ious channel model representations. Fig. 2 does the same for the

corresponding correlation functions [27], [28]. The bifrequency
E(S*(¢,7)S (¢, 7)) =E (IS (¢>,T)|2) 6(¢" = ¢)6 (7" — ) function and its correlation function are shown for completeness
(4) but will not be discussed further.
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B. Estimation Problem We note that the T-F ACF is the Fourier transform of the Wigner
To estimate the scattering function, it is necessary to eitféstribution [35]-{37]. The signal ambiguity functidh (u,v)

explicitly or implicitly estimate the channel ACF due to thdS the magnitude squared of the T-F ACF

relationship in (7). This is difficult since the random process 9

H (t, f) is only observed via the frequency domain equivalent 05 (u,v) = |As (u, )"

of (1) oo Using (10), one might be inclined to use the unbiased estimate
)= [ HENS Dol © )
e Ry (u,v) = 22—~ 12
where i (u,v) As (u,v) (12)
H(t f)= / h(t,7)exp (—j2mfr)dr as was done in [34]. However, the correlation estimate becomes
T infinite if A, (u,v) = 0. This places severe restrictions on

ands (f) is the Fourier transform of the signal?) (and notthe ooy gesign for realizable signals. In Section 111-B, we wil

spreading function; the number of arguments easily distingwgnow that the conditional MVU solution fd (¢,., f,.) yields
the two). Since the signal is assumed to be the complex enkes ~orrelation function estimate '

lope and hence is bandlimited and sine_; is the Nyquist
frequency, then (8) can be expressed in discrete form as ~ Az (u,v) A% (u,v)

M1 B (w,v) = 2670y 47 (0.0) (13)
z(ty) = A H (tn, fm) S (fim) exp (427 frutn 9)
(En) ! mz::o ( )8 (fm) ( ) which is finite for all signals.
whereH (., fm) = H (t, f) li=t, f—s, forn =0,1,... ,N— Kailath showed [38] that the instantaneous TVFR was unam-
Landm =01 ... M—1 andA is the frequency sampling Piguously measureable only BL < 1, whereB is the extent

interval. The complex envelop&( f) is assumed to be defined©f the frequency spreading of the channel, dnis the extent

over the( fo far_1) frequency interval. There afdf N unknown of the time spreading of the chgnngl. This is the so-called un-
samples off (¢, f) but only N observed data samples so that §erspread channel. Thigl, < 1 criterion was later shown t? be
consistent solution cannot be found. This is known as an ngy_erly restrictive in [39]. Itis important to note that Kailath's re-
spread channel [29]. strictions are based on the measurement of each instantaneous

To get around the consistency problem, one might use milue ofH (z, f) using a train of impulses or a similar sampling
tiple returns. For each return we could transmit a sinusoid $heme. He further showed that when we are not interested in
a given frequency, say;. Then, each return could be used tdhe instantaneous values of the filter but only the statistical av-
obtain H (t, f;). For enough densely spaced frequencies, W&ades much Ie_ss information is required and/e < 1 can
could use this information to estimaté (¢, f). However, if be relaxed. For instance, he showed that the channel autocorre-
the channel changes from ping to ping this may lead to dftion function can be unambiguously determinedif, < 2
roneous results. Alternatively, we could transmit a broadba@fid that the average TVFR can be determined without regard to
signal, say a sum of sinusoids and then separate the variousEFé—_'f ensemble averages are used. In the foIIowmg_ section, we
sponses using a bank of narrowband filters whose bandwidiMd invoke the autoregressive model for the scattering function
are matched to the bandwidth B(¢, ;) or the Doppler spread to allow us to estimate the SF for the overspread channel or for
of the channel. This approach and others based on it are ffel > 1. Just as in the case of spectral estimation, the parame-
quently used [31]-[33]. This is equivalent to a Fourier basd@rization of the problem will allow estimation of the scattering
spectral estimator and suffers from leakage between the narréAiction without the need for ensemble averaging. Because the
band filters leading to a loss in resolution. Once an estimateRJPPIeM is parameterized, and we assume a small number of
H (t, f) is found, the ACF and/or the scattering function ma9oeff|C|ents are required to describe the scattering function, the
be d/irectly estimated. solution should be tractable, as long/§ is not too large. We

Alternatively, the channel ACF may be estimated directifyill @8sume without proving it that thB L requirement can be
from the data. The theoretical relationship between the corfdIther relaxed taB [, finite.
lation function and the transmitted and received signals cansb‘r:a AR A h
expressed in terms of the time-frequency (T-F) autocorrelati pproac
functions of the signal and the received time seriés(u,v) We propose a parametric approach to scattering function es-

and A, (u,v) [34] timation based on autoregressive spectral modeling [40]. Since
E[A, (u,v)] only a few parameters must be estimated for the AR approach,
Ry (u,v) = m (10) it often can function well when Fourier-based methods do not.

