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Abstract

In a previous paper it was shown that a wide sense stationary random process could be

represented as a sum of sinusoids with random frequencies. We provide an extension of that

theory by representing the process as a marked nonhomogeneous Poisson process in frequency.

This leads to a new spectral representation with some interesting properties. A realization of the

random process can be synthesized very simply by generating a realization of the Poisson process.

The first-order probability density function is that of a compound Poisson random variable, a

commonly used model for clutter, as for example in the Middleton Class A probability density

function. Because of its generality the extension to a multidimensional power spectral density

is immediate and an example is given of that extension. Applications to spectral hypothesis

testing are also described.

1 Introduction

The spectral representation for a wide sense stationary (WSS) random process is of utmost impor-

tance in modern signal processing theory and practice [2]. It forms the basis for the the science

(and sometimes “art”) of spectral estimation [7]. This representation relies on summing together a

set of sinusoids of fixed frequencies but random amplitudes and random phases. Alternatively, one
∗This work was supported by the Air Force of Office of Scientific Research and administered by Syracuse University

under grant AFOSR-FA9550-09-0064.
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can view the complex amplitude in the context of a random spectral measure, which is uncorre-

lated over disjoint frequency sets. Previously, it was shown that by also assuming the frequencies

to be random, one could obtain a representation that allowed the independent specification of the

power spectral density (PSD) and the first-order probability density function (PDF) [11]. The only

proviso was that the PDF had to be in the class of infinitely divisible densities [4], which includes

many well known PDFs such as the Gaussian, Cauchy, K-PDF, etc. This representation had the

advantage of lending itself nicely to generation of realizations of the random process without the

difficulties usually caused by coupling of the PSD to the PDF.

In this paper we show that an extension of this previously reported representation is obtained by

allowing the random frequencies, which previously were assumed to be independent and identically

distributed (IID) random variables, to instead be given by a realization of a nonhomogenous Poisson

process in frequency. The previously reported results then are obtained if we condition on the

number of frequency events in the given frequency band. The PSD, as before, is easily specified by

the intensity of the Poisson process and the first-order PDF is that of a compound Poisson random

variable. The latter comprises a broad class of PDFs with the Gaussian being a limiting case.

Besides being of theoretical interest the proposed representation has many practical applications.

Modeling of clutter spectra and nonGaussian PDFs is one area of interest [6, 1]. Another is the use

of the nonhomogeneous Poisson process as a model for neural responses, with an example being the

output of the auditory nerve [18]. Synthesizing realizations of a random process to approximate

a desired PSD is greatly simplified since there is no need to design coloring filters. For example,

the Gaussian PSD is frequently used as a model but is difficult to synthesize using a rational

transfer function model [7]. No such limitation is present if the frequencies are assumed to be

random. Finally, the representation is very general due to the generality of the Poisson process

[13]. In particular, the extensions to the multidimensional case, such as required for two- and three-

dimensional PSDs, is straightforward. It should also be mentioned that for deterministic signals, a

similar nonuniformly spaced frequency representation is available [12].

In summary, the utility of the new representation is the following:

1. A realization of a WSS random process with any PSD (either one-dimensional or multidimen-

sional) can be easily generated. No spectral factorization or covariance matrix square rooting

is necessary.

2. Correlated random processes with a nonGaussian PDF, either a compound Poisson or more

generally an infinitely divisible PDF, can be represented.

3. The model more closely represents typical scattering phenomena such as reverberation, clutter,

and target returns, when the number of scatterers is small.

4. The model may be useful in explaining neural responses, which are two-dimensional such as in
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the auditory nerve or optic nerve.

5. The ensemble autocorrelation sequence and PSD are easily specified. Therefore, the represen-

tation may be useful in theoretical work.

6. Extensions to the multichannel random process and evolutionary random processes is possible.

The content of the paper is as follows. In Section 2 we describe the spectral representation while

Section 3 summarizes its properties. In Section 4 an explicit example is given. Section 5 includes

some typical applications. A summary and discussion is included in Section 6. All derivations are

relegated to several appendices.

2 The Poisson Spectral Representation

The background for this section can be found in [13]. For a discrete-time wide sense stationary

random process it is well known that the process has the spectral representation [2]

X[n] =
∫ 1

2

− 1
2

exp(j2πfn)X(df) (1)

where X(df) is the complex spectral measure and can be viewed as a complex random variable that

gives the amplitude and phase of the sinusoid whose frequency is at f . The random variable has

a zero mean and is uncorrelated for different frequency sinusoids. In our Poisson representation

it will be necessary to assume that not only are the sinusoidal complex amplitudes uncorrelated

but they are also independent. Of course if the random process were Gaussian, the representation

of (1) would also imply independence. The power at frequency f is given by E[|X(df)|2] and

hence the PSD is just PX(f) = E[|X(df)|2]/df . In the proposed Poisson Spectral Representation

(PSR) we simplify the discussion by considering only a real random process and thus, use the real

representation

X[n] =
1√
λ0/2

N∑
k=1

Ak cos(2πFkn+ Φk) −∞ < n <∞ (2)

where {A1, A2, . . . , AN} are IID positive amplitude random variables, {Φ1,Φ2, . . . ,ΦN} are IID

phase random variables uniformly distributed on [0, 2π), and with the amplitudes independent of the

phases. The number of sinusoids N is a Poisson random variable with mean λ0 and the frequencies

{F1, F2, . . . , FN} are the point events in frequency of a nonhomogeneous Poisson random process

on the interval 0 ≤ f ≤ 1/2. The Poisson random process N is independent of the amplitudes

and phases. In contrast to the usual spectral representation of (1) where the frequencies are fixed,

and usually chosen in the limit as uniformly spaced in frequency, in the PSR the frequencies are

randomly distributed throughout the frequency interval as a nonhomogeneous Poisson process. This
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representation then gives rise to a given PSD via a nonuniform distribution of sinusoidal frequency

components.