Since simulations and any practical implementations must be
oo done on a digital computer, a discussion of sampling require-
Ag(u,v) :/ s* (t — _) s (t + _> exp (—j2mvt) dt ments and assumptions is appropriate. As a result of sampling,
- 2 2 the scattering function can only be estimated over the Nyquist
_ / g* (f _ E) g (f n E) exp (j2ruf) df. band. Thus, we make the very practical assumptions that the

2 2 multipath (delay) spread is less thars, and the Doppler spread

(11) isless thamB Hz. With these assumptions the scattering func-

where the T-F ACF is defined as

—00
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tion will be estimated over the band Yule-Walker equations to estimate the AR parameters [40].
The 2-D Yule—-Walker equations are
0<t<L
-B_ _B R[0] R[-1] - R[-p] 7ral]
; 0=y R[] Rl0] - Rl-(n-1]| | all]
To prevent aliasing, the ACR; (u,v) must be sampled on : : : :
a grid, whereAw < 1/B, andAv < 1/L. We assume that LR[p:] R[p1 —1] --- R|0] alp1]
Awu = 1/B and thatAv = 1/L. ole;
The scattering function is now written using the sampled form 0
of (7) as = . (17)
1 0
P(¢7T) = 757
OOBLOO Lo o ; where
; . T
" _Z _Z tu <§’ f) o <“’2” <§ B f)) ' alil = [ali,0] ali,1] - ali.pa]]”
. _ eg=[1 0 - 0]"(pp+1)x1
If we ignore the scale factdr/ BL and normalize the Doppler
and delay by lettingfy = ¢/B, f» = 7/L, andr'[k,]] = and
Ry (k/B,l/L), this becomes r[i, 0] rli, =1 - r[i, —ps]
00 00 RIil = T[ivl] ’I‘[i,O] T[i,—(pg - 1)]
P(fif)= 3 3 ¥ Ik dlexp (=j2m (fikk — fl) =1 5 ;
e 1) rlipa] rlipa =11 -+ r[i0]
1 1 To estimate the AR parameters, we therefore need to calcu-
D) <h= 570 <f=sl (15)  |ate the autocorrelation function only at the lags shown in these

i i . — 2 [k ] — . _
which is the usual definition of the power spectral densit()a/q;)a tggsal:zg?e[kli/ll(]etﬁord [?éMl)]'T_hf(I;{oU;/r 'i;\cé/ rﬁétho d. on
(PSD), except for the sign change f;). To use standard varl ' varl !
AR estimation techniques [40], we must account for this si

change. Letting [k, 1] = ' [k, —1], (14) becomes

the other hand, requires an estimatéfft, f) and not its ACF.
gﬂ1e standard formulation of the CM finds the AR parameters
from (18), shown at the bottom of the page, for

P(fi,f2)="Y, > rlklexp(—j2r (fik + fol)) k=0,1,....p1
k=—o0l=—o00 l :0,1./...,]72
which is the usual definition of the discrete-time PSD. There- [k,1] #10,0]
fore, the usual methods of 2-D AR spectral estimation may be . ) ) )
applied to find the AR parametes$ anda [k, I]. and wherei [0,0] = 1 and the estimator for the white noise

The spectral estimator for ahiR (p1, p») quarter plane (QP) variance is the casig, /] = [0, 0] or

model is given by [40] o 1
o2 7T M=) (N p2)
P(f,f2) = — “ 5 (16) p1 P2 M—-1 N-1
S S alk, [ exp (—j2r (fik + fol)) x Y S ali,g] Y. > H(m—in—j5)H (m,n). (19)
£=01=0 i=0 j=0 m=p1 n=ps

wherep; andp, are the AR model orders. We note that the 2-[40]. Letting
AR PSD is completely determined loy;, + 1) (p2 + 1) param-

eters. The examples that will be shown inthis paper use eitherthig ;; [i, 5, k, ] = !

2-Dautocorrelation method (ACM) orthe 2-D covariance method (M = p1) (N = p2)

(CM), asdefinedin [40]. These methods are appropriate whenthe N . -

AR model order is known. Recursive methods are available when X Z Z H(m —i,n—j)H" (m —k,n—1)

m=p1 n=p>

one [41] or both [42] model orders are unknown.
1) Autocorrelation Method (ACM)The ACM requires (18) and (19) can be written in matrix form, as shown
an estimate of the ACF, samples of which are used in the the equation at the bottom of next the page, where

P1 P2 M—-1 N-1

(M_pl)l(N—pZ) SN ali) Y, S Hm—in—)H (m—kn-1)=0 (18)

=0 j=0 m=p; n=p2
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b = [(f? 0 o]T. For convenience, we have used the Because both a direct estimateff(¢, /) and an estimate of

colon to signify all elements of range as is done in Métlale., the ACF are required for the different methods of AR model esti-
. mation, both will be derived. We will first formulate the problem