The representation of (2) in which we sum a function evaluated at the points of a Poisson

process and for which the function also depends upon the outcomes of other random variables is

called a marked Poisson process. It can alternatively be written as

X[n] =
N∑

k=1

gn(Fk, (Ak,Φk)) (3)

where

gn(F, (A,Φ)) =
1√
λ0/2

A cos(2πFn + Φ).

In this case, the random variable associated with the kth frequency event of the Poisson process is

(Ak,Φk) and is called the “mark”. It is independent of the marks at the other frequencies and also

of the other frequency events. As such, it produces a multidimensional Poisson process denoted by

N with events as depicted in Figure 1.

x xx xx
0 f 1/2

0

∞

0

2πA× B

a

φ

S ×M

Figure 1: Illustration of an outcome of a marked Poisson process N (shown as solid dots) with

event F (shown as x’s) and mark (A,Φ). Note that the number of events in A × B is two for the

pictured realization and the average number of events is the mean measure µ(A× B).

The space in which the marked events occur will be denoted by S × M. Here S denotes the

frequency interval 0 ≤ f ≤ 1/2, where the frequency resides and M denotes the marked space

[0,∞)× [0, 2π), where the amplitude and phase reside. The number of events in a subset V of this

space is given by N(V ), which is a Poisson random variable with mean measure E[N(V )] = µ(V ).

Also, the number of events in disjoint subsets are independent of each order, according to the
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Poisson assumption. Since a projection of a marked Poisson process is also a Poisson process, the

frequencies form a nonhomogenous Poisson process with mean measure denoted by

µ([f1, f2] ×M) = E[N([f1, f2] ×M)] =
∫ f2

f1

λ(f)df

where we have assumed that all the measures are absolutely continuous. We interpret this assump-

tion as saying that the Poisson process in frequency is nonhomogeneous and has an intensity of

λ(f). Thus the frequency realization is such that there are more events in frequency intervals where

λ(f) is large, i.e, where the “arrival rate” or intensity is large. Overall, it can be shown that the

mean measure for the Poisson process N for an arbitrary volume A×B, where A ∈ S and B ∈ M
is

µ(A× B) =
∫
A×B

λ(f)pA(a)pΦ(φ)dφ da df (4)

where pA(a) and pΦ(φ) are the PDFs of the amplitude and phase, respectively. We normalize the

intensity by letting

λ(f) = λ0p(f)

where
∫ 1/2
0 p(f)df = 1 so that p(f) can be interpreted as a PDF in frequency. With this normal-

ization the total number of expected events in S ×M is

µ(S ×M) =
∫ 1/2

0

∫ ∞

0

∫ 2π

0
pΦ(φ)pA(a)λ0p(f)dφ da df = λ0.

With these assumptions the PSR can be written as

X[n] =
∫
S×M

a√
λ0/2

cos(2πfn+ φ)N(df × (da, dφ)) (5)

where N(A × B) is the number of events occuring in the “rectangle” A × B. This is similar to

(1) except for the mark (A,Φ) and the property that the random counting measure, i.e., random

variable N , is Poisson and is independent, and not just uncorrelated, in nonoverlapping sets in

S ×M. We can alternatively think of the random counting measure as

N(df × (da, dφ)) =
N(S×M)∑

k=1

δ(f − fk, a− ak, φ− φk)df da dφ

where δ is a three-dimensional Dirac delta function. Inserting this into (5) will produce (2). Note

that ifN(S×M) = 0 then we defineX[n] as zero, although this will be a low probability occurrence,

especially for large λ0. The assumption of large λ0 is desirable in that the X[n] process will be

shown to be ergodic in the autocorrelation sequence only as λ0 → ∞, and is necessary for a practical

representation. We next state the properties of (2) or equivalently (5) with the derivations given

in the Appendices.
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3 Properties of the Representation

The X[n] random process as defined by (2) or equivalently by (5) with its accompanying assump-

tions can be shown to possess the following properties (see the Appendices for the derivation):

1. The process is zero mean, i.e., E[X[n]] = 0 for −∞ < n < ∞. This is due to the assumption

that the phase is uniformly distributed.

2. The process possesses an autocorrelation sequence, which together with the first property, shows

that it is WSS.

3. The PSD is given by

PX(f) =
E[A2]

2
p(|f |) − 1/2 ≤ f ≤ 1/2. (6)

Thus, the PSD is specified by choosing the intensity of the nonhomogeneous Poisson process

in frequency since λ(f) = λ0p(f) on the interval 0 ≤ f ≤ 1/2. The total power is seen to be

E[X2[n]] = E[A2], and is independent of λ0 (the reason for the chosen normalization in (2)

of
√
λ0/2).

4. The process is ergodic in the mean. This is due to the assumption of an absolutely continuous

spectral measure since this implies an absence of a delta function in the PSD at f = 0 [2].

5. The process is ergodic in the autocorrelation sequence as λ0 → ∞. This is reasonable in that as

the intensity of the Poisson process in frequency increases, more frequency events occur and

hence a more complete temporal description of the process is obtained.