Chr [0,:,0,0] = in terms of the linear model and then address the task of esti-
[Crm[0,0,0,0] Cgg(0,1,0,0] Crm[0,p2,0,0]]. matingH (¢, f). Once this is done, an estimate of the ACF will

be found and given in terms of the received and transmitted sig-

We see that each column of each submatrix, for example nals as well as in terms of their time—frequency ACFs. Finally,

C%,10,:,0,0] simulation results using both methods will be presented.
CEH [0,:,0,1]
. D. Linear Channel Model
cL, [0'7 0, pa] Starting with the generic frequency domain representation of

. o - __areceived signat(t), which is the result of a signal¢) prop-
isa(ps + 1) x (p2 + 1) block, which is Hermitian and positive agating through a channel characterized by the time-varying
semidefinite. Now, letting frequency responsH (¢, f), as given in (9), we formulate the

CLy i, k0] problem in matrix notation with the hope of being able to solve
CLy i,k 1] for the time-varying frequency response given the received
Cum [k,1] = ) signal and the transmitted signal. We first fetbe theM x N
_— matrix
CHH [Z7Z7kap2] )
we can write [Al,., = AfS (fm) exp (527 fintn) (21)
Cru(0,0] Cggl0,1] Cru [0,p1] alo] so that (9) becomes
Cum [10] Cyy [1,1] CrH [lvpl] é[l] M-1
: 5 : : o (tn) ~ Y [Al,, H (tns fm) -
Cuu[p1,0] Cuup1,1] Cua [p1,p1] A api] m=0
b Now, letx = [z(to) a(t1) a(ty—1)]", where
0
=|.]- (20) M—1
. w(to) = Y [Alg H (o, fm)
m=0
M-—1

This covariance matrix is Hermitian and positive semidefinite.
We note that each column of the matrix has constant unconju-
gated lags, which is consistent with the notation used in [40] for
the 1-D case.

Again, we make an adjustment in sign convention due to the
fact that we are estimating a scattering function and not a true
2-D spectrum. It is simple to show that the resulting equation is

exactly (20), except that As previously mentioned, there ak€N values offf (¢, f) map-

z(t) = Z (Al H (t1, fm)
m=0

.J\/[—l
w(tno1) = D (Al vy H (vt fm).
m=0

1

(M —p1) (N — p2)
M—1 N—1—ps

C(HH [LJ, kvl] =

X Z Z H(m—i,n+j)H (m—k,n+l).

ping into only N values ofz (¢). Therefore, the problem of de-
termining H (t.,, f..) from x is underdetermined. We now de-
fine theM x N matrixH as[H],; = H (t;, f;) and write the
formula forx in matrix form, noting that the summation at time
t; is simply the inner product of thith column of A with the

- Chpl0,:,0,00 | ChylL:0,0] |
Chu0.:,0,1] | ChylL:0,1] |

T : | T |
CHH [07:707p2] | CHH [17 707])2] |
CgH [0,:,p1,0] | CgH [1,:p1,0] |
CHH [07:7p171] | CHH [17 717171] |

: | |

- Cq}}H [07:7]717]72] | CgH [1 p17p2] |

| C;I:[H [pl: 070] T

| Cxglp1,:0,1]

| .

| C%H [Pl 0 P2] 5[0] E)
afll | o

| C;I;H [p1,:,p1,0] api1] 0

| CHH [p17:7p171]

| :

| C,II:TH [p17 57]’17]’2] 4
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ith column ofH so that for
T Hi(to, fo)
: n=0,1,...,N—1
H(to, far1) m=0,1,....M — 1.
H(ty1, fo) This can be written in continuous time frequency as
al or ... or ’
0
ol a? ol : ~ 1 ., .
x|, T Hit fu) | 22 H(t,f)= 25" (Hexp(=j2nfDye(t)  (25)
Lo of .. af ;) : where the energy in the signal is
B(NXMN) o
B/2
Hitx-1, fo) = [ IstPar
: J-B/2
;H(ththfl)-, Substituting (25) into (8) yields an identity after integration
g(MEX 1 proving that this is a valid solution to the estimation problem. In
_ BO where A has b iitioned ad  — fact, it can also be shown that (25) is the solution of minimum
orx = » Where A has been partitione — . norm. We note that the conditional MVU estimator of the
[ap a1 --- any—_1],whichisM x N, and@ is a vector of

time-varying frequency response (25) is deterministic in the
frequency direction (dependent only on the transmitted signal)

nd random in the time direction. The estimate of (24) can be
directly used in the covariance method. The autocorrelation
function estimator of the TVFR, which is used in the autocor-
relation method, is derived in the next section.

the rolled out columns oH.

In Appendix A, we use the linear channel model of (22) t
show that the AR solution is identifiable as longgs< N —
2M +1,p2 < M/2,andS (f,) #0forn=0,1,...,N — 1.