6. The first-order PDF of the process does not depend on n so that the process is stationary to

first-order, and is given by the PDF of a compound Poisson random variable as

X[n] =
N∑

k=1

Uk (7)

where N is a Poisson random variable with mean λ0 and the Uk’s are IID random variables

and specifically Uk = Ak cos(Φk). The characteristic function of X[n] is

ψX[n](ω) = E[exp(jωX[n])] = exp

[
λ0

(∫ ∞

0
J0

(
ωa√
λ0/2

)
pA(a)da− 1

)]
(8)

where J0 is the Bessel function of order zero. It can be shown that as λ0 → ∞, X[n] becomes

Gaussian with zero mean and variance E[A2], and this holds independently of the PDF of A.

Other first-order PDFs can be constructed by appealing to the properties of the conditional

Poisson process as explained in Section 5. Furthermore, as λ0 → ∞, the process becomes a

Gaussian random process in a similar fashion to the well known convergence property of a

filtered Poisson process as the intensity becomes large [16].
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4 An Example

Assume that we wish to represent a random process whose first-order PDF is that of a compound

Poisson-Gaussian random variable. By the latter we mean that the random variable can be repre-

sented as

X =
N∑

k=1

Uk (9)

where the Uk’s are IID Gaussian random variables with mean zero and variance σ2/λ0 and N is a

Poisson random variable with mean λ0 and independent of the Uk’s. The PDF can be written as

pX(x) =
∞∑

k=0

exp(−λ0)
λk

0

k!
N
(

0, k
σ2

λ0

)

where

N (0, σ2
1) = pU (u) =

1√
2πσ2

1

exp[−(1/(2σ2
1))u2] (10)

and N (0, 0) is defined to be zero. This is easily verified from (9) by finding the PDF of the sum

by first conditioning on N and then unconditioning by summing with respect to the probability

mass function of the Poisson random variable. To determine the PDF necessary for A (recall that

Uk = Ak cos(Φk) with Φk ∼ U([0, 2π)) we note that for a compound Poisson random variable the

characteristic function is [4]

ψX(ω) = exp [λ0(ψU (ω) − 1)]

so that from (8)

ψU (ω) =
∫ ∞

0
J0

(
ωa√
λ0/2

)
pA(a)da.

Since U ∼ N (0, σ2/λ0)

ψU (ω) = exp
[
−1

2
σ2

λ0
ω2

]
and therefore we require the solution of

exp
[
−1

2
σ2

λ0
ω2

]
=
∫ ∞

0
J0

(
ωa√
λ0/2

)
pA(a)da

for pA(a). But for α > 0 it can be shown that [5]

α

∫ ∞

0
J0(βx)x exp

(
−1

2
αx2

)
dx = exp

[
−1

2
β2/(2α)

]

and letting x = a, β = ω/
√
λ0/2 and α = 1/σ2, we have

1
σ2

∫ ∞

0
J0

(
ω√
λ0/2

a

)
a exp

(
−1

2
a2/σ2

)
da = exp

[
−1

2
ω2σ2

λ0

]
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so that

pA(a) =
a

σ2
exp

(
−1

2
a2

σ2

)
which is recognized as a Rayleigh PDF. Thus, the amplitude and phase random variables may be

generated by generating two independent Gaussian random variables (x, y) each with PDF N (0, σ2)

after conversion to a magnitude and phase, thus forming a =
√
x2 + y2 and φ = arctan(y/x). This

result is noted from (2) since for the amplitude and phase to be independent with Rayleigh and

uniform PDFs, respectively, X = A cos(Φ) and Y = −A sin(Φ) must be independent and both

Gaussian [10].

The PSD is easily specified from (6) so that the intensity of the Poisson process in frequency

should be chosen as

λ(f) = λ0p(f) =
2λ0PX(f)
E[A2]

= λ0
PX(f)
σ2

0 ≤ f ≤ 1/2.

To actually generate a nonhomogeneous Poisson process with this intensity one can use the methods

described in [18]. For example, a homogeneous Poisson process is easily generated by generating the

interevent times as independent exponential random variables. Then, the realization is transformed

by a nonlinear transformation obtained from λ(f) to obtain the desired nonhomogeneous Poisson

process realization.

5 Rapprochement with Previous Results

The previous representation used in [11] was

X[n] =
1√
M/2

M∑
i=1

Ai cos(2πFin+ Φi)

where the random variables (Ai,Φi) were IID with the amplitudes and phases independent of each

other, and the phases were uniformly distributed. It was assumed that M is a given constant.

These are nearly the same assumptions as for (1). The difference lies with the assumption on the

frequency random variables. Previously, these were IID with PDF pF (f) on the interval [0, 1/2] and

independent of the amplitude and phase random variables. In the PSR we consider the frequencies

as random events distributed according to a nonhomogeneous Poisson random process with intensity

λ(f) = λ0p(f). However, if in the PSR model we fix the number of events N as the constant M , or

equivalently condition on the number of frequency events in [0, 1/2], then the PSR reduces to our

previous model. This is a well known result that a nonhomogeneous Poisson process with intensity

λ(f), conditioned on the number of events, has the same distribution as the order statistics of M

IID random variables with the PDF [18]

pF (f) =
λ(f)∫ 1/2

0 λ(f)df
0 ≤ f ≤ 1/2.

8



But for the PSR λ(f) = λ0p(f) so that

pF (f) =
λ0p(f)∫ 1/2

0 λ0p(f)df
= p(f)

since
∫ 1/2
0 p(f)df = 1. Hence, if we condition on the number of frequency events in [0, 1/2], then

X[n] has the properties listed in [11]. The only difference is that by conditioning the characteristic

function of X[n] becomes

(
ψx[n](ω|N = M)

)M =

(∫ ∞

0
J0

(
ωa√
M/2

)
pA(a)da

)M

.

If we were now to assume that N ∼ Poiss(λ0), then by taking the expected value of(
ψx[n](ω|N = M)

)M with respect to a Poisson random variable with mean λ0, we would recover

the characteristic function of (8).

6 Some Applications

6.1 Class A Noise with Arbitrary PSD

Middleton’s class A noise model has been found to accurately predict scattering phenomena in

radar, sonar, and communications [15]. The first-order PDF is defined as

pX[n](x;λ0,Ω, σ2
G) = exp(−λ0)

∞∑
k=0

λk
0

k!
N (0, σ2

k) (11)

where N (0, σ2) denotes a Gaussian PDF with mean zero and variance σ2 and σ2
k = k(Ω/λ0) +

σ2
G. The PDF corresponds to the sum of a compound Poisson random variable, which represents

scattering such as is encountered in reverberation or clutter, and a Gaussian random variable, which

represents ambient noise. As such, the sum random variable can be expressed as

X[n] =
N∑

k=1

Uk +W

where N ∼ Poiss(λ0), Uk ∼ N (0,Ω/λ0) and are IID, and W ∼ N (0, σ2
G) and all random variables

are independent of each other. The total process power is E[X2[n]] = Ω+σ2
G. Referring to (11) we

see that the nonGaussian part can alternatively be represented by a PSR with E[A2] = Ω. To this

we can add white Gaussian noise with variance σ2
G to represent the ambient noise. This follows

because the PDF of the nonGaussian (NG) part is

pNG(x;λ0,Ω) = exp(−λ0)
∞∑

k=0

λk
0

k!
N
(

0, k
Ω
λ0

)
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and is convolved with the PDF of the Gaussian part

pG(x;σ2
G) =

1√
2πσ2

G

exp
(
− 1

2σ2
G

x2

)

which by linearity of convolution produces (11).

The PSD of X[n] becomes upon noting the independence and hence uncorrelateness of the

nonGaussian and Gaussian parts

PX(f) = PNG(f) + σ2
G.

Here PNG(f) is the PSD of the nonGaussian part and is realized using (6). The final representation

is

X[n] =
1√
λ0/2

N∑
k=1

Ak cos(2πFkn+ Φk) +W [n] (12)

where N is Poisson with intensity λ(f) = λ0PNG(f)/Ω, Ak’s are IID Rayleigh random variables

with parameter Ω, Φ’s are IID uniform random variables on [0, 2π), and W [n] is white Gaussian

noise with variance σ2
G.

6.2 Generation of Multidimensional WSS Random Process Realizations

It is frequently desired to generate a realization of an m-dimensional Gaussian random process

with a given PSD. A common procedure is to filter an m-dimensional white Gaussian noise process

using a “coloration” filter. As an alternative, the use of the PSR provides a more direct method.

We illustrate for a two-dimensional WSS process with the extension to any number of dimensions

being obvious.

The representation becomes

X[n1, n2] =
1√
λ0/2

N∑
k=1

Ak cos[2π(F1k
n1 + F2k

n2) + Φk] (13)

where the Ak’s are IID Rayleigh random variables, the Φk’s are uniform random variables with

the amplitudes and phases independent of each other, as for the one-dimensional case. The only

difference is in the marked Poisson process now being defined over the space S ×M, where S =

[0, 1/2]× [0, 1]. A realization of the two-dimensional random process X[n1, n2] now requires one to

implement a two-dimensional nonhomogeneous Poisson process with intensity

λ(f1, f2) = λ0
2PX(f1, f2)
E[A2]

0 ≤ f1 ≤ 1/2; −1/2 ≤ f2 ≤ 1.

If we condition on the number of events, then the generation process is simplified since the frequency

events (F1k
, F2k

) becomes IID random vectors with joint PDF

pF1,F2(f1, f2) =
2PX(f1, f2)
E[A2]

0 ≤ f1 ≤ 1/2; −1/2 ≤ f2 ≤ 1.
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Hence, the generation reduces to that of generating a two-dimensional random vector outcome with

a given PDF. Note that any PDF may be approximated by a sum of two-dimensional Gaussian

PDFs for which generation of Gaussian random vectors becomes a simple task. The same approach

can also be used for m-dimensional PSDs that can be approximated by a sum of multivariate

Gaussians.

6.3 Spectral Hypothesis Testing

We now describe an approach to discrimination of PSDs basd on the PSR. In the process of doing

so, we point out some interesting correspondences between PDF metrics and PSD metrics. Assume

that we wish to discriminate between two PSDs, with the extension to any number of PSDs being

obvious. Since the PSD is related to the intensity in the PSR as

λ(f) =
2λ0PX(f)
E[A2]

(14)

we can use the intensity for discrimination. To simplify the discussion we let the power in each

process be the same, which for convenience is taken to be rx[0] = E[A2] = 2. Then from (14) we

have that λ(f) = λ0PX(f). Since the marks of the Poisson process are independent of the frequency

events and since PX(f) only depends on the intensity, we can base any decision on just the intensity

realization. It can be shown that the part of the log-PDF that depends on the intensity is given by