I1l. ESTIMATION PROCEDURES
A. Conditional MVU Estimator B. Estimating the Autocorrelation Function

In sonar, the return from distributed interference is known asWe now have a direct estimate of the TVFR of the channel.
reverberation. The scattering field can be modeled as a spalfifiis in general will be a noisy estimate as itis from a single mea-
Poisson random process and, where there are a large numbé&téement of an overspread channel. Although the direct estimate
scatterers, the received envelope will be a zero mean complegy be poor, it is possible that it may contain enough informa-
Gaussian random process [30]. We therefore model the receiliéfl to estimate the scattering function. Both a direct Fourier
data using the complex Bayesian linear model based on the@gtimate and the ACM estimate require that the autocorrelation
sult of (22). Letx = B@ + w denote the complex Bayesianfunction be estimated. _ o
linear model, wherd ~ CN (u,,Co), w ~ CN (0,0°1), 0 The 2-D autocorrelation function was defined in (6) as
andw are independenB is N x p with N < p, and the rank of
B is N [26]. Note that the matriB in our problem is usually Ry (u,v) = E[H* (t,f) H (t +u, f +v)]
denoted a#l in the formulation of the linear model. Except in
Appendix B, we will useB so that the linear model formulationand exists it (¢, f) is WSS in both time (space) and frequency.
will not be confused with the TVFR. In Appendix B, we showAssuming ergodicity, we will estimate the ACF by replacing the
that the conditional MVU estimator for a linear function of theexpected value with integration over time and frequency to yield
parameters of a complex Bayesian linear model implies the fol-

lowing estimator fod: ~ 1 B2 L N
) . RH(u,v):ﬁ/ / H* (t,f)H (t+ u, f + v) dtdf.
§ = BH (BBH) x. (23) J=B/2J0 (26)

We note that this estimator is identical to the Moore—Penrose I4Sing (25) in (26) and neglecting the constant fadtoB L., we
verse of (22)[43] and could also be derived using singular valfidve (See Appendix D)
decomposition or regression approaches. However, we prefer .
the conditional MVU solution due to its optimality properties. Ry (u,v) = Ag (u,v) A7 (TQM/).
The expression fd# is expanded in terms of the transmitted and (A5 (0,0))
received signals in Appendix C. The result of this expansion is
the explicit solution for the estimate of the TVFR givenas  We see that this estimate of the ACF does not require that the
—~ signal ambiguity function be nonzero as did the estimate of (12).
H (tn, fm) Next, to implement?; (u, v) in the discrete domain, we as-
- 1 S* (fm) exp (—j2m ftn) x (t,) (24) Sume that the samples of(t) are available for = nA,. Re-
M—-1 . . .
A; SIS () |2 calling that 'Fo prevent aliasing the AQEy (u,v) must be sam-
=0 pledonagridwher&uw < 1/Band Av < 1/L, we can esti-
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mate the ACF in the discrete domain using (11) as

= k k !

- Zx (nAt— @> T (nAt—}—@) exp (—,727rnzAt>

A Jf A i | nAH+ i 72 ZA
+ S| nA: 2B S nA 2B exp | 7 TI'TLL +

n=0

' N-1 ,17
n=0

Clearly, itis also required tha/ (2B) be a multiple of the sam-
pling rateA,, or we must hava / (2B) = mA, for m, which

(@) Is(n)

0 1 ! 1 ! ! !

4 3 2 -1 0 1 2 3 4 5
TIME (s)
(b) Ix(n)]
14 T T T T T T T T
1.2 1
1 B
=08 4
£
X06F 4
0.4 A
0.2 b
0 L | | 1 s 1 | 1
0 0.5 1 1.5 2 25 3 35 4 4.5

TIME (s)

3. (@) Magnitude of transmitted Gaussian envelope. (b) Magnitude of

. . . . . 19.
is an integer. Finally, for use in the ACM, we use the dlscretggeived signal envelope.

ACF estimator

Ik 1]

(27)

which can be used to estimate the ACF on an appropriate g?j

for use in the ACM (17).

IV. SIMULATION RESULTS

To demonstrate the validity of this approach the results of a
number of simulations are presented. We will assume all data
is sampled in delay and Doppler at intervalsiof andA, re-
spectively. In the simulation we define a known scattering func-
tion, P, with maximum time spread and maximum Doppler
spreadB. We also define a known transmit waveform with time
support?’. The samples of a realization of the spreading func-
tion are zero mean complex Gaussian variables with variance
P (kAg,lA;) so thatS (KA, IA;) = zuy/P (kA IAL),
wherezy; ~ CN (0,1) and all thezy,;s are uncorrelated. The re-
ceived signal is calculated using a discrete version of (3), shown
at the bottom of the page, for < n < (T'+ L) /A;. Note
that in this expression, samples of the transmit wavefe(im)
re needed over the rangeL A /A, T + L]. If a transmitted
§nal is given over an interval from O B, we zero-pad out-
side the interval. For a known analytical expression such as a
Gaussian pulse, the signal is calculated over the entire range.