[18]

l = −
∫ 1/2

0
λ(f)df +

∫ 1/2

0
lnλ(f)N(df) (15)

and this becomes

l = −
∫ 1/2

0
λ0PX(f)df +

∫ 1/2

0
ln (λ0PX(f))N(df)

= −λ0 +
1
2

lnλ0 +
∫ 1/2

0
lnPX(f)N(df). (16)

Finally, assuming the possible PSDs are equally likely to occur we minimize the probability of

decision error by choosing the PSD for which

l′ =
∫ 1/2

0
lnPX(f)N(df) =

N∑
k=1

lnPX(fk)

is maximum. Usually, the frequency events are not observable but only x[n] is observed. Some

applications for which the frequency events can be observed are in neural auditory coding [17]. For

the former case we proceed by noting that

E[N(df)] = λ(f)df = λ0PX(f)df ≈ λ0I(f)df

11



where I(f) is the periodogram, which is given by

I(f) =
1
M

∣∣∣∣∣
M−1∑
m=0

x[m] exp(−j2πfm)

∣∣∣∣∣
2

.

The data set x[m] for m = 0, 1, . . . ,M − 1 is assumed to have been observed. Thus, we can use

l′ =
∫ 1/2

0
(lnPX(f))λ0I(f)df.

Finally if we have two possible PSDs PX1(f) and PX2(f), we choose the one that maximizes over

i = 1, 2

ξi =
∫ 1/2

0
I(f) lnPXi(f)df. (17)

A computer simulation example is now presented.

We assume that we wish to discriminate between two Gaussian autoregressive (AR) random

processes of order four with the PSDs shown in Figure 1. They ae assumed to be equally likely to

occur. To do so we consider two approaches. The first is the one given above as (17). The second,

0 500 1000 1500 2000 2500 3000 3500 4000
−15

−10

−5

0

5

10

Freq 

P
S

D
 (

dB
)

 

 
class 1
class 2

Figure 2: Two AR(4) random process PSDs to be classified.

which is used as a baseline, is the asymptotic log-PDF of a Gaussian random process [8]. It can be

shown to be (apart from a constant not depending on the PSD)

ln p = −
∫ 1/2

−1/2

(
lnPX(f) +

I(f)
PX(f)

)
df.
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We decide upon the PSD that maximizes ln p, i.e., we use the maximum likelihood (ML) decision

rule [9]. The measure of performance is the probability of correct classification Pc. To demonstrate

an apparent advantage of the Poisson statistic we corrupt the Gaussian process by adding IID

Laplacian noise of varying powers. The results will then indicated a measure of robustness to

modeling assumptions. In Figure 3 we plot the probability of correct classification versus signal-

to-noise ratio (SNR), where the latter is defined as the Gaussian random process power divided

by the Laplacian noise power. It is seen that when the modeling assumptions are satisfied, i.e.,

0 5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

1.1

SNR (dB)

P
c

 

 

ML
Poisson

Figure 3: Probability of correct classification versur SNR.

no corrupting noise, that the Gaussian ML statistic produces slightly better results. This is as

expected since the ML rule is the optimal approach, assuming the true PDF is used. However,

when this is not the case, indicated by a worsening SNR, the Poisson test statistic significantly

outperforms the Gaussian ML decision rule. It is not clear at this point why there is such an

improvement in robustness so that further study is warranted. It should be mentioned that similar

results for discrimation of deterministic energy spectral densities were reported upon in [12].

An interesting interpretation of the test statistic of (17) is next described. Recall that we have

normalized the PSD so that ∫ 1/2

0
PX(f)df = 1.

With this normalization the PSD integrates to one over the frequency interval [0, 1/2] and so

has the same mathematical properties as a PDF. Carrying the analogy further we also note that

E[I(f)] = PX(f) [7]. If i = 1 is the correct PSD, then the difference of the expected values of the

13



statistic of (17) is given by

E1[ξ1] − E2[ξ2] =
∫ 1/2

0
E1[I(f)] lnPX1(f)df −

∫ 1/2

0
E1[I(f)] lnPX2(f)df

=
∫ 1/2

0
PX1(f) lnPX1(f)df −

∫ 1/2

0
PX1(f) lnPX2(f)df

=
∫ 1/2

0
PX1(f) ln

PX1(f)
PX2(f)

df.

This is recognized as the Kullback-Liebler distance measure [14]. This measure had previously been

used to distinguish speech-like signals based on their periodograms [12].

7 Conclusions

We have presented an alternative spectral representation of a wide sense stationary random process.

It is based on the assumption that the frequencies are random variables, and in particular, they

are the events of a nonhomogeneous Poisson process in frequency. The theoretical properties were

derived and some applications given to illustrate its usefulness in practice. The results presented

extend previous ones and so forms a more complete theory. Future work will undoubtedly add to

the aforementioned applications.
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A Derivation of Mean and Covariance

Using the standard notation of Kingman [13], we let the Poisson process be denoted by Π and the

marked Poisson process by Π∗. The event is denoted by the vector in R3 as x. Then we wish to

determine the mean and covariance of

Zm =
∑

X∈Π∗
gm(X) (18)

It is shown in Appendix C that the first four moments are given as

E[Zm] =
∫
S×M

gm(x)µ(dx) (19)

E[ZmZn] =
∫
S×M

gm(x)gn(x)µ(dx) (20)

By letting x = [f aφ]T and

gm(x) =
a√
λ0/2

cos(2πfm+ φ)

and also

µ(dx) = λ0p(f)pA(a)pΦ(φ)dφ da df

we can find the moments of X[n].

The mean is derived first by using (19).

E[X[n]] =
∫ 1/2

0

∫ ∞

0

∫ 2π

0

a√
λ0/2

cos(2πfn+ φ)λ0p(f)pA(a)pΦ(φ)dφ da df = 0

due to the integration over φ.

Next the autocorrelation sequence and the PSD are found.

E[X[m]X[n]] =
∫ 1/2

0

∫ ∞

0

∫ 2π

0

a2

λ0/2
cos(2πfm+ φ) cos(2πfn+ φ)λ0p(f)pA(a)pΦ(φ)dφ da df

= 2E[A2]
∫ 1/2

0

∫ 2π

0

1
2

cos[2πf(m− n)] +
1
2

cos[2πf(m+ n) + 2φ]
1
2π
dφ p(f)df

= 2E[A2]
∫ 1/2

0

1
2

cos[2πf(m− n)]p(f)df

= rX [m− n]

so that the autocorrelation sequence is

rX [k] =
∫ 1

2

− 1
2

E[A2]p(|f |)
2

cos(2πfk)df

and the PSD is seen to be

PX(f) =
E[A2]p(|f |)

2
− 1/2 ≤ f ≤ 1/2.
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B Derivation of Ergodicity of Sample Autocorrelation

From [3] there are two conditions that are necessary and sufficient for ergodicity. They are

1. The fourth moment E[X[n0]X[k + n0]X[j + n0]X[j + k + n0]] should not depend on n0, which

is a form of stationarity for this moment.

2. If the sample autocorrelation is given by

r̂X [k] =
1

M + 1

M+1∑
j=0

X[j]X[j + k]

then we require

lim
M→∞

1
M + 1

M+1∑
j=0

E[X[0]]E[X[k]]E[X[j]]E[X[j + k]] = r2X [k]

and is equivalent to requiring the variance of r̂X [k] to go to zero as the data record length M

goes to ∞. We first verify the stationarity of the fourth-order moment.

To do so we let

gn(x) = X[n] =
a√
λ0/2

cos(2πfn+ φ)

and use the fourth-order moment results derived in Appendix C. We have

E[X[n0]X[k + n0]X[j + n0]X[j + k + n0]] =
∫
S×M

gn0(x)gk+n0(x)gj+n0(x)gj+k+n0(x)µ(dx)

+
∫
S×M

gn0(x)gk+n0(x)µ(dx)
∫
S×M

gj+n0(x)gj+k+n0(x)µ(dx)

+
∫
S×M

gn0(x)gj+n0(x)µ(dx)
∫
S×M

gk+n0(x)gj+k+n0(x)µ(dx)

+
∫
S×M

gn0(x)gj+k+n0(x)µ(dx)
∫
S×M

gk+n0(x)gj+n0(x)µ(dx)

and from Appendix A ∫
S×M

gm(x)gn(x)µ(x) = rX [m− n].

Thus, the last three terms are

r2X [k] + r2X [j] + rX [j + k]rX [j − k]

and clearly do not depend on n0. Considering the first term, which we denote by I, we have

I =
∫ 1/2

0

∫ ∞

0

∫ 2π

0

1
(λ0/2)2

a4 cos[2πfn0 + φ] cos[2πf(k + n0) + φ]

· cos[2πf(j + n0) + φ] cos[2πf(j + k + n0) + φ]λ0pΦ(φ)pA(a)p(f)dφ da df

=
4E[A4]
λ0

∫ 1/2

0

∫ 2π

0
[cos[2πfn0 + φ] cos[2πf(k + n0) + φ]

· cos[2πf(j + n0) + φ] cos[2πf(j + k + n0) + φ]]
1
2π
p(f)dφ df
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To evaluate the integral over φ we let zi = exp(jθi), i = 1, 2, 3, 4 with

θ1 = 2πfn0 + φ

θ2 = 2πf(k + n0) + φ

θ3 = 2πf(j + n0) + φ

θ4 = 2πf(j + k + n0) + φ

so that the fourth-order product of cosines in brackets becomes

1
16

4∏
i=1

(zi + z∗i ).

When multiplied out, only the product terms that have two unconjugated zi’s and two conjugated

zi’s so that the term does not depend on φ will produce a nonzero contribution to the integral. It

can be shown that this results in the terms

1
8

[cos(θ1 + θ2 − θ3 − θ4) + cos(θ1 − θ2 + θ3 − θ4) + cos(θ1 − θ2 − θ3 + θ4)]

which is

1
8

[cos(−2πfj − 2πfj) + cos(−2πfk − 2πfk) + cos(−2πfk + 2πfk)] =
1
8

[cos(4πfj) + cos(4πfk) + 1] .

At this point we see that the fourth-order moment does not depend on n0 and hence the

first condition for ergodicity is satisfied. Continuing on we compute the fourth-order moment

E[X[0]X[k]X[j][j + k]], which is just the previous expression with n0 = 0.

We now continue the evaluation of I.