The first example is for a known AR scattering function with

In 2-D AR spectral estimation, all causal AR models arg; = p, = 1, which we denote AR(1,1) [defined by (16)] with

based on a region of support which is either the nonsymmettime spread. = 4 s and Doppler spread suppdst = 5 Hz,

half plane (NSHP) or the quarter plane (QP). In general, onlyhich is interrogated by a Gaussian probe pulse of rms dura-
the NSHP will yield the correct PSD if the region of support ifon 7" = 0.357 s. The rms bandwidth of a Gaussian pulse is
infinite. However, it has been observed from simulations thafy = 1/1/21", which is 1.98 Hz in this case. The scattering func-
for sinusoidal signals in noise, spectral estimators based on tioa is characterized by the AR coefficient$0,0] = 1.0000,
NSHP perform poorly, possibly because the required model0, 1] = 0.1854 — 0.57067, a[1,0] = —0.7000, a[1,1] =
order is too high [40]. All of the results presented herein utilize 0.1298 + 0.39944. The received signal, whose bandwidth is
a 2-D quarter plane (QP) autoregressive (AR) model. Estimates8 + 5 = 6.98 Hz, is sampled at 10 Hz, and the SF is sam-
using the ACM and CM are compared. A comparison of resulged in Doppler in 0.25-Hz increments. Fig. 3 shows exam-
using the NSHP and QP is beyond the scope of this paper qoiéls of the envelopes of the transmitted and received signals

is an area of future work.

for this case. Note that the analytical expression for a Gaussian

B/(2A4)  L/A
x (nAy) =

k=—B/(2A,) 1=0

S D S (kA 1AL s (nAy — IAL) exp (j2mkAGIA )
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(a) TRUE SCATTERING FUNCTION (b) MODIFIED PERIODIGRAM OF H(t,f) (a) TRUE SCATTERING FUNCTION (b) AVERAGE MODIFIED PERIODIGRAM OF Hit,f)
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Fig. 4. (a) True scattering function used in the simulation. (b) One-pirfgig. 6. (a) True scattering function. (b) Average of 50 Fourier estimates.
Fourier estimate. (c) One-ping AR(1,1) CM estimate. (d) One-ping AR(1,1}) Average of 50 AR(1,1) CM estimates. (d) Average of 50 AR(1,1) ACM
ACM estimate. estimates.
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Fig.5. Scatter plot for 50 realizations of 1-ping AR coefficient locations usingig. 7.  Scatter plots of 50 AR[1,1] coefficient locations for both CM and ACM
both the ACM and CM estimators. estimators. Three pings are averaged to form each estimate.

pulse was used to generate the transmitted signal over the raimgestigation. It is also notable that in this case the ACM esti-
[-LA;/A:, T + L], and the received signal has time suppornates of theu[1, 0] coefficient have significantly less scatter
only over the range [0OL]. Fig. 4 shows the known SF and thethan the CM estimates. The average scattering function esti-
single ping estimates for various estimators. All contour ploteates for these 50 single ping realizations are shown in Fig. 6.
are shown on identical axes and contours are given in de@Qualitatively, the average of CM results appears to match the
bels. The Fourier estimate is formed by calculating the 2-D pe&ue scattering function better than the average of the ACM re-
riodogram of the conditional MVU estimate of the TVFR (24)sults.
This is followed by AR(1,1) estimates using both the CM and Although we wish to estimate the scattering function with a
the ACM estimators. Clearly, the AR estimators give higher resingle ping, the use of multiple pings will improve the accuracy
olution and more accurate estimates of the scattering functiofthe estimates if the channel can be considered stationary over
for this simple case. the time spanned by the multiple pings. Fig. 7 shows a similar
Scatter plots of AR parameter estimate locations for 50 reakatter plot for a case where three pings are used to form the esti-
izations of the two AR(1,1) estimators are shown in Fig. 5. Solithate. Here, the conditional MVU estimate of the TVFR is calcu-
lines on the graph are drawn from the actual model locationsléded and the corresponding correlation functions [(27) into (17)
the average of the 50 realizations. In almost all cases, the & ACM or (24) into (20) for CM] for AR estimation is formed
erage location of each parameter estimate is biased towardftireeach ping. The correlation functions are then averaged be-
origin. The one notable exception is for thé¢l, 1] coefficient fore finally calculating the AR parameters. We see that the vari-
using the ACM. The exact cause of this bias is a matter of futuamce of the estimates is significantly reduced although the bias
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remains. Although it is beyond the scope of this paper, this ivhereR,; has2M — 1 unique complex elements. L&}, denote
dicates that multiping and/or recursive estimation schemes nthg mth diagonal ofC,.,. so that
provide robust estimates in environments where some stability

may be assumed from ping to ping. alRpal,

T *
a Rpal,
V. CONCLUSIONS — e

Zm =

A novel method of scattering function estimation based on T R a*
autoregressive spectral modeling has been proposed. The cur- AN—1-mtmAN -1
rent implementation of this method uses the conditional MVU
estimate of the TVFR, given aknown input waveformand therésr m = 0,1,..., N — 1. Eachz,, is (N — m) x 1. Therefore,
ceived envelope. Preliminary simulation results exhibit promis¢ke estimates of differe®R,,,’s can be decoupled. Sineg, is
of obtaining high-resolution estimates of the scattering fun¢N — m) x 1, each vectog,, can be expressed as a system of
tion from a single ping. The results also indicate that the cbrear equations in theM — 1 unknown parameters d,,,.
variance method may be slightly more accurate on average tidrese equations are assumed consistent. In addition, assume
the autocorrelation method. However, no claims of optimalityat  is chosen so thaV — m > 2M — 1, and therefore,
can be made regarding the current estimator. Attempts by thésere is a unique solution, as we now show.
authors to calculate the maximum likelihood estimate using theWe now assume we are looking for &R (p, p2) solution
EM algorithm have failed due to the extreme computational aaehd derive an explicit solution fdR,,,. Let
storage requirements of the algorithm. Continuing research is
focused on improving this technique using optimal estimators

.0 =1 - -
and waveforms and the use of quarter plane versus nonsym- ;m 1} Tq[r[]:n 0]] T[W:[T/(p pi] 1)]
metric half plane estimators. R,, = h h e
APPENDIX A rlm,pa] rm,p2 —1] --- r[m. 0]
IDENTIFIABILITY OF THE AR PARAMETERS
Assume that we have access@., = E (xx), where form = —pi,—pi —L,...,p1 — 1,p1. Now, expand thesth

x = B# is given by (22). Can we determine the AR paramealement ofz,,,, which isaf R..aj, ., as
ters describindC4g, where

b2
C,. = BCQQBH (28) Zm []{;] :a:nJrk [0] Z Qg [l/] T [m, ll]
1'=0
p2
andB is defined in (22)C,.. is N x N,Bis N x M N, and +ak o [1] Z ar [I'] 7 [m, 1" —1]
Cog iISMN x M N?Cyg is Hermitian and block Toeplitz con- I'=0

sisting of NV unique blocks of sizd/ x M, which are themselves
Toeplitz. Therefore, each block had/ — 1 unique complex P
e_Iements. Thus, to descrilig;y, we needV (2M — 1) coeffi- + ki [p2) Z ar (1] [, I’ — ps)]
cients. As we now show, an AR parameterizatioiCg§ allows o

us to identifyCyy from C,,.. This says that an estimate G,
is possible based 08, = xx.

We now expand (28) as fork=0,1,..., N —m — 1. Collecting ther's yields

C.n P2 pa—l' .
al o7 ... o7 Ro R, - Ry zm [K] = Z r[m, '] Z i, [q] ax [g + 1]
of al . of || RE Ry - Ry r=0 - ,
SR : : L + > rm 0 Y ah g ldala+ 1.
of of ... af_ JlRE_, RE, .. Ry T =
ai 0 - 0
o 0 ay -~ 0 Let! = I’ 4 po, and define
0 0 s aj‘v_l 2pa—I
al'Roa} al'Ra} - alRy_jay_,; q;o aprwld—p2larlqg+1—p2], 1>p2
alREa} alRpa} o aTRy_say_, Nk ] = pa
- : > ah g ldar(g+1—po, I <p2

: : : q=p>—1
T H _x T H % T *
ay_Ry_,a5 ay_Ry_jai - ay_;Reay_, (29)
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for0 < I < 2py, andr,, = [r[m,—ps]r[m,—p2+1] indicies is reduced byp,, i.e., exp (j2m fo4+4t0) becomes
1 [m, p2]]T. Now, z,, [k] = nfn’krm, and exp (J27 foyq—p.to)-
Now, assumingf; # f;Vi # j,i,j = 0,1,...,2ps, anyE]
7751,0 is of full column rank, and the sﬁl(jr is linearly independent. In
nk addition, sinceE [ is of full column rank, diagc,,,) E} is of
Zm = . I';m (30)  full column rank as long as,,, k] # OVk. This is equivalent to
. : requiring thatS (f,) # 0for ¢ = p2, P, +1,...,2p,. The set
N, N—1—-m diag(cm,) Ef is therefore also independent and forms a basis
H, for H;' . H;\. is therefore of full column rank.

The same argument holds f8f;,,, adding the requirement
wherez,, is (N —m) x 1, Hy, is (N —m) x (2p2 + 1), and thatS (f,) # 0for ¢ = 0,1,...,ps — 1. Clearly, H;, will

Ty IS (2p2 + 1) x 1. This is naturally partitioned aH,, = be of full column rank ands}, E_ are independent sets, and
[H;, H} ], whereH;, andH}, correspond with < p, and thereforeH,, = [H,, H;"] will be of full column rank.
[ > ps, respectively. In summary, we have shown thRt,, is identifiable if N —

In order to show that (30) is uniquely solvable, we must show > 2/ —1, and anAR (p;, p2) solution is identifiable as long
thatH,, is of full column rank. We note that by assumptiap, asp; < N —2M + 1,py < (N —p; — 1) /2, andS (f,,) # 0
is in the range space &#1,,. Clearly, a bounding requirementisfor n = 0,1, ..., 2p».