I =
4E[A4]
λ0

∫ 1/2

0

∫ 2π

0
[cos[2πfn0 + φ] cos[2πf(k + n0) + φ]

· cos[2πf(j + n0) + φ] cos[2πf(j + k + n0) + φ]]
1
2π
p(f)dφdf

=
E[A4]
2λ0

∫ 1/2

0

∫ 2π

0
[cos(4πfj) + cos(4πfk) + 1]

1
2π
p(f)dφdf

=
E[A4]
2λ0

∫ 1/2

0
[cos(4πfj) + cos(4πfk) + 1] p(f)df

=
E[A4]

2λ0E[A2]

∫ 1
2

− 1
2

[cos(2πfj) + cos(4πfk) + 1]
E[A2]p(|f |)

2
df

=
E[A4]

2λ0E[A2]
[rX [2j] + rX [2k] + rX [0]]

so that

E[X[0]X[k]X[j]X[j + k]] =
E[A4]

2λ0E[A2]
[rX [2j] + rX [2k] + rX [0]] + r2X [k] + r2X [j] + rX [j + k]rX [j− k].
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Thus,

lim
M→∞

1
M + 1

M∑
j=0

E[X[0]X[k]X[j]X[j + k]] = lim
M→∞

1
M + 1

M∑
j=0

E[A4]
2λ0E[A2]

(rX [2j] + rX [2k] + rX [0])

+ lim
M→∞

1
M + 1

M∑
j=0

(r2X [j] + rX [j + k]rX [j − k]) + r2X [k]

and assuming that
∑M

j=0 |rX [j]| < ∞ and
∑M

j=0 |r2X [j] + rX [j + k]rX [j − k]| < ∞, which will be

true for an absolutely continuous spectral measure, we see that

lim
M→∞

1
M + 1

M∑
j=0

E[X[0]X[k]X[j]X[j + k]] =
E[A4]

2λ0E[A2]
(rX [2k] + rX [0]) + r2X [k]

which will only approach r2X [k] as λ0 → ∞.

C Derivation of Joint Characteristic Function

The principal approach to determining properties of a Poisson process is the characteristic function

and Campbell’s theorem [13]. The general fourth-order moments necessary do not appear in the

literature and so this appendix fills that gap. In the process we will also derive the lower-order

moments, some of which are in [13], as well as many other references. We use a general procedure

to allow the application to any Poisson process.

The joint characteristic function of Z = [Z1 Z2 . . . Zp]T as given by (18) can be shown to be

ψz(ω) = E[exp(jωTZ)] = exp
[∫

S×M

(
exp[jωTg(x)] − 1

)
µ(dx)

]

where ω = [ω1 ω2 . . . ωp]T , g(x) = [g1(x) g2(x) . . . gp(x)]T , and µ(A) is the mean measure of the set

A. It is asumed that the integral exists, which is assured if µ(S ×M) < ∞. It can be shown by

Campbell’s theorem that

E[gi(X)] =
∫
S×M

gi(x)µ(dx)

and assuming this equals zero, we have that

ψz(ω) = exp
[∫

S×M

(
exp[jωTg(x)] − jωTg(x) − 1

)
µ(dx)

]

= exp

[∫
S×M

∞∑
k=2

(jωTg(x))k

k!
µ(dx)

]

= exp

[ ∞∑
k=2

∫
S×M

(jωTg(x))k

k!
µ(dx)

]

with the last step justified via the Beppo-Levi theorem and the assumption that
∞∑

k=2

∫
S×M

∣∣∣∣(jωTg(x))k

k!

∣∣∣∣µ(dx) <∞.
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Next to differentiate the characteristic function it is convenient to let

G(ω, ν, h) =
∞∑

k=ν

∫
S×M

(
∑p

i=1 jωigi(x))k

k!
h(x)µ(dx)

where ν ≥ 0 so that we have

ψz(ω) = exp(G(ω, 2, e))

and e(x) = 1. Note that

∂G(ω, ν, e)
∂ωm

=

{
G(ω, ν − 1, jgm) ν ≥ 1

G(ω, 0, jgm) ν < 1

so that if the second argument of G is less than zero, it should be set to zero. Similarly, we have

∂2G

∂ωm∂ωn
= G(ω, ν − 2, j2gmgn)

∂3G

∂ωm∂ωn∂ωr
= G(ω, ν − 3, j3gmgngr)

=
∂4G

∂ωm∂ωn∂ωr∂ωs
= G(ω, ν − 4, j4gmgngrgs).

Also we make use of the relationship

G(ω, ν, h)|ω=0 =

{ ∫
S×M h(x)µ(dx) ν = 0

0 ν ≥ 1

As a result we obtain the moments as follows. They are

E[Zm] =
1
j

∂ψz

∂ωm

∣∣∣∣
ω=0

=
1
j
ψz(0)G(0, 1, jgm) = 0.

E[ZmZn] =
1
j2

∂2ψz

∂ωm∂ωn

∣∣∣∣
ω=0

and

∂2ψz

∂ωm∂ωn
=

∂

∂ωm
[ψz(ω)G(ω, 1, jgm)]

= ψz(ω)G(ω, 0, j2gmgn) + ψz(ω)G(ω, 1, jgn)G(ω, 1, jgm).

Evaluating this at ω = 0 produces G(0, 0, j2gmgn) or finally

E[ZmZn] =
∫
S×M

gm(x)gn(x)µ(dx).

The first and second moment are just Campbell’s theorem. Next

E[ZmZnZr] =
1
j3

∂3ψz

∂ωm∂ωn∂ωr

∣∣∣∣
ω=0
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and

∂3ψz

∂ωm∂ωn∂ωr
=

∂

∂ωr

[
ψz(ω)G(ω, 0, j2gmgn) + ψz(ω)G(ω, 1, jgn)G(ω, 1, jgm)

]
= ψz(ω)G(ω, 0, j3gmgngr) + ψz(ω)G(ω, 1, jgr)G(ω, 0, j2gmgn)

+ ψz(ω)
[
G(ω, 0, j2gngr)G(ω, 1, jgm) +G(ω, 1, jgn)G(ω, 0, j2gmgr)

]
+ ψz(ω)G(ω, 1, jgr)G(ω, 1, jgn)G(ω, 1, jgm).