N —m > 2ps +10rpy < (N —m-—1)/2. We recall from
(21) thatay, [I] = [Ali = ApS (f1) exp (527 fitr,). APPENDIX B

Now, expand (29) into the first equation shown at the bottorgonpITIONAL MVU ESTIMATOR FOR A LINEAR FUNCTION OF
of the page. We want to show that the columngigf are inde-  THE PARAMETERS OF ACOMPLEX BAYESIAN LINEAR MODEL
pendent. Note that two of the terms in each sum do not depencﬂ_ B N
on the column index. For later convenience, we write these as etx = HO+w denote th_e complex Bayesian I2|near mpdel,
vectors depending om andgq and indexed by so that we have wheref ~ ON (ug, Co) andispx 1,w ~ ON (0’ g I) andis

; Nx 1,0 andw are independenl is N x p with N < p, and
the second equation at the bottom of the page. Therefore the rank ofH is N [26]. The conditional PDF of is

p2—1

H [k, 1] :Af‘ Z S (for1) diag(cmg) EF p(x|0) = Nl 57 XD <_i2 (x —HO)" (x — H0)> .
q=0 o o
l:0,17...,p2
P2 By attempting to find a conditional estimator éfwe avoid
H, [k, 1] =A% Z S (for1-p,) diag(dm,) B the need for prior knowledge. However, becadée< p, there
q=p2—1 are an infinite number o that yield the sam#&16. Henceg is
[=0,1,...,p0 — 1 not identifiable. A reasonable approach is to estimate a linear

function of@, saya = P#, whereP is px 1. Then, from this
and we have the third equation at the bottom of the pagesultwe infer a reasonable estimatorfoNote that ultimately
E, is defined similarly, except that each of the frequenoye do not usd directly but only a function of, specifically, a

2p271

Z S* (fq—pz) eXp (_jZﬂ-ffI—Pztm-i-k) S (~f¢1+l—1’2) eXp (j27rfq+l—1)2tk) ’ l 2 D2
e 1] = A3 15,

P2
> ZS* (fg) exp (=327 fotmir) S (foti-p,) €xp (427 fyti—prtk) , I <pa.
q=p2—
2po—l

) 20 Cmgq [k] S (fq+l—p2) eXp (j27rfq+l—p2tk) ) I>p2
Tk [l] = Af (1;2

Z qu [k] S (fq+l—pz) exXp (j27rfq+l—pztk) , 1< pa.

g=p2—1
exp (427 fotqto) exp (J27 f144to) o+ exp (J27 fp,+4lo)

exp (J27 foyqt1) exp (27 f1yqt1) oo exp (J27 fp,4qt1)

€Xp (j27rf0+qtN—nl—1) €Xp (.jzw‘fl-l—qt]\f—m—l) co- €Xp (j27r.fp2+qtN—’m—1)
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Hermitian function used as an ACF estimator. The restriction We set the complex gradient df (g (x))

a linear function is made for mathematical tractability.
Now, our goal is to find the conditional MVU estimator of

265

0 or [26],
as shown in the equation at the bottom of the page,
(9/98) ||(x — HO)||” = — [H (x — HO)]" [26] so that

Similar results are available for real linear models in [44]-[46],

where« is referred to as an estimable functionfof

Theorem 1:lLet x Hf# + w denote the complex
Bayesian linear model whe ~ CN (u,, Cy) and ispx 1,
w ~ CN (0,0°I) and isN x 1, 8 andw are independentl
is N x pwith N < p, and the rank oH is N. Leta = P9,
whereP is px 1, andP lies in the range space &. Then,
the conditional MVU estimator af is given by

& =PHEHH (HHH)_l X.

Proof: Leta = L¥x + g (x), whereg is some complex
valued function ofk, andL is N x 1 and complex. Fof to be
unbiased, we must have

=LY B (x) + B (g (x)) = a V0
=L"HO+ E (g(x)) = PHo V8.

E (&)

For this to hold for alp, we must havé” (g (x)) = 0 (leté = 0)
andL¥H = P¥ or P = H”L so thatP must lie in the range
space ofH”. To minimize the variance

where* denotes conjugation. Finally

var(a) = L7 ?IL + LY E [(x — H) g* (x)]
+ |9(x) (x— H8)"| L+ E[lg ()] (31)
Next, we prove thatF |g(x) (x — HG)H] = 07. Since

E(g(x)) =00

0= [ax) (=3 ) (B x - 1) (xi) x

0 = /g (x) [HY (x — HO)] " p (x|6) dx

/ g (x) (x — HO)? p(x|0) dx H.

SinceH¥ is full rank, we must have

o”.

B [ = 18)"] = [ 460 (x~ HO) p (x16) dx =
Substituting this result into (31) yields
var(a) = o?LAL + E [|g (x)ﬂ > o?LHL

with equality iff g = 0.

Finally, to minimize va(a) over L with P = H¥ L, note
thatH is full rank so thatP = HFL is a consistent set of
equations, an® is constrained to lie in the range spacdbf .
The general solution is

L=(H") P+ (I- (H) H")Z

3

~ J

~~

£,

wherez is N x 1 and arbitrary, andH) ™
inverse ofH [44]. However

is the generalized

¢fg, = PH (HH) (1- (m7) B7) 2

-1
and using(H?)™ = (HHH> H (sinceH# is full rank)

[43], [44]
¢le, —pH <(HHH>_1 H)H (I - (HHH>_1 HHH> z
—0

so that

LYL =&, 1” + 1607 > (16117
with equality iffz = 0. This implies that the optimdl is

-1

Lo = (HY)” P = (HHY) " HP

LD~ [009 iz (~ ) g I x = O exp (= (- 1) (x - 10) ) dx =0

but
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and finally

>

=LY x = PHY (HHH)_1 X.

. -1
We takef) = HH (HHH> X as our estimator o and note
thatP# @ is the unique conditional MVU estimator §70. m
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Where[ai]j = [A]ji, 1=0,1,...,N—1,7=0,1,... M~-1.

From the original definition ofA (21)

[ai]; =S (f;) 22750

M-—1
afla; =AT > |S(f;)
=0

To avoid confusing thé used to define the linear modelwe note that this last expression holds forialfhe conditional
with the TVFR, we replacéd with B as in (22) so that the pvU estimate now becomes
conditional MVU estlmator of the rolled out TVFR becomes

§ = BH (BBH) X.

APPENDIX C

EXPLICIT SOLUTION OF @

We now explicitly determind for the TVFR using (22) and
(23). Thus

al 07 07 al 07 ol 1#
T T T T T T
BRY 0* aj 0 0* aj 0
o” oT ... a%_l o” o7 a%_l
aOHaO 0 . 0
0 a{{al 0
0 0 ay_jan—1
NXN
and
z(tg)
1 a(’;{ao
(BBH) x =

$(tN71)
3%7131\’*1

Nx1
Using this in (23) produces
B [a0]g z(to) 7

aé’ao

[30]7\1;127“0)
aé‘Iag

[al]?:rz(tl)

a1 al

0= [al]g{;;l (t1)

[av—1]gz(tNn—1)
Tl aw. 1

N_1aN-—1

big
ay_18N-1 d

1
A2 IS ()2

[ S* (fo) exp (=j27 foto) x

=
(to) 1

(to)

S* (far—1) exp (—.J'QWfM—ﬁo) x

5* (fo) exp (—j2m fot1) x (t

S* (f]u_l) exp (—:'jZ7rfM_1t1) T (tl)

S* (fo)exp (—j2x fotn—1) z (tn—1)

L S* (fM—l) exp (_jZ%fM—ltN—l) T (tN—l)-

APPENDIX D
DERIVATION OF THE ACF IN TERMS OFAMBIGUITY FUNCTIONS

Since we defined the theoretical autocorrelation function in
terms of time—frequency autocorrelation functions in (10), it is
instructive to rewrite the estimafey (u,v) in a similar fashion
by substituting (25) into (26). We ignore the constant factor
1/BL as we will normalize our results.

B/2
/ / H* (t, f) H (t + u, f + v) dtdf
B/2
B/2
B/2/
CS*(f 4 ) eI 4 (4 4y didf
B/2
=l AL

e~ 2m (St futvttouw) p (4 4 o)) dtdf

~

Ry (u,

j27rft$* (t)

S* (f + U) e]27rft

—]27rvu B/2 .
/ S(f) 8" (f +wv)emdzruten
—-B/2.J0
- ( )z (t—f—u)dtdf
—j2mou

e

L
5 / ¥ (t)z (t+u) eIVt gy
€ Jo

B/2
../—B/Z

S(f) 8" (f +v) e ™I df.
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Now, recalling the definition of the time—frequency autocorrela-{16]

tion function (11) and letting = ¢+ /2 andf’

f+wv/2and

assuming that the signal is truly time limited and bandlimited

(17]

Ry (u,v)
67j27rvu [18]

— =
- - * ¢ — g / E —j2mut’ j2mou/2 g41 [19]

[ - )eesg)emmenmra
. /OO s (f/ . E) g* (f/ + E) efj2-n—f’ue]-2ﬂ,vu/2df, [20]
—oo 2 2

e—j27rvuej2‘n'vu/2e]’27r'vu/214ac (’U,, ’U) Az (’U,./ ?)) [21]

2

13
Ay (u,v) Af (u,v)
(45 (0,0))* 22]
[23]
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