Finally, we have

E[ZmZnZr] =
∫
S×M

gm(x)gn(x)gr(x)µ(dx).

The fourth-order moment is found similarly as

E[ZmZnZrZs] =
1
j4

∂4ψz

∂ωm∂ωn∂ωr∂ωs

∣∣∣∣
ω=0

.

Note that only the third derivative terms above that have a factor of G(·, 0, ·) after being differen-

tiated will be nonzero when ω = 0. This produces the fourth-order derivative evaluated at ω = 0

of

ψz(ω)G(ω, 0, j4gmgngrgs) + ψz(ω)G(ω, 0, j2grgs)G(ω, 0, j2gmgn)

+ ψz(ω)G(ω, 0, j2gngr)G(ω, 0, j2gmgs) + ψz(ω)G(ω, 0, j2gngs)G(ω, 0, j2gmgr)

and finally we have

E[ZmZnZrZs] =
∫
S×M

gm(x)gn(x)gr(x)gs(x)µ(dx) +
∫
S×M

gr(x)gs(x)µ(dx)
∫
S×M

gm(x)gn(x)µ(dx)

+
∫
S×M

gn(x)gr(x)µ(dx)
∫
S×M

gm(x)gs(x)µ(dx)

+
∫
S×M

gn(x)gs(x)µ(dx)
∫
S×M

gm(x)gr(x)µ(dx).

D Derivation of First-Order PDF

If

X[n] =
∑
x∈Π∗

gn(X)

where

gn(x) =
a√
λ0/2

cos(2πfn+ φ)

then the characteristic function can be shown to be [13]

ψX[n](ω) = exp
[∫

S×M
(exp(jωgn(x)) − 1)µ(dx)

]

= exp

[∫ 1/2

0

∫ ∞

0

∫ 2π

0

(
exp

(
jω

a√
λ0/2

cos(2πfn+ φ)

)
− 1

)
λ0p(f)pA(a)pΦ(φ)dφ da df

]
.
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Since Φ is uniform over the interval [0, 2π), by integrating over φ we obtain

ψX[n](ω) = exp

[∫ 1/2

0

∫ ∞

0

(
J0

(
ω

a√
λ0/2

)
− 1

)
λ0p(f)pA(a)da df

]

and next integrating over f produces

ψX[n](ω) = exp

[
λ0

∫ ∞

0

(
J0

(
ω

a√
λ0/2

)
− 1

)
pA(a)da

]

or the characteristic function is that of a compound Poisson random variable

ψX[n](ω) = exp [λ0(ψU (ω) − 1)]

where

ψU (ω) =
∫ ∞

0
J0

(
ω

a√
λ0/2

)
pA(a)da.

E Derivation of Convergence to Gaussian Random Process

Consider an arbitrary number of samples K at arbitrary times {n1, n2, . . . , nK}. The characteristic

function of Z = [X[n1]X[n2] . . . X[nK ]]T was shown in Appendix C to be given by

ψz(ω) = exp

[ ∞∑
k=2

∫
S×M

(jωTg(x))k

k!
µ(dx)

]

where x = [f aφ]T and

x[ni] = gi(x) =
1√
λ0/2

a cos(2πfni + φ).

Thus, we have

lnψz(ω) =
∞∑

k=2

∫ 1/2

0

∫ ∞

0

∫ 2π

0

1
k!

(
j

K∑
i=1

ωi
1√
λ0/2

a cos(2πfni + φ)

)k

λ0p(f)pA(a)pΦ(φ)dφ da df

=
∞∑

k=2

∫ 1/2

0

∫ ∞

0

∫ 2π

0

1

λ
k/2−1
0 k!

(
j
√

2
K∑

i=1

ωia cos(2πfni + φ)

)k

p(f)pA(a)pΦ(φ)dφ da df

=
∫ 1/2

0

∫ ∞

0

∫ 2π

0

1
2!

(
j
√

2
K∑

i=1

ωia cos(2πfni + φ)

)2

p(f)pA(a)pΦ(φ)dφ da df +O(1/
√
λ0)

and as λ0 → ∞

lnψz(ω) → −E[A2]
∫ 1/2

0

∫ 2π

0

(
K∑

i=1

ωi cos(2πfni + φ)

)2

p(f)pΦ(φ)dφ df

= −1
2

K∑
i=1

K∑
j=1

ωiωj[A]ij
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where

[A]ij = 2E[A2]
∫ 1/2

0

∫ 2π

0
cos(2πfni + φ) cos(2πfnj + φ)p(f)pΦ(φ)dφ df

= E[A2]
∫ 1/2

0
cos(2πf(ni − nj))p(f)df.

Therefore, we have that

[A]ij =
∫ 1/2

0
cos(2πf(ni − nj))p(f)df

=
∫ 1/2

0
cos(2πf(ni − nj))E[A2]p(f)df

=
∫ 1/2

−1/2
cos(2πf(ni − nj))

(
E[A2]

2
p(|f |)

)
df

= rX [ni − nj].

Thus,

ψz(ω) → exp
(
−1

2
ωTCω

)
where

[C]ij = rX [ni − nj ]

and C is recognized as the covariance matrix, from which we can conclude that the random process

approaches a Gaussian random process as λ0 → ∞.
